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. Abstract

> Genetic variation of the entire genome represents population structure, yet individual loci
s can show distinct patterns. Such deviations identified through genome scans have often been
+ attributed to effects of selective factors instead of randomness, assuming that the genomic
s intervals are long enough to average out randomness in underlying genealogies. However, an
6 alternative explanation to distinct patterns has not been fully addressed: too few genealogies
7 to average out the effect of randomness. Specifically, distinct patterns of genetic variation
s may be due to reduced local recombination rate, since the number of genealogies in a genomic
o interval corresponds to the number of ancestral recombination events. Here, we associate
10 distinct patterns of local genetic variation with reduced recombination rate in a songbird, the
1 Eurasian blackcap, using genome sequences and recombination maps. We find that distinct
12 patterns of local genetic variation represent haplotype structure at low-recombining regions
13 present either in all populations or only in a few populations. At the former species-wide low-
12 recombining regions, genetic variation depicts conspicuous haplotypes segregating in multiple
15 populations. On the contrary, at the latter population-specific low-recombining regions,
16 genetic variation primarily represents cryptic haplotype structure among individuals of the
17 low-recombining populations. With simulations, we confirm that reduction in recombination
18 rate alone can cause distinct patterns of genetic variation mirroring our empirical data. Our
19 results highlight that distinct patterns of genetic variation can emerge through evolution of
20 reduced local recombination rate. Recombination landscape as an evolvable trait therefore
a1 plays an important role determining the heterogeneous distribution of genetic variation along

22 the genome.
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s Introduction

N

¢ Patterns of genetic variation in the genome represent ancestries of sequences and are influenced
»s by population history. While genome-wide genetic variation represents population structure
2 (McVean, 2009; Patterson et al., 2006), randomness in genealogies also contributes to fluctuation
o7 of local genetic variation along recombining chromosomes. Specifically, genealogies can differ
25 between loci even under the same population history (Dutheil et al., 2009; Martin & Van
20 Belleghem, 2017; McVean & Cardin, 2005; Pamilo & Nei, 1988; Wakeley, 2008, 2020; Wiuf
50 & Hein, 1999). This is because realisation of a genealogy under a given population history
31 is a probabilistic process: an ancestral haplotype for a set of individuals at one locus is not
22 necessarily a common ancestor of the same set of individuals at another locus (Shipilina et
53 al., 2023). Patterns of local genetic variation along the genome tend to conform with the

s population structure with random fluctuation (Fig. 1).
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Figure 1: Distinct patterns of genetic variation can be due to reduced recombination
rate. Population history (A) affects the distribution of possible genealogies (B) from which local
genealogies are drawn (C). The number of genealogies in a genomic interval with a fixed physical length
depends on the local recombination rate (C). Mutations occurring on the genealogies (not shown)
determine the patterns of realised genetic variation (D). (1) In freely recombining neutral regions,
mutations represent many genealogies and hence the pattern of genetic variation converges to the
population structure. (2, 3) In low-recombining neutral regions, mutations represent few genealogies
covering the region leading to patterns of genetic variation distinct from the population structure. (3)
Due to randomness in sampling of genealogies, some of such distinct patterns can be similar to patterns
expected at targets of selective factors (c.f. 4). (4) At targets of selection, distribution of possible
genealogies is different from that at neutral regions, which is depicted as a different set of possible
genealogies in B and the dotted arrow.

35 Inference of population structure as well as other genome-wide analyses based on genetic
56 variation take advantage of a sufficient number of variable sites (e.g. single nucleotide poly-
s7 morphisms (SNPs)) to eliminate the effect of randomness. One of the most common methods
33 to summarise population structure based on this approach is principal component analysis
39 (PCA) applied on a whole-genome genotype table (McVean, 2009; Price et al., 2006). In a
a0 whole-genome PCA, variation among individuals based on variable sites of the entire genome

a1 are projected onto a few major axes, and the distances among individuals on these reduced
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22 dimensions represent genetic differences. Summarising population structure and other related
43 measures using the entire genome has been proven to be an effective approach to eliminate
s random fluctuation of genealogies along the genome (Bhatia et al., 2013; Cao et al., 2020;

ss  Fedorova et al., 2013; Peter, 2022; Shao et al., 2023).

46 However, some fundamental biological questions concern selective factors that systemat-
47 ically bias the shape of genealogies at a genomic local scale, shifting the expected patterns
48 of genetic variation from the population structure. For example, patterns of local genetic
s variation are distinct under selection against gene flow (Fig. 1C4), positive selection and
so adaptive introgression because they affect coalescence rate, topology, and branch lengths of
s1 the underlying genealogies (Hejase et al., 2020; Setter et al., 2020; Speidel et al., 2019; Wolf &
s Ellegren, 2017). Empirically, genome scans of population genetic summary statistics have been
53 used to identify regions with shifted patterns of genetic variation (Irwin et al., 2018; Martin et

s al., 2015).

55 Distinct patterns of local genetic variation identified with genome scans are often at-
so tributed to the effects of selective factors instead of randomness (Burri, 2017; Mérot et al.,
57 2021) based on the assumption that the genomic intervals are large enough to eliminate
ss  random fluctuation of genealogies (Li & Ralph, 2019). However, an alternative non-selective
5o explanation is equally conceivable and yet often overlooked: the genomic region may contain
60 an insufficient number of genealogies to eliminate the effect of randomness. Specifically,
61 low-recombining regions may harbour too few genealogies to eliminate the effect of random

2 fluctuation (Lotterhos, 2019).

63 We address the effect of reduced recombination rate on local genetic variation using
6 a songbird species, Eurasian blackcap (Sylvia atricapilla, hereafter “blackcap”), which is
65 characterised by variability in seasonal migration across its distribution range (Berthold, 1988,
66 1991; Delmore et al., 2020a; Helbig, 1991). Populations with diverged migratory phenotypes
67 split as recently as ~30,000 years ago, likely corresponding to the last glacial period and
6 now exhibit population structure (Fig. 2A-C, Sup. Fig. 1) (Delmore et al., 2020b). Due
6o to their recent split and relatively large effective population size, genetic differentiation is

70 very low among blackcap populations (Delmore et al., 2020b). The presence of population
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71 structure albeit with the low levels of differentiation makes the blackcap a perfect system
72 to investigate local deviations of genetic variation: even the slightest effects of factors that
73 change local genetic variation are likely detectable because such effects are not obscured by
74 population structure. In addition, fine-scale recombination maps for multiple populations
75 are available for this species (Bascon-Cardozo et al., 2022a), facilitating investigation of the
76 relationship between changes in the recombination landscape and locally distinct patterns of

77 genetic variation.

78 By leveraging a large-scale genomic re-sequencing dataset, we first systematically explore
79 distinct patterns of local genetic variation along the blackcap genome, and compare these with
g0 genomic regions exhibiting reduced recombination rate. We further investigate the patterns of
81 genetic variation in outlier regions with distinct patterns of genetic variation and associate
g2 them with the prevalence of recombination suppression across populations. We also conduct
83 simulations to analyse how reduced local recombination rate in the entire species and in
s« a subpopulation affects patterns of genetic variation through time. Finally, we propose a
ss model of local genetic variation representing haplotype structure corresponding to evolutionary

ss changes in local recombination rate.

