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Abstract1

Genetic variation of the entire genome represents population structure, yet individual loci2

can show distinct patterns. Such deviations identified through genome scans have often been3

attributed to effects of selective factors instead of randomness, assuming that the genomic4

intervals are long enough to average out randomness in underlying genealogies. However, an5

alternative explanation to distinct patterns has not been fully addressed: too few genealogies6

to average out the effect of randomness. Specifically, distinct patterns of genetic variation7

may be due to reduced local recombination rate, since the number of genealogies in a genomic8

interval corresponds to the number of ancestral recombination events. Here, we associate9

distinct patterns of local genetic variation with reduced recombination rate in a songbird, the10

Eurasian blackcap, using genome sequences and recombination maps. We find that distinct11

patterns of local genetic variation represent haplotype structure at low-recombining regions12

present either in all populations or only in a few populations. At the former species-wide low-13

recombining regions, genetic variation depicts conspicuous haplotypes segregating in multiple14

populations. On the contrary, at the latter population-specific low-recombining regions,15

genetic variation primarily represents cryptic haplotype structure among individuals of the16

low-recombining populations. With simulations, we confirm that reduction in recombination17

rate alone can cause distinct patterns of genetic variation mirroring our empirical data. Our18

results highlight that distinct patterns of genetic variation can emerge through evolution of19

reduced local recombination rate. Recombination landscape as an evolvable trait therefore20

plays an important role determining the heterogeneous distribution of genetic variation along21

the genome.22
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Introduction23

Patterns of genetic variation in the genome represent ancestries of sequences and are influenced24

by population history. While genome-wide genetic variation represents population structure25

(McVean, 2009; Patterson et al., 2006), randomness in genealogies also contributes to fluctuation26

of local genetic variation along recombining chromosomes. Specifically, genealogies can differ27

between loci even under the same population history (Dutheil et al., 2009; Martin & Van28

Belleghem, 2017; McVean & Cardin, 2005; Pamilo & Nei, 1988; Wakeley, 2008, 2020; Wiuf29

& Hein, 1999). This is because realisation of a genealogy under a given population history30

is a probabilistic process: an ancestral haplotype for a set of individuals at one locus is not31

necessarily a common ancestor of the same set of individuals at another locus (Shipilina et32

al., 2023). Patterns of local genetic variation along the genome tend to conform with the33

population structure with random fluctuation (Fig. 1).34
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Figure 1: Distinct patterns of genetic variation can be due to reduced recombination

rate. Population history (A) affects the distribution of possible genealogies (B) from which local
genealogies are drawn (C). The number of genealogies in a genomic interval with a fixed physical length
depends on the local recombination rate (C). Mutations occurring on the genealogies (not shown)
determine the patterns of realised genetic variation (D). (1) In freely recombining neutral regions,
mutations represent many genealogies and hence the pattern of genetic variation converges to the
population structure. (2, 3) In low-recombining neutral regions, mutations represent few genealogies
covering the region leading to patterns of genetic variation distinct from the population structure. (3)
Due to randomness in sampling of genealogies, some of such distinct patterns can be similar to patterns
expected at targets of selective factors (c.f. 4). (4) At targets of selection, distribution of possible
genealogies is different from that at neutral regions, which is depicted as a different set of possible
genealogies in B and the dotted arrow.

Inference of population structure as well as other genome-wide analyses based on genetic35

variation take advantage of a sufficient number of variable sites (e.g. single nucleotide poly-36

morphisms (SNPs)) to eliminate the effect of randomness. One of the most common methods37

to summarise population structure based on this approach is principal component analysis38

(PCA) applied on a whole-genome genotype table (McVean, 2009; Price et al., 2006). In a39

whole-genome PCA, variation among individuals based on variable sites of the entire genome40

are projected onto a few major axes, and the distances among individuals on these reduced41
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dimensions represent genetic differences. Summarising population structure and other related42

measures using the entire genome has been proven to be an effective approach to eliminate43

random fluctuation of genealogies along the genome (Bhatia et al., 2013; Cao et al., 2020;44

Fedorova et al., 2013; Peter, 2022; Shao et al., 2023).45

However, some fundamental biological questions concern selective factors that systemat-46

ically bias the shape of genealogies at a genomic local scale, shifting the expected patterns47

of genetic variation from the population structure. For example, patterns of local genetic48

variation are distinct under selection against gene flow (Fig. 1C4), positive selection and49

adaptive introgression because they affect coalescence rate, topology, and branch lengths of50

the underlying genealogies (Hejase et al., 2020; Setter et al., 2020; Speidel et al., 2019; Wolf &51

Ellegren, 2017). Empirically, genome scans of population genetic summary statistics have been52

used to identify regions with shifted patterns of genetic variation (Irwin et al., 2018; Martin et53

al., 2015).54

Distinct patterns of local genetic variation identified with genome scans are often at-55

tributed to the effects of selective factors instead of randomness (Burri, 2017; Mérot et al.,56

2021) based on the assumption that the genomic intervals are large enough to eliminate57

random fluctuation of genealogies (Li & Ralph, 2019). However, an alternative non-selective58

explanation is equally conceivable and yet often overlooked: the genomic region may contain59

an insufficient number of genealogies to eliminate the effect of randomness. Specifically,60

low-recombining regions may harbour too few genealogies to eliminate the effect of random61

fluctuation (Lotterhos, 2019).62

We address the effect of reduced recombination rate on local genetic variation using63

a songbird species, Eurasian blackcap (Sylvia atricapilla, hereafter “blackcap”), which is64

characterised by variability in seasonal migration across its distribution range (Berthold, 1988,65

1991; Delmore et al., 2020a; Helbig, 1991). Populations with diverged migratory phenotypes66

split as recently as ~30,000 years ago, likely corresponding to the last glacial period and67

now exhibit population structure (Fig. 2A-C, Sup. Fig. 1) (Delmore et al., 2020b). Due68

to their recent split and relatively large effective population size, genetic differentiation is69

very low among blackcap populations (Delmore et al., 2020b). The presence of population70
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structure albeit with the low levels of differentiation makes the blackcap a perfect system71

to investigate local deviations of genetic variation: even the slightest effects of factors that72

change local genetic variation are likely detectable because such effects are not obscured by73

population structure. In addition, fine-scale recombination maps for multiple populations74

are available for this species (Bascón-Cardozo et al., 2022a), facilitating investigation of the75

relationship between changes in the recombination landscape and locally distinct patterns of76

genetic variation.77

By leveraging a large-scale genomic re-sequencing dataset, we first systematically explore78

distinct patterns of local genetic variation along the blackcap genome, and compare these with79

genomic regions exhibiting reduced recombination rate. We further investigate the patterns of80

genetic variation in outlier regions with distinct patterns of genetic variation and associate81

them with the prevalence of recombination suppression across populations. We also conduct82

simulations to analyse how reduced local recombination rate in the entire species and in83

a subpopulation affects patterns of genetic variation through time. Finally, we propose a84

model of local genetic variation representing haplotype structure corresponding to evolutionary85

changes in local recombination rate.86

Results87

Deviation of genetic variation coincides with low-recombining regions88

To investigate the genome-wide distribution of genetic variation, we mapped short reads of89

the whole-genomes of 179 blackcaps including 69 newly sequenced individuals (Sup. Table90

1) on a de novo-assembled reference genome generated through the Vertebrate Genomes91

Project (VGP, Rhie et al., 2021), and called SNPs (Materials and Methods). To characterise92

genome-wide genetic variation, we performed PCA using SNPs in all autosomes, revealing93

population structure. While PC1 and PC2 represented differentiation of island populations94

(Fig. 2B), PC3 represented structure within continental populations with different migratory95

phenotypes (Fig. 2C). To identify genomic regions with patterns of genetic variation distinct96

from the population structure, we performed local PCA using lostruct (Li & Ralph, 2019).97
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Specifically, PCA was performed separately in sliding genomic windows using SNPs, and98

windows with distinct patterns were identified by evaluating dissimilarity among windows with99

multidimensionality scaling (MDS). This approach allowed systematic and unbiased exploration100

unaffected by our definition of populations. By applying a threshold of the MDS values, we101

identified 32 genomic regions with distinct patterns of genetic variation (hereafter “outlier102

regions”, Fig. 2D, Sup. Table 3, Sup. Fig. 2). Comparing the genomic distribution of these103

outlier regions to population-level recombination maps, we found that low-recombining regions104

were significantly enriched in the outlier regions (permutation tests, p-value < 0.001 (Sup. Fig.105

