
Tumor-immune metaphenotypes orchestrate an evolutionary

bottleneck that promotes metabolic transformation

Jeffrey West1,*, Frederika Rentzeperis2, Casey Adam3, Rafael Bravo1, Kimberly A.
Luddy4, Mark Robertson-Tessi1, and Alexander R. A. Anderson1,+

1Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center & Research Institute, 12902

Magnolia Drive, SRB 4 Rm 24000H Tampa, Florida, 33612
2Icahn School of Medicine at Mount Sinai, New York, NY, 10029
3Department of Engineering Science, University of Oxford, Oxford
4Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa,

Florida
*jeffrey.west@moffitt.org
+Alexander.Anderson@moffitt.org

Abstract
Background: Metabolism plays a complex role in the evolution of cancerous tumors, including inducing a
multifaceted e昀昀ect on the immune system to aid immune escape. Immune escape is, by de昀椀nition, a collective
phenomenon by requiring the presence of two cell types interacting in close proximity: tumor and immune.
The microenvironmental context of these interactions is in昀氀uenced by the dynamic process of blood vessel
growth and remodelling, creating heterogeneous patches of well-vascularized tumor or acidic niches.

Methods: Here, we present a multiscale mathematical model that captures the phenotypic, vascular, mi-
croenvironmental, and spatial heterogeneity which shapes acid-mediated invasion and immune escape over
a biologically-realistic time scale. The model explores several immune escape mechanisms such as i) acid
inactivation of immune cells, ii) competition for glucose, and iii) inhibitory immune checkpoint receptor
expression (PD-L1). We also explore the e昀케cacy of anti-PD-L1 and sodium bicarbonate bu昀昀er agents for
treatment. To aid in understanding immune escape as a collective cellular phenomenon, we de昀椀ne immune
escape in the context of six collective phenotypes (termed “meta-phenotypes”): Self-Acidify, Mooch Acid,
PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose.

Results: Fomenting a stronger immune response leads to initial bene昀椀ts (additional cytotoxicity), but this
advantage is o昀昀set by increased cell turnover that leads to accelerated evolution and the emergence of aggres-
sive phenotypes. This creates a bimodal therapy landscape: either the immune system should be maximized
for complete cure, or kept in check to avoid rapid evolution of invasive cells. These constraints are dependent
on heterogeneity in vascular context, microenvironmental acidi昀椀cation, and the strength of immune response.

Conclusions: This model helps to untangle the key constraints on evolutionary costs and bene昀椀ts of three
key phenotypic axes on tumor invasion and treatment: acid-resistance, glycolysis, and PD-L1 expression.
The bene昀椀ts of concomitant anti-PD-L1 and bu昀昀er treatments is a promising treatment strategy to limit the
adverse e昀昀ects of immune escape.

1 Introduction

M
etabolism plays a complex but key role in the evolution of cancerous tumors. Localized hypoxia
due to vascular instability and dysfunction leads to acidi昀椀cation of the tumor microenvironment
via the Pasteur e昀昀ect. Decreased pH selects for acid-resistant tumor-cell phenotypes, followed by

the emergence of aerobic glycolysis (i.e., the Warburg e昀昀ect1). The further acidi昀椀cation of the surrounding
microenvironment by these metabolically aggressive cells foments acid-mediated invasion2–4. This nonlinear
evolutionary trajectory through a range of metabolic phenotypes has been studied clinically, experimentally,

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.06.03.493752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.493752
http://creativecommons.org/licenses/by-nc-nd/4.0/


and theoretically5–10. We present an extension of a hybrid multiscale agent-based mathematical model8
that incorporates phenotypic, vascular, microenvironmental, and spatial heterogeneity to investigate acid-
mediated invasion over a biologically-realistic temporal scale, constructed in Hybrid Automata Framework
(HAL)11. Here, we model immune predation by T cells in the metabolically altered tumor microenvironment.
We include several immune escape mechanisms such as acid-mediated inactivation of T-cell activation, T-cell
inhibition by checkpoint ligand expression on tumor cells, and T-cell glucose deprivation.

1.1 Metabolism and the tumor-immune response
The e昀昀ect of metabolic processes on the immune system is multifaceted and complex, involving both intra-
cellular metabolism of many varied cell types and the impact of this metabolic activity on the surrounding
microenvironment. Immunometabolism is a growing area of study12 and systems biology and modeling
approaches are being applied to the 昀椀eld13. However, the dynamics of tumor-immune interactions in the
context of altered cellular metabolism remain only partially understood. In this work, we focus on T cells,
in particular cytotoxic T lymphocytes (CTL, also known as �/� CD8+ e昀昀ector T cells), which are key players
in the adaptive immune response to foreign pathogens and defective host cells. CTLs are activated via
antigen presentation during the body’s initial in昀氀ammatory response, after which they rapidly proliferate.
Mathematical models are highly suited to studying tumor-immune dynamics14–20, whether using non-spatial
continuum approaches (recently reviewed in 21) or spatial agent-based models (recently reviewed in 22). How-
ever, very few tumor-immune models to date have incorporated the e昀昀ects of cancer metabolism on immune
function23,24. Here, we investigate several key connections between tumor metabolism and immune function.
The physiological role of acidic niches in lymph nodes to regulate T-cell activation has been demonstrated
recently25, thus in the model here, CTLs are subject to inactivation in acidic microenvironments (see 昀椀gure
5D). One recent study demonstrated that acidic microenvironments result in inactivation of CTLs but do not
a昀昀ect their viability26. Cells rescued from low pH environments had the ability to regain e昀昀ector function.
Tumor acidity also promotes regulatory T-cell (Tregs) activity as well as an increase of PD-1 expression
on Tregs, indicating that PD-1 blockade may increase suppressive capacity27. Tumor-in昀椀ltrating CD8+
T-cells require glucose to support their killing function, hence compete for glucose with cancer cells (see
昀椀gure 5E) dampens their anti-cancer response28. In contrast, Tregs avoid competition for glucose within the
tumor microenvironment through rewired metabolism away from aerobic glycolysis, which enhances their
immune-suppression function within the tumor29.

We also include checkpoint inhibition in our model. Programmed cell death-1 (PD-1) is an inhibitory
immune checkpoint receptor expressed on activated CTLs, and programmed cell death ligand-1 (PD-L1)
is a cell surface marker typically expressed on non-hematopoietic tissues that activates PD-1 signaling30.
Upon PD-L1 binding to PD-1, antigen-speci昀椀c T-cells undergo inactivation and apoptosis31 and suppressive
T-cells become more prominent32, thereby down-regulating the immune system response. Some cancers
constitutively express PD-L1, thereby making them less visible to the immune system. This mechanism is
targetable with anti-PD-1/PD-L1 therapy. In the event that a tumor develops escape or evasion mechanisms
in response to immune attack, selection may occur for subclonal populations capable of withstanding immune
predation33,34, often well before tumor invasion into normal tissue35. Classifying tumors into immune-hot
or -cold has shown both intra- and inter-tumoral heterogeneity based on immune in昀椀ltration36,37.