« Results

s Deviation of genetic variation coincides with low-recombining regions

80 To investigate the genome-wide distribution of genetic variation, we mapped short reads of
o0 the whole-genomes of 179 blackcaps including 69 newly sequenced individuals (Sup. Table
o1 1) on a de novo-assembled reference genome generated through the Vertebrate Genomes
o2 Project (VGP, Rhie et al., 2021), and called SNPs (Materials and Methods). To characterise
03 genome-wide genetic variation, we performed PCA using SNPs in all autosomes, revealing
94 population structure. While PC1 and PC2 represented differentiation of island populations
o5 (Fig. 2B), PC3 represented structure within continental populations with different migratory
o phenotypes (Fig. 2C). To identify genomic regions with patterns of genetic variation distinct

o7 from the population structure, we performed local PCA using lostruct (Li & Ralph, 2019).
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98 Specifically, PCA was performed separately in sliding genomic windows using SNPs, and
9 windows with distinct patterns were identified by evaluating dissimilarity among windows with
100 multidimensionality scaling (MDS). This approach allowed systematic and unbiased exploration
11 unaffected by our definition of populations. By applying a threshold of the MDS values, we
102 identified 32 genomic regions with distinct patterns of genetic variation (hereafter “outlier
103 regions”, Fig. 2D, Sup. Table 3, Sup. Fig. 2). Comparing the genomic distribution of these
104 outlier regions to population-level recombination maps, we found that low-recombining regions
105 were significantly enriched in the outlier regions (permutation tests, p-value < 0.001 (Sup. Fig.
s 8)). The outlier regions coincided with regions in which recombination rate was reduced either
w7 in all tested populations (“species-wide”) or in certain populations (“population-specific”)

ws (Fig. 2E, F, Sup. Fig. 7).
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Figure 2: Local PCA outliers coincide with species-wide and population-specific low-
recombining regions A. Geographic location of blackcap populations included in this study. Each
point on the map represents a sampling location where multiple individuals were sampled. Populations
were defined based on the geographic location, migratory phenotype, and genomic-wide population
structure. B, C. Genome-wide PCA illustrating population structure. D. Distribution of outlier
regions based on local PCA using lostruct. E, F Inferred recombination rates along two exemplified
chromosomes (chromosomes 1 and 14) in two blackcap populations (cont_medlong and Azores). In
D-F, purple and green shades respectively indicate positions of outliers that coincide with species-wide
and population-specific low-recombining regions. cont_ medlong: medium and long distance migrant
population breeding on the continent; cont_ short: short distance migrant population breeding on
the continent; cont_res: resident (non-migrant) population breeding on the continent. All island
populations (Canary, Madeira, Azores, Cape Verd&, Mallorca, and Crete) are resident.
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100 To further investigate the outlier regions, we separately performed PCA using SNPs in
uo each region, revealing diverse patterns of distinct genetic variation (Fig. 3A-C top). First,
1 species-wide low-recombining regions showed different levels of clustering of individuals in
12 PCA. Specifically, the PCA projections consisted of either three distinct clusters (Fig. 3A
us  top, Sup. Fig. 6), six loose clusters (Fig. 3B top, Sup. Fig. 6), or mixture of all individuals
s without apparent clustering (Sup. Fig. 6), suggesting that they represent haplotype structure
us  with different numbers of low-recombining alleles. These clusters did not clearly separate
16 populations, indicating a greater contribution of haplotype structure than the population
u7 structure. Five of these (e.g. Fig. 3A top, Sup. Figs. 6, 9) had the clearest clustering patterns
us  with three groups of individuals in PCA , which is expected for a haplotype block with two
uo distinct alleles (Huang et al., 2020; Ma & Amos, 2012; Todesco et al., 2020). Two of these
120 regions showed LD patterns consistent with segregating inversions (Fig. 3A bottom, Sup.
121 Fig. 10), and the other three showed patterns of non-inversion haplotype blocks (Sup. Fig.
122 10), indicating that recombination suppression with different mechanisms resulted in similar

123 patterns of genetic variation due to presence of two distinct segregating haplotypes.
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Figure 3: Patterns of genetic variation and linkage disequilibrium at local PCA outliers
Top: PCA at exemplified outlier regions visualising the patterns of local genetic variation. Data
points represent blackcap individuals colour-coded by population as depicted in Fig. 2. Bottom: LD
calculated for all individuals (top-left diagonal) and for subset individuals (bottom-right diagonal).
A. A putative inversion. Three clusters correspond to combination of two non-recombining alleles
possessed by individuals, depicted as AA, AB, and BB. LD calculated using AA individuals is not
elevated, in line with heterozygote-specific recombination suppression at an inversion locus (Sup. Fig.
12). B. A species-wide low-recombining region with six loose clusters of individuals. LD calculated
using subset individuals was elevated, suggesting genotype-non-specific recombination suppression. C.
A population-specific low-recombining region. The variance in genetic distances between individuals of
the low-recombining populations (Azores (blue) and Cape Verde (light blue)) is greater than between
other pairs of individuals (top). LD calculated using individuals of the low-recombining populations is
elevated (bottom).

124 Second, population-specific low-recombining regions exhibited distinct patterns of genetic
125 variation consistently across the outlier regions. While individuals from the low-recombining
126 populations were spread in PCA projections, individuals of other populations were more
127 densely clustered (Fig. 3C top). This pattern indicates that the variance in genetic distances
128 between a pair of individuals of the low-recombining populations is greater than between
120 individuals of normally recombining populations. LD was elevated only in the low-recombining

1o populations (Fig. 3C bottom), supporting population-specific reduction in recombination rate.
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11 Reduced recombination rate generates distinct patterns of genetic variation

132 To address whether species-wide and population-specific reduction in recombination rate
133 generates the distinct patterns of genetic variation that we observed above, we performed

13¢  simulations.

135 First, to investigate the effects of species-wide reduction in local recombination rate, we
136 simulated one ancestral population of 1,000 diploids with a low-recombining genomic region
137 that splits into three subpopulations (popl, pop2, pop3. Fig. 41A). We sampled individuals
138 over time after the populations split and conducted PCA both in the low-recombining and
139 normally recombining genomic regions. PCA patterns at low-recombining regions (Fig. 4B, C,
uo  Sup. Fig. 17) were distinct from normally recombining regions (Fig. 4D). The low-recombining
11 regions exhibited three, six, or more clusters of individuals resembling our empirical results.
12 The clusters of individuals represented genotypes consisting of different combinations of
13 ancestral haplotypes (Sup. Fig. 18). The distinct patterns representing haplotype structure
us  persisted until population structure emerged along the PC axes (Fig. 4B, C). Accordingly, the
15 percentages of variation explained by PC1 and PC2 were higher at low-recombining regions
us than in normally recombining region until this transition (Fig. 4C). Distinct patterns in the
147 low-recombining regions persisted over longer times than it took for population structure in
1s  normally recombining region to emerge (Fig. 4D). These results suggest that distinct patterns
140 of genetic variation in species-wide low-recombining regions represent transient haplotype
150 structure where transition to the population structure is slower than in normally recombining

151 regions.

10
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Figure 4: Simulation of a species-wide low-recombining region. A. Simulated demography
scenario. Our simulated genome contained two chromosomes, one with a low-recombining region and the
other without. B, C. PCA showing patterns of genetic variation at the species-wide low-recombining
region at three time points in three exemplified simulation replicates. D. PCA showing patterns of
genetic variation at a normally recombining chromosome at three time points in the same replicates as
B.
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152 Second, to investigate the effects of population-specific reduction in local recombination
153 rate, we performed simulations under two scenarios. In both scenarios, three populations
1« (popl, pop2, and pop3) and their ancestral population had 1,000 diploid individuals, and popl
155 evolved a reduced local recombination rate. The difference between the two scenarios was the
156 timing of introduction of reduced recombination rate. In the first scenario (Sup. Fig. 19),
157 recombination suppression was introduced at the same time as the three populations split,
158 while in the second scenario (Fig. 5A) recombination suppression was introduced once the
150 three populations differentiated. We conducted PCA in genomic regions with and without
160 population-specific recombination suppression using individuals sampled over time. In both
161 scenarios, the genomic region with population-specific recombination suppression transiently
12 showed distinct patterns of genetic variation (Fig. 5B, Sup. Fig. 19B) resembling the empirical
163 results, while regions without population-specific suppression showed population structure
14 (Fig. 5C). Haplotype structure was not as conspicuous in species-wide low-recombining regions
165 (Sup. Fig. 20B, F, c.f. Sup. Fig. 18) due to standing genetic variation. Mutations originating
166 in the non-recombining population were enriched in the set of mutations that have the greatest
167 contribution to the distinct pattern of PCA (Sup. Fig. 20C, G. x? tests, p-value < 0.001
s for both models). These mutations were significantly associated with each other in the
160 underlying genealogy sharing common branches compared to other mutations originating in
170 the same population (Sup. Fig. 20D, H. Materials and Methods, Kolmogorov-Smirnov tests,
i1 p-value < 0.005 for both models), indicating that the distinct pattern of genetic variation
12 represents sets of mutations that occurred in ancestral haplotypes. Associations between
173 these population-specific mutations on ancestral haplotypes would have eventually decayed by
174 recombination events, but in the low-recombining population the association was maintained

175 due to suppressed recombination, resulting in the cryptic haplotype structure.

