

1 **Gut microbiome remains stable following COVID-19 vaccination in** 2 **healthy and immuno-compromised individuals**

3 Rebecca H. Boston¹, Rui Guan¹, Sina Beier¹, Lajos Kalmar¹, Emily C. Horner¹, Nonantzin Beristain-
4 Covarrubias¹, Juan Carlos Yam-Puc¹, Pehuén Pereyra Gerber^{2,3}, Luisa Faria¹, Anna
5 Kuroshchenkova¹, Anna E. Lindell¹, Sonja Blasche¹, Andrea Correa-Noguera⁴, Anne Elmer⁵, Caroline
6 Saunders⁵, Areti Bermperi⁵, Sherly Jose⁵, Nathalie Kingston⁶, CITIID-NIHR COVID-19 BioResource
7 Collaboration, Sofia Grigoriadou⁷, Emily Staples¹, Matthew S. Buckland^{7,8}, Sara Lear⁴, Nicholas J.
8 Matheson^{2,3,4,9}, Vladimir Benes¹⁰, Christine Parkinson⁴, James E. D. Thaventhiran^{1,4,*} and Kiran R.
9 Patil^{1,*}

10

11 ¹ Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.

12 ² Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of
13 Cambridge, Cambridge, UK

14 ³ Department of Medicine, University of Cambridge, Cambridge, UK

15 ⁴ Department of Clinical Immunology, Cambridge University NHS Hospitals Foundation Trust,
16 Cambridge, UK

17 ⁵ NIHR Cambridge Clinical Research Facility, Cambridge, UK

18 ⁶ NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK

19 ⁷ Department of Clinical Immunology, Barts Health, London, UK

20 ⁸ UCL GOSH Institute of Child Health Division of Infection and Immunity, Section of Cellular and
21 Molecular Immunology, London, UK

22 ⁹ NHS Blood and Transplant, Cambridge, UK

23 ¹⁰ European Molecular Biology Laboratory, Heidelberg, Germany

24 *Correspondence to: JEDT, jedt2@mrc-tox.cam.ac.uk; KRP, kp533@mrc-tox.cam.ac.uk.

25

26 **Abstract**

27 *Objectives*

28 The bidirectional interaction between the immune system and the gut microbiota is a key
29 contributor to various host physiological functions. Immune-associated diseases such as
30 cancer and autoimmunity, as well as the efficacy of immunomodulatory therapies, have been
31 linked to microbiome variation. While COVID-19 infection has been shown to cause
32 microbial dysbiosis, it remained unknown whether the inflammatory response associated
33 with vaccination also impacts the microbiota.

34

35 *Design*

36 Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in
37 healthy and immuno-compromised individuals; the latter included patients with primary
38 immunodeficiency and cancer patients on immunomodulating therapies, assessed using
39 shotgun metagenomic sequencing.

40

41 *Results*

42 We find that the gut microbiome remained stable post-vaccination irrespective of diverse
43 immune status, vaccine response, and microbial composition spanned by the cohort. The
44 stability is evident at all evaluated levels including phylum, species, and functional capacity.

45

46 *Conclusion*

47 Our results show the resilience of the gut microbiome to host immune changes triggered by
48 COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated
49 processes. These findings encourage vaccine acceptance, particularly when contrasted with
50 the significant microbiome shifts observed during COVID-19 infection.

51

52 **Key Messages**

53 *What is already known on this topic*

54 • COVID-19 infection induces marked gut microbiota dysbiosis.

55 • COVID-19 vaccines induce a strong inflammatory response which could therefore

56 perturb the gut microbiota.

57 • The temporal impact of the COVID-19 vaccine on the gut microbiota remains

58 unknown despite millions of doses being administered worldwide.

59 *What this study adds*

60 • Our study demonstrates that there is no evident impact of the COVID-19 vaccination

61 on the gut microbiome in healthy participants as well as in immunocompromised

62 individuals.

63 • No correlation was observed between the magnitude of the vaccine response and

64 the composition of the gut microbiome.

65 *How this study might affect research, practice or policy*

66 • Our study provides reassurance of vaccine safety promoting the uptake of the

67 COVID-19 vaccine.

68

69

70

71

72

73 **Introduction**

74 In the first 30 months of the pandemic, there have been reported to be almost 800 million
75 PCR confirmed cases of COVID-19 infection and approaching 7 million related deaths
76 globally¹. To reduce this severity, vaccines were deployed with the aim of promoting anti-
77 SARS-CoV-2 immunity, with almost 13.5 billion vaccine doses administered globally, 150
78 million of which were administered in the United Kingdom¹. Yet, continued COVID-19
79 transmission remains of concern² with one of the reasons being vaccine hesitancy³. Thus,
80 data helping to understand holistic effects of vaccination will have a profound impact on the
81 public health management of the ongoing pandemic.

82 The SARS-CoV-2 mRNA and viral vector vaccines induce a strong immune response
83 through the promotion of both innate and adaptive immunity against the spike protein⁴. Of
84 note, there has been reported to be a promotion of inflammatory cytokines IFNy, IL-15 and
85 IL-6 secretion in response to vaccination⁵ each known to impact intestinal epithelial
86 architecture and mucosal immunity^{6, 7, 8}. The sequestration of the spike mRNA by antigen-
87 presenting cells aims to limit the spread into systemic circulation, however the SARS-CoV-2
88 spike protein was also found in blood plasma⁹, potentially leading to inflammation at different
89 sites of the body other than the site of vaccination including that of the gut. This led us to
90 hypothesize that the systemic immune response to the SARS-CoV-2 vaccination may impact
91 the gut microbiota.

92 Numerous studies have analysed the gut microbiome during COVID-19 infection¹⁰, finding
93 notable depletion in both commensal bacterial, such as *Bacteroides* and *Bifidobacterium*
94 spp. and beneficial *Lachnospiraceae*, coupled with increased abundances of opportunistic
95 pathogens such as *Streptococcus* and *Clostridium hathawayi*; this indicates a marked
96 dybiosis induced by COVID-19 infection. Yet since the initiation of the vaccination
97 programme against COVID-19, very few studies have addressed the impact of the
98 vaccination on the gut microbiome^{11,12,13,14}. Previous work has addressed the link between
99 the gut microbiome and vaccine immunogenicity. Primarily, baseline abundances of certain
100 bacterial species before the first vaccine dose have been correlated with a defined end point
101 of vaccine efficacy, typically a vaccine-related readout, such as virus neutralisation or spike-
102 specific antibody titres.