8)). The outlier regions coincided with regions in which recombination rate was reduced either106

in all tested populations (“species-wide”) or in certain populations (“population-specific”)107

(Fig. 2E, F, Sup. Fig. 7).108
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Figure 2: Local PCA outliers coincide with species-wide and population-specific low-

recombining regions A. Geographic location of blackcap populations included in this study. Each
point on the map represents a sampling location where multiple individuals were sampled. Populations
were defined based on the geographic location, migratory phenotype, and genomic-wide population
structure. B, C. Genome-wide PCA illustrating population structure. D. Distribution of outlier
regions based on local PCA using lostruct. E, F Inferred recombination rates along two exemplified
chromosomes (chromosomes 1 and 14) in two blackcap populations (cont_medlong and Azores). In
D-F, purple and green shades respectively indicate positions of outliers that coincide with species-wide
and population-specific low-recombining regions. cont_medlong: medium and long distance migrant
population breeding on the continent; cont_short: short distance migrant population breeding on
the continent; cont_res: resident (non-migrant) population breeding on the continent. All island
populations (Canary, Madeira, Azores, Cape Verde, Mallorca, and Crete) are resident.7
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To further investigate the outlier regions, we separately performed PCA using SNPs in109

each region, revealing diverse patterns of distinct genetic variation (Fig. 3A-C top). First,110

species-wide low-recombining regions showed different levels of clustering of individuals in111

PCA. Specifically, the PCA projections consisted of either three distinct clusters (Fig. 3A112

top, Sup. Fig. 6), six loose clusters (Fig. 3B top, Sup. Fig. 6), or mixture of all individuals113

without apparent clustering (Sup. Fig. 6), suggesting that they represent haplotype structure114

with different numbers of low-recombining alleles. These clusters did not clearly separate115

populations, indicating a greater contribution of haplotype structure than the population116

structure. Five of these (e.g. Fig. 3A top, Sup. Figs. 6, 9) had the clearest clustering patterns117

with three groups of individuals in PCA , which is expected for a haplotype block with two118

distinct alleles (Huang et al., 2020; Ma & Amos, 2012; Todesco et al., 2020). Two of these119

regions showed LD patterns consistent with segregating inversions (Fig. 3A bottom, Sup.120

Fig. 10), and the other three showed patterns of non-inversion haplotype blocks (Sup. Fig.121

10), indicating that recombination suppression with different mechanisms resulted in similar122

patterns of genetic variation due to presence of two distinct segregating haplotypes.123
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Figure 3: Patterns of genetic variation and linkage disequilibrium at local PCA outliers

Top: PCA at exemplified outlier regions visualising the patterns of local genetic variation. Data
points represent blackcap individuals colour-coded by population as depicted in Fig. 2. Bottom: LD
calculated for all individuals (top-left diagonal) and for subset individuals (bottom-right diagonal).
A. A putative inversion. Three clusters correspond to combination of two non-recombining alleles
possessed by individuals, depicted as AA, AB, and BB. LD calculated using AA individuals is not
elevated, in line with heterozygote-specific recombination suppression at an inversion locus (Sup. Fig.
12). B. A species-wide low-recombining region with six loose clusters of individuals. LD calculated
using subset individuals was elevated, suggesting genotype-non-specific recombination suppression. C.

A population-specific low-recombining region. The variance in genetic distances between individuals of
the low-recombining populations (Azores (blue) and Cape Verde (light blue)) is greater than between
other pairs of individuals (top). LD calculated using individuals of the low-recombining populations is
elevated (bottom).

Second, population-specific low-recombining regions exhibited distinct patterns of genetic124

variation consistently across the outlier regions. While individuals from the low-recombining125

populations were spread in PCA projections, individuals of other populations were more126

densely clustered (Fig. 3C top). This pattern indicates that the variance in genetic distances127

between a pair of individuals of the low-recombining populations is greater than between128

individuals of normally recombining populations. LD was elevated only in the low-recombining129

populations (Fig. 3C bottom), supporting population-specific reduction in recombination rate.130
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Reduced recombination rate generates distinct patterns of genetic variation131

To address whether species-wide and population-specific reduction in recombination rate132

generates the distinct patterns of genetic variation that we observed above, we performed133

simulations.134

First, to investigate the effects of species-wide reduction in local recombination rate, we135

simulated one ancestral population of 1,000 diploids with a low-recombining genomic region136

that splits into three subpopulations (pop1, pop2, pop3. Fig. 4A). We sampled individuals137

over time after the populations split and conducted PCA both in the low-recombining and138

normally recombining genomic regions. PCA patterns at low-recombining regions (Fig. 4B, C,139

Sup. Fig. 17) were distinct from normally recombining regions (Fig. 4D). The low-recombining140

regions exhibited three, six, or more clusters of individuals resembling our empirical results.141

The clusters of individuals represented genotypes consisting of different combinations of142

ancestral haplotypes (Sup. Fig. 18). The distinct patterns representing haplotype structure143

persisted until population structure emerged along the PC axes (Fig. 4B, C). Accordingly, the144

percentages of variation explained by PC1 and PC2 were higher at low-recombining regions145

than in normally recombining region until this transition (Fig. 4C). Distinct patterns in the146

low-recombining regions persisted over longer times than it took for population structure in147

normally recombining region to emerge (Fig. 4D). These results suggest that distinct patterns148

of genetic variation in species-wide low-recombining regions represent transient haplotype149

structure where transition to the population structure is slower than in normally recombining150

regions.151
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Figure 4: Simulation of a species-wide low-recombining region. A. Simulated demography
scenario. Our simulated genome contained two chromosomes, one with a low-recombining region and the
other without. B, C. PCA showing patterns of genetic variation at the species-wide low-recombining
region at three time points in three exemplified simulation replicates. D. PCA showing patterns of
genetic variation at a normally recombining chromosome at three time points in the same replicates as
B.
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Second, to investigate the effects of population-specific reduction in local recombination152

rate, we performed simulations under two scenarios. In both scenarios, three populations153

(pop1, pop2, and pop3) and their ancestral population had 1,000 diploid individuals, and pop1154

evolved a reduced local recombination rate. The difference between the two scenarios was the155

timing of introduction of reduced recombination rate. In the first scenario (Sup. Fig. 19),156

recombination suppression was introduced at the same time as the three populations split,157

while in the second scenario (Fig. 5A) recombination suppression was introduced once the158

three populations differentiated. We conducted PCA in genomic regions with and without159

population-specific recombination suppression using individuals sampled over time. In both160

scenarios, the genomic region with population-specific recombination suppression transiently161

showed distinct patterns of genetic variation (Fig. 5B, Sup. Fig. 19B) resembling the empirical162

results, while regions without population-specific suppression showed population structure163

(Fig. 5C). Haplotype structure was not as conspicuous in species-wide low-recombining regions164

(Sup. Fig. 20B, F, c.f. Sup. Fig. 18) due to standing genetic variation. Mutations originating165

in the non-recombining population were enriched in the set of mutations that have the greatest166

contribution to the distinct pattern of PCA (Sup. Fig. 20C, G. χ2 tests, p-value < 0.001167

for both models). These mutations were significantly associated with each other in the168

underlying genealogy sharing common branches compared to other mutations originating in169

the same population (Sup. Fig. 20D, H. Materials and Methods, Kolmogorov-Smirnov tests,170

p-value < 0.005 for both models), indicating that the distinct pattern of genetic variation171

represents sets of mutations that occurred in ancestral haplotypes. Associations between172

these population-specific mutations on ancestral haplotypes would have eventually decayed by173

recombination events, but in the low-recombining population the association was maintained174

due to suppressed recombination, resulting in the cryptic haplotype structure.175
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Figure 5: Simulation of a population-specific low-recombining region. A. Simulated scenario.
Simulated genome contained two chromosomes, one with a population-specific low-recombining region
and the other without. B, C. PCA showing patterns of genetic variation at the population-specific
low-recombining region (B) and the normally recombining chromosome (C) at three time points in one
exemplified simulation replicate.