12
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Figure 5: Simulation of a population-specific low-recombining region. A. Simulated scenario.
Simulated genome contained two chromosomes, one with a population-specific low-recombining region
and the other without. B, C. PCA showing patterns of genetic variation at the population-specific
low-recombining region (B) and the normally recombining chromosome (C) at three time points in one
exemplified simulation replicate.

s  Effect of selection on patterns of genetic variation

177 Selection is known to cause distinct patterns of genetic variation (Nielsen, 2005). To test
178 whether the outlier regions based on lostruct identified in the blackcap genome are also
179 targets of selection, we measured nucleotide diversity (7) and Tajima’s D in each population,

10 as well as ratio between non-synonymous and synonymous substitutions (dy/dg) for annotated
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11 genes. Many species-wide low-recombining regions showed reduced nucleotide diversity (Sup.
12 Fig. 22) and Tajima’s D (Sup. Fig. 21), suggesting that they are under either positive or
13 purifying selection. Most genes within outlier regions had dy/dg below 0 (Sup. Fig. 23) with
1« a few genes with positive dy/dg, indicating that most genes are under purifying selection and
185 a few others are under positive selection. Furthermore, sequence analysis indicated that some
186 but not all species-wide low-recombining outlier regions coincide with putative pericentromeric
17 regions with enrichment of long tandem repeats (Sup. Figs. 26, 27). These results indicate
18 that the outlier regions may experience effects of selection in addition to reduced recombination

189 rates.

190 We asked whether the distinct patterns of local genetic variation at the outlier regions
191 observed in blackcaps represent the effect of selection or reduced recombination rates. To
192 this end, we simulated positive and purifying selection in with and without reduction in
103 recombination rate (Materials and Methods), and investigated local genetic variation over time
19a by PCA. Overall, representation of haplotype structure in local PCA occurred primarily when
15 recombination rate was reduced at the focal region (Sup. Figs. 24, 25). Decreased genetic
106 diversity due to selection was represented as small dispersal of individuals around a cluster,
197 while variation between non-selected haplotypes, if present, was represented in the primary
198 PC axes. Separation of populations in local PCA at the low-recombining region occurred
199 faster under a higher level of background selection (Sup. Fig. 24). These results indicate that
200 the distinct patterns of genetic variation represented in local PCA primarily reflect haplotype

201 structure due to reduced recombination rate, on which the effect of selection can be overlaid.

w2 DDiscussion

203 A number of empirical population genomics studies have identified ecologically and evolution-
204 arily important genomic regions by locating outlier regions with distinct patterns of genetic
205 variation. Genomic windows in such studies should be ideally both large enough to eliminate
206 the effect of random fluctuation in local genetic variation and small enough to capture the loc-
207 alised signatures of selection. Our results illustrate that distinct patterns of genetic variation in

208 outlier regions based on sliding window approaches can represent haplotype structure reflecting
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200 reduced local recombination rates instead of selection. The exact patterns vary depending on
210 the number of haplotypes and prevalence of recombination suppression across populations.
211 Distinct clusters of individuals based on local genetic variation at species-wide low-recombining
212 regions represent combinations of distinct haplotypes between which shuffling of variation is
213 hindered. Population-specific recombination suppression creates unequal variance in genetic

214 distances between individuals of low-recombining and normally recombining populations.

25 Distinct patterns of genetic variation at low-recombining regions: Genealo-

26 gical interpretations

217 We discuss our findings from the perspective of underlying genealogies. We first define
218 three terms: (1) genealogical noise, (2) genealogical bias, and (3) mutational noise. (1) By
210 “genealogical noise” we refer to the fact that gene genealogies vary along the genome following
220 a null distribution given a population history (Dutheil et al., 2009; Martin & Van Belleghem,
21 2017; McVean & Cardin, 2005; Wakeley, 2008, 2020; Wiuf & Hein, 1999). (2) By “genealogical
22 bias” we refer to the fact that selective processes can systematically shift the distribution of
23 local genealogies away from the null distribution. For example, genealogies under positive
24 selection, selection against gene flow, adaptive introgression, and balancing selection are biased
25 due to bursts of coalescence, faster lineage sorting, and introduction and maintenance of long
26 branches (Barton & Etheridge, 2004; Guerrero et al., 2012; Hejase et al., 2020; Martin et al.,
27 2019; Setter et al., 2020; Speidel et al., 2019; Taylor, 2013). On top of these, (3) randomness
28 in the process of mutation causes additional noise in realised genetic variation (Ralph et al.,
20 2020), which we call “mutational noise”. For example, the first and the second halves of a
230 chromosomal interval with a single genealogy can still have slightly different patterns of genetic
231 variation because they represent independent sets of mutations. Here we show that distinct
232 patterns of local genetic variation at low-recombining regions can be explained primarily by
233 haplotype structure due to non-selective genealogical noise instead of selective genealogical

234 bias.

235 We showed that some distinct patterns of genetic variation are associated with species-wide

236 low-recombining regions. This is in line with previous studies reporting negative correlation
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237 between recombination rate and genetic differentiation (Burri et al., 2015). To investigate
238 this relationship in more detail, we performed simulations and demonstrated that haplotype
239 structure underlies the distinct patterns and that it persists only transiently until the effect
20 of the population structure emerges. This transiency reflects a shift from local genetic
i1 variation primarily representing haplotype structure (Lotterhos, 2019; Ma & Amos, 2012) to
242 that representing population structure, which can be interpreted based on the underlying
23 genealogies. Low-recombining regions have few underlying genealogies and haplotype structure
24 at such regions tend to reflect their basal branches because basal branches tend to be longer
us than peripheral branches. At a time point soon after a population split event, peripheral
26 branches covering more recent times than the population split harbour fewer mutations than
27 basal branches. Therefore, the realised pattern of genetic variation at this stage has the greatest
s contributions by mutations on the long basal branches undifferentiated among populations
220 (i.e. consisting standing genetic variation), representing a few ancestral haplotypes that descend
20 the current sample. As time passes after the population split, the proportion of mutations that
251 have occurred after the population split increases while some ancestral haplotypes can be lost
2 by chance (i.e. drift), increasing the contribution of population structure on genetic variation.
253 This type of distinct patterns of genetic variation arises predominantly in low-recombining
254 regions but less so in normally recombining regions. This is because haplotype structure
25 representing a few ancestral lineages would become less prominent with recombination as
26 different segments of a current haplotype can follow distinct ancestries and thus the genealogical

27 noise is effectively averaged out.

258 Some low-recombining regions may have genealogies with much shorter basal branches than
259 other low-recombining regions because the variance in the basal branch length is greater than
%0 peripheral branches (Wakeley, 2008). The over-representation of a few ancestral haplotypes
261 in genetic variation requires long basal branches in the underlying genealogies, and thus
262 low-recombining regions with relatively short basal branches cannot accommodate sufficient
263 mutations to represent distinct ancestral haplotypes. This decreases the relative contribution of
24 genealogical noise compared to mutational noise (Supplementary Notes 1.1). Distinct patterns

265 of genetic variation with varying levels of clustering of individuals in PCA in our empirical

16


https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473882; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

266 results may correspond to different ratios between genealogical and mutational noise due to
267 large variance in the basal branch lengths of underlying genealogies. Specifically, some outlier
26  regions with mixture of individuals from multiple populations without distinct clusters and
0 population subdivision in PCA may have underlying genealogies with short basal branches

270 leading to greater contributions of mutational noise on the realised genetic variation.

271 We both empirically and with simulations showed that population-specific low-recombining
a2 regions exhibit distinct patterns of genetic variation in which individuals of low-recombining
273 and normally recombining populations have different variance in genetic distances. This
a74 unequal variance in low-recombining and normally recombining populations can be interpreted
215 based on the underlying genealogies (Sup. Fig. 28). We consider the ancestry of current
276 samples of low-recombining and normally recombining populations and split the ancestry at
277 the time T' when the population-specific recombination suppression initiated (Sup. Fig. 28A).
a7 At time T, there were n ancestral haplotypes that descend all current samples. At times older
279 than T', the ancestors of these n haplotypes freely recombine, making the genetic distances
250 among the ancestral haplotypes close to equidistant (Sup. Fig. 28B). After the initiation of the
281 population-specific reduction in recombination rate, the ancestry of one current sequence of
282 the low-recombining population can be traced back to either one of the n ancestral haplotypes
283 present at the time 7' (Sup. Fig. 28A). On the contrary, the ancestry of one current sequence
28¢  of the normally recombining population can be traced back to multiple ancestral haplotypes
255 of the n sequences because of the presence of recombination (Sup. Fig. 28A). From the
286 perspective of mutations, in the low-recombining population, mutations that arose on the same
287 haplotype tend to be linked until the present time because of the suppressed recombination.
288 On the other hand, in the normally recombining population, mutations that arose on the same
20 ancestral haplotype less likely stay linked until the present time because recombination can
200 dissociate them. Because shuffling of haplotypes reduces the variance of genetic distances
201 among sequences, population-specific reduction in recombination rates leads to greater variance
202 in low-recombining population than in normally recombining population as observed in our
203 empirical results and simulations. In short, because of the different recombination rates

204 between the populations, genealogical noise is more efficiently eliminated in the normally
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205 recombining population than in the low-recombining population.