103 Yet, two open questions remain: how the gut microbiome is affected by COVID-19
104 vaccination in the days following vaccination when the inflammatory response is at its
105 highest, and are any immediate changes in the gut microbiome maintained or resolved once
106 humoral immunity has been initiated. Addressing this knowledge-gap could help understand
107 the extent and the nature of reciprocal links between the gut microbiome and systemic

108 immunity in the context of vaccination. We therefore sought to analyse the gut microbiome of
109 patients receiving doses of the COVID-19 vaccines to decipher whether there were any
110 notable, characteristic changes in the gut microbiome in either healthy or
111 immunocompromised individuals [Table 1]. The immunocompromised patients we recruited
112 cancer patients receiving immune checkpoint modulating therapies and patients with primary
113 immunodeficiencies. These cohorts consist of patients with impaired immunity resulting from
114 either therapeutic intervention or monogenic defects in immunoregulatory genes (CTLA4,
115 NFKB1, CD40L), respectively.

116 This presented us with the unique opportunity to elucidate whether the COVID-19 vaccines
117 alter the gut microbiome in the absence of complete, functional immunity and subsequent
118 impairments of the regulation of the gut microbiome.

119

120 **Methods**

121 ***Study recruitment and ethics***

122 Participants volunteered and were enrolled to one of 3 cohorts, healthy controls, cancer
123 patients which presented with either melanoma or renal malignancies, or primary
124 immunodeficient patients with defined mutations in key immunoregulatory genes as well as
125 patients with clinical presentation aligning to that of defined primary immunodeficiency,
126 including antibody deficiency [Table 1]. Almost all patients in each cohort received
127 BNT162b2 Pfizer vaccine, aside from one patient at second dose receiving AstraZeneca,
128 and 4 patients receiving Moderna at the third [Table 1]. Patients were excluded if presenting
129 with positive COVID-19 serology or if presenting in hospital with clinal symptoms/features
130 related to their disease which may influence the physiological response to the COVID-19
131 vaccination. The research was conducted in accordance with the principles of Good Clinical
132 Practice and following approved protocols of the NIHR National Bioresource. Samples were
133 collected with the written informed consent of all study participants under the NIHR National
134 BioResource - Research Tissue Bank (NBR-RTB) ethics (REC:17/EE/0025. The patients
135 and healthy controls were consented under the East of England Cambridge South national
136 research ethics committee (REC) reference: 13/EE/0325).

137 ***Participant sampling***

138 Participant samples were anonymised by clinical staff prior to sample delivery to the
139 research lab. Peripheral blood and fecal samples were collected longitudinally over the
140 course of up to three doses of the vaccines against COVID-19 (sample coverage varied
141 across doses), spanning the course of 2021. Peripheral blood mononuclear cells (PBMCs)
142 were extracted from blood samples using density gradient centrifugation, stored temporarily

143 at -80°C, before being transferred to long-term storage in liquid nitrogen. Serum was isolated
144 from peripheral blood via centrifugation and stored at -80°C until required. Fecal samples
145 were collected at 3 timepoints around each vaccine dose: pre-dose (94% of samples taken
146 within 3 days prior to vaccination, the remaining 3 samples taken up to 14 days prior), acute
147 (day 2 or 3 after vaccination) or late (day 16–28 after vaccination). Fecal matter was
148 collected in OMNIgene•GUT kits (DNA Genotek, Canada) whereby samples are stored in a
149 stabilizing, inactivating solution. Samples were transported to the lab and homogenized upon
150 arrival before being stored at -80°C until required.

151 ***Fecal DNA extraction and sequencing***

152 DNA was extracted from fecal samples using QIAamp® PowerFecal® Pro DNA kits
153 (Qiagen). Samples were thawed and approximately 250mg of fecal sample was lysed via
154 bead beating. According to the kit protocol, the sample was then cleaned of non-DNA
155 organic and inorganic material, then washed using ethanol. DNA was eluted into 10mM Tris
156 and quantified using the Qubit™ 1X dsDNA High Sensitivity (HS) Assay Kit (Thermo Fisher
157 Scientific, UK) using the Qubit™ fluorometer (Thermo Fisher Scientific, UK). DNA at a
158 concentration of 10mg/uL was sent for sequencing. Shotgun metagenomic sequencing was
159 performed with Illumina NextSeq 2000 sequencing platform using paired-end reads of 150bp
160 in length.

161 ***Shotgun metagenomic analysis***

162 Raw sequencing data was pre-processed with PRINSEQ++¹⁸ in paired read mode, quality
163 trimming to a minimal Phred score of 30 in a window of 15 bases and removing reads of less
164 than 75 bp length after trimming. Additionally, host contamination was removed by mapping
165 against the GRCh38 reference human genome using Bowtie2¹⁹ (v2.4.5) and removing any
166 mapped reads from the dataset. Raw, trimmed and filtered reads were checked for quality
167 using FastQC²⁰. From the remaining read pairs, taxonomic profiling was determined using
168 mOTUs3²¹ profiler. For functional profiling, the remaining read pairs after filtering were
169 assembled using metaSPAdes²² with a *k*-mer size of 55. The resulting scaffolds were filtered
170 for at least 200 bp length and weighted by their average coverage of the filtered reads to
171 enable quantitative analysis. The remaining scaffolds were aligned to the EggNOG
172 database²³ (downloaded on 2022/04/08) using DIAMOND (v2.0.13). Microbiome analysis
173 was performed in R using phyloseq²⁴ and vegan²⁵ packages. Differential abundance analysis
174 was performed using DESeq2²⁶.

175 ***Serological assessment of immune response to COVID-19 vaccines***

176 Serum samples were thawed, heat-inactivated at 56°C for 30 mins and measured for the
177 dilution of serum that reduces viral activity by 50% (NT₅₀); the method for which has been

178 previously described¹⁵. For anti-SARS-CoV-2 specific IgG antibodies, we utilised a
179 previously described method^{16,17}, in which Luminex bead sets are covalently coupled to the
180 recombinant SARS-CoV-2 proteins nucleocapsid protein (NCP), spike (S) and receptor-
181 binding domain (RBD) to quantify antibody levels.

182 ***Statistical analysis***

183 Wilcoxon tests with multiple testing correction using the false discovery rate were deployed
184 throughout, using pairwise comparison where appropriate. Mixed effect linear modelling was
185 performed using lmer4 in R. Correlation was determined using Spearman's Rank coefficient.

186

187 **Results**

188 ***The composition of gut microbiome is not altered by vaccination against COVID-19***

189 To investigate the impact of the COVID-19 vaccines on the gut microbiome, shotgun
190 metagenomic sequencing was performed on a total of 239 fecal samples from 59 patients
191 from our three cohorts (43 healthy control, 160 cancer and 36 primary immunodeficient
192 patient samples). Samples were taken over the course of 3 vaccine doses, at one of three
193 vaccine timepoints pre-dose (before vaccination), acute (2–3 days after vaccination) or late
194 (16–28 days after vaccination) for each vaccine dose [Fig1A]. Pre-dose sampling provides a
195 baseline assessment of the gut microbiome prior to vaccination, whilst acute samples
196 provide the opportunity to assess the effect of vaccination on the gut microbiome at the
197 height of the initial inflammatory response, and late samples allow a determination of any
198 resolution or maintenance of acute effects.