Effect of selection on patterns of genetic variation176

Selection is known to cause distinct patterns of genetic variation (Nielsen, 2005). To test177

whether the outlier regions based on lostruct identified in the blackcap genome are also178

targets of selection, we measured nucleotide diversity (π) and Tajima’s D in each population,179

as well as ratio between non-synonymous and synonymous substitutions (dN/dS) for annotated180
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genes. Many species-wide low-recombining regions showed reduced nucleotide diversity (Sup.181

Fig. 22) and Tajima’s D (Sup. Fig. 21), suggesting that they are under either positive or182

purifying selection. Most genes within outlier regions had dN/dS below 0 (Sup. Fig. 23) with183

a few genes with positive dN/dS, indicating that most genes are under purifying selection and184

a few others are under positive selection. Furthermore, sequence analysis indicated that some185

but not all species-wide low-recombining outlier regions coincide with putative pericentromeric186

regions with enrichment of long tandem repeats (Sup. Figs. 26, 27). These results indicate187

that the outlier regions may experience effects of selection in addition to reduced recombination188

rates.189

We asked whether the distinct patterns of local genetic variation at the outlier regions190

observed in blackcaps represent the effect of selection or reduced recombination rates. To191

this end, we simulated positive and purifying selection in with and without reduction in192

recombination rate (Materials and Methods), and investigated local genetic variation over time193

by PCA. Overall, representation of haplotype structure in local PCA occurred primarily when194

recombination rate was reduced at the focal region (Sup. Figs. 24, 25). Decreased genetic195

diversity due to selection was represented as small dispersal of individuals around a cluster,196

while variation between non-selected haplotypes, if present, was represented in the primary197

PC axes. Separation of populations in local PCA at the low-recombining region occurred198

faster under a higher level of background selection (Sup. Fig. 24). These results indicate that199

the distinct patterns of genetic variation represented in local PCA primarily reflect haplotype200

structure due to reduced recombination rate, on which the effect of selection can be overlaid.201

Discussion202

A number of empirical population genomics studies have identified ecologically and evolution-203

arily important genomic regions by locating outlier regions with distinct patterns of genetic204

variation. Genomic windows in such studies should be ideally both large enough to eliminate205

the effect of random fluctuation in local genetic variation and small enough to capture the loc-206

alised signatures of selection. Our results illustrate that distinct patterns of genetic variation in207

outlier regions based on sliding window approaches can represent haplotype structure reflecting208
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reduced local recombination rates instead of selection. The exact patterns vary depending on209

the number of haplotypes and prevalence of recombination suppression across populations.210

Distinct clusters of individuals based on local genetic variation at species-wide low-recombining211

regions represent combinations of distinct haplotypes between which shuffling of variation is212

hindered. Population-specific recombination suppression creates unequal variance in genetic213

distances between individuals of low-recombining and normally recombining populations.214

Distinct patterns of genetic variation at low-recombining regions: Genealo-215

gical interpretations216

We discuss our findings from the perspective of underlying genealogies. We first define217

three terms: (1) genealogical noise, (2) genealogical bias, and (3) mutational noise. (1) By218

“genealogical noise” we refer to the fact that gene genealogies vary along the genome following219

a null distribution given a population history (Dutheil et al., 2009; Martin & Van Belleghem,220

2017; McVean & Cardin, 2005; Wakeley, 2008, 2020; Wiuf & Hein, 1999). (2) By “genealogical221

bias” we refer to the fact that selective processes can systematically shift the distribution of222

local genealogies away from the null distribution. For example, genealogies under positive223

selection, selection against gene flow, adaptive introgression, and balancing selection are biased224

due to bursts of coalescence, faster lineage sorting, and introduction and maintenance of long225

branches (Barton & Etheridge, 2004; Guerrero et al., 2012; Hejase et al., 2020; Martin et al.,226

2019; Setter et al., 2020; Speidel et al., 2019; Taylor, 2013). On top of these, (3) randomness227

in the process of mutation causes additional noise in realised genetic variation (Ralph et al.,228

2020), which we call “mutational noise”. For example, the first and the second halves of a229

chromosomal interval with a single genealogy can still have slightly different patterns of genetic230

variation because they represent independent sets of mutations. Here we show that distinct231

patterns of local genetic variation at low-recombining regions can be explained primarily by232

haplotype structure due to non-selective genealogical noise instead of selective genealogical233

bias.234

We showed that some distinct patterns of genetic variation are associated with species-wide235

low-recombining regions. This is in line with previous studies reporting negative correlation236
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between recombination rate and genetic differentiation (Burri et al., 2015). To investigate237

this relationship in more detail, we performed simulations and demonstrated that haplotype238

structure underlies the distinct patterns and that it persists only transiently until the effect239

of the population structure emerges. This transiency reflects a shift from local genetic240

variation primarily representing haplotype structure (Lotterhos, 2019; Ma & Amos, 2012) to241

that representing population structure, which can be interpreted based on the underlying242

genealogies. Low-recombining regions have few underlying genealogies and haplotype structure243

at such regions tend to reflect their basal branches because basal branches tend to be longer244

than peripheral branches. At a time point soon after a population split event, peripheral245

branches covering more recent times than the population split harbour fewer mutations than246

basal branches. Therefore, the realised pattern of genetic variation at this stage has the greatest247

contributions by mutations on the long basal branches undifferentiated among populations248

(i.e. consisting standing genetic variation), representing a few ancestral haplotypes that descend249

the current sample. As time passes after the population split, the proportion of mutations that250

have occurred after the population split increases while some ancestral haplotypes can be lost251

by chance (i.e. drift), increasing the contribution of population structure on genetic variation.252

This type of distinct patterns of genetic variation arises predominantly in low-recombining253

regions but less so in normally recombining regions. This is because haplotype structure254

representing a few ancestral lineages would become less prominent with recombination as255

different segments of a current haplotype can follow distinct ancestries and thus the genealogical256

noise is effectively averaged out.257

Some low-recombining regions may have genealogies with much shorter basal branches than258

other low-recombining regions because the variance in the basal branch length is greater than259

peripheral branches (Wakeley, 2008). The over-representation of a few ancestral haplotypes260

in genetic variation requires long basal branches in the underlying genealogies, and thus261

low-recombining regions with relatively short basal branches cannot accommodate sufficient262

mutations to represent distinct ancestral haplotypes. This decreases the relative contribution of263

genealogical noise compared to mutational noise (Supplementary Notes 1.1). Distinct patterns264

of genetic variation with varying levels of clustering of individuals in PCA in our empirical265
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results may correspond to different ratios between genealogical and mutational noise due to266

large variance in the basal branch lengths of underlying genealogies. Specifically, some outlier267

regions with mixture of individuals from multiple populations without distinct clusters and268

population subdivision in PCA may have underlying genealogies with short basal branches269

leading to greater contributions of mutational noise on the realised genetic variation.270

We both empirically and with simulations showed that population-specific low-recombining271

regions exhibit distinct patterns of genetic variation in which individuals of low-recombining272

and normally recombining populations have different variance in genetic distances. This273

unequal variance in low-recombining and normally recombining populations can be interpreted274

based on the underlying genealogies (Sup. Fig. 28). We consider the ancestry of current275

samples of low-recombining and normally recombining populations and split the ancestry at276

the time T when the population-specific recombination suppression initiated (Sup. Fig. 28A).277