Immunotherapies targeting checkpoint pathways are e昀昀ective in multiple cancer types, however many
patients remain unresponsive or eventually recur due to an immuno-suppressive tumor microenvironment.
Combining oral bicarbonate bu昀昀ering with immunotherapy (adoptive T-cell transfer, anti-CTLA4, or anti
PD-1) increased responses in murine cancer models, presumably due to increased immune activity in a less
acidic microenvironment26. Below, we extend a mathematical model of cancer metabolism8–10 by incorpo-
rating immune predation (T cells) to investigate optimal strategies for immunotherapy (anti-PD-L1) and
bicarbonate bu昀昀er therapy.

1.2 Dynamic vasculature may create acidic niches
Blood vessel growth and remodelling is a dynamic process, responding to stimuli from cells in the nearby
tissue, signaling factors within microenvironmental context, and treatment38. These vascular dynamics are
often abnormal in tumors, and areas of poor vascularization are prone to develop acidic niches. Mechanistic
modeling has been used to investigate the treatment e昀昀ects of systemic pH bu昀昀ers (sodium bicarbonate) to
limit microenvironmental selection for acid-adapted phenotypes arising in such niches, and this approach
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Figure 1. Collective phenotypes drive acid-mediated invasion. Spatial and temporal evolution of two distinct initial
spatial con昀椀gurations of identical numbers of cellular phenotypes leads to di昀昀erential outcomes due to context-dependent
selection. A low glycolysis phenotype (blue) and a high glycolysis phenotype (purple) compete for resources according to the
rules outlined in Box 1 (see Methods). Top row: a mixed con昀椀guration leads to no evolution. Acid-mediated invasion does not
occur because the volumetric concentration of acid produced by aggressive cells is not enough to cause invasion when highly
glycolytic cells are seeded far apart. Bottom row: In contrast, arti昀椀cially placing the aggressive high glycolysis phenotypes on
the rim leads to invasion from increased volumetric acid via a group-e昀昀ect.

can signi昀椀cantly delay carcinogenesis in TRAMP mice9,39. Bu昀昀ers reduce intratumoral and peritumoral
acidosis, inhibiting tumor growth6 and reducing spontaneous and experimental metastases40,41. Here, we
model T-cell recruitment through the vasculature with subsequent migration into the surrounding tumor,
and this leads to an uneven distribution of immune-mediated kill due to pockets of immune-protected acidic
niches. The complex interplay between immune, normal, and cancer cells with varied individual phenotypes
each within a speci昀椀c environmental context results in dynamic spatial and temporal variation that is greater
than the sum of the individual parts. This necessitates mathematical modeling approaches that account for
each hierarchical scale of the system42.

A patient’s homeostatic healthy ecosystem can in昀氀uence the emergent evolutionary dynamics in cancer
progression and treatment43, dependent upon factors such as the tissue architecture at tumor initiation44,
surrounding stroma45, and negative selection imposed by immune response46–48. To address the interplay
between normal homeostatic well-vascularized tissue, immune response, and cancer progression and treatment
we construct and interrogate a hybrid discrete continuous model8. The model accounts for evolving metabolic
phenotypes, vasculature, immune response, microenvironmental conditions, and immune escape mechanisms.

1.3 Collective cellular phenotypes: the “Metaphenotype”
The model introduced here is an extension of previous modeling work8–10, by including immune predation
and immunotherapy. Figure 2 illustrates the behavior of cells interacting with neighbors and environmental
factors (panel A), the rules governing internal tumor cell decisions (panel B), the range of phenotype space
(acid resistance, glycolysis, and PD-L1 in panel C), and the rules governing T-cell internal decision (panel
D).

Previously published iterations of the model noted that the individual cellular phenotype was insu昀케cient
to de昀椀ne behaviors such as acid-mediated invasion8, but did not attempt to quantify any collective phenotypic
behavior. A simple, contrived example in 昀椀gure 1 illustrates the need to quantify context-dependent selection
in this model. This 昀椀gure shows the time-evolution of identical phenotypic compositions that have varied
initial spatial con昀椀gurations (mixed or shell). The mixed con昀椀guration of low glycolysis (blue) and high
glycolysis (purple) phenotypes leads to no evolution. The volumetric concentration of acid produced by
aggressive cells is not enough to cause invasion when highly glycolytic cells are seeded far apart. In contrast,
arti昀椀cially placing the aggressive high glycolysis phenotypes on the rim leads to invasion from increased
volumetric acid via a group-e昀昀ect. Clearly, both the phenotype and neighboring context is important.

In order to describe the collective nature of phenotypes operating within the context of surrounding cells
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Figure 2. Hybrid Discrete-Continuum Model Diagram. (A) Model interaction network for di昀昀usible molecules
(yellow), vasculature (light gray), normal tissue (dark gray), and variable tumor phenotypes (colors). Red lines indicate
inhibitory interactions while green lines indicated promoting interactions. (B) Decision process for each cell, with diamonds
representing decisions. Green arrows indicate that the condition is satis昀椀ed, and red that the condition is not met. (C) A map
of tumor phenotype state space on three axes. The horizontal axis is the constitutively activated glycolytic capacity (pG), and
vertical axis is the change in acid resistance (pH) from normal, with higher resistance to acidic conditions being higher on the
plot, and the 昀椀nal axis is constitutively expressed PD-L1 (pP). The normal metabolic phenotype is at the intersection of the
two yellow lines, with the cloud of black dots representing normal variation in phenotypes within the tumor composition (each
black dot is a single tumor cell). (D) Decision process for T-cells. T-cells are recruited in proportion to tumor size at a rate of
αT . T-cells are inactivated and removed if they remain is acidic conditions too long, or if they are inactivated by a PD-L1
positive cancer cell.

and environmental conditions, we propose the concept of a “metaphenotype”. Each of these metaphenotypes
account for phenotypic traits (e.g. PD-L1 expression) as well as surrounding environmental context (e.g.
local glucose or pH concentration), and competition with neighboring cell types (immune, cancer, normal).