199 We noted significant differences in the alpha diversities of samples taken from our cohorts
200 [Supplementary Figure 1A], however when assessing samples taken at different vaccine
201 timepoints from within each cohort, we did not observe any significantly differences [Figure
202 1B]. To further, when assessing samples from the same patient at different vaccine
203 timepoints using a paired sample analysis approach, we also did not see any significant
204 differences in the alpha diversities of our patient samples [Supplementary Figure 1B]. This
205 indicates that the COVID-19 vaccine is not affecting the existing diversity of the gut
206 microbiome, despite the distinct microbial diversity between the patient cohorts.

207 We next used principal component analysis to visualize the beta-diversity of our microbiome
208 composition data that includes the abundance of all detected operational taxonomic units
209 (OTUs) [Fig1C]. The principal components (PCs) describe the largest variation components
210 in the dataset, representing shifts in microbiome composition and potentially reflecting to the
211 abundance changes of bacterial species between the samples. The first 5 principal

212 components were responsible for the 2.9%, 2.4%, 2.1%, 2.0% and 1.9% of variation in the
213 data respectively, and were further analysed using mixed effect linear models with multiple
214 input variables from our available metadata. In our linear models we asked whether the
215 vaccination timepoint of the samples in each cohort could improve the explained variance of
216 the PCs when compared to a baseline model describing the explained variance using patient
217 samples as the grouping variable. We found that there was no significant improvement on
218 the baseline model [Supplementary Figure 1C]. This suggests that the variance we see in
219 our samples is not a signature of the COVID-19 vaccines, rather those of the patients
220 presenting with different microbiome compositions.

221 Next, we asked whether the COVID-19 vaccines induce any changes in the phylum-level
222 composition of the gut microbiome and profiled the relative abundance of taxa at the phylum
223 level across all samples, [Fig1D] observing variation in our patient samples. Moreover, when
224 comparing the top 6 most prevalent phyla, no significant differences were observed between
225 vaccine timepoints despite significant differences in these phyla between cohorts [Fig1E]
226 [Supplementary Figure 1D]. We similarly observed no significant differences when using the
227 paired sample analysis [Supplementary Figure 1E]. This demonstrates that the COVID-19
228 vaccines do not alter the composition of the gut microbiome irrespective of the unique
229 compositions found in our cohort samples.

230

231 ***COVID-19 vaccination does not induce species level changes in the gut microbiome***

232 We next sought to analyse differentially abundant microbial species between vaccine
233 timepoints using DESeq2. All cohorts were analysed independently for the abundance
234 changes in samples taken at each vaccine timepoint with the most differentially abundant
235 species presented in a representative heatmap of log2 fold-change in abundance. For the
236 cancer cohort, when assessing the change in abundance of these top differential responding
237 bacterial species between samples taken pre-dose and acutely, unsupervised clustering
238 does not demonstrate evident grouping [Fig2A]. Among all the species, only two were
239 significantly increased in acute samples compared to pre-dose samples, *Klebsiella*
240 *pneumoniae* and *Butyrivibrio crossotus* found in 11 [$p = 1.01\text{e-}24$] and 5 samples [$p = 7.63\text{e-}12$] out of the 160 cancer patient samples respectively [Fig2B]. The former is only
242 representative in a quarter of the cohort, only melanoma patients, and within those has an
243 average relative abundance of 0.7% [Fig2C]; the latter in 2 renal cancer patients,
244 representing on average 3% of the relative abundance. Considering approximately 2500
245 species are represented across all patient samples, change in 2 low-abundant and sparsely
246 represented species signifies negligible changes. Similar findings were seen for our other
247 two cohorts, healthy controls and primary immunodeficient patients [Supplementary Figure

248 2]. When performing paired sample analysis in the cancer cohort using DESeq2, we find that
249 no significantly altered species between pre-dose and acute, or pre-dose and late samples;
250 the same is demonstrated for the healthy controls. Samples from one primary
251 immunodeficient patient showed a significant reduction in *Enterobacter* sp. in an acute
252 sample compared to pre-dose. This demonstrates that on a species level there is no unified,
253 biologically relevant change in abundance of microbial species induced by the COVID-19
254 vaccines.

255 As the differential abundance analysis considers the change in abundance of all species
256 irrespective of their relative abundance within each sample, we were curious whether there
257 were any noticeable changes in the most abundant species found within each patient cohort
258 that could be attributed to the vaccine timepoints. There was no significant difference in any
259 of the most abundant 15 species in samples taken at any of the three vaccine timepoints
260 [Fig2D], representing on average 47% of the relative abundance of the species within patient
261 samples in the cancer cohort, 50% within the healthy controls and 53% within the primary
262 immunodeficient patient cohort. This indicates that we see no effect of the vaccine on the
263 species occupying the highest proportion of the abundant microbial species. Thus, on a
264 species level there is no unified, biologically relevant change in abundance of microbial
265 species induced by the COVID-19 vaccines.

266 There was considerable concern both at the time of the initial vaccine programme, and to
267 this day, on the safety of COVID-19 vaccines. Given that, we sought to observe if there was
268 any differential outgrowth of bacterial species that have been associated to various immune-
269 related diseases, including gastric cancer and autoimmunity, as well as metabolic and
270 neurological diseases. Although our study cannot address long-term outgrowth of bacterial
271 associated to these diseases, we are able to highlight if there is any temporal, acute
272 changes in these species which is still of physiological relevance. *Faecalibacterium*
273 *prausnitzii*, which is reported to be reduced in both gastric cancers, autoimmunity, and
274 Crohn's disease²⁷, showed no significant abundance changes at the vaccine timepoints in
275 our cohorts [Fig2E]. We also found no presence of *Helicobacter pylori*, which is strongly
276 associated with the initiation and development of gastric cancers²⁸. *Akkermansia*
277 *muciniphila*, found to be increased in obesity²⁹ and correlated with response rates to immune
278 checkpoint blockade therapies in various malignancies³⁰, was not altered by vaccination in
279 all three cohorts [Fig2F]. In studies of Alzheimer's, *Escherichia coli* has been demonstrated
280 to promote neurodegeneration³¹, in our samples we did not see significant difference
281 induced by the vaccine in any of our cohorts [Fig2G]. This supports that the COVID-19
282 vaccine does not promote the change in abundance of microbes that are associated with

283 various immune-related diseases within our patient cohorts and is indicative of no greater
284 risk of the aforementioned diseases as a result of COVID-19 vaccination.

285

286 ***The magnitude of the response to the COVID-19 vaccines is not correlated with gut***
287 ***microbiome diversity***

288 Within the current literature, a few studies have reported changes in the gut microbiome that
289 correlate with vaccine efficacy^{12,13,14}, so we sought to determine whether the gut microbiome
290 composition was related to the magnitude of the COVID-19 vaccine response. We
291 performed an assessment of vaccine efficacy using a live-virus neutralisation assay, as a
292 predictive measure of vaccine protection³¹, to assess whether vaccine efficacy had
293 correlation with microbial diversity.