At time T , there were n ancestral haplotypes that descend all current samples. At times older278

than T , the ancestors of these n haplotypes freely recombine, making the genetic distances279

among the ancestral haplotypes close to equidistant (Sup. Fig. 28B). After the initiation of the280

population-specific reduction in recombination rate, the ancestry of one current sequence of281

the low-recombining population can be traced back to either one of the n ancestral haplotypes282

present at the time T (Sup. Fig. 28A). On the contrary, the ancestry of one current sequence283

of the normally recombining population can be traced back to multiple ancestral haplotypes284

of the n sequences because of the presence of recombination (Sup. Fig. 28A). From the285

perspective of mutations, in the low-recombining population, mutations that arose on the same286

haplotype tend to be linked until the present time because of the suppressed recombination.287

On the other hand, in the normally recombining population, mutations that arose on the same288

ancestral haplotype less likely stay linked until the present time because recombination can289

dissociate them. Because shuffling of haplotypes reduces the variance of genetic distances290

among sequences, population-specific reduction in recombination rates leads to greater variance291

in low-recombining population than in normally recombining population as observed in our292

empirical results and simulations. In short, because of the different recombination rates293

between the populations, genealogical noise is more efficiently eliminated in the normally294
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recombining population than in the low-recombining population.295

We also demonstrated with simulations that distinct patterns of genetic variation at296

population-specific low-recombining regions represent cryptic haplotype structure within the297

low-recombining population. The haplotype structure is only cryptic and less apparent than298

in species-wide low-recombining regions because other standing mutations coexist on the299

same haplotype, which are older than the initiation of the population-specific recombination300

suppression. The elevated PC loadings at linked mutations originating in the low-recombining301

population could be informative to study evolutionary change in local recombination rate: the302

ages of such mutations mapped on inferred genealogies might be useful to estimate the timing303

at which the population-specific recombination suppression initiated.304

In our empirical analyses in blackcaps, we detected the effect of population-specific305

reduction of recombination rate in Azores and Cape Verde island populations. It remains306

unclear why reduced recombination rate in certain populations but not others is reflected as307

distinct patterns of genetic variation by lostruct. The recent split of Azores and Cape Verde308

populations from other populations, accompanied by reduction in population size and the level309

of isolation (Delmore et al., 2020b) may have contributed to more efficient spread of reduced310

recombination rate.311

Recombination landscape as a driver of evolution of local genetic variation312

Species-wide and population-specific recombination suppression underlying distinct patterns313

of local genetic variation are probably not independent: reduction in recombination rates that314

initiates formation of haplotype blocks likely originates from one population and may spread315

to multiple populations. For example, local recombination rate may be initially reduced in316

one population in which a segregating inversion originates before it may spread in multiple317

populations by gene flow (Faria et al., 2019). In line with this view of recombination map318

as an evolvable trait diverging across populations according to subdivision, recent studies319

find that divergence in local recombination rate among populations is correlated with genetic320

divergence (Bascón-Cardozo et al., 2022a; Spence & Song, 2019). Future work on the effects321

of transition from population-specific to species-wide suppression of recombination will fill the322
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gap between the two states.323

Besides spread of recombination suppression across populations, there are other paths324

along which patterns of local genetic variation may change over time. First, change in325

frequency of one haplotypic variant by drift or gene flow and selection and accumulation326

of novel mutations may shift the distinct pattern of genetic variation (Rubin et al., 2022).327

Second, an increase in recombination rate in the region may resolve the distinct pattern of328

genetic variation and result in emergence of the population structure, because recombination329

breaks down discrete haplotypes and generates mixed types whereby reducing the variance330

of genetic variation (Hudson, 1983). These two types of shifts in distinct patterns of genetic331

variation are not mutually exclusive. For example, fixation of an inversion results in elevated332

recombination rate (Smukowski Heil et al., 2015; Stevison et al., 2011) because there are333

no longer non-recombining heterozygotes in the population. Due to resumed recombination,334

patterns of local genetic variation in such regions are expected to reflect population structure335

eventually. The question of how long it takes for an outlier region with distinct patterns of336

genetic variation to disappear after these events should be focally studied in the future.337

In Fig. 6A, we illustrate a model for the evolution of local genetic variation that changes338

according primarily to the evolution of local recombination rates. Local genetic variation339

can become distinct from the population structure first by representing emerging haplotype340

structure associated with population-specific recombination suppression or other types of341

haplotype blocks (e.g. inversions) in one population. If this recombination suppression spreads342

throughout all populations, then local genetic variation will start to reflect species-wide343

haplotype structure. Once the relative contribution of haplotype structure on local genetic344

variation is reduced by differentiation or disappears by elevated recombination rates, then345

genetic variation returns to reflect the population structure and consequently the outlier346

region disappears. The effect of selection on local genetic variation may be overlaid on top347

(Supplementary Notes 1.2).348
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Figure 6: Evolutionary changes in local recombination rate influence evolution of local

genetic variation. A. Local genetic variation is shown in hypothetical PCA plots. Their underlying
genealogies are shown in simplified ancestral recombination graphs (ARGs), on which black dots
represent ancestral recombination events contributing to the sampled sequences. Points in PCA depict
diploid individuals, while those on the ARGs represent haploid sequences. Two colours of these points
(blue and orange) indicate two populations. (1) Local genetic variation concordant to population
structure. Genetic variation shows separation of individuals from two populations. ARG shows that
recombination is suppressed in neither population. (2) Population-specific recombination suppression
in the blue population. ARG shows that recombination is suppressed in the blue population. (3)
Species-wide recombination suppression. Top: A case in which there are few mutations representing
the basal splits of the underlying genealogy at species-wide low-recombining region. Middle: A case
in which there are two haplotypic variants at the species-wide low-recombining region. If this is due
to presence of an inversion (right ARG), recombination is suppressed between but not within the
two clades representing two alleles. Bottom: A case in which there are three haplotypic variants at
the species-wide low-recombining region. B Evolution of recombination map influences difference in
genomic distributions of distinct patterns of genetic variation between species/populations.

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2023. ; https://doi.org/10.1101/2021.12.22.473882doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.22.473882
http://creativecommons.org/licenses/by/4.0/


Implications349

Finally, we discuss technical and biological implications of our study. The technical implication350

concerns interpretation of genome scans based on local genetic variation. A number of methods351

based on local genetic variation have been used to detect loci involved in different kinds of352

selective processes. For example, FST (differentiation), dXY (divergence), and other population353

parameters are inferred to detect genomic islands of speciation (Delmore et al., 2018; Hejase354

et al., 2020; Huang et al., 2020; Malinsky et al., 2015). Reduced diversity (π) is a signature of355

selection (Delmore et al., 2018; Irwin et al., 2018; Pracana et al., 2017), and by combining it356

with variation among populations, loci associated with population-specific selection can be also357

inferred (Yi et al., 2010). Targets of adaptive introgression have been identified by applying358

statistics based on ABBA-BABA test, which is related to genetic variation (Peter, 2016, 2022),359

in sliding windows (Kronforst et al., 2013; Martin et al., 2015; Patterson et al., 2012; Reich et360

al., 2009). However, there are confounding factors that affect inference of these statistics. For361

example, it has been shown that low diversity can cause elevation in some of these statistics362

(Cruickshank & Hahn, 2014; Noor & Bennett, 2009). In addition to reduced diversity, this363

study and others (Lotterhos, 2019; Renaut et al., 2013) show that reduced recombination rate364

also causes distinct patterns of genetic variation which can lead to erroneous identification of365

regions under influence of selective factors. Examining recombination rates at identified regions366

and comparing them to other regions are necessary to avoid this. Furthermore, corroborating367

methods based on different aspects of distinct patterns of variation, such as site frequency368

spectrum (DeGiorgio et al., 2016; Fay & Wu, 2000; Tajima, 1989), LD (Sabeti et al., 2002,369

2007; Voight et al., 2006), inferred genealogies (Hejase et al., 2020; Speidel et al., 2019; Stern370

et al., 2019), local landscape of variation (Setter et al., 2020), and sites of mutations in genes371