1.4 The tumor-immune gambit
Recently, mathematical models have focused on the role of “immuno-architecture” to predict the e昀昀ect of
tumor-immune interactions on survival and response to immune checkpoint inhibitors49–51. A recent study in
triple-negative breast cancer classi昀椀ed immunohistochemistry images into three spatial immunophenotypes:
excluded (T-cells at the tumor border), ignored (negligible T-cell presence), and in昀氀amed (evenly distributed
T-cell presence)49. Ignored and excluded phenotypes are prognostic of poor survival and resistance to anti-
PD-L1 treatment. Another study introduced a three-dimensional multi-scale agent-based modeling approach
where e昀昀ector and cytotoxic T-cells are recruited through spatially heterogeneous vasculature50. The authors
proposed a prognostic score of the fraction of PD-L1-expressing cells within the tumor rim. Interestingly, the
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Figure 3. The e昀昀ect of vasculature renewal and stability on tumor size and phenotype. (A) Snapshot (at 225
days) is shown for the full multi-scale hybrid cellular automata model: tumor spatial map, phenotypes, vascular renewal
probability, T-cells, di昀昀usible molecules (oxygen, glucose, pH), tumor cell PD-L1, and immune susceptibility (see equation 12).
Each snapshot has corresponding colorbar (right) with marker indicating average value. (B) An example realization of “weak
vasculature” (νmean = 20; pang = 0.1). Acidic conditions in tumor core select for acid resistant and glycolytic Warburg phenotype.
(C) An example realization of “intermittent hypoxia” (νmean = 20; pang = 0.9), where selection is limited because of adequate
vascularization within the tumor core. (D,E,F) N = 10 stochastic realizations are simulated, and the average tumor area (D),
acid resistance phenotype (E), and glycolytic phenotype (F) across 10 values of stability (νmean ∈ [0,100] days), and 10 values of
renewal (pang ∈ [0,1]). See associated supplemental video S1.
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model predicted insensitivity to T-cell entry point via vascularization (e.g. core versus rim) on pre-treatment
size and PD-L1 expression, but did not take into account vascular e昀昀ects on oxygen, nutrients, and drug
delivery. One recent work combined a hybrid model with PET imaging data to study the reshaping of
metabolic activity in tumors over time52. High metabolic activity on the tumor periphery resulted in worse
prognostic outcomes.

The back and forth of cancer treatment and a tumor’s evolutionary response has often been compared
to a chess match53–55. In this manuscript, we show that immune predation of tumors can be likened to
an “immune gambit”, where a temporary sacri昀椀ce of (normal glycolytic) cells on the periphery leads to
long-term acceleration of the invasion of aggressive (highly glycolytic) phenotypes into surrounding tissue.
This result only becomes clear when comparing to the baseline tumor metabolic evolution without immune
predation. We show that poor vascularization (without immune) selects for aggressive phenotypes while
high vascularization undergoes low levels of evolution. This phenomena has a Goldilocks e昀昀ect, which occurs
only under moderate levels of immune response. The immune gambit is described as a collective phenotype,
which critically depends on the interplay between local vascularization, immune in昀椀ltration, and immune
evasive phenotypes (PD-L1). A mathematical model is the ideal testing ground for this hypothesis because
of direct comparison of immune predation to simulations without the presence of T-cells.

In the next section, we introduce the model, simulate baseline outcomes without immune predation
(昀椀gure 3), and illustrate the immune-induced evolutionary bottleneck (昀椀gure 4). To quantify immune es-
cape through the lens of collective phenotypes, we classify cells into six “meta” (or collective) phenotypes:
Self-Acidify, Mooch Acid, PD-L1 Attack, Mooch PD-L1, Proliferate Fast, and Starve Glucose.
Each metaphenotype is contingent on a recent tumor-immune interaction and de昀椀ned in the context of local
microenvironment, with the exception of a “null” metaphenotype: Immune Desert. We quantify the evo-
lution of metaphenotypes over time, illustrating the explanatory power of collective phenotypes in describing
response to bu昀昀er therapy and anti-PD-L1 in mono- and combination therapy (昀椀gure 6).

2 Results
2.1 The e昀昀ect of vasculature renewal and stability on tumor size and phenotype
Figure 3A shows the complex, multi-scale hybrid CA with a snapshot (shown left-to-right) of the tumor
spatial map, phenotypes, likelihood of vascular renewal, T-cells, di昀昀usible molecules (oxygen, glucose, acid),
PD-L1 and immune susceptibility. In previous versions of this model, two phenotypic axes are considered
(see Methods): acid-resistance (light blue) and glycolytic (pink). Simulations are shown in the absence of
immune predation to establish baseline dynamics, before quantifying immune predation in the next section.

In the middle panels of 昀椀gure 3 we compare two classi昀椀cations of vasculature: weak vasculature (asso-
ciated with low vessel stability and low rates of vessel renewal) and intermittent hypoxia (associated with
low stability, but high renewal). The spatial map of phenotypes is shown over time, along with a visual-
ization called “phenotypic barcoding”, which visualizes the clone size, phenotype and lineage information
over time10 using the EvoFreq R package56 (for more information on interpreting phenotypic barcoding
plots, see 昀椀gure S4). Figure 3B depicts the process by which weak vasculature selects for aggressive tumor
growth. Acidic conditions in the tumor core (low glucose, low oxygen, and high pH) cause rapid death of
glycolytically normal tumor cells with low levels of acid resistance. Selection for acid resistance occurs 昀椀rst
(blue phenotypes), followed by selection for highly glycolytic tumor cells (pink phenotypes) which eventually
invade into surrounding tissue. Conversely, in 昀椀gure 3C, intermittent hypoxia conditions result in little se-
lection. The well-vascularized tumor core limits selection for aggressive phenotypes. This result underscores
the importance of understanding the baseline vascular conditions before modeling the complex dynamics
with the additional immune predation. A snapshot of the intratumoral oxygen, immune susceptibility (see
equation 12), phenotypes, and pH is shown at the end of each simulation.