294 When taking the neutralising capacity of patient serum at both second dose [Fig3A] and third
295 dose [Fig3B], we asked whether the Shannon diversity of gut microbiome at different vaccine
296 timepoints, correlated with neutralisation. We did not see any correlation between diversity
297 and vaccine efficacy in any of our patient cohorts; the same is true for the quantity of anti-
298 spike IgG antibodies [Supplementary Figure 3]. This indicates that the magnitude of the
299 immune response was not correlated with the gut microbiome diversity in our patient
300 cohorts, thus suggesting that improved efficacy of the vaccine does not come at a cost of
301 microbial disturbance.

302

303 ***The gut microbiome functional capacity was not affected by COVID-19 vaccines***

304 Having investigated the composition and relative abundance of the microbial species that
305 constitute the gut microbiome, we next sought to investigate whether the functional capacity
306 of the microbial species was altered by the COVID-19 vaccines. Using the EggNOG
307 database, we assigned functional annotations to the sequenced metagenomes. The highest
308 level of functional annotation depicts three functional groups, cellular processes and
309 signalling, information storage and processing, and metabolism. In these, we did not see any
310 significant differences between the vaccine timepoints within our cohorts [Fig4A]; similar to
311 taxonomic data presented earlier, when combining samples from within the same cohorts,
312 there are significant changes [Supplementary Figure 4A].

313 We next observed the abundance of the 22 defined functional groups in the next functional
314 annotation level down in the separate vaccine timepoints within each patient cohort [Fig4B].
315 Representative graphs of the most abundant functional annotations within each of the

316 highest three level functional levels remained unchanged after vaccination within our patient
317 cohorts [Fig4C], the same is true for the remaining 19 (Supplementary Figure 4B).

318 At the lowest functional annotation level, we interrogated the abundance of cluster of
319 orthologous genes (COGs) at separate vaccine timepoints within our cohorts. Remarkably,
320 only two COGs, out of a possible 2142 presented in our patient samples, were significantly
321 different as a result of the COVID-19 vaccines, in control samples COG2243 Precorrin-2
322 c20-methyltransferase between acute and late vaccine samples ($p = 0.04$ [FDR]), and
323 COG4750 cytidyltransferase choline kinase between pre-dose and late samples in cancer
324 patients ($p = 0.03$ [FDR]); not a single COG was found to be significantly altered in primary
325 immunodeficient patient samples as a result of the vaccine. This demonstrates that the
326 functional annotations of the gut microbiome are not altered by the administration of the
327 COVID-19 vaccines.

328

329 **Discussion**

330 To our knowledge, this study is the first to assess the gut microbiome composition in
331 response to the COVID-19 vaccines across multiple doses and at multiple timepoints with
332 samples taken pre-dose, acutely and late following vaccination. The study is also the first to
333 assess the effect of the COVID-19 vaccines on the gut microbiome in cancer patients and in
334 patients with inborn errors of immunity associated with severe immune dysregulation. As
335 sampling across the cohorts varied throughout, we opted to combine the three vaccine
336 doses and assess vaccine timepoints or samples from within each cohort. This allowed us to
337 better observe the influence of the COVID-19 vaccines in these contexts.

338 The relative abundance of microbes within the gut microbiome has more recently been
339 assessed with vaccine immunogenicity including that of vaccines against SARS-CoV-2 virus.
340 The first reported study of the gut microbiome in COVID-19 vaccinated patients correlated
341 vaccine immunogenicity of the inactivated virus, CoronaVac, and the mRNA vaccine
342 encoding spike protein, BNT162b2 vaccine, with the baseline abundance of gut
343 *Bifidobacterium adolescentis* and *Roseburia faecis* respectively¹². We did not observe
344 changes in these bacterial species. Another study investigated the variability of the COVID-
345 19 vaccine response to the gut microbiome by correlating RNAseq data with microbial
346 abundance using 16S rRNA gene amplicon sequencing¹⁴. They identified several
347 differentially abundant taxa between high- and low-antibody responders and high- and low-T-
348 cell responders. In the context of immunocompromised cohorts, a previous study assessed
349 patients with inflammatory bowel disease¹³ well known to be characterised by gut
350 microbiome dysbiosis³³, who were receiving anti-TNF immunomodulators. Their study did

351 not demonstrate changes in diversity in above geometric mean vaccine responders but
352 found *Bilophila* abundance correlated to an improved response. They also assessed the
353 fecal metabolome showing that various metabolites were associated with a better vaccine
354 response; several metabolites were also associated with a reduced response. What these
355 studies have in common is associating microbiome composition to vaccine immunogenicity,
356 however these studies have not addressed temporal changes that can be seen in the gut
357 microbiome in the days following vaccination, whereas our longitudinal study design affords
358 us the opportunity to do so.

359 In our patient cohorts, we did not find any significant effect on the diversity of the gut
360 microbiome following COVID-19 vaccination despite considerable differences between the
361 cohorts. In line with the studies investigating the gut microbiome of patients with primary
362 immunodeficiencies³⁴, we also observed decreased diversity in our cohort compared to
363 control samples. These patients have been demonstrated to exhibit increased gut
364 permeability with higher rates of bacterial translocation³⁵, perhaps indicative that there is
365 bidirectional permeability of systemic immunity affecting the gut microbiome. In our study, we
366 find no influence on microbiome variation after vaccination in patients at genetically
367 determined persistent state of immune dysregulation.

368 In melanoma patients, the presence of species bacteria species from the *Actinobacteria* and
369 *Firmicutes* phylum have been associated with better responses to immune checkpoint
370 blockade therapies^{36, 37, 38}. An *Akkermansia muciniphilia* signature was also found in renal
371 cancer patients responding better to immune checkpoint blockade therapy^{39,40}. While cancer
372 progression is reported to be linked to gut microbiome composition and its derived
373 metabolites, these associations vary between cancer types⁴¹. We saw wide compositional
374 variation within our cancer cohort samples, perhaps due to the wide range of disease
375 presentation and treatment included in our patients. Our study did not consider factors such
376 diet and medications known to affect the gut microbiome⁴². Nevertheless, this is not critical
377 as our analysis suggests stability as opposed to specific changes and post-hoc power
378 calculation indicates sufficient power against false negatives (for effect size Cohen's d =
379 0.55, estimated power = 0.8). Cancer patients' response to vaccination depend significantly
380 on cancer type, for example antibody-related immune responses in solid cancers are better
381 than in haematological cancers⁴³. It is therefore notable that in an immunologically diverse
382 cohort of individuals, with varied vaccine responses, we did not observe any effect of the
383 COVID-19 vaccination on the gut microbiome, indicating stability irrespective of pre-dose
384 composition.

385 While we did not observe any changes at any taxonomic level or functional capacity, we
386 cannot rule out genetic changes at mutational levels that may alter the microbiota function.