(Nei & Gojobori, 1986), as well as approaches with explicit simulation based on inferred372

demography (Hager et al., 2022), may be informative.373

The biological implication is about evolution of recombination rates and genetic variation374

along the genome. Based on our findings of a link between these, we predict that organisms375

with more conserved recombination landscape along the genome may have more conserved376

genomic landscapes of distinct patterns of genetic variation (Fig. 6B). In other words, the377
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more conserved recombination maps are, the more correlated genomic distribution of distinct378

genetic variation may be between species. In vertebrates including placental mammals (with379

some exceptions), recombination landscape along the genome evolves fast due to continuous380

turnovers of alleles of PRDM9 (the gene coding a protein that determines recombination hot381

spots) and its target DNA sequences (Baudat et al., 2010; Myers et al., 2008). For instance,382

in mammals that possess functional PRDM9, the genomic landscape of recombination rates is383

distinct between and even within species (Kong et al., 2010; Spence & Song, 2019; Stevison384

et al., 2016). Importantly, PRDM9 has been pseudogenised (Birtle & Ponting, 2006) or lost385

(Baker et al., 2017) independently in multiple vertebrate lineages. This shifted the determinants386

of recombination map from the PRDM9 allele and its target to genomic features such as CpG387

islands and transcription start sites, stabilising the recombination landscape (Auton et al.,388

2013; Baker et al., 2017; Singhal et al., 2015). Our results shown in birds, a group lacking389

PRDM9 (Birtle & Ponting, 2006; Singhal et al., 2015), raises a question whether the evolution390

of local recombination rates may play an even more important role in shaping local genetic391

variation in organisms with functional PRDM9. Comparative studies using taxa with and392

without functional PRDM9 will address this and may link the evolution of genomic landscape393

of distinct patterns of genetic variation and (in)stability of recombination maps.394

Materials and Methods395

Empirical analyses396

de novo genome assembly397

A chromosome-level blackcap reference genome was de novo assembled within the Vertebrate398

Genomes Project (VGP), following pipeline version 1.5 (Rhie et al., 2021). In brief, blood399

of a female blackcap from the resident Tarifa population in Spain was collected in 100%400

ethanol on ice and stored at -80 °C (NCBI BioSample accession SAMN12369542). The ethanol401

supernatant was removed and the blood pellet was resuspended in Bionano Cell Buffer in402

a 1:2 dilution. Ultra-long high molecular weight (HMW) DNA was isolated using Bionano403

agarose plug method (Bionano Frozen Whole Nucleated Blood Stored in Ethanol – DNA404
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Isolation Guidelines (document number 30033)) using the Bionano Prep Blood and Cell Culture405

DNA Isolation Kit. Four DNA extractions were performed yielding a total of 13.5 µg HMW406

DNA. About 6 µg of DNA was sheared using a 26G blunt end needle (PacBio protocol PN407

101-181-000 Version 05) to ~40 kb fragments. A large-insert PacBio library was prepared using408

the Pacific Biosciences Express Template Prep Kit v1.0 following the manufacturer protocol.409

The library was then size selected (>15 kb) using the Sage Science BluePippin Size-Selection410

System. The library was then sequenced on 8 PacBio 1M v3 smrtcells on the Sequel instrument411

with the sequencing kit 3.0 and 10 hours movie with 2 hours pre-extension time, yielding412

77.51 Gb of data (~66.29X coverage) with N50 read length averaging around 22,927 bp. We413

used the unfragmented HMW DNA to generate a linked-reads library on the 10X Genomics414

Chromium (Genome Library Kit & Gel Bead Kit v2 , Genome Chip Kit v2 , i7 Multiplex415

Kit PN-120262). We sequenced this 10X library on an Illumina Novaseq S4 150 bp PE lane416

to ~60X coverage. Unfragmented HMW DNA was also used for Bionano Genomics optical417

mapping. Briefly, DNA was labeled using the Bionano Prep Direct Label and Stain (DLS)418

Protocol (30206E) and run on one Saphyr instrument chip flowcell. 136.31 Gb of data was419

generated (N50 = 301.9kb with a label density = 16.91 labels/100kb). Optical maps were420

assembled using Bionano Access (N50 = 27.48 Mb and total length = 1.41 Gb). Hi-C libraries421

were generated by Arima Genomics and Dovetail Genomics and sequenced on HiSeq X at ~60X422

coverage following the manufacturer’s protocols. Proximally ligated DNA was produced using423

the Arima-HiC kit v1 , sheared and size selected (200 – 600 bp) with SRI beads, and fragments424

containing proximity-ligated DNA were enriched using streptavidin beads. A final Illumina425

library was prepared using the KAPA Hyper Prep kit following the manufacturer guidelines.426

FALCON v1.9.0 and FALCON unzip v1.0.6 were used to generate haplotype phased contigs,427

and purge_haplotigs v1.0.3 was used to further sort out haplotypes (Guan et al., 2020). The428

phased contigs were first scaffolded with 10X Genomics linked reads using scaff10X 4.1.0429

software, followed with Bionano Genomics optical maps using Bionano Solve single enzyme430

DLS 3.2.1, and Arima Genomics in-vitro cross-linked Hi-C maps using Salsa Hi-C 2.2 software431

(Ghurye et al., 2019). Base call errors were polished with both PacBio long reads and Arrow432

short reads to achieve above Q40 accuracy (no more than 1 error every 10,000 bp). Manual433

curation was conducted using gEVAL software by the Sanger Institute Curation team (Howe434
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et al., 2021). Curation identified 33 autosomes and Z and W chromosomes (plus 1 unlocalised435

W). Autosomes were named in decreasing order of size, and autosomes 1 through 30 and sex436

chromosomes had counterparts in the commonly used VGP reference zebra finch assembly437

(Sup. Table 2). The total length of the primary haplotype assembly was 1,066,786,587 bp,438

with 99.14% assigned to chromosomes. The final 1.1 Gb assembly consisted of 601 contigs in439

189 scaffolds, with a contig N50 of 7.4 Mb, and scaffold N50 of 73 Mb, indicating a high-quality440

assembly that fulfills the VGP standard metrics.441

Whole-genome resequencing442

We resequenced 69 blackcap samples from various populations across the species distribution443

range (Sup. Table 1) to complement an existing dataset of 110 blackcaps, 5 garden warblers,444

and 3 African hill babblers that had been sequenced previously (Delmore et al., 2020b).445

Blood samples from the additional 69 blackcaps were collected from the brachial vein and446

stored in 100% ethanol. High molecular weight genomic DNA was extracted with a standard447

salt extraction protocol or through the Nanobind CBB Big DNA Kit Beta following the448

manufacturer’s instructions. Libraries for short insert fragments between 300 and 500 bp were449

prepared and were then sequenced for short paired-end reads on either Illumina NextSeq 500,450

HiSeq 4000 or NovaSeq 5000 (Sup. Table 1).451

We performed quality control of the reads with FastQC version 0.11.8 (ht-452

tps://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads from all samples453

were mapped against the blackcap reference genome following an adjusted pipeline of Genome454

Analysis Toolkit (GATK version 4.1.7.0, McKenna et al. (2010)) and Picard version 2.21.9455

(http://broadinstitute.github.io/picard/). After resetting the base quality of adapter bases456

in the sequenced reads to 2 with Picard MarkIlluminaAdapters, paired-end reads were457

mapped to the reference using BWA mem (Li, 2013). To ensure that both unmapped mates and458

secondary/supplementary reads were marked for duplicates, we ran Picard MarkDuplicates459

for sorted reads with the default pixel distance of 100 for reads from Illumina NextSeq 500460

or with a pixel distance of 2,500 for reads from HiSeq 4000 and NovaSeq 5000. Due to low461

coverage, 10 samples (Sup. Table 1) were sequenced multiple times. Alignment files for these462
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samples (in BAM format) were merged with Picard MergeSamFiles. Per-sample quality463

control of BAM files were performed using QualiMap version 2.2.1 (Okonechnikov et al., 2016),464

Picard CollectMultipleMetrics, CollectRawWgsMetrics and CollectWgsMetrics; and465

MultiQC version 1.8 (Ewels et al., 2016). We called bases at all positions per sample using466

GATK HaplotypeCaller. We combined gVCF files of 189 individuals into ten evenly sized467

subsets (to allow parallelisation of the following variant calling step) with GATK CombineGVCFs.468