296 We also demonstrated with simulations that distinct patterns of genetic variation at
207 population-specific low-recombining regions represent cryptic haplotype structure within the
208 low-recombining population. The haplotype structure is only cryptic and less apparent than
200 in species-wide low-recombining regions because other standing mutations coexist on the
300 same haplotype, which are older than the initiation of the population-specific recombination
s suppression. The elevated PC loadings at linked mutations originating in the low-recombining
32 population could be informative to study evolutionary change in local recombination rate: the
303 ages of such mutations mapped on inferred genealogies might be useful to estimate the timing

304 at which the population-specific recombination suppression initiated.

305 In our empirical analyses in blackcaps, we detected the effect of population-specific
306 reduction of recombination rate in Azores and Cape Verde island populations. It remains
307 unclear why reduced recombination rate in certain populations but not others is reflected as
308 distinct patterns of genetic variation by lostruct. The recent split of Azores and Cape Verde
300 populations from other populations, accompanied by reduction in population size and the level
s of isolation (Delmore et al., 2020b) may have contributed to more efficient spread of reduced

311 recombination rate.

sz Recombination landscape as a driver of evolution of local genetic variation

313 Species-wide and population-specific recombination suppression underlying distinct patterns
314 of local genetic variation are probably not independent: reduction in recombination rates that
315 initiates formation of haplotype blocks likely originates from one population and may spread
316 to multiple populations. For example, local recombination rate may be initially reduced in
317 one population in which a segregating inversion originates before it may spread in multiple
sis populations by gene flow (Faria et al., 2019). In line with this view of recombination map
319 as an evolvable trait diverging across populations according to subdivision, recent studies
320 find that divergence in local recombination rate among populations is correlated with genetic
;a1 divergence (Bascon-Cardozo et al., 2022a; Spence & Song, 2019). Future work on the effects

32 of transition from population-specific to species-wide suppression of recombination will fill the
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33 gap between the two states.

324 Besides spread of recombination suppression across populations, there are other paths
35 along which patterns of local genetic variation may change over time. First, change in
26 frequency of one haplotypic variant by drift or gene flow and selection and accumulation
sz of novel mutations may shift the distinct pattern of genetic variation (Rubin et al., 2022).
328 Second, an increase in recombination rate in the region may resolve the distinct pattern of
30 genetic variation and result in emergence of the population structure, because recombination
330 breaks down discrete haplotypes and generates mixed types whereby reducing the variance
31 of genetic variation (Hudson, 1983). These two types of shifts in distinct patterns of genetic
332 variation are not mutually exclusive. For example, fixation of an inversion results in elevated
333 recombination rate (Smukowski Heil et al., 2015; Stevison et al., 2011) because there are
3¢ 1o longer non-recombining heterozygotes in the population. Due to resumed recombination,
335 patterns of local genetic variation in such regions are expected to reflect population structure
336 eventually. The question of how long it takes for an outlier region with distinct patterns of

337 genetic variation to disappear after these events should be focally studied in the future.

338 In Fig. 6A, we illustrate a model for the evolution of local genetic variation that changes
339 according primarily to the evolution of local recombination rates. Local genetic variation
30 can become distinct from the population structure first by representing emerging haplotype
31 structure associated with population-specific recombination suppression or other types of
s2 haplotype blocks (e.g. inversions) in one population. If this recombination suppression spreads
33 throughout all populations, then local genetic variation will start to reflect species-wide
s« haplotype structure. Once the relative contribution of haplotype structure on local genetic
w5 variation is reduced by differentiation or disappears by elevated recombination rates, then
6 genetic variation returns to reflect the population structure and consequently the outlier
37 region disappears. The effect of selection on local genetic variation may be overlaid on top

us  (Supplementary Notes 1.2).
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Figure 6: Evolutionary changes in local recombination rate influence evolution of local
genetic variation. A. Local genetic variation is shown in hypothetical PCA plots. Their underlying
genealogies are shown in simplified ancestral recombination graphs (ARGs), on which black dots
represent ancestral recombination events contributing to the sampled sequences. Points in PCA depict
diploid individuals, while those on the ARGs represent haploid sequences. Two colours of these points
(blue and orange) indicate two populations. (1) Local genetic variation concordant to population
structure. Genetic variation shows separation of individuals from two populations. ARG shows that
recombination is suppressed in neither population. (2) Population-specific recombination suppression
in the blue population. ARG shows that recombination is suppressed in the blue population. (3)
Species-wide recombination suppression. Top: A case in which there are few mutations representing
the basal splits of the underlying genealogy at species-wide low-recombining region. Middle: A case
in which there are two haplotypic variants at the species-wide low-recombining region. If this is due
to presence of an inversion (right ARG), recombination is suppressed between but not within the
two clades representing two alleles. Bottom: A e in which there are three haplotypic variants at
the species-wide low-recombining region. B Evolution of recombination map influences difference in
genomic distributions of distinct patterns of genetic variation between species/populations.
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s Implications

30 Finally, we discuss technical and biological implications of our study. The technical implication
351 concerns interpretation of genome scans based on local genetic variation. A number of methods
352 based on local genetic variation have been used to detect loci involved in different kinds of
353 selective processes. For example, Fgr (differentiation), dxy (divergence), and other population
s« parameters are inferred to detect genomic islands of speciation (Delmore et al., 2018; Hejase
35 et al., 2020; Huang et al., 2020; Malinsky et al., 2015). Reduced diversity (7) is a signature of
36 selection (Delmore et al., 2018; Irwin et al., 2018; Pracana et al., 2017), and by combining it
357 with variation among populations, loci associated with population-specific selection can be also
38 inferred (Yi et al., 2010). Targets of adaptive introgression have been identified by applying
350 statistics based on ABBA-BABA test, which is related to genetic variation (Peter, 2016, 2022),
s0 in sliding windows (Kronforst et al., 2013; Martin et al., 2015; Patterson et al., 2012; Reich et
s1 al., 2009). However, there are confounding factors that affect inference of these statistics. For
32 example, it has been shown that low diversity can cause elevation in some of these statistics
363 (Cruickshank & Hahn, 2014; Noor & Bennett, 2009). In addition to reduced diversity, this
s+ study and others (Lotterhos, 2019; Renaut et al., 2013) show that reduced recombination rate
35 also causes distinct patterns of genetic variation which can lead to erroneous identification of
se6  regions under influence of selective factors. Examining recombination rates at identified regions
37 and comparing them to other regions are necessary to avoid this. Furthermore, corroborating
sss methods based on different aspects of distinct patterns of variation, such as site frequency
30 spectrum (DeGiorgio et al., 2016; Fay & Wu, 2000; Tajima, 1989), LD (Sabeti et al., 2002,
sro - 2007; Voight et al., 2006), inferred genealogies (Hejase et al., 2020; Speidel et al., 2019; Stern
s et al., 2019), local landscape of variation (Setter et al., 2020), and sites of mutations in genes
sz (Nei & Gojobori, 1986), as well as approaches with explicit simulation based on inferred

a3 demography (Hager et al., 2022), may be informative.