387 An independent functional validation such as metabolomics to look for bacterial derived
388 short-chain fatty acids, tryptophan and bile acid metabolites known to mediate microbiome-
389 host interactions⁴⁴ could be utilised to assess this. Sampling from the PID cohort was limited
390 reflecting the rarity of the individuals within the general population. Despite this, we were
391 able to recruit patients characterised by monogenic defects in both intrinsic and extrinsic B-
392 cell aetiologies, thus representing multiple facets within the rare PID population. Further, we
393 were unable to sample all patients at all vaccine timepoints across all vaccine doses.
394 Nevertheless, our findings still bare relevance as we assess patient cohorts individually and
395 where possible the paired sample data analysis aligns with the overall findings.

396 Although the global vaccination efforts have controlled the spread of the SARS-CoV-2 virus,
397 there were still reported to be 2.6 million new cases within the past month¹, highlighting that
398 prevention of disease through vaccination is still relevant for public health. Considering the
399 measurable impact of common life factors such as alcohol consumption, meat intake and
400 commonly used medications on the microbiota⁴⁵, our study finds that the vaccination has
401 negligible, if any, impact on microbiome-mediated processes. The contrast is even starker
402 when considering large microbiome changes have been reported for COVID-19 infection¹⁰.
403 Our findings shows that the gut microbiome remains stable post-vaccination and provides an
404 additional reassurance towards promoting vaccine uptake.

405

406 **Data availability**

407 Sequencing data will be uploaded to the European Genome-phenome Archive, whilst code
408 will be available on GitHub: https://github.com/RHBoston/COVID-19_Vaccination_GM.

409

410 **Acknowledgements**

411 We are grateful to the clinical staff at Addenbrookes hospital who facilitated patient
412 recruitment and sample collection, and the members of the Thaventhiran and Patil lab for
413 help in processing the samples.

414

415 **Competing interests**

416 The authors declare no competing interests.

417

418 **Funding declaration**

419 This work was funded by the UK Medical Research Council (project numbers
420 MC_UU_00025/11 and MC_UU_00025/12).

421 **References**

422 ¹ World Health Organization. Available: <https://covid19.who.int> [Accessed 30th August 2023].

423 ² Lind, M.L., et al. Evidence of leaky protection following COVID-19 vaccination and SARS-CoV-2
424 infection in an incarcerated population. *Nat Commun* 14, 5055 (2023).

425 ³ Carrieri V, Guthmuller S, Wübker A. Trust and COVID-19 vaccine hesitancy. *Sci Rep.* 2023 Jun
426 7;13(1):9245.

427 ⁴ Bellamkonda N, et al. Immune Response to SARS-CoV-2 Vaccines. *Biomedicines.* 2022 Jun
428 21;10(7):1464.

429 ⁵ Bergamaschi C, et al. Systemic IL-15, IFN- γ , and IP-10/CXCL10 signature associated with effective
430 immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. *Cell Rep.*
431 2021;36(6):109504.

432 ⁶ Nava P, et al. Interferon-gamma regulates intestinal epithelial homeostasis through converging beta-
433 catenin signaling pathways. *Immunity.* 2010;32(3):392-402.

434 ⁷ Pagliari D, et al. The role of IL-15 in gastrointestinal diseases: a bridge between innate and adaptive
435 immune response. *Cytokine Growth Factor Rev.* 2013;24(5):455-466.

436 ⁸ Wu S, et al. Interleukin-6 absence triggers intestinal microbiota dysbiosis and mucosal immunity in
437 mice. *Cytokine.* 2022;153:155841.

438 ⁹ Röltgen K, et al. Immune imprinting, breadth of variant recognition, and germinal center response in
439 human SARS-CoV-2 infection and vaccination. *Cell.* 2022 Mar 17;185(6):1025-1040.e14.

440 ¹⁰ Rocchi G, et al. Gut Microbiota and COVID-19: Potential Implications for Disease Severity.
441 *Pathogens.* 2022; 11(9):1050.

442 ¹¹ Leung JSM. Interaction between gut microbiota and COVID-19 and its vaccines. *World J
443 Gastroenterol.* 2022 Oct 28;28(40):5801-5806.

444 ¹² Ng SC, et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity
445 and adverse events. *Gut.* 2022 Jun;71(6):1106-1116.

446 ¹³ Alexander JL, et al. The gut microbiota and metabolome are associated with diminished COVID-19
447 vaccine-induced antibody responses in immunosuppressed inflammatory bowel disease patients.
448 *EBioMedicine.* 2023 Feb;88:104430.

449 ¹⁴ Hirota M, et al. Human immune and gut microbial parameters associated with inter-individual
450 variations in COVID-19 mRNA vaccine-induced immunity. *Commun Biol.* 2023 Apr 20;6(1):368.

451 ¹⁵ Gerber PP, et al. A protease-activatable luminescent biosensor and reporter cell line for authentic
452 SARS-CoV-2 infection. *PLoS Pathog.* 2022 Feb 10;18(2):e1010265.

453 ¹⁶ Xiong X, et al. A thermostable, closed SARS-CoV-2 spike protein trimer. *Nat Struct Mol Biol.* 2020
454 Oct;27(10):934-941.

455 ¹⁷ Collier DA, et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2.
456 Nature. 2021 Aug;596(7872):417-422.

457 ¹⁸ Cantu VA, Sadural J, Edwards R. PRINSEQ++, a multi-threaded tool for fast and efficient quality
458 control and preprocessing of sequencing datasets. PeerJ Preprints. 2019. 7:e27553v1

459 ¹⁹ Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar
460 4;9(4):357-9.

461 ²⁰ Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online].
462 Available online at: <http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

463 ²¹ Ruscheweyh, H.J., Milanese, A., Paoli, L. et al. Cultivation-independent genomes greatly expand
464 taxonomic-profiling capabilities of mOTUs across various environments. Microbiome 10, 212 (2022).

465 ²² Nurk S, et al. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017
466 May;27(5):824-834.

467 ²³ Huerta-Cepas J, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated
468 orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019 Jan
469 8;47(D1):D309-D314.

470 ²⁴ McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and
471 Graphics of Microbiome Census Data. PLOS ONE (2013). 8(4): e61217.

472 ²⁵ Oksanen J, et al. vegan: Community Ecology Package_. R package version 2.6-4, (2022).
473 <<https://CRAN.R-project.org/package=vegan>>.

474 ²⁶ Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq
475 data with DESeq2 Genome Biology (2014). 15(12):550

476 ²⁷ Islam MZ, et al. Reproducible and opposing gut microbiome signatures distinguish autoimmune
477 diseases and cancers: a systematic review and meta-analysis. Microbiome. 2022 Dec 9;10(1):218.

478 ²⁸ Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010
479 Jun;10(6):403-14.

480 ²⁹ Aoun A, Darwish F, Hamod N. The Influence of the Gut Microbiome on Obesity in Adults and the
481 Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Prev Nutr Food Sci. 2020 Jun
482 30;25(2):113-123.

