

1 For the purposes of open access, the author has applied a CC BY public copyright licence to any
2 Author Accepted Manuscript version arising from this submission.

3

4 **A low-input high resolution sequential chromatin
5 immunoprecipitation method captures genome-wide
6 dynamics of bivalent chromatin**

7

8 William Ho¹, Janith A. Seneviratne^{1,2}, Eleanor Glancy^{1,2}, Melanie A. Eckersley-Maslin^{1,2,3,*}

9

10 ¹ Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.

11 ² Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010,

12 ³ Department of Anatomy and Physiology, The University of Melbourne, Victoria, 3010,

13 Australia

14 * corresponding author: melanie.eckersley-maslin@petermac.org

15

16 **Abstract**

17

18 **Background:** Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of
19 active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on
20 opposite tails of the same nucleosome occurs predominantly at promoters where it poises
21 them for future transcriptional upregulation or terminal silencing. We know little of the
22 dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells
23 where it was first described. This is partly due to the technical challenges distinguishing
24 bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic
25 or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only
26 mononucleosomes.

27 **Results:** Here, we present a robust and sensitive method to accurately map genome-wide
28 bivalent chromatin along with all necessary controls from as little as 2 million cells. We
29 optimised and refined the sequential ChIP protocol which uses two sequential overnight
30 immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and

31 contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality
32 genome-wide maps with strong peak enrichment and low background which can be
33 analysed using standard bioinformatic packages. Using this method, we detect twice as
34 many bivalent regions in mouse embryonic stem cells as previously identified, bringing the
35 total number of bivalently marked gene promoters to 8,373. Furthermore, profiling Dppa2/4
36 knockout mouse embryonic stem cells which lose both H3K4me3 and H3K27me3 at
37 approximately 10% of bivalent promoters, demonstrated the ability of our method to
38 capture bivalent chromatin dynamics.

39 **Conclusions:** Our optimised sequential reChIP method enables high-resolution genome-wide
40 assessment of bivalent chromatin together with all required controls in as little as 2 million
41 cells. We share a detailed protocol and guidelines that will enable bivalent chromatin
42 landscapes to be generated in a range of cellular contexts, greatly enhancing our
43 understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.

44

45 **Keywords**

46 Bivalent chromatin; embryonic stem cells; plasticity; bivalency; chromatin
47 immunoprecipitation; epigenetics; H3K4me3; H3K27me3; sequential ChIP; ChIP-reChIP

48 **Background**

49

50 The chromatin landscape of cells not only shapes cellular identity but also enables how cells
51 are able to respond and adapt to a changing environment. Amongst the multitude of
52 different layers of organisation, histone post-translational modifications are tightly
53 associated with the activity and accessibility of the underlying DNA sequence. In particular,
54 tri-methylation of lysine 4 on histone 3 (H3K4me3) is tightly correlated with active
55 promoters, whilst tri-methylation of lysine 27 of histone 3 (H3K27me3) is associated with
56 heterochromatin and gene repression. Remarkably these two seemingly opposing histone
57 modifications can be found on opposite tails of the same nucleosome where it is thought to
58 keep the underlying DNA sequence poised and amenable to future activation or repression
59 (reviewed in (1,2)). In mouse embryonic stem cells, removing bivalent chromatin results in
60 the accumulation of tightly repressive DNA methylation and the inability of the genes to be
61 activated in a timely manner upon differentiation (3–7). Therefore, bivalent chromatin is a
62 classic exemplar of molecular plasticity, by priming genes for the future and facilitating cell
63 adaptation. However, bivalent chromatin has been predominantly studied in the context of
64 mouse embryonic stem cells (ESC) where it was first described (8,9). Consequently, our
65 current understanding of the distribution and dynamics in other cell types and species
66 remains limited. This is partly due to technical challenges associated with accurately
67 detecting this important structure.