374 The biological implication is about evolution of recombination rates and genetic variation
375 along the genome. Based on our findings of a link between these, we predict that organisms
376 with more conserved recombination landscape along the genome may have more conserved

sr7 - genomic landscapes of distinct patterns of genetic variation (Fig. 6B). In other words, the
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373 more conserved recombination maps are, the more correlated genomic distribution of distinct
370 genetic variation may be between species. In vertebrates including placental mammals (with
30 some exceptions), recombination landscape along the genome evolves fast due to continuous
ss1 turnovers of alleles of PRDM9 (the gene coding a protein that determines recombination hot
;2 spots) and its target DNA sequences (Baudat et al., 2010; Myers et al., 2008). For instance,
33 in mammals that possess functional PRDMY, the genomic landscape of recombination rates is
s« distinct between and even within species (Kong et al., 2010; Spence & Song, 2019; Stevison
35 et al., 2016). Importantly, PRDM9 has been pseudogenised (Birtle & Ponting, 2006) or lost
sss  (Baker et al., 2017) independently in multiple vertebrate lineages. This shifted the determinants
387 of recombination map from the PRDMY9 allele and its target to genomic features such as CpG
;s islands and transcription start sites, stabilising the recombination landscape (Auton et al.,
;0 2013; Baker et al., 2017; Singhal et al., 2015). Our results shown in birds, a group lacking
0 PRDM9 (Birtle & Ponting, 2006; Singhal et al., 2015), raises a question whether the evolution
301 of local recombination rates may play an even more important role in shaping local genetic
32 variation in organisms with functional PRDM9. Comparative studies using taxa with and
303 without functional PRDM9 will address this and may link the evolution of genomic landscape

s0a  of distinct patterns of genetic variation and (in)stability of recombination maps.

s Materials and Methods

s Empirical analyses
37 de novo genome assembly

38 A chromosome-level blackcap reference genome was de novo assembled within the Vertebrate
300 Genomes Project (VGP), following pipeline version 1.5 (Rhie et al., 2021). In brief, blood
w0 of a female blackcap from the resident Tarifa population in Spain was collected in 100%
a1 ethanol on ice and stored at -80 °C (NCBI BioSample accession SAMN12369542). The ethanol
a2 supernatant was removed and the blood pellet was resuspended in Bionano Cell Buffer in
03 a 1:2 dilution. Ultra-long high molecular weight (HMW) DNA was isolated using Bionano

a4 agarose plug method (Bionano Frozen Whole Nucleated Blood Stored in Ethanol — DNA
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a5 Isolation Guidelines (document number 30033)) using the Bionano Prep Blood and Cell Culture
a6 DNA Isolation Kit. Four DNA extractions were performed yielding a total of 13.5 ng HMW
a7 DNA. About 6 pg of DNA was sheared using a 26G blunt end needle (PacBio protocol PN
a0 101-181-000 Version 05) to ~40 kb fragments. A large-insert PacBio library was prepared using
a0 the Pacific Biosciences Express Template Prep Kit v1.0 following the manufacturer protocol.
a0 The library was then size selected (>15 kb) using the Sage Science BluePippin Size-Selection
a1 System. The library was then sequenced on 8 PacBio 1M v3 smrtcells on the Sequel instrument
a2 with the sequencing kit 3.0 and 10 hours movie with 2 hours pre-extension time, yielding
sz 77.51 Gb of data (~66.29X coverage) with N50 read length averaging around 22,927 bp. We
a4 used the unfragmented HMW DNA to generate a linked-reads library on the 10X Genomics
a5 Chromium (Genome Library Kit & Gel Bead Kit v2 , Genome Chip Kit v2 , i7 Multiplex
s Kit PN-120262). We sequenced this 10X library on an Illumina Novaseq S4 150 bp PE lane
a7 to ~60X coverage. Unfragmented HMW DNA was also used for Bionano Genomics optical
ss  mapping. Brieflyy, DNA was labeled using the Bionano Prep Direct Label and Stain (DLS)
a0 Protocol (30206E) and run on one Saphyr instrument chip flowcell. 136.31 Gb of data was
20 generated (N50 = 301.9kb with a label density = 16.91 labels/100kb). Optical maps were
a1 assembled using Bionano Access (N50 = 27.48 Mb and total length = 1.41 Gb). Hi-C libraries
a2 were generated by Arima Genomics and Dovetail Genomics and sequenced on HiSeq X at ~60X
a3 coverage following the manufacturer’s protocols. Proximally ligated DNA was produced using
224 the Arima-HiC kit v1 , sheared and size selected (200 — 600 bp) with SRI beads, and fragments
a5 containing proximity-ligated DNA were enriched using streptavidin beads. A final Illumina
a6 library was prepared using the KAPA Hyper Prep kit following the manufacturer guidelines.
427 FALCON v1.9.0 and FALCON unzip v1.0.6 were used to generate haplotype phased contigs,
w28 and purge_ haplotigs v1.0.3 was used to further sort out haplotypes (Guan et al., 2020). The
220 phased contigs were first scaffolded with 10X Genomics linked reads using scaff10X 4.1.0
a0 software, followed with Bionano Genomics optical maps using Bionano Solve single enzyme
a1 DLS 3.2.1, and Arima Genomics in-vitro cross-linked Hi-C maps using Salsa Hi-C 2.2 software
12 (Ghurye et al., 2019). Base call errors were polished with both PacBio long reads and Arrow
133 short reads to achieve above Q40 accuracy (no more than 1 error every 10,000 bp). Manual

s curation was conducted using gEVAL software by the Sanger Institute Curation team (Howe
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a5 et al., 2021). Curation identified 33 autosomes and Z and W chromosomes (plus 1 unlocalised
136 W). Autosomes were named in decreasing order of size, and autosomes 1 through 30 and sex
a7 chromosomes had counterparts in the commonly used VGP reference zebra finch assembly
18 (Sup. Table 2). The total length of the primary haplotype assembly was 1,066,786,587 bp,
130 with 99.14% assigned to chromosomes. The final 1.1 Gb assembly consisted of 601 contigs in
a0 189 scaffolds, with a contig N50 of 7.4 Mb, and scaffold N50 of 73 Mb, indicating a high-quality

a1 assembly that fulfills the VGP standard metrics.

12 Whole-genome resequencing

a3 We resequenced 69 blackcap samples from various populations across the species distribution
sa  range (Sup. Table 1) to complement an existing dataset of 110 blackcaps, 5 garden warblers,
ws and 3 African hill babblers that had been sequenced previously (Delmore et al., 2020Db).
us  Blood samples from the additional 69 blackcaps were collected from the brachial vein and
a7 stored in 100% ethanol. High molecular weight genomic DNA was extracted with a standard
as  salt extraction protocol or through the Nanobind CBB Big DNA Kit Beta following the
a9 manufacturer’s instructions. Libraries for short insert fragments between 300 and 500 bp were
a0 prepared and were then sequenced for short paired-end reads on either Illumina NextSeq 500,

ss1 HiSeq 4000 or NovaSeq 5000 (Sup. Table 1).

452 We performed quality control of the reads with FastQC version 0.11.8 (ht-
a3 tps://www.bioinformatics.babraham.ac.uk/projects/fastqe/).  Reads from all samples
a5« were mapped against the blackcap reference genome following an adjusted pipeline of Genome
55 Analysis Toolkit (GATK version 4.1.7.0, McKenna et al. (2010)) and Picard version 2.21.9
6 (http://broadinstitute.github.io/picard/). After resetting the base quality of adapter bases
ss7 in the sequenced reads to 2 with Picard MarkIlluminaAdapters, paired-end reads were
sss - mapped to the reference using BWA mem (Li, 2013). To ensure that both unmapped mates and
10 secondary/supplementary reads were marked for duplicates, we ran Picard MarkDuplicates
a0 for sorted reads with the default pixel distance of 100 for reads from Illumina NextSeq 500
a1 or with a pixel distance of 2,500 for reads from HiSeq 4000 and NovaSeq 5000. Due to low

w2 coverage, 10 samples (Sup. Table 1) were sequenced multiple times. Alignment files for these
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163 samples (in BAM format) were merged with Picard MergeSamFiles. Per-sample quality
ssa  control of BAM files were performed using QualiMap version 2.2.1 (Okonechnikov et al., 2016),
465 Picard CollectMultipleMetrics, CollectRawWgsMetrics and CollectWgsMetrics; and
a6 MultiQC version 1.8 (Ewels et al., 2016). We called bases at all positions per sample using
167 GATK HaplotypeCaller. We combined gVCF files of 189 individuals into ten evenly sized
s subsets (to allow parallelisation of the following variant calling step) with GATK CombineGVCFs.
w60 We genotyped SNPs and INDELs using GATK GenotypeGVCFs, and the 10 subsets were
a0 concatenated using Picard GatherVcfs into one VCF file covering the entire genome. From
s the VCF file, SNPs were selected (i.e. indels were excluded) using GATK SelectVariants,
a2 after which we filtered SNPs with the following criteria: QD < 2.5; FS > 45.0; SOR > 3.0;
473 MG < 40; MQRankSum < -12.5; ReadPosRankSum < -8.0. We removed garden warblers
a7a and African hill babblers from the multi-species VCF and kept only biallelic sites. We
a5 estimated blackcap haplotypes using SHAPEIT2 (r837) (Delaneau et al., 2013) with the

ars  blackcap recombination map (Bascon-Cardozo et al., 2022a), yielding 142,083,056 SNPs.