We genotyped SNPs and INDELs using GATK GenotypeGVCFs, and the 10 subsets were469

concatenated using Picard GatherVcfs into one VCF file covering the entire genome. From470

the VCF file, SNPs were selected (i.e. indels were excluded) using GATK SelectVariants,471

after which we filtered SNPs with the following criteria: QD < 2.5; FS > 45.0; SOR > 3.0;472

MG < 40; MQRankSum < -12.5; ReadPosRankSum < -8.0. We removed garden warblers473

and African hill babblers from the multi-species VCF and kept only biallelic sites. We474

estimated blackcap haplotypes using SHAPEIT2 (r837) (Delaneau et al., 2013) with the475

blackcap recombination map (Bascón-Cardozo et al., 2022a), yielding 142,083,056 SNPs.476

Local PCA477

To identify genomic regions with distinct patterns of genetic variation in blackcaps, we478

performed local PCA in sliding genomic windows of 1,000 SNPs and summarised dissimilarity479

of windows by multidimensional scaling using lostrct (Li & Ralph, 2019) in R version480

3.5.3. First, we prepared a genotype and a haplotype table for each chromosome in which481

rows and columns represented positions and individuals from the phased VCF file using482

BCFtools. Specifically, genotypes were encoded 0, 1, and 2 for the reference allele homozygotes,483

heterozygotes, and non-reference allele homozygotes in the genotype table, and 0 and 2 for the484

reference and the non-reference allele in the haplotype table (encoding 0 and 1 instead of 0485

and 2 in haplotype-based analysis gives the same results). Chromosomes shorter than 10 Mb486

were concatenated to avoid misidentification of short chromosomal background as an outlier487

region. Distance matrices of windows were computed based on the coordinates (PC1 and PC2)488

of samples (individuals for genotype-based local PCA, and haplotype for haplotype-based489

local PCA) within R using lostruct. Multidimensional scaling (MDS) was performed to490

summarise similarities of local genetic variation patterns among windows into 20 axes (MDS1491
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through MDS20).492

Using the lostruct output, we identified chromosomal intervals with distinct patterns493

of genetic variation. In each chromosome, windows with MDS value apart from the mode494

of the distribution by greater than 0.3 for any one of the 20 axes were defined as outlier495

windows. This threshold was determined by visualising the distribution of MDS values in each496

chromosome (Sup. Fig. 3). For each MDS axis, we defined genomic intervals with at least 10497

outlier windows as “outlier regions” with distinct patterns of genetic variation. Overlapping498

intervals across different MDS axes as well as intervals identified based on genotypes and499

haplotypes were merged using BEDtools. To verify that the outliers show pattern of genetic500

variation distinct from the whole-genome PCA, we performed PCA using all SNPs within each501

outlier region using PLINK (Purcell et al., 2007). Genomic regions showing similar pattern to502

the whole genome PCA were identified with visual inspection and discarded from the outliers.503

To assess consistency between the pipelines using genotypes and haplotypes, we compared504

MDS results of genotype- and haplotype-based lostruct. We calculated Euclidean distance of505

windows from the centre of the 20 dimensional space to enable comparison of the same window506

in genotype- and haplotype-based MDS. We measured this distance instead of comparing507

the coordinates directly to account for possible rotations of MDS patterns between genotype-508

and haplotype-based lostruct. Because dissimilarity of windows in terms of the pattern509

of genetic variation was computed per chromosome, we calculated correlation of the above510

distance between genotype- and haplotype-based methods per chromosome. The comparison511

of genotype-based and haplotype-based lostruct is in Sup. Fig. 4.512

To assess whether lostruct can identify outliers irrespective of presence/absence of513

other outliers on the same chromosome as well as the chromosome length, we ran lostruct514

treating either one part of a blackcap chromosome (“split chromosomes”) or multiple blackcap515

chromosomes as a single chromosome (“joined chromosome”). If lostruct is robust to the516

chromosomal background, it is expected that the same regions should be detected as outliers517

with distinct patterns of genetic variation in both split and joined chromosomes compared518

to per-chromosome results. We prepared four split chromosomes by splitting chromosomes519

1 and 2 at the middle, and one joined chromosome by concatenating chromosomes 20, 21,520
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and 28. We performed lostruct analysis based both on genotype and haplotype and merged521

the identified regions. The comparison of lostruct between using single chromosomes and522

split/joined chromosomes is in Sup. Fig. 5.523

LD and recombination landscape524

To calculate LD around outlier regions, we first extracted SNPs within and 30% length outside525

each outlier. We then thinned SNPs so that all neighbouring SNP positions were at least 10526

kb away from each other. Linkage disequilibrium (LD) between all pairs of thinned SNPs was527

calculated with VCFtools with the --geno-r2.528

We inferred recombination landscape along blackcap chromosomes using Pyrho (Spence &529

Song, 2019). Pyrho infers demography-aware recombination rates with a composite-likelihood530

approach from SNPs data of unrelated samples making use of likelihood lookup tables generated531

by simulations based on demography and sample size of each population. In all inferences,532

we used demography of focal populations inferred in Delmore et al. (2020b). Before the533

recombination inference, focal samples were filtered and singletons were removed. We ran534

Pyrho with mutation rate of 4.6 × 10−9 per site per generation (Smeds et al., 2016), block535

penalty of 20, and window size of 50 kb to infer population-level recombination landscape in536

Azores, Cape Verde, continental resident, and medium-long distance migrants (represented537

by medium distance south-west migrants). We computed mean recombination rate in 10 kb538

sliding windows for each population.539

To test association between local PCA outlier regions and low-recombining regions, we540

performed permutation tests. For this analysis we defined low-recombining regions as genomic541

intervals with recombination rate below 1 percentile for the entire genome. We counted542

the number of overlaps in the observed data using BEDtools. For resampling, we shuffled543

intervals corresponding to local PCA outlier regions within the genome 1,000 times and counted544

the number of intervals overlapping the low-recombining regions for each population using545

BEDtools.546

To characterise genotype-specific LD and recombination landscape at the five outlier547

regions with three clusters of individuals in PCA, we applied vcftools --geno-r2 and Pyrho548
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(Spence & Song, 2019) to our empirical data using each genotype (AA, AB, and BB in Sup.549

Fig. 9) separately.550

Inversion breakpoints551

Three clusters of individuals observed in PCA with genotype-specific LD at two outlier regions552

on chromosomes 12 and 30 were indicative of polymorphic inversion (Ma & Amos, 2012; Ruiz-553

Arenas et al., 2019). To further characterise whether they represent polymorphic inversions,554

we intended to locate breakpoints by two independent approaches.555

Soft-clip reads556

We attempted to identify positions where presence of soft-clipping of mapped reads is557

associated with PCA-based genotype of the putative inversions. First, we extracted focal558

regions around boundaries of the outliers (Sup. Table 4) from read mapping file of all559

individuals using SAMtools (Danecek et al., 2021). Next, we identified soft clip reads in560

each extracted region using samextractclip (Lindenbaum, 2015), and obtained reference561

position corresponding to the position of soft clipping in mapped reads using a custom script.562

At all extracted soft-clip positions, we counted the number of reads that switch to soft-clip563

(“soft-clip depth”), as well as the depth of mapped reads, using SAMtools. At each of all564

positions with at least one read supporting soft-clip switch, we calculated proportion of reads565

with soft-clip switch relative to all mapped reads (depth of the position) for each individual566

(“soft-clip proportion”). This resulted in “position-by-individual” matrix whose entry depicts567

the proportion of soft-clip in all reads mapped at the focal position for the focal individual.568