The bottom row shows the average tumor area (D), and tumor phenotypes (E,F) for simulations across
a range of vascular settings (no immune). Weak vasculature typically results in larger tumors, more acid
resistant phenotypes, and highly glycolytic phenotypes. Weak vasculature induces an acidic niche in the
tumor core, selecting for acid-resistant phenotypes (blue). Increased turnover enables increased evolution
and selection for aggressive Warburg phenotypes (pink), leading to acid-mediated invasion into surrounding
normal tissue. Intermittent hypoxia (low vascular stability with high rates of renewal) generally leads to
lower rates of selection and subsequently less invasion (昀椀gure 3C).
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Figure 4. Immune predation induces an evolutionary bottleneck. (A,B) Tumor area over time (left) and the number
of T-cells for weak vasculature (A) and intermittent hypoxia (B) conditions), shown for no T-cells (green; αT = 0), medium
(blue-gray; αT = 10−3) and high (purple; αT = 10−2) immune response rates. (C-J) Example simulation stochastic realizations
are shown across a range of immune response from low (top) to high (bottom). Immune predation tends to suppress tumor
growth in weak vasculature conditions. In contrast, immune predation induces an evolutionary bottleneck for medium immune
response rates (e.g. see F, H), causing aggressive tumor growth compared to the baseline of no immune response.
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Figure 5. De昀椀ning metaphenotypes in the context of immune escape. (A) Six collective cellular metaphenotypes
are de昀椀ned as cancer cells with a given phenotype (e.g. PD-L1), microenvironmental condition (e.g. high acid or low glucose),
or neighboring cell. Immune desert is the absence of recent immune interaction. (B) PD-L1 metaphenotypes depend on the
likelihood of T-cell kill as a function of PD-L1 expression of self (PD-L1 Attack) or neighbor (Mooch PD-L1). (C)
Acidi昀椀cation metaphenotypes depend on the rate of acidi昀椀cation contributed by self (Self-Acidify) or neighbors (Mooch
acid). (D) The rate of acid-inactivation of T-cells. (E) Data from ref. 57 (blue dots) was used to parameterize T-cell death
rate in low glucose, shown in eqn. 11. The Starve Glucose metaphenotype expression corresponds to low glucose
concentrations.

2.2 Immune predation induces an evolutionary bottleneck
Figure 4 shows the response of two vascular conditions (weak and intermittent hypoxia) under no immune
response (green; αT = 0), medium (blue-gray; αT = 10−3) and high (purple; αT = 10−2) immune response
rates. Immune cells are recruited in proportion to tumor size and response rate, αT .

Immune response tends to suppress tumor growth in weak vasculature conditions. Compared to baseline
tumor growth, all levels of immune response result in greater tumor suppression. In contrast, immune
predation in intermittent hypoxia conditions often leads to an initial response but fast regrowth (昀椀gure
4B, left). This is con昀椀rmed by visual inspection of the phenotypic barcoding visualizations in 昀椀gure 4C-J.
Weak vascular conditions select for aggressive phenotypes with little-to-no immune presence (昀椀gure 4C). The
addition of immune cells only serves to slow an already aggressive tumor (昀椀gure 4E,G,I). In stark contrast,
intermittent hypoxia conditions rarely select for strong growth in the absence of immune predation (昀椀gure
4D). Immune predation serves as a selection pressure, in conditions where there would otherwise be very
little selection.

Immune predation under intermittent hypoxia conditions induces an evolutionary bottleneck for medium
immune response rates (e.g. see F, H), causing fast selection for aggressive growth compared to the baseline of
no immune response. Interestingly, this e昀昀ect occurs on a “Goldilocks” scale. The long neck of the bottleneck
is associated with higher rates of tumor turnover (due to immune attack), selecting for phenotypes which
are 1) inside an immune-evasive niche or 2) rapidly divide to outgrow immune kill.

2.3 Metaphenotypes explain immune escape under treatment
In 昀椀gure 6, we consider two treatments to mitigate immune escape and to reduce tumor growth: anti-PD-L1
(red) and a pH bu昀昀er (blue), given in isolation or combination (purple). A short window of treatment is
simulated and results are compared to the untreated baseline. As seen in 昀椀gure 昀椀gure 6A-D, combination
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Figure 6. Evolution of metaphenotypes under treatment. Outcomes of tumor response and immune escape can be
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(C) Tumor area over time (intermittent hypoxia vasculature) (D) growth rate over time (intermittent hypoxia vasculature).
(E) Final distribution of metaphenotypes after treatment (t = 300; weak vasculature). (F) Final distribution of
metaphenotypes after treatment (t = 300; intermittent hypoxia). (G,H) Muller plots showing the frequency of metaphenotypes
over time in untreated and mono- or combination therapy, with snapshots of spatial con昀椀gurations during and after treatment,
with moderate immune predation (αT = 10−2). See associated supplemental videos S2 and S3.
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therapy outperforms monotherapy in both vascular settings, but vascular dynamics drive di昀昀erences in
monotherapy outcomes. For example, anti-PD-L1 therapy does not appreciably slow tumor evolution or
growth in weak vasculature (昀椀g. 6A,B). In contrast, anti-PD-L1 does induce large tumor remission in
intermittent hypoxia (昀椀g. 6C,D), albeit only temporarily before a strong relapse. These results are seen
across a range of immune recruitment rates (昀椀g. 6B,D).

In order to investigate the role of context-dependent selection of collective phenotypes under treatment,
we de昀椀ne six collective phenotypes (“metaphenotypes”) which act as seen in the Venn diagram in 昀椀gure
5A). Each metaphenotype provides a mechanism of immune escape. The “null” metaphenotype is the lack
of collective behavior: Immune Desert are cells which do not interact with T-cells. Next, we quantify
two PD-L1 metaphenotypes: a counter-attack (tumor cell with high PD-L1 expression that has recently
interacted with a T-cell; PD-L1 Attack, yellow), and a mooching PD-L1 (Mooch PD-L1, blue). As seen
in 昀椀gure 5B, PD-L1 Attack is high in cells with high PD-L1 expression while Mooch PD-L1 is high in cells
with low PD-L1 expression, but with neighbors that are high in PD-L1 Attack. See Box 2, equations 16
and 17. Two metaphenotypes rely on acid-inactivation: self-acidifying (highly glycolytic cells which secrete
acid; Self-Acidify, pink) and non-producers (reside in acidic niche but do not produce acid; Mooch Acid,
green). As seen in 昀椀gure 5C, Self-Acidify is high in cells with a high glycolytic phenotype, hence high
acid production (see 18). In contrast, Mooch Acid cells have low glycolytic phenotype (not producing
acid) but reside in highly a acidic niche that inactivates T-cells (昀椀gure 5D). See Box 2, equations 19 and 20.
We also consider a proliferative phenotype that has recently divided into empty space (Proliferate Fast;
red). See Box 2, equations 21. Tumor cells also compete with immune cells for glucose (Starve Glucose;
light blue). Figure 5E illustrates that Starve Glucose reside in areas with a high probability that T-cells
die due to low glucose concentration. See Box 2, equations 22. Importantly, each of these metaphenotypes
(excluding Immune Desert) is contingent on a recent tumor-immune interaction, allowing us to track
e昀昀ective collective phenotypes: only metaphenotypes which survive an immune interaction.