a7 Local PCA

azs To identify genomic regions with distinct patterns of genetic variation in blackcaps, we
a9 performed local PCA in sliding genomic windows of 1,000 SNPs and summarised dissimilarity
s0  of windows by multidimensional scaling using lostrct (Li & Ralph, 2019) in R version
a1 3.5.3. First, we prepared a genotype and a haplotype table for each chromosome in which
a2 rows and columns represented positions and individuals from the phased VCF file using
a3 BCFtools. Specifically, genotypes were encoded 0, 1, and 2 for the reference allele homozygotes,
s8¢ heterozygotes, and non-reference allele homozygotes in the genotype table, and 0 and 2 for the
a5 reference and the non-reference allele in the haplotype table (encoding 0 and 1 instead of 0
sss  and 2 in haplotype-based analysis gives the same results). Chromosomes shorter than 10 Mb
a7 were concatenated to avoid misidentification of short chromosomal background as an outlier
ss  region. Distance matrices of windows were computed based on the coordinates (PC1 and PC2)
a0 of samples (individuals for genotype-based local PCA, and haplotype for haplotype-based
a0 local PCA) within R using lostruct. Multidimensional scaling (MDS) was performed to

s01  summarise similarities of local genetic variation patterns among windows into 20 axes (MDS1
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492 through MDS20).

493 Using the lostruct output, we identified chromosomal intervals with distinct patterns
a4 of genetic variation. In each chromosome, windows with MDS value apart from the mode
a5 of the distribution by greater than 0.3 for any one of the 20 axes were defined as outlier
a6 windows. This threshold was determined by visualising the distribution of MDS values in each
a7 chromosome (Sup. Fig. 3). For each MDS axis, we defined genomic intervals with at least 10
a8 outlier windows as “outlier regions” with distinct patterns of genetic variation. Overlapping
a0 intervals across different MDS axes as well as intervals identified based on genotypes and
so0 haplotypes were merged using BEDtools. To verify that the outliers show pattern of genetic
so variation distinct from the whole-genome PCA, we performed PCA using all SNPs within each
sz outlier region using PLINK (Purcell et al., 2007). Genomic regions showing similar pattern to

503 the whole genome PCA were identified with visual inspection and discarded from the outliers.

504 To assess consistency between the pipelines using genotypes and haplotypes, we compared
sos MDS results of genotype- and haplotype-based lostruct. We calculated Euclidean distance of
so6 windows from the centre of the 20 dimensional space to enable comparison of the same window
s07  in genotype- and haplotype-based MDS. We measured this distance instead of comparing
s8  the coordinates directly to account for possible rotations of MDS patterns between genotype-
s00 and haplotype-based lostruct. Because dissimilarity of windows in terms of the pattern
s10  of genetic variation was computed per chromosome, we calculated correlation of the above
su1 - distance between genotype- and haplotype-based methods per chromosome. The comparison

s12 of genotype-based and haplotype-based lostruct is in Sup. Fig. 4.

513 To assess whether lostruct can identify outliers irrespective of presence/absence of
514 other outliers on the same chromosome as well as the chromosome length, we ran lostruct
si5 treating either one part of a blackcap chromosome (“split chromosomes”) or multiple blackcap
sis  chromosomes as a single chromosome (“joined chromosome”). If lostruct is robust to the
517 chromosomal background, it is expected that the same regions should be detected as outliers
518 with distinct patterns of genetic variation in both split and joined chromosomes compared
519 to per-chromosome results. We prepared four split chromosomes by splitting chromosomes

520 1 and 2 at the middle, and one joined chromosome by concatenating chromosomes 20, 21,
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s21 and 28. We performed lostruct analysis based both on genotype and haplotype and merged
52 the identified regions. The comparison of lostruct between using single chromosomes and

s23 split/joined chromosomes is in Sup. Fig. 5.

s LD and recombination landscape

s To calculate LD around outlier regions, we first extracted SNPs within and 30% length outside
s26 each outlier. We then thinned SNPs so that all neighbouring SNP positions were at least 10
so7 kb away from each other. Linkage disequilibrium (LD) between all pairs of thinned SNPs was

s calculated with VCFtools with the —-geno-r2.

529 We inferred recombination landscape along blackcap chromosomes using Pyrho (Spence &
s Song, 2019). Pyrho infers demography-aware recombination rates with a composite-likelihood
531 approach from SNPs data of unrelated samples making use of likelihood lookup tables generated
532 by simulations based on demography and sample size of each population. In all inferences,
533 we used demography of focal populations inferred in Delmore et al. (2020b). Before the
53¢ recombination inference, focal samples were filtered and singletons were removed. We ran
53 Pyrho with mutation rate of 4.6 x 1072 per site per generation (Smeds et al., 2016), block
53 penalty of 20, and window size of 50 kb to infer population-level recombination landscape in
ss7  Azores, Cape Verde, continental resident, and medium-long distance migrants (represented
s by medium distance south-west migrants). We computed mean recombination rate in 10 kb

539  sliding windows for each population.

540 To test association between local PCA outlier regions and low-recombining regions, we
sa performed permutation tests. For this analysis we defined low-recombining regions as genomic
52 intervals with recombination rate below 1 percentile for the entire genome. We counted
543 the number of overlaps in the observed data using BEDtools. For resampling, we shuffled
544 intervals corresponding to local PCA outlier regions within the genome 1,000 times and counted
55 the number of intervals overlapping the low-recombining regions for each population using

s46 BEDtools.

547 To characterise genotype-specific LD and recombination landscape at the five outlier

s regions with three clusters of individuals in PCA, we applied vcftools --geno-r2 and Pyrho
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ss0  (Spence & Song, 2019) to our empirical data using each genotype (AA, AB, and BB in Sup.

sso  Fig. 9) separately.

551 Inversion breakpoints

ss2 Three clusters of individuals observed in PCA with genotype-specific LD at two outlier regions
53 on chromosomes 12 and 30 were indicative of polymorphic inversion (Ma & Amos, 2012; Ruiz-
sse  Arenas et al., 2019). To further characterise whether they represent polymorphic inversions,

ss5. we intended to locate breakpoints by two independent approaches.

556 Soft-clip reads

557 We attempted to identify positions where presence of soft-clipping of mapped reads is
558 associated with PCA-based genotype of the putative inversions. First, we extracted focal
ss0  regions around boundaries of the outliers (Sup. Table 4) from read mapping file of all
seo  individuals using SAMtools (Danecek et al., 2021). Next, we identified soft clip reads in
se1  each extracted region using samextractclip (Lindenbaum, 2015), and obtained reference
s62  position corresponding to the position of soft clipping in mapped reads using a custom script.
ses At all extracted soft-clip positions, we counted the number of reads that switch to soft-clip
see (“soft-clip depth”), as well as the depth of mapped reads, using SAMtools. At each of all
565 positions with at least one read supporting soft-clip switch, we calculated proportion of reads
ses  with soft-clip switch relative to all mapped reads (depth of the position) for each individual
se7 (“soft-clip proportion”). This resulted in “position-by-individual” matrix whose entry depicts
ses the proportion of soft-clip in all reads mapped at the focal position for the focal individual.
se0  Using this matrix, we fit a linear model (soft-clip proportion ~ PCA — basedgenotype) in R at
s70  each position treating genotypes AA, AB, and BB as 0, 1, and 2. Based on the significance of
sn genotype and R? of the linear models, we generated a list of 14 positions at which soft-clip
sz proportion was significantly associated with genotype of the putative inversions. We visualised
s13 the distribution of the soft-clip proportion at these positions (Sup. Fig. 13) and selected six
574 positions for which the soft-clip proportion of BB was high enough and that of AB was around a
575 half of BB based on the assumption that soft clip reads covering an inversion breakpoint should

st originate from haplotype B and non-soft clip reads should originate from haplotype A (Sup.
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sz Table 5). To investigate whether some of these six positions represent inversion breakpoints,
578 we asked whether the soft-clipped segments of the reads have homologous sequences at the
579 other end of the outlier regions. We extracted soft-clipped segments of reads mapped at the
s focal six positions in AB and BB individuals using a custom script, and re-mapped these
ss1  segments (instead of the entire reads) to the blackcap reference using BWA mem. We computed

se2 the depth of mapped segments in each position using SAMtools (Sup. Table 5).