483 ³⁰ Shi Z, Li H, Song W, Zhou Z, Li Z, Zhang M. Emerging roles of the gut microbiota in cancer
484 immunotherapy. Front Immunol. 2023 Feb 22;14:1139821.

485 ³¹ Bairamian D, et al. Microbiota in neuroinflammation and synaptic dysfunction: a focus on
486 Alzheimer's disease. Mol Neurodegener. 2022 Mar 5;17(1):19.

487 ³² Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing antibody levels are highly predictive of
488 immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-1211.

489 ³³ Qiu P, et al. The Gut Microbiota in Inflammatory Bowel Disease. Front Cell Infect Microbiol. 2022
490 Feb 22;12:733992.

491 ³⁴ Castagnoli R, et al. Gut Microbiota-Host Interactions in Inborn Errors of Immunity. *Int J Mol Sci.*
492 2021 Jan 31;22(3):1416.

493 ³⁵ Ho HE, et al. Circulating bioactive bacterial DNA is associated with immune activation and
494 complications in common variable immunodeficiency. *JCI Insight.* 2021 Oct 8;6(19):e144777.

495 ³⁶ Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial
496 tumors. *Science.* 2018 Jan 5;359(6371):91-97.

497 ³⁷ Matson V, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic
498 melanoma patients. *Science.* 2018 Jan 5;359(6371):104-108.

499 ³⁸ Frankel AE, et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify
500 Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy
501 Efficacy in Melanoma Patients. *Neoplasia.* 2017 Oct;19(10):848-855.

502 ³⁹ Derosa L, et al. Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in
503 Renal Cell Carcinoma Patients. *Eur Urol.* 2020 Aug;78(2):195-206.

504 ⁴⁰ Salgia NJ, et al. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma
505 Receiving Anti-PD-1 Immune Checkpoint Inhibitors. *Eur Urol.* 2020 Oct;78(4):498-502.

506 ⁴¹ Yang Q, et al. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer
507 Therapy. *Adv Sci (Weinh).* 2023 May;10(15):e2207366.

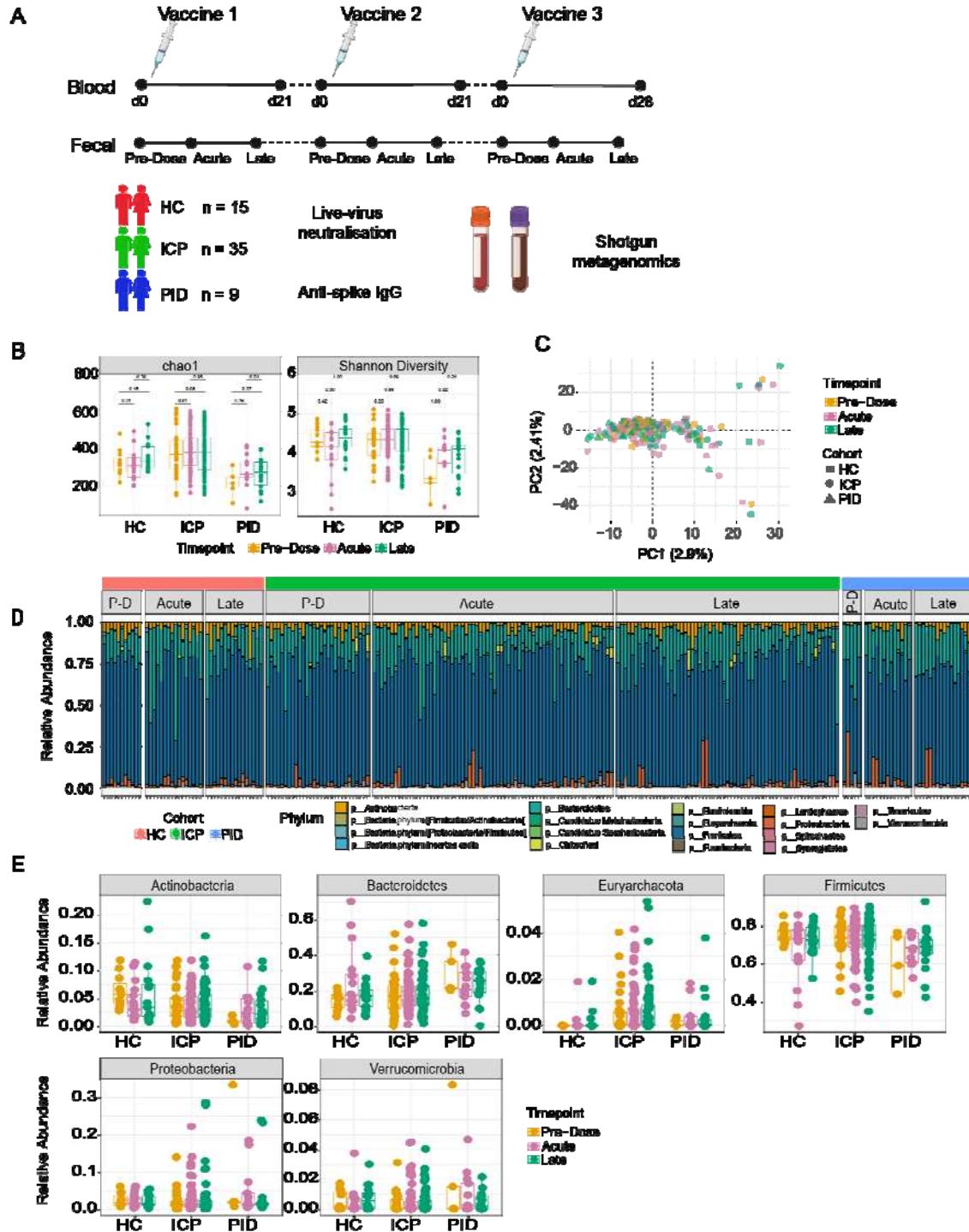
508 ⁴² Maier L, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. *Nature.*
509 2018;555(7698):623-628.

510 ⁴³ Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. *Nat Rev Cancer.* 2021
511 Jun;21(6):345-359. doi: 10.1038/s41568-021-00347-z.

512 ⁴⁴ Wang J, et al.. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune
513 Homeostasis. *Cells.* 2023 Mar 2;12(5):793.

514 ⁴⁵ Lindell AE, Zimmermann-Kogadeeva M, Patil KR. Multimodal interactions of drugs, natural
515 compounds and pollutants with the gut microbiota. *Nat Rev Microbiol.* 2022;20(7):431-443.