Panels E and F of 昀椀gure 6 show the average metaphenotype expression (across all tumor cells) for each
treatment scenario. Metaphenotype expression is de昀椀ned on the interval MP ∈ [0,1] for each metaphenotype
(see Methods, Box 2). Therefore, if average expression is above 1, the tumor is strongly immune resistant;
on average there is more than one immune escape strategy per cell.

In all cases, the dominant metaphenotype is Immune Desert, representing tumor cells that have not
recently interacted with a T-cell due to lack of immune in昀椀ltration, possibly from low vascularization or
shielding e昀昀ects from neighboring cancer cells. Vascularization drives di昀昀erential selection of metapheno-
types in baseline untreated dynamics. Weak vasculature is associated with acidi昀椀cation metaphenotypes
(Self-Acidify, pink; Mooch Acid, green). These are aggressive, highly glycolytic metaphenotypes that
facilitate acid-mediated invasion. In contrast, intermittent hypoxia selects for PD-L1-based immune-escape
mechanisms (PD-L1 Attack, yellow; Mooch PD-L1, dark blue).

Anti-PD-L1 selects for acidi昀椀cation metaphenotypes (self-acidify or mooch acid) in both vascularization
cases. In contrast, bu昀昀er treatment eliminates the emergence of both Self-Acidify and Mooch Acid
phenotypes by slowing evolution (e.g. refer to 昀椀g. 3C). But in response, PD-L1 Attack is selected (yellow).
Combination therapy strongly targets acidi昀椀cation metaphenotypes and weakly targets PD-L1 phenotypes,
leaving only less aggressive metaphenotypes (Starve Glucose, Immune Desert). Tracking the response
of metaphenotypes to treatment explains why combination therapy is ideal for minimizing tumor growth,
compared to monotherapy options.

2.4 Spatial con昀椀guration of metaphenotypes under treatment
The explanatory power of these de昀椀ned metaphenotypes is seen most clearly by observing their spatial
arrangement under high immune predation (see 昀椀gure 6G,H and associated Supplemental Videos S1 and
S2).

For example, weak vasculature (昀椀g. 6G) is associated with the Self-Acidify and PD-L1 Attack
metaphenotypes on the invasive front of the tumor. Much of the tumor interior is una昀昀ected by immune
cells (Immune Desert), regardless of tumor phenotype. Treatment with Anti-PD-L1 selects for the aggres-
sive Self-Acidify metaphenotype, while Bu昀昀er selects for PD-L1 Attack on the tumor rim. Combination
therapy is required to achieve maximum tumor response, resulting in small tumors consisting mostly of
non-aggressive metaphenotypes (Starve Glucose or Proliferate Fast).

In contrast, under intermittent hypoxia vasculature the Immune Desert comprises a much lower fraction
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Figure 7. Summary schematic. Each metaphenotype is ordered from most aggressive to least aggressive in facilitating
acid-mediated invasion and tumor growth under immune predation. This interaction diagram describes the role of two
treatments (anti-PD-L1, bu昀昀er) in promoting (green) or inhibiting (red) each metaphenotype. Metaphenotypes names are
shown on the left, and de昀椀ned mathematically in Box 2. Broadly, the two treatments o昀昀set one another by inhibiting the
metaphenotypes that the opposite treatment promotes.

of tumor metaphenotypes, as this improved vascularization delivers T-cells into the tumor core. PD-L1
Attack is used near blood vessels and on the tumor rim, and Self-Acidify does not occur due to low
turnover in untreated conditions. Treatment with Anti-PD-L1 negates immune escape from PD-L1 Attack,
inducing cellular turnover and subsequently selecting for Self-Acidify and Mooch Acid metaphenotypes.
Combination therapy results in small, slow-growing tumors with less aggressive metaphenotypes (Mooch
PD-L1 and Starve Glucose).

In both vasculature settings, cells slightly inset from the rim use metaphenotypes that Mooch Acid and
Mooch PD-L1 from cells on the rim (see Supplemental Videos S1 and S2) while cells in regions of high
turnover employ the Proliferate Fast metaphenotype. Starve Glucose remains at low levels throughout
all treatment modalities and vasculature settings. As seen in the supplemental videos (S1 and S2), it is
di昀케cult to determine the major driver of immune escape from the maps of phenotypes alone, as areas of
high glycolysis and high PD-L1 are each spatially heterogeneous and overlapping.

3 Discussion
The importance of acidity in modulating immune response in cancer is only just beginning to be understood.
Our results highlight the potential utility in bu昀昀ering agents combined with immunotherapy. Whilst such
agents are not currently used in cancer treatment there is a growing body of evidence that more alkaline diets
can facilitate standard cancer treatments. Patient compliance with sodium bicarbonate has been an an issue
in previous clinical trials due to GI irritability, leading to an investigation of dietary intake of highly bu昀昀ered
foods or supplements58. The exact mechanism of action is as yet to be understood but previous work has
shown how acid-mediated invasion can be modulated through diet changes58. Several factors contribute to
a lack of responsiveness to immune checkpoint blockers, including abnormal tumor microenvironment where
poor tumor perfusion hinders drug delivery and increases immunosuppression59. Poor vascularization also
leads to a hypoxic and therefore acidic microenvironment, increasing immunosuppression. The modeling
above recapitulates this trend, as immune predation is less e昀昀ective in weak vascularized tumors than in
intermittently vascularized tumors. Vascular renormalization can be enhanced through administration of
anti-angiogenic agents (e.g., anti-vascular endothelial growth factor agents) to fortify immature blood vessels
and improve tumor perfusion60. However, our results indicate that administration of immune checkpoint
blockade in tumors with increased vascularization may lead to a short-term good response but poor long-term
outcomes as selection for increased glycolysis occurs. Mathematical modeling allows for direct comparison
of initially identical simulations in the absence (昀椀gure 3) and presence (昀椀gure 4) of immune predation. We
observe an immune gambit under high vascular renewal (intermittent hypoxia), due to an evolutionary
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bottleneck. The impact of this evolutionary bottleneck is reduced when anti-PD-L1 is combined with bu昀昀er
therapy.