ss3  10x linked read

584 We used an independent set of blackcap individuals (hereafter “10x individuals”) whose
ses genomes were sequenced with the 10x linked-read technology (Delmore et al., 2023, NCBI
sss  BioProject PRJEB65115). We genotyped the 10x individuals at the two putative inversion
ss7 loci (i.e. AA, AB, or BB) based on genotypes at diagnostic SNP positions. We started by
sss  determining diagnostic SNP positions using our Illumina short read-based resequence data.
ss0  Because usable diagnostic SNP positions should have genotypes perfectly associated with
so0o PCA-based genotype, we focused on positions at which Fgr was 1 between AA and BB,
s and all AB were heterozygous, using VCFtools and BCFtools. We also recorded mapping
s2  between an allele at the diagnostic positions and a genotype of the putative inversion (“A-

so3  and B-diagnostic alleles”, e.g. G for haplotype A, T for haplotype B).

594 We then counted the number of sites with A- and B-diagnostic allele in each of 10x
sos samples. To convert coordinates of 10x assemblies to the reference coordinate, we mapped
so6 the 10x pseudo-haplotyped assemblies to the blackcap reference using minimap2 (Li, 2018).
so7 'To determine the putative inversion genotype in the 10x individuals, we counted the number
s08  of positions with A-diagnostic and B-diagnostic alleles for each 10x pseudo-haplotype, and
s00 calculated the proportion of sites with A-diagnostic and B-diagnostic sites. In principle, an
60 AA and a BB individual respectively are expected to have proportion of 100% and 0% of
s1  A-diagnostic sites in both of two pseudo-haplotypes, while an AB individual is expected to
602 have 100% of A-diagnostic sites in one pseudo-haplotype and 0% for the other. For genotyping,

603 we set the following three thresholds.

604 1. Missingness at the diagnostic positions is less than 10%, after removing positions with
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605 non-unique minimap2 mapping (i.e. at least 90% of all diagnostic positions should have
606 depth of 1x).
607 2. More than 90% of all diagnostic sites should agree per pseudo-haplotype.

608 3. The second criterion should be fulfilled for both pseudo-haplotypes of an individual.

600 We identified two BB individuals for each of the putative inversions on chromosomes 12
60 and 30. There were no AB individuals passing the above threshold, indicating 10x pseudo-
611 haplotyping is not accurate in separating two diverged non-recombining alleles at a long range
612 in an individual that has both. To identify breakpoints, we aligned the pseudo-haplotype
613 assemblies of these BB individuals as well as one AA individual for each putative inversion to
14 the blackcap reference using Nucmer4 (Marcais et al., 2018), and generated dot plots (Sup.
o5 Fig. 14).

616 Sequence analysis at breakpoint of putative inversion on chromosome 12

617 10x contigs of pseudo-haplotype B aligned next to the putative breakpoint position of
618 blackcap reference chromosome 12 had an un-aligned flanking sequence. To characterise the
619 DNA sequence of these flanking segments, we extracted the flanking sequences using SAMtools,
0 aligned the sequences to themselves using minimap2, and generated self-dot plots (Sup. Fig.
21 15), revealing presence of tandem repeats. To identify unit of tandem repeats within the
62 flanking sequences, we ran TandemRepeatsFinder against these extracted sequences, resulting
623 in four consensus unit sequences of 144 bp based on two contigs from two individuals. To
e+ confirm that the four consensus sequences represent the same tandem repeat (because the unit
625 of identical tandem repeat can have different phases), we ran BLASTn (version 2.10.1, Altschul
626 et al., 1990) with each consensus as query against dimers of the consensus. To investigate
627 whether the tandem repeat found at the putative breakpoint of chromosome 12 in haplotype
628 B is present in chromosome 12 and other chromosomes of the reference and corresponding
620 position of haplotype A, we ran BLASTn with the 144 bp consensus of the tandem repeat unit as
630 the query against blackcap reference and a contig of an AA individual that spans the breakpoint
31 position, and counted how many copies were found in each reference chromosome/scaffold and

622 the 10x contig (Sup. Fig. 16).
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633 Selection in blackcaps

63« To test for selection in different outlier regions and to compare them with the genome-wide
635 base line, we computed nucleotide diversity (7) and Tajima’s D in 10 kb sliding windows
36 per population using PopGenome (Pfeifer et al., 2014) and VCFtools (Danecek et al., 2011)
637 respectively. The effects of the outlier regions on these statistics were tested using a linear
e3s  mixed effects model (nlme: :1me (Pinheiro et al., 2021)) and a generalised linear mixed effects
639 model with a Gamma distribution (1me4: :glmer (Bates et al., 2015)). To test for selection in
60 genes dy/dg were computed following the counting method by Nei & Gojobori (1986). Gene

a1 annotation of the blackcap was obtained from Bascén-Cardozo et al. (2022b).

s> Tandem repeats within and outside outlier regions

643 To characterise correlation between outlier regions with distinct patterns of genetic variation
64« and tandem repeats, we identified tandem repeats in the reference genome and compared the
e4s distribution of the tandem repeats with genomic regions with distinct patterns of genetic vari-
s ation. First, TandemRepeatsFinder (Benson, 1999) was run on the blackcap reference genome
7 with the parameter set recommended on the documentation (trf </path/to/fasta> 2 7 7
ss 80 10 50 500 -f -d -m -h). The output was formatted and summarised for visualisation
649 using custom scripts. Briefly, distribution of tandem repeats with a different unit size along
es0  the genome was summarised in 100 kb sliding windows in blocks of repeat unit sizes of 10 bp
1 step (Sup. Fig. 26). Tandem repeats with the six longest repeat unit size were extracted per

62 chromosome, and copy number for each tandem repeat was counted (Sup. Fig. 27).

653 Next, we tested whether the number of tandem repeats with long repeat unit were
esa enriched in outlier regions at species-wide and population-specific low-recombining regions. We
ess  extracted tandem repeats with repeat unit size greater than or equal to 150 bp, and counted
56 the number of tandem repeats (instead of total copy number) within and outside outlier
es7  regions. We performed Fisher’s exact tests to test independence between the number of long
s tandem repeats and the mode of recombination suppression (species-wide/population-specific)

650 (Sup. Table 7) using fisher.test function in R.

31


https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.12.22.473882; this version posted September 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

60 Simulation

61 Validation of LD-based inference of recombination landscape using non-randomly

62 selected sample

663 Effects of recombination suppression model on recombination rate inference at

664 an inversion

665 Three clusters of individuals observed in PCA at five outlier regions indicate presence of
666 distinct haplotypes. Polymorphic inversions are known to show this pattern due to suppression
7 of recombination between the normal and inverted alleles (Wellenreuther & Bernatchez, 2018).
66s Lo test whether some of the five outlier regions represent polymorphic inversions, we intended
660 to infer recombination rates using AA, AB, and BB individuals separately based on linkage
0 disequilibrium (LD) patterns. Before addressing this in blackcaps empirically, we assessed
671 how different types of recombination suppression at a haplotype block affect inference of
672 recombination landscape using a set of individuals with a certain combination of haplotypes.
673 To investigate the effect of a genotype-specific suppression of recombination on LD-based
674 inference of recombination rate, we simulated different modes of recombination suppression
75 using SLiM version 3.5 (Haller & Messer, 2019) under six scenarios listed in Sup. Table 6.
676 Specifically, we performed 1,000 replicates of forward-time simulations of two 500 kb-long
677 chromosomes with neutral mutation rate of 1 x 10~7 [per site per generation] and recombination
s rate of 1 x 1079 [per site per generation] in a population of 1,000 diploid individuals under
670 the Wright-Fisher model (We downscaled the population size and upscaled mutation rate to
0 minimise the time and computational resource for simulation). We introduced a mutation
es1 (inversion marker) on one chromosome at 100 kb position at the 50th generation. We modelled
62 an inversion by suppressing recombination in an interval from 100 kb to 400 kb position if
es3 the inversion marker site was heterozygous. We defined additional suppression according
s« to different scenarios (models 1-6). To allow for the inversion to remain in the population,
s we applied negative frequency-dependent selection (fitness of inversion is 1 — (pin, — 0.2) for
s models 1-3 and 1 — (piny — 0.8) for models 4-6 where p;,, is the frequency of the inversion
es7 allele). 1,000 generations after the inversion event, we recorded the mutations in all samples,

es making a VCF file including all individuals. Although 1,000 generations is relatively short
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es0 given the population size of 1,000, the haplotype structure at the inversion locus was stable in
0 test runs of model-1 (inversion frequency of 0.2 without additional recombination suppression).
eo1 Based on the genotype at the marker, we randomly sampled 10 individuals for each inversion
62 genotype. Pyrho was run to estimate recombination rates using the sampled 10 individuals,
603 with the block penalty 50 and window size 50. The inferred recombination landscape is in

eoa Sup. Fig. 11.