Using this matrix, we fit a linear model (soft-clip proportion ∼ PCA − basedgenotype) in R at569

each position treating genotypes AA, AB, and BB as 0, 1, and 2. Based on the significance of570

genotype and R2 of the linear models, we generated a list of 14 positions at which soft-clip571

proportion was significantly associated with genotype of the putative inversions. We visualised572

the distribution of the soft-clip proportion at these positions (Sup. Fig. 13) and selected six573

positions for which the soft-clip proportion of BB was high enough and that of AB was around a574

half of BB based on the assumption that soft clip reads covering an inversion breakpoint should575

originate from haplotype B and non-soft clip reads should originate from haplotype A (Sup.576
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Table 5). To investigate whether some of these six positions represent inversion breakpoints,577

we asked whether the soft-clipped segments of the reads have homologous sequences at the578

other end of the outlier regions. We extracted soft-clipped segments of reads mapped at the579

focal six positions in AB and BB individuals using a custom script, and re-mapped these580

segments (instead of the entire reads) to the blackcap reference using BWA mem. We computed581

the depth of mapped segments in each position using SAMtools (Sup. Table 5).582

10x linked read583

We used an independent set of blackcap individuals (hereafter “10x individuals”) whose584

genomes were sequenced with the 10x linked-read technology (Delmore et al., 2023, NCBI585

BioProject PRJEB65115). We genotyped the 10x individuals at the two putative inversion586

loci (i.e. AA, AB, or BB) based on genotypes at diagnostic SNP positions. We started by587

determining diagnostic SNP positions using our Illumina short read-based resequence data.588

Because usable diagnostic SNP positions should have genotypes perfectly associated with589

PCA-based genotype, we focused on positions at which FST was 1 between AA and BB,590

and all AB were heterozygous, using VCFtools and BCFtools. We also recorded mapping591

between an allele at the diagnostic positions and a genotype of the putative inversion (“A-592

and B-diagnostic alleles”, e.g. G for haplotype A, T for haplotype B).593

We then counted the number of sites with A- and B-diagnostic allele in each of 10x594

samples. To convert coordinates of 10x assemblies to the reference coordinate, we mapped595

the 10x pseudo-haplotyped assemblies to the blackcap reference using minimap2 (Li, 2018).596

To determine the putative inversion genotype in the 10x individuals, we counted the number597

of positions with A-diagnostic and B-diagnostic alleles for each 10x pseudo-haplotype, and598

calculated the proportion of sites with A-diagnostic and B-diagnostic sites. In principle, an599

AA and a BB individual respectively are expected to have proportion of 100% and 0% of600

A-diagnostic sites in both of two pseudo-haplotypes, while an AB individual is expected to601

have 100% of A-diagnostic sites in one pseudo-haplotype and 0% for the other. For genotyping,602

we set the following three thresholds.603

1. Missingness at the diagnostic positions is less than 10%, after removing positions with604
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non-unique minimap2 mapping (i.e. at least 90% of all diagnostic positions should have605

depth of 1x).606

2. More than 90% of all diagnostic sites should agree per pseudo-haplotype.607

3. The second criterion should be fulfilled for both pseudo-haplotypes of an individual.608

We identified two BB individuals for each of the putative inversions on chromosomes 12609

and 30. There were no AB individuals passing the above threshold, indicating 10x pseudo-610

haplotyping is not accurate in separating two diverged non-recombining alleles at a long range611

in an individual that has both. To identify breakpoints, we aligned the pseudo-haplotype612

assemblies of these BB individuals as well as one AA individual for each putative inversion to613

the blackcap reference using Nucmer4 (Marçais et al., 2018), and generated dot plots (Sup.614

Fig. 14).615

Sequence analysis at breakpoint of putative inversion on chromosome 12616

10x contigs of pseudo-haplotype B aligned next to the putative breakpoint position of617

blackcap reference chromosome 12 had an un-aligned flanking sequence. To characterise the618

DNA sequence of these flanking segments, we extracted the flanking sequences using SAMtools,619

aligned the sequences to themselves using minimap2, and generated self-dot plots (Sup. Fig.620

15), revealing presence of tandem repeats. To identify unit of tandem repeats within the621

flanking sequences, we ran TandemRepeatsFinder against these extracted sequences, resulting622

in four consensus unit sequences of 144 bp based on two contigs from two individuals. To623

confirm that the four consensus sequences represent the same tandem repeat (because the unit624

of identical tandem repeat can have different phases), we ran BLASTn (version 2.10.1, Altschul625

et al., 1990) with each consensus as query against dimers of the consensus. To investigate626

whether the tandem repeat found at the putative breakpoint of chromosome 12 in haplotype627

B is present in chromosome 12 and other chromosomes of the reference and corresponding628

position of haplotype A, we ran BLASTn with the 144 bp consensus of the tandem repeat unit as629

the query against blackcap reference and a contig of an AA individual that spans the breakpoint630

position, and counted how many copies were found in each reference chromosome/scaffold and631

the 10x contig (Sup. Fig. 16).632
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Selection in blackcaps633

To test for selection in different outlier regions and to compare them with the genome-wide634

base line, we computed nucleotide diversity (π) and Tajima’s D in 10 kb sliding windows635

per population using PopGenome (Pfeifer et al., 2014) and VCFtools (Danecek et al., 2011)636

respectively. The effects of the outlier regions on these statistics were tested using a linear637

mixed effects model (nlme::lme (Pinheiro et al., 2021)) and a generalised linear mixed effects638

model with a Gamma distribution (lme4::glmer (Bates et al., 2015)). To test for selection in639

genes dN/dS were computed following the counting method by Nei & Gojobori (1986). Gene640

annotation of the blackcap was obtained from Bascón-Cardozo et al. (2022b).641

Tandem repeats within and outside outlier regions642

To characterise correlation between outlier regions with distinct patterns of genetic variation643

and tandem repeats, we identified tandem repeats in the reference genome and compared the644

distribution of the tandem repeats with genomic regions with distinct patterns of genetic vari-645

ation. First, TandemRepeatsFinder (Benson, 1999) was run on the blackcap reference genome646

with the parameter set recommended on the documentation (trf </path/to/fasta> 2 7 7647

80 10 50 500 -f -d -m -h). The output was formatted and summarised for visualisation648

using custom scripts. Briefly, distribution of tandem repeats with a different unit size along649

the genome was summarised in 100 kb sliding windows in blocks of repeat unit sizes of 10 bp650

step (Sup. Fig. 26). Tandem repeats with the six longest repeat unit size were extracted per651

chromosome, and copy number for each tandem repeat was counted (Sup. Fig. 27).652

Next, we tested whether the number of tandem repeats with long repeat unit were653

enriched in outlier regions at species-wide and population-specific low-recombining regions. We654

extracted tandem repeats with repeat unit size greater than or equal to 150 bp, and counted655

the number of tandem repeats (instead of total copy number) within and outside outlier656

regions. We performed Fisher’s exact tests to test independence between the number of long657

tandem repeats and the mode of recombination suppression (species-wide/population-specific)658

(Sup. Table 7) using fisher.test function in R.659
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Simulation660

Validation of LD-based inference of recombination landscape using non-randomly661

selected sample662

Effects of recombination suppression model on recombination rate inference at663

an inversion664

Three clusters of individuals observed in PCA at five outlier regions indicate presence of665

distinct haplotypes. Polymorphic inversions are known to show this pattern due to suppression666

of recombination between the normal and inverted alleles (Wellenreuther & Bernatchez, 2018).667

To test whether some of the five outlier regions represent polymorphic inversions, we intended668

to infer recombination rates using AA, AB, and BB individuals separately based on linkage669

disequilibrium (LD) patterns. Before addressing this in blackcaps empirically, we assessed670

how different types of recombination suppression at a haplotype block affect inference of671

recombination landscape using a set of individuals with a certain combination of haplotypes.672

To investigate the effect of a genotype-specific suppression of recombination on LD-based673

inference of recombination rate, we simulated different modes of recombination suppression674

using SLiM version 3.5 (Haller & Messer, 2019) under six scenarios listed in Sup. Table 6.675

Specifically, we performed 1,000 replicates of forward-time simulations of two 500 kb-long676

chromosomes with neutral mutation rate of 1×10−7 [per site per generation] and recombination677

rate of 1 × 10−6 [per site per generation] in a population of 1,000 diploid individuals under678

the Wright-Fisher model (We downscaled the population size and upscaled mutation rate to679

minimise the time and computational resource for simulation). We introduced a mutation680