Characterization of collective phenotypes into metaphenotypes enables a straightforward explanation of
the e昀昀ect of treatment in a complex, multi-scale model. This characterization is necessary, in part, due to the
fact that acid-mediated invasion is a collective phenotype phenomenon (昀椀gure 1). Immune escape is also, by
de昀椀nition, a collective phenomenon by requiring the presence of two cell types in close proximity: tumor and
immune. A summary schematic of the results is shown in 昀椀gure 7. The interaction diagram describes the role
of anti-PD-L1 and bu昀昀er in either promoting (green) or inhibiting (red) each metaphenotype. Broadly, the
two treatments o昀昀set one another by inhibiting the metaphenotypes that the opposite treatment promotes.
The two exceptions, starve glucose and immune desert, are both non-aggressive phenotypes. This summary
schematic illustrates the utility of de昀椀ning metaphenotypes in the context of treatment to provide insight
into immune-escape dynamics. The most dominant mechanism of immune escape seen in the model is
the lack of immune interactions (immune desert), especially when the tumor bed is poorly vascularized.
Tumor-expressed PD-L1 is a viable immune-escape mechanism in the absence of treatment, across a range of
vascularization, but treatment with anti-PD-L1 selects for the two acid-inactivation metaphenotypes (Self-
Acidify and Mooch Acid). Environmental conditions must also consider neighboring (and self) cellular
phenotypes. A cell in acidic conditions may rely on acid-inactivation either by self-production of acid or
mooching from neighboring producer cells, a form of “public good”61. Bu昀昀er therapy limits selection for self-
acidi昀椀cation, driving selection toward less aggressive metaphenotypes (Glucose Starvation or Immune
Desert). It’s also important to note that mooching metaphenotypes only occur in the presence of non-
mooching phenotypes. Because of this, and the fact that phenotypes of individual cells change only slowly
(upon division), mooching phenotypes are not expected to be a viable long-term immune escape strategy,
but limited to transient, local patches co-localized with non-moochers. However, in a model where the ratio
of two phenotypes is determined stochastically, for example, a population of both phenotypes could coexist
for a longer period of time.

The intimate feedback between a growing tumour and the homeostatic tissue its invading drives both
ecological and evolutionary dynamics that should not be ignored in modern cancer therapy. The results we
presented here indicate that treatments that modulate context may turn out to be just as important as those
that target the tumour.
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4 Methods
The mathematical model here builds on an experimentally validated hybrid discrete-continuum multiscale
model of cancer metabolism that incorporates the production of acid and acquired resistance to extracellular
pH8–10,62. The model includes three di昀昀usible molecules (oxygen, protons, glucose), four cellular automata
agents (tumor cells, normal cells, immune cells, and blood vessels), and two treatments (anti-PD-L1 im-
munotherapy and a pH bu昀昀er such as sodium bicarbonate).

4.1 Model Parameterization
Values for parameterization are shown in Table 1. Values for parameters are typically identical to previous
publications using the non-immune metabolism model8,9, except where parameter values are shown in brack-
ets. In these cases, a parameter sweep is performed across the full range in order to determine the e昀昀ect
of the parameter on outcomes and test hypotheses. New parameters developed in this manuscript (i.e. the
immune module) are shown below the solid line.
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Table 1. Model Parameterization

Parameters Value Units Description
δx 20 µm Diameter of CA grid point
pD 0.005 1/d Normal tissue death rate
p∆ 0.7 1/d Death probability in poor conditions
pn 5e-4 1/d Necrotic turnover rate
DO 1820 µm2/s Di昀昀usion rate of oxygen
Dg 500 µm2/s Di昀昀usion rate of glucose
DH 1080 µm2/s Di昀昀usion of protons
OO 0.0556 mmol/L Oxygen concentration in blood
GO 5 mmol/L Glucose concentration in blood
pHO 7.4 pH pH of blood
VO 0.012 mmol/L/s Maximal oxygen consumption
kO 0.005 mmol/L Half-max oxygen concentration
kG 0.04 mmol/L Half-max glucose concentration
kH 2.5e-4 - Proton bu昀昀ering coe昀케cient
Ad 0.35 - ATP threshold for death
Aq 0.8 - ATP threshold for quiescence

pH,min 6.1 pH Maximal acid resistance phenotype
pH,norm 6.65 pH Normal acid resistance phenotype

∆H 0.003 pH Phenotype variation rate (acid res.)
pG,max 50 - Maximal glycolytic phenotype

∆G 0.15 - Phenotype variation rate (glycolysis)
τmin 0.95 Days Minimum cell cycle time
σmin 80 µm Minimum vessel spacing
σmean 150 µm Mean vessel spacing
vmean [5, 100] Days Vessel stability
pang [0, 1] - Angiogenesis rate
TM 1 - Probability T-cell moves
τT 4 - T-cell response delay
αT [1e-4,1e-1] - T-cell recruitment rate
βT 10 Days Non-activated T-cell decay

pP,min 5 - Maximal PD-L1 phenotype
pP,norm 2.7 - Normal PD-L1 phenotype

∆P [0,1] - Phenotype variation rate (PD-L1)
de 0.042 Days T-cell engagement duration
He 6.6 - half-max pH T-cell engagement time
σe 4 - steepness of T-cell engagement time
Hp 6.6 - half-max pH T-cell engagement probability
σp 6 - steepness of T-cell engagement probability
Li 65.35 percent T-cell survival rate in high glucose
L0 21.78 percent T-cell survival rate in low glucose
Lg -16.67 percent T-cell glucose deprivation parameter
DA 100 µm2/s Anti-PD-L1 di昀昀usion parameter
γA 0.5 1/s Anti-PD-L1 natural decay rate
γP 0.001 1/s Cellular bound PD-L1 decay rate
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5 Box 1: Methods
5.1 Baseline mathematical model
An overview of the mathematical model is shown in 昀椀gure 2. The model simulates a two-
dimensional slice through a tumor via a coupled cellular automata (CA) and partial di昀昀erential
equation (PDE) model. Vasculature is modeled as a set of point sources, with spacing consistent
with those measured in normal stroma8. As timescales of metabolism and cell-scale dynamics (e.g.
proliferation) vary signi昀椀cantly, we solve the PDEs to reach steady state between CA timesteps.
The model includes several di昀昀usible molecules: oxygen, acid, and glucose (昀椀gure 2A, yellow boxes).
The concentration of each di昀昀usible is modeled by the following di昀昀usion-production-consumption
equation:

∂C

∂ t
= D∇2C+ f (x, t) (1)

where C represents the di昀昀usible molecule concentration, D is the di昀昀usion constant, and f (x, t)
is the molecule-speci昀椀c rate of consumption/production of each particular molecule. For example,
oxygen consumption ( fO) by cells is given by Michaelis-Menten dynamics:

fO =−VO

O

O+ kO

(2)

where kO is the oxygen concentration for half-maximal oxygen consumption and VO is the maximal
oxygen consumption by cells. Glucose consumption is given by the following modi昀椀ed Michaelis-
Menten equation:

fG =−

(
pGAo

2
+

27 fO

10

)
G

G+ kG

(3)

where pG is the heritable trait which represents aerobic glycolysis and its resultant excessive
glucose consumption. Ao is the ATP production rate in normal cells, kG is glucose concentration
for half-maximal glucose consumption. ATP production rate is given by:

fA =−

(

2 fG +
27 fO

5

)