516

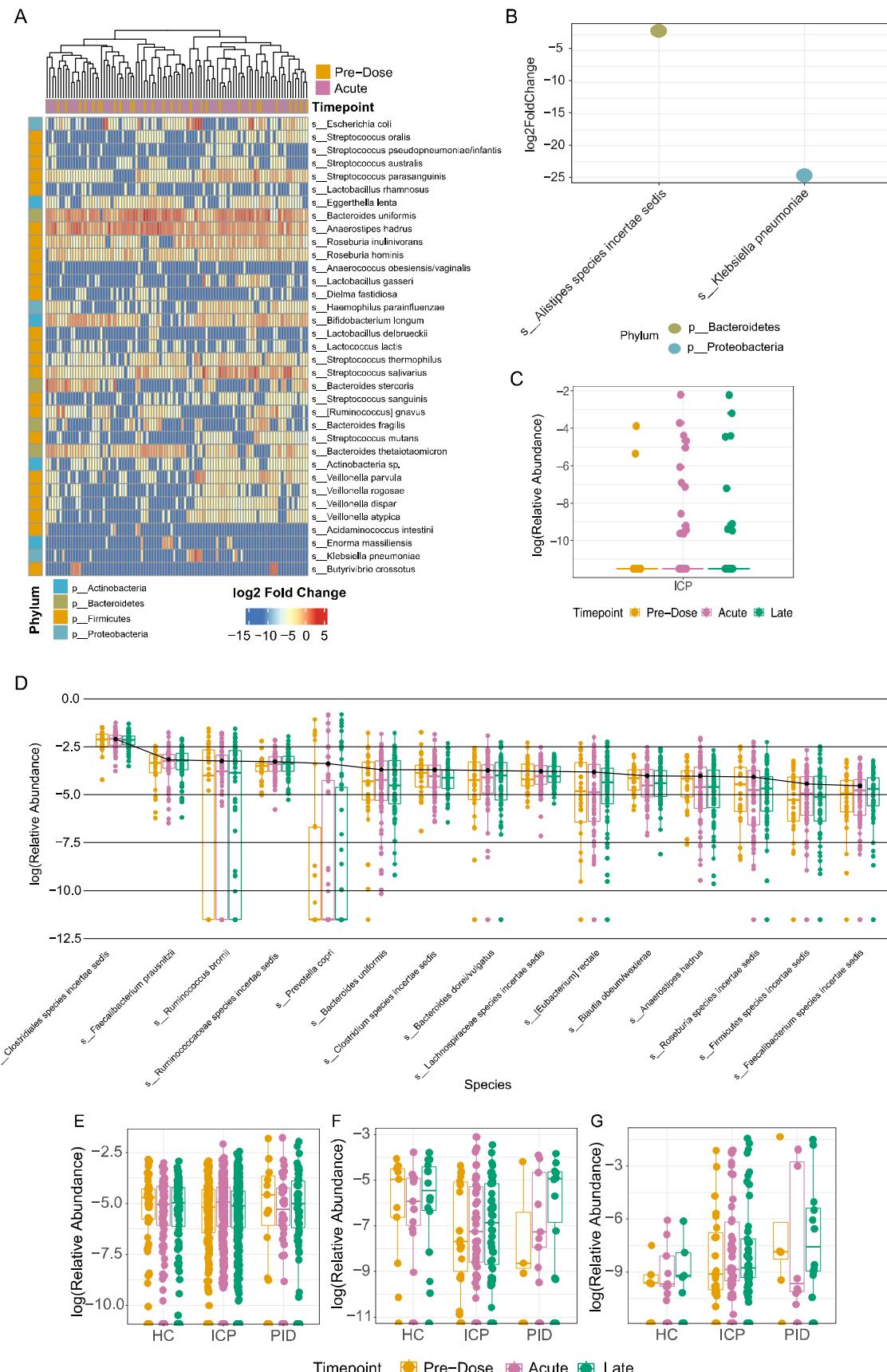

517 **Table 1.** Characteristics of the participants in this study.

518

<i>Cohort</i>	<i>Participants</i>	<i>Age</i>	<i>Vaccine type</i>	<i>Condition</i>	<i>Treatment</i>
Healthy Controls	6F 9M	28–59 Mean = 43.7	Vaccine doses, n = 20 90% Pfizer doses 10% Moderna doses	NA	NA
Immune checkpoint treated cancer patients (ICP)	9F 26M	39–86 Mean = 61.7	Vaccine doses, n = 70 97% Pfizer doses 3% Moderna doses	11 Metastatic Melanoma, 10 Adjuvant Melanoma, 5 Melanoma controls, 6 Metastatic Renal, 3 Renal controls	3 Nivolumab, 13 Pembrolizumab, 10 Ipilimumab + Nivolumab, 1 Ipilimumab + Pembrolizumab
Primary Immunodeficient patients (PID)	4F 5M	19–61 Mean = 41.1	Vaccine doses, n = 19 95% Pfizer doses 5% AstraZeneca doses	1 CD40L deficiency, 2 CTLA4 deficiency, 4 NFKB1 deficiency, 2 Undiagnosed condition	5 intravenous immunoglobulin, 3 Antibiotics

519
520

521



522

523 **Figure 1.** (A) Study design. 59 patients were recruited for longitudinal analysis of the effect of the
524 vaccines against COVID-19. Samples were assigned to one of three patient cohorts, healthy control
525 (HC), immune-checkpoint therapy treated cancer patients (ICP), or patients with primary
526 immunodeficiencies (PID). Blood samples were analysed for their live-virus neutralisation capacity
527 and quantifying the amount of anti-spike IgG antibodies, whilst fecal samples were analysed with
528 shotgun metagenomics for taxonomic and functional annotations. (B) Diversity measures of chao1

529 and Shannon assessed in fecal samples taken from different vaccine timepoints, from within healthy
530 control (HC), immune-checkpoint therapy treated cancer patients (ICP) and patients with primary
531 immunodeficiencies (PID). Statistical testing performed using Wilcoxon test and adjusted for multiple
532 testing using FDR correction. (C) Principal component (PC) analysis at the operational taxonomic unit
533 level. Each dot represents a unique sample from within each cohort (shapes) taken at unique
534 timepoints following vaccination (colours). (D) Relative abundance at the phyla taxonomic level
535 depicted by colours of each of the bars, from samples taken from each of the cohorts (HC, ICP and
536 PID), separated by the vaccine timepoints from which the sample was taken; PD = Pre-Dose, Acute
537 and Late. (E) Relative abundance of the 6 most prevalent phyla in patient samples from within each of
538 the cohorts and separated by the vaccine timepoint from which the sample was taken. Statistical
539 testing performed using Wilcoxon test and adjusted for multiple testing using FDR correction.

540

542 **Figure 2.** Representative analysis of the cancer cohort (ICP) demonstrates minimal change
543 attributable to the COVID-19 vaccines. (A) Differential abundance analysis using DESeq2 of the log2
544 fold-change of the top 35 differential species between samples taken at pre-dose and acutely after
545 vaccination. (B) Log2 fold-change of the significant differential abundant species taken from the
546 DESeq2 analysis. (C) Relative abundance of *Klebsiella pneumoniae* in ICP cohort samples. (D)
547 Relative abundance of the top 15 abundant species within the ICP cohort taken at each of the vaccine
548 timepoints. Relative abundance of various bacterial species correlated with immune-related diseases:
549 *Faecalibacterium prausnitzii* (E), *Akkermansia muciniphila* (F) and *Escherichia coli* (G) within patient
550 samples taken at each vaccine timepoint.