(inversion marker) on one chromosome at 100 kb position at the 50th generation. We modelled681

an inversion by suppressing recombination in an interval from 100 kb to 400 kb position if682

the inversion marker site was heterozygous. We defined additional suppression according683

to different scenarios (models 1-6). To allow for the inversion to remain in the population,684

we applied negative frequency-dependent selection (fitness of inversion is 1 − (pinv − 0.2) for685

models 1-3 and 1 − (pinv − 0.8) for models 4-6 where pinv is the frequency of the inversion686

allele). 1,000 generations after the inversion event, we recorded the mutations in all samples,687

making a VCF file including all individuals. Although 1,000 generations is relatively short688
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given the population size of 1,000, the haplotype structure at the inversion locus was stable in689

test runs of model-1 (inversion frequency of 0.2 without additional recombination suppression).690

Based on the genotype at the marker, we randomly sampled 10 individuals for each inversion691

genotype. Pyrho was run to estimate recombination rates using the sampled 10 individuals,692

with the block penalty 50 and window size 50. The inferred recombination landscape is in693

Sup. Fig. 11.694

Species-wide reduction of recombination rate695

To investigate how species-wide low-recombining regions affect patterns of local genetic variation696

depicted in local PCA, we performed forward simulation with SLiM version 4.0.1 (Haller &697

Messer, 2022). We simulated 100 replicates of two 500 kb-long chromosomes with neutral698

mutation rate of 1 × 10−7 [per site per generation] and recombination rate of 1 × 10−6 [per699

site per generation] except for an interval from 100 to 400 [kb] of the first chromosome700

where recombination rate was set to 1 × 10−9, which is 1/1000 of the normally recombining701

chromosome. First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000702

diploids. After the burn-in, we made three populations of 1,000 diploids (pop1, pop2, and703

pop3) split from the ancestral population. We sampled 50 individuals per population every 20704

generations over 1,000 generations after the population split and recorded SNPs in VCF. For705

each time point of each of 100 simulation replicates, we performed PCA with PLINK, using706

SNPs either within 100 to 400 [kb] of the first chromosome (pop1-specific suppression) or the707

normally recombining chromosome.708

We investigated how reduced recombination rate affects representation of population709

subdivision in local PCA. To evaluate whether the individuals from different populations were710

distributed differently in local PCA at the low-recombining region, we performed Fasano-711

Franceschini test (Fasano & Franceschini, 1987), which is a multi-dimensional extension of712

Kolmogorov-Smirnov test, in three pairs of populations (pop1-pop2, pop1-pop3, pop2-pop3).713

We counted the number of significant pairs of populations (0, 1, 2, or 3) for each time point of714

each replicate. We compared between the low-recombining and normally recombining regions715

the number of pairs of populations with distinct distribution in PCA (Sup. Fig. 24).716
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Population-specific reduction of recombination rate717

To investigate how evolution of low-recombining regions in population(s) affect patterns of718

local genetic variation depicted in local PCA, we performed forward simulation with SLiM719

version 4.0.1. We simulated two 500kb-long chromosomes with neutral mutation rate and720

recombination rate of 1 × 10−7 [per site per generation] and 1 × 10−6 [per site per generation].721

First, we ran a burn-in of 4,000 generations for an ancestral population of 1,000 diploids. After722

the burn-in, we made three populations of 1,000 diploids (pop1, pop2, and pop3) split from the723

ancestral population, after which gene flow between all pairs of populations were set to 0.0025.724

We introduced recombination suppression in pop1 from 100 to 400 [kb] of the first chromosome725

in two scenarios. In the first scenario, recombination suppression was introduced at the same726

time of the split. In the second scenario, recombination suppression was introduced 4,000727

generations after the population split event, allowing the three populations to differentiate728

before population-specific recombination suppression was introduced in pop1. We sampled 50729

individuals per population every 20 generations over 1,000 generations after the introduction of730

the population-specific suppression of recombination and recorded SNPs in VCF. For each time731

point of each of 1,000 simulation replicates, we performed PCA with PLINK, using SNPs either732

within 100 to 400 [kb] of the first chromosome (pop1-specific suppression) or the normally733

recombining chromosome.734

To characterise factors represented in the primary axes of distinct local PCA at population-735

specific low-recombining regions, we performed one replicate of SLiM simulation with the same736

scenarios of models 1 and 2 recording the full ancestry and mutations in tree sequence, with an737

increased duration of burn-in (40,000 generations) to make sure that all lineages at sampling738

time coalesce. We loaded the tree sequence with mutations in tskit (Kelleher et al., 2018)739

and sampled 50 diploids per population, and saved SNPs in VCF. Using the VCF files for740

each time point for each model, we performed PCA using PLINK at the population-specific741

low-recombining region, and determined one time point per model showing typical spread742

of individuals from the low-recombining population in PCA (Sup. Fig. 20A, E). For these743

PCAs we identified 5% SNPs with the highest loadings to the first two PC axes. We analysed744

these mutations on the underlying genealogies using tskit. Specifically, we investigated745
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whether mutations originating from the low-recombining population were enriched in the746

high-loading mutations (Sup. Fig. 20C, G) with a χ2 test. We also assessed whether multiple747

mutations originating in the low-recombining population occurring on the same genealogical748

branches (i.e. mutations on the same ancestral haplotypes) were enriched in the high-loading749

mutations (Sup. Fig. 20D, H). For this, we compared the number of mutations sharing750

the same genealogical branches among the high-loading mutations originating from the low-751

recombining population and the same number of randomly-selected mutations originating from752

the low-recombining population by a Kolmogorov-Smirnov test.753

Effects of linked selection on local PCA754

Background selection755

To investigate the linked effect of purifying selection at low-recombining regions (back-756

ground selection) on patterns of local genetic variation represented in local PCA, we performed757

forward simulation with SLiM version 4.0.1. We simulated a species-wide low-recombining758

region in three populations as described above, except we changed the distribution of fitness759

effect of mutations with three different ratios between neutral (“n”, s = 0) and deleterious760

(“d”, s = −0.05 and h = 0.5) mutations of n/(n + d) = 0, 0.25, 0.5, 0.75. To evaluate whether761

individuals from different populations were distributed differently in the local PCA at the762

low-recombining region, we performed Fasano-Franceschini test between three pairs of popu-763

lations (pop1-pop2, pop1-pop3, pop2-pop3). We counted the number of significant pairs of764

populations (0, 1, 2, or 3) for each sampled time point of each replicate (out of 100) for each765

DFE (Sup. Fig. 24).766

Positive selection767

To investigate the linked effect of positive selection at low-recombining regions on patterns768

of local genetic variation represented in local PCA, we performed forward simulation with SLiM769

version 4.0.1 under four scenarios: population-specific sweep and sweep before populations770

split, with and without reduced local recombination rate. We simulated 10 replicates of one771

500 kb-long chromosome with neutral mutation rate of 1 × 10−7 [per site per generation]772
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and recombination rate of 1 × 10−6 [per site per generation]. In scenarios with reduced773

recombination rate, we introduced a reduced recombination rate within an interval from 100774

to 400 [kb] of the chromosome where recombination rate was set to 1 × 10−9, which is 1/1000775

of the normally recombining regions. For all scenarios, we ran a burn-in of 4,000 generations776

for an ancestral population of 1,000 diploids. In the scenarios with population-specific sweep,777

we made three populations of 1,000 diploids (pop1, pop2, and pop3) split from the ancestral778

population at the 4000-th generation. We introduced a strongly beneficial mutation (s = 1779

and h = 0.5) in the middle of a chromosome of one randomly selected sample of the first780

population at the 100-th generation after the populations split. In the scenarios with sweep781

before split, we introduced a strongly beneficial mutation (s = 1 and h = 0.5) in the middle of782

the chromosome of one randomly selected sample of the ancestral population, and made the783

three populations of 1,000 diploids split at the 100-th generation after the introduction of the784

beneficial mutation. We sampled 100 diploid individuals per population every 20 generations785

since the introduction of the beneficial mutation (scenarios of population-specific sweep) or786

the split (scenarios of ancestral sweep) and recorded the SNPs in VCF format. We performed787

PCA using PLINK.788
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