, (4)

and proton production rate given by:

fH = kH

(
29(pGVO + fO)

5

)

. (5)

5.2 Phenotypic drift
Both normal and tumor cells undergo a decision process in 昀椀gure 2B, involving cell cell cycle
dynamics, proliferation and phenotypic drift. Cells with low ATP e昀케ciency or cells which are
maladapted for acidosis die. Cells take on three phenotypic traits: acid resistance (pH), glycolysis
(pG), PD-L1 expression (pP). Phenotypes may drift upon cell division as follows:

pi(t +∆t) = pi(t) · (1+∆i)
(U(−1,1)) (6)

where i ∈ {H,G,P}, representing acid-resistance, glycolysis, PD-L1 phenotypes respectively (see
Table 1). U(−1,1) represents a uniform probability distribution drawn on the interval -1 to 1 and
∆t is the timestep (2 hours). Phenotype variation rate parameters (∆i ∈ [∆G,∆H ,∆P]) are shown in
Table 1.
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5.3 Immune recruitment model
Immune cells are recruited in proportion to the current tumor size a few days prior, N(t − τT )) at
a rate αT until the number of T-cells equals or exceeds this value. T-cells undergo a natural decay
rate if they have not encountered a tumor cell in the past βT number of days.

T (t +1) =







αT N(t − τT )−
1

βT

T (t), N(t − τT )> T (t)

T (t)−
1

βT

T (t), N(t − τT )≤ T (t)

(7)

Tumor cells have several mechanisms for immune evasion in the mathematical model: PD-L1
and acid inactivation.

5.4 PD-L1
The probability, Pk, that a tumor cell is successfully eliminated by a T-cell is a function of the
constitutive PD-L1 expression (pP) and the bound PD-L1 (pB; see section on treatment with
anti-PD-L1 below):

Pk = 1−
10pP−pB

10pP,norm−pP,min
(8)

where pP,min and pP,norm are the maximal PD-L1 phenotype (corresponding to zero probability of
kill; see 昀椀gure 5B) and normal PD-L1 phenotype, respectively. See table 1 for parameter values.

5.5 T-cell viability in high acid
Recent results from Pilon-Thomas et. al. have suggested that acid does not a昀昀ect T-cell viability
but instead impairs activation26. Low pH arrests T-cell cytokine and chemokine production (a
measure of activation) . Thus, we model probability of successful engagement of a cancer cell by
a T-cell depends on the microenvironmental pH:

Pe =
1

1+ e−σp(H−Hp)
(9)

where H is the pH value, Hp is the half-max engagement probability and σp represents the pH at
which engagement probability is half its maximum value. Secondly, exocytosis of lytic granules
is impaired in low pH63, causing increased time to kill targets in low pH. The probability that a
tumor cell successfully inactivates a T-cell due to low acid is given by:

PAI = 1−
Pe∆t

de

(
1+ e−σe(H−He)

) (10)

where de represents the minimum engagement time duration, modulated by acid concentration,
H64. He is the half-max engagement time and σe is the steepness parameter, and ∆t is the length
of a single time step (2 hours).

T-cells are also assumed to undergo death at higher rates in low glucose concentrations. This
component of the model was parameterized using experimental data from ref. 57, where probability
of death after two days is 昀椀t to the following equation:

L(G) = (L0 −Li)e
GLg +Li, (11)

where L0 and Li T-cell survival rate in low and high glucose concentrations, G, with steepness
parameter Lg (see 昀椀gure 5E).
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5.6 Immune susceptibility
The total immune susceptibility of a cell is the likelihood of a T-cell kill as a function of PD-L1
expression multiplied by the likelihood that a T-cell is not acid-inactivated:

S = Pk(1−PAI), (12)

5.7 Treatment
Two treatments are considered: anti-PD-L1 and bu昀昀er therapy. Anti-PD-L1 is modelled as a
di昀昀usible molecule (eqn. 1), with tumor cell uptake of bound PD-L1 (pB) at rate DA and natural
decay at rate γA (see Table 1). Bound PD-L1 in each tumor cell is limited to the range pB ∈ [0, pP],
where T-cell kill rate, PK , is a function of the di昀昀erence between constitutively expressed and
bound PD-L1 (see 昀椀gure 5B). Cell internal bound PD-L1 decays at rate γP. Bu昀昀er therapy is
modeled as a change in proton bu昀昀ering coe昀케cient, kH :

kH = 0.00025(1−B(t)), (13)

where B(t) is the time-dependent administration of bu昀昀er therapy, and the baseline value of the
bu昀昀ering coe昀케cient is kH = 0.00025 (see Table 1 and ref. 8).

5.8 Local Neighborhoods
The model is carried out on a two-dimensional lattice where each tumor, normal, or immune cell
occupies a single lattice location, (x,y). The cell’s local neighborhood is a set of lattice locations
de昀椀ned in relation to the focal cell’s location, de昀椀ned as Nm (Nm = 8 for a Moore neighborhood).
When the focal cell undergoes division a daughter cell is placed in a random neighboring grid point
and the parent cell remains on the original lattice point. The cell may undergo apoptosis (death)
and is removed from the domain. After each generation cells are shu昀툀ed and iterate through in
random order in future time steps.
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6 Box 2: De昀椀ning metaphenotypes
Let T (x,y) be a two-dimensional grid representing the time since the last T-cell interaction has
occurred within the local neighborhood of grid location (x,y). We de昀椀ne the tumor-immune inter-
action grid, I(x,y), where I = 1 if an immune cell has traversed within a cancer cell’s neighborhood
within the previous Tw days and I = 0 otherwise at the current timestep, t.

I(x,y) =

{

1, if T (x,y)≥ t −Tw

0, otherwise
(14)

Metaphenotypes (MP) are de昀椀ned in such a way that MP expression is scaled from zero to one
and each cell can take on multiple MP: M⃗ = {m1,m2, . . . ,m7} where mi ∈ [0,1]

6.0.1 MP1: Immune Desert
We 昀椀rst consider the absence of immune interaction: the immune desert metaphenotype, MP1:

MP1(x,y) = 1− I(x,y) (15)

6.0.2 MP2: PD-L1 Attack
Next, we classify cells which employ the PD-L1 counter-attack, de昀椀ned as high PD-L1 expression
(low probability of T-cell kill; see equation 8) with a recent T-cell interaction:

MP2(x,y) = (1−Pk)
︸ ︷︷ ︸

Prob. avoiding T-cell kill

× I(x,y)
︸ ︷︷ ︸

recent T-cell interaction

(16)

6.0.3 MP3: Mooch PD-L1
In contrast to MP2, cells which interact with T-cells but have low PD-L1 expression can rely on
(“mooch”) neighboring cell protection. Here, the metaphenotype is proportional to neighborhood
PD-L1 expression.