s0s Species-wide reduction of recombination rate

e 10 investigate how species-wide low-recombining regions affect patterns of local genetic variation
o7 depicted in local PCA, we performed forward simulation with SLiM version 4.0.1 (Haller &
ss  Messer, 2022). We simulated 100 replicates of two 500 kb-long chromosomes with neutral
s00 mutation rate of 1 x 1077 [per site per generation] and recombination rate of 1 x 1076 [per
700 site per generation| except for an interval from 100 to 400 [kb] of the first chromosome
71 where recombination rate was set to 1 x 1072, which is 1/1000 of the normally recombining
702 chromosome. First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000
703 diploids. After the burn-in, we made three populations of 1,000 diploids (popl, pop2, and
704 pop3) split from the ancestral population. We sampled 50 individuals per population every 20
705 generations over 1,000 generations after the population split and recorded SNPs in VCF. For
706 each time point of each of 100 simulation replicates, we performed PCA with PLINK, using
707 SNPs either within 100 to 400 [kb] of the first chromosome (popl-specific suppression) or the

708 normally recombining chromosome.

700 We investigated how reduced recombination rate affects representation of population
710 subdivision in local PCA. To evaluate whether the individuals from different populations were
1 distributed differently in local PCA at the low-recombining region, we performed Fasano-
712 Franceschini test (Fasano & Franceschini, 1987), which is a multi-dimensional extension of
713 Kolmogorov-Smirnov test, in three pairs of populations (popl-pop2, popl-pop3, pop2-pop3).
712 We counted the number of significant pairs of populations (0, 1, 2, or 3) for each time point of
715 each replicate. We compared between the low-recombining and normally recombining regions

716 the number of pairs of populations with distinct distribution in PCA (Sup. Fig. 24).
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77 Population-specific reduction of recombination rate

71s To investigate how evolution of low-recombining regions in population(s) affect patterns of
70 local genetic variation depicted in local PCA, we performed forward simulation with SLiM
720 version 4.0.1. We simulated two 500kb-long chromosomes with neutral mutation rate and
721 recombination rate of 1 x 1077 [per site per generation] and 1 x 1079 [per site per generation].
722 First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000 diploids. After
723 the burn-in, we made three populations of 1,000 diploids (popl, pop2, and pop3) split from the
724 ancestral population, after which gene flow between all pairs of populations were set to 0.0025.
725 We introduced recombination suppression in popl from 100 to 400 [kb] of the first chromosome
726 in two scenarios. In the first scenario, recombination suppression was introduced at the same
727 time of the split. In the second scenario, recombination suppression was introduced 4,000
78 generations after the population split event, allowing the three populations to differentiate
79 before population-specific recombination suppression was introduced in popl. We sampled 50
730 individuals per population every 20 generations over 1,000 generations after the introduction of
731 the population-specific suppression of recombination and recorded SNPs in VCF. For each time
732 point of each of 1,000 simulation replicates, we performed PCA with PLINK, using SNPs either
733 within 100 to 400 [kb] of the first chromosome (popl-specific suppression) or the normally

734 recombining chromosome.

735 To characterise factors represented in the primary axes of distinct local PCA at population-
736 specific low-recombining regions, we performed one replicate of SLiM simulation with the same
737 scenarios of models 1 and 2 recording the full ancestry and mutations in tree sequence, with an
738 increased duration of burn-in (40,000 generations) to make sure that all lineages at sampling
739 time coalesce. We loaded the tree sequence with mutations in tskit (Kelleher et al., 2018)
70 and sampled 50 diploids per population, and saved SNPs in VCF. Using the VCF files for
71 each time point for each model, we performed PCA using PLINK at the population-specific
72 low-recombining region, and determined one time point per model showing typical spread
73 of individuals from the low-recombining population in PCA (Sup. Fig. 20A, E). For these
e PCAs we identified 5% SNPs with the highest loadings to the first two PC axes. We analysed

75 these mutations on the underlying genealogies using tskit. Specifically, we investigated
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746 whether mutations originating from the low-recombining population were enriched in the
747 high-loading mutations (Sup. Fig. 20C, G) with a x? test. We also assessed whether multiple
748 mutations originating in the low-recombining population occurring on the same genealogical
720 branches (i.e. mutations on the same ancestral haplotypes) were enriched in the high-loading
750 mutations (Sup. Fig. 20D, H). For this, we compared the number of mutations sharing
751 the same genealogical branches among the high-loading mutations originating from the low-
752 recombining population and the same number of randomly-selected mutations originating from

753 the low-recombining population by a Kolmogorov-Smirnov test.

s Effects of linked selection on local PCA
75 Background selection

756 To investigate the linked effect of purifying selection at low-recombining regions (back-
757 ground selection) on patterns of local genetic variation represented in local PCA, we performed
758 forward simulation with SLiM version 4.0.1. We simulated a species-wide low-recombining
759 region in three populations as described above, except we changed the distribution of fitness
70 effect of mutations with three different ratios between neutral (“n”, s = 0) and deleterious
w1 (“d”, s = —0.05 and h = 0.5) mutations of n/(n + d) = 0,0.25,0.5,0.75. To evaluate whether
72 individuals from different populations were distributed differently in the local PCA at the
763 low-recombining region, we performed Fasano-Franceschini test between three pairs of popu-
764 lations (popl-pop2, popl-pop3, pop2-pop3). We counted the number of significant pairs of
765 populations (0, 1, 2, or 3) for each sampled time point of each replicate (out of 100) for each

76 DFE (Sup. Fig. 24).

77 Positive selection

768 To investigate the linked effect of positive selection at low-recombining regions on patterns
760 of local genetic variation represented in local PCA, we performed forward simulation with SLiM
770 version 4.0.1 under four scenarios: population-specific sweep and sweep before populations
7 split, with and without reduced local recombination rate. We simulated 10 replicates of one

72 500 kb-long chromosome with neutral mutation rate of 1 x 10”7 [per site per generation]
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73 and recombination rate of 1 x 1076 [per site per generation]. In scenarios with reduced
774 recombination rate, we introduced a reduced recombination rate within an interval from 100
775 to 400 [kb] of the chromosome where recombination rate was set to 1 x 10~?, which is 1/1000
776 of the normally recombining regions. For all scenarios, we ran a burn-in of 4,000 generations
777 for an ancestral population of 1,000 diploids. In the scenarios with population-specific sweep,
77s - 'we made three populations of 1,000 diploids (popl, pop2, and pop3) split from the ancestral
770 population at the 4000-th generation. We introduced a strongly beneficial mutation (s =1
70 and h = 0.5) in the middle of a chromosome of one randomly selected sample of the first
71 population at the 100-th generation after the populations split. In the scenarios with sweep
752 before split, we introduced a strongly beneficial mutation (s =1 and h = 0.5) in the middle of
783 the chromosome of one randomly selected sample of the ancestral population, and made the
784 three populations of 1,000 diploids split at the 100-th generation after the introduction of the
785 beneficial mutation. We sampled 100 diploid individuals per population every 20 generations
786 since the introduction of the beneficial mutation (scenarios of population-specific sweep) or
77 the split (scenarios of ancestral sweep) and recorded the SNPs in VCF format. We performed

7ss  PCA using PLINK.
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