551

552

553

554

555

556

557

558

559

560

561

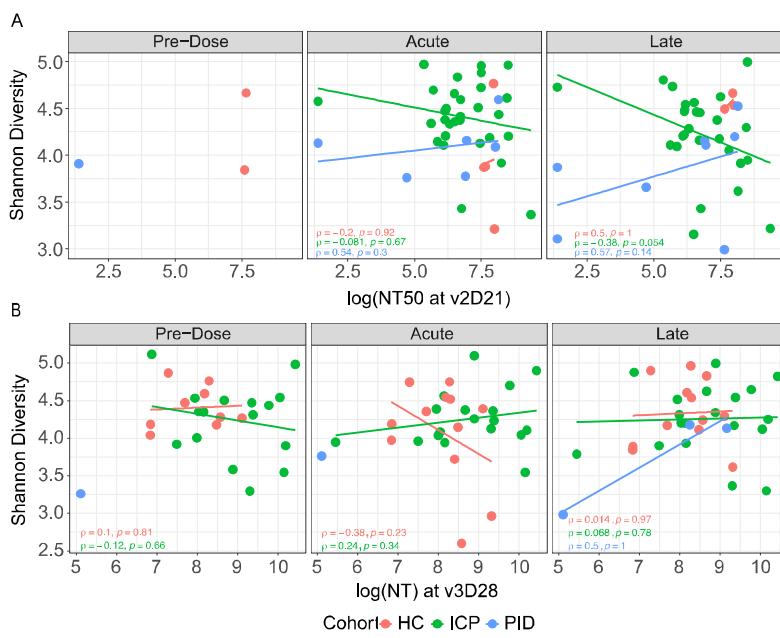
562

563

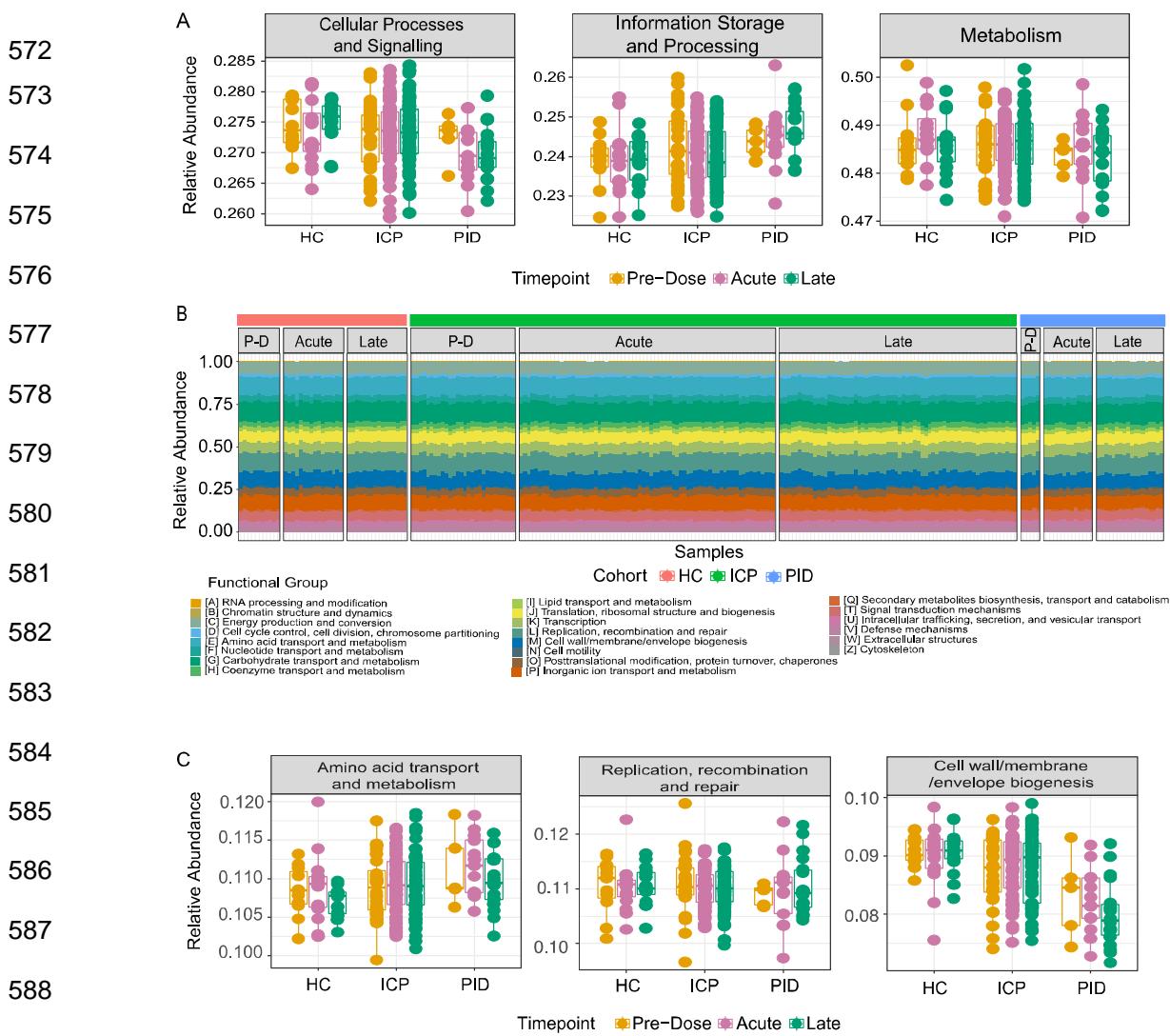
564

565

566


567

568


569

570

571

Figure 3. Vaccine efficacy is not correlated with the gut microbiome composition. Live-virus neutralisation (NT) capacity assessed against Shannon diversity of fecal samples, each point represents a different sample taken at one of the three vaccine timepoints. Colours represent cohorts, within healthy control (HC), immune-checkpoint therapy treated cancer patients (ICP) and patients with primary immunodeficiencies (PID). Correlated vaccine response through NT capacity of patient serum taken at second dose (A) or third dose (B). rho and p values from Spearman's Rank correlation testing displayed.

Figure 4. Functional capacity of microbiome samples using EGGNOG database are not altered by the COVID-19 vaccines. (A) The relative abundance of the highest functional annotation level within patient samples at different vaccine timepoints in each of our patient cohorts. **(B)** Functional composition depicted by colours of each of the bars, from samples taken from each of the cohorts (HC, ICP and PID), separated by the vaccine timepoints from which the sample was taken; PD = Pre-Dose, Acute and Late. **(C)** Relative abundance of the 3 most abundant functional annotations in our patient samples from within each of our patient cohorts and separated by the vaccine timepoint from which the sample was taken. Statistical testing performed using Wilcoxon test and adjusted for multiple testing using FDR.