MP3(x,y) = Pk
︸︷︷︸

Prob. T-cell kill

× 1− I(x,y)
︸ ︷︷ ︸

no T-cell interactions

×max
j∈Nm

PD-L1 j (17)

where Nm is a Moore neighborhood of Nm = 8 neighbors.

6.0.4 MP4: Self-Acidify
As cell increase glycolytic capacity (phenotype value pG), more protons are added. The per cell
proton production rate is given by:

pR = fH(1−B(t)) (18)

where proton production (see Methods eqn. 5) is scaled by bu昀昀er treatment concentration, B(t).

MP4(x,y) = PAI(x,y)
︸ ︷︷ ︸

Probability of Acid-Inactivation

× p̄R
︸︷︷︸

scaled proton production rate

× I(x,y)
︸ ︷︷ ︸

recent T-cell interaction

(19)

where the production rate, p̄R, is normalized such that any value for phenotype above the bu昀昀ering
capability of a vessel is assumed to be mostly self-acidify metaphenotype (MP4), while below is
assumed to be mostly mooch acid (MP5).

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.06.03.493752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.493752
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.0.5 MP5: Mooch Acid
Similarly, the mooch acidify metaphenotype occurs when the probability of T-cell acid-inactivation
is high, but where the highly acidic microenvironment is not due to self-acidi昀椀cation.

MP5(x,y) = PAI(x,y)
︸ ︷︷ ︸

Probability of Acid-Inactivation

× (1− p̄R)
︸ ︷︷ ︸

scaled proton production rate

× I(x,y)
︸ ︷︷ ︸

recent T-cell interaction

(20)

This metaphenotype typically occurs early in simulations in empty regions without tumor or
vasculature.

6.0.6 MP6: Proliferate Fast

MP6(x,y) =








1−
Dx,y

Tm
︸︷︷︸

fraction of cell cycle completed








× I(x,y)
︸ ︷︷ ︸

recent T-cell interaction

(21)

where Di is the time until next division for the cell at location (x,y) and Tm is the inter-mitotic
cell division time for a metabolically normal cell.

6.0.7 MP7: Starve Glucose
Tumor cells may also compete with T-cells to starve immune cells of glucose, giving rise to the
following metaphenotype:

MP7(x,y) = Pg
︸︷︷︸

Prob. T-cell dies in low glucose

× I(x,y)
︸ ︷︷ ︸

recent T-cell interaction

(22)

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2022. ; https://doi.org/10.1101/2022.06.03.493752doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.03.493752
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Information

Figure S1 Supplemental Video S1.mov Simulation of the full multi-scale hybrid cellular automata model: tumor spatial
map, phenotypes, vascular renewal probability, T-cells, di昀昀usible molecules (oxygen, glucose, pH), tumor cell
PD-L1, and immune susceptibility (see equation 12). Each grid has corresponding colorbar (right) with marker
indicating average value. This is an example realization of “weak vasculature” (νmean = 20; pang = 0.1). Acidic
conditions in tumor core select for acid resistant and glycolytic Warburg phenotype (pink color on the Tumor
grid). Subsequently, nectrotic cells form in the tumor interior. Immune response is weak (αT = 10−3), not selecting
for PD-L1 positivity. The primary means of immune escape is acid-inactivation of T-cells caused by
acid-producing Warburg cells.

Figure S2 Supplemental Video S2.mov Evolution of metaphenotypes in Weak vasculature under high immune predation
(αT = 10−2). The left-hand side shows three phenotypes (Acid Resistance, Glycolsis, and PD-L1), along with acid
concentration and T-cell location. It is di昀케cult to determine the major driver of immune escape from the maps of
phenotypes alone: areas of high glycolysis and high PD-L1 are each spatially heterogeneous and overlapping.
However, metaphenotypes give a detailed picture of immune escape dynamics. Much of the tumor interior is
una昀昀ected by immune cells (Immune Desert), regardless of tumor phenotype. The outer rim is
immune-protected by PD-L1 Attack and Self-Acidify phenotypes. Slightly inset from the rim, cells use
metaphenotypes that Mooch Acid and Mooch PD-L1 from cells on the rim. Cells in regions of high turnover
employ the Proliferate Fast metaphenotype. Starve Glucose remains at low levels throughout all treatment
modalities. Treatment with Anti-PD-L1 selects for the aggressive Self-Acidify metaphenotype, while Bu昀昀er
selects for PD-L1 Attack. Combination therapy results in small, slow-growing tumors with less aggressive
metaphenotypes (Mooch PD-L1 and Starve Glucose).

Figure S3 Supplemental Video S3.mov Evolution of metaphenotypes in Intermittent Hypoxia vasculature under high
immune predation (αT = 10−2). The left-hand side shows three phenotypes (Acid Resistance, Glycolsis, and
PD-L1), along with acid concentration and T-cell location. Similar to S2, it is di昀케cult to determine the major
driver of immune escape from the maps of phenotypes alone: areas of high glycolysis and high PD-L1 are each
spatially heterogeneous and overlapping, but metaphenotypes give a detailed picture of immune escape dynamics.
Here, Immune Desert comprises a much lower fraction of tumor metaphenotypes, as better vascularization
delivers T-cells into the tumor core. PD-L1 Attack is used near blood vessels and on the tumor rim, with
Mooch PD-L1 employed by nearby cells. In untreated conditions, Self-Acidify does not occur due to low
turnover. However, Anti-PD-L1 negates immune escape from PD-L1 Attack, inducing turnover and selecting for
Self-Acidify and Mooch Acid metaphenotypes. Combination therapy results in small, slow-growing tumors
with less aggressive metaphenotypes (Mooch PD-L1 and Starve Glucose).
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Barcoding

<Phenotypic= Barcoding

barcode at time t0

barcode at time t1

Figure S4. Phenotypic barcoding Schematic of “phenotypic barcoding” scheme for visualizing tumor evolution. At time
point 0, all cells are given a unique ID, also known as a barcode (top). This can be repeated at later times (e.g., time point t1)
by adding a second unique ID to each extant cell (middle). Clones and subclones can be re-colored by average phenotype
(bottom) so that both the phenotype and lineage information are visualized during tumor evolution.
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