68

69 A major challenge in studying bivalent chromatin is that the co-occurrence of active
70 H3K4me3 and inactive H3K27me3 histone modifications needs to be distinguished from
71 instances where the histone modifications occur on different alleles in the cell or in different
72 cells within a mixed population (Figure 1A). Consequently, performing independent
73 chromatin immunoprecipitation (ChIP) or CUT&RUN-related methods separately for
74 H3K4me3 and H3K27me3 and then overlapping peaks *in silico* is not sufficient to be
75 absolutely certain the region is indeed bivalent and not a consequence of allelic or cellular
76 heterogeneity. This becomes even more of a challenge when analysing complex systems
77 such as developing tissues or patient cancer samples. Previous studies in human T cells have
78 suggested that as many as 14% of bivalent regions called using independent ChIPs are false-
79 positives (10). To address this, sequential ChIP or ChIP-reChIP approaches have been

80 developed (10–15), whereby the chromatin purified from a first immunoprecipitation
81 reaction (e.g. H3K4me3) is used as input into a second immunoprecipitation reaction for a
82 different modification (e.g. H3K27me3). Theoretically, only chromatin with both marks of
83 interest are purified in this way. However, these protocols typically require tens of millions of
84 cells as input and so are not always feasible. Studies often perform the reChIP in just one
85 direction (e.g. H3K4me3 followed by H3K27me3 but not *vice-versa*) which has important
86 consequences as the resulting datasets frequently suffer from “signal carry-over” from the
87 first ChIP into the second, leading to many false-positives. Moreover, poor signal-to-noise
88 makes data interpretation and downstream analysis complex. Recently, multi-tagmentation
89 methods have been described to simultaneously map multiple histone modifications in
90 single-cells (16–18), yet these methods required custom reagents such as different barcoded
91 Tn5 complexes or nanobodies, and complex data-analysis pipelines. Therefore, there is a
92 need for sensitive, robust and cost-effective methods to accurately detect bivalent
93 chromatin in low cell numbers that can use existing standardised downstream data-analysis
94 approaches.

95

96 Here, we present a highly-optimised sequential ChIP (reChIP) methodology for accurately
97 detecting bivalent chromatin along with all required controls from just 2 million cells. From
98 one sample, our refined method generates 5 datasets including the 2 reChIP datasets
99 (H3K4me3 is followed by H3K27me3 and *vice versa*) and 3 control datasets (IgG-IgG
100 background reChIP, in-line total H3K4me3 and in-line total H3K27me3). By applying our
101 method in mouse ESCs we detected 7,714 high confidence bivalent chromatin regions which
102 occurred predominantly at CpG-rich promoters. Importantly, in addition to 97% of previously
103 annotated bivalent genes (14), our method revealed an additional 4,780 bivalent gene
104 promoters, more than doubling the catalogue of mouse ESC bivalent genes. Lastly, we
105 validated the sensitivity of our method by profiling ESCs lacking the epigenetic priming
106 factors *Dppa2* and *Dppa4* which are required for maintaining bivalent chromatin at a subset
107 of promoters (3,4). This confirmed the ability of our method to detect dynamic changes in
108 bivalent chromatin. In summary our method provides a much-needed resource for
109 researchers wishing to accurately map bivalent chromatin landscapes from as little as 2
110 million cells.

111

112 **Results**

113

114 ***Development of an optimised ChIP-reChIP protocol to robustly measure bivalent chromatin***

115 A challenge in studying bivalent chromatin is that aligning independently generated single
116 H3K4me3 and H3K27me3 datasets *in silico* is theoretically insufficient to distinguish true
117 bivalency (where both marks are present on the same chromatin fragment) from allelic or
118 cellular heterogeneity (where marks are present on different alleles or in different cells
119 within the population) (Figure 1A). To address this, reChIP (also known as sequential ChIP or
120 ChIP-reChIP) approaches have been used (10–15,19,20) whereby following the first
121 immunoprecipitation the eluted sample is sequentially immunoprecipitated with a different
122 antibody against the second mark of interest. However, many limitations exist with current
123 protocols. Unfortunately, many existing reChIP protocols require large (>10 million cells)
124 amount of starting material per reaction (10,11,14,19,20), often the experiments are
125 performed in just one of the two directions (20). This is a major issue as many false positives
126 can confound the results due to “signal carry-over” whereby enrichment from the first ChIP
127 carries through into the second ChIP. Moreover, variable data quality with low signal to noise
128 has traditionally made downstream bioinformatic analysis of bivalent regions challenging. In
129 order to address these points, we optimised the reChIP protocol to give a high signal to
130 noise ratio with both qPCR and high-throughput sequencing readouts from just 2 million
131 cells (Figure 1B). Critically, we advise the reChIP be carried out in both orientations
132 (H3K4me3 followed by H3K27me3 and *vice versa*). The method was optimised using
133 serum/LIF cultured E14 mouse Embryonic Stem Cells (ESCs) given their well-defined
134 distribution of bivalent chromatin (8,9,14,15). Importantly our method produces high quality
135 data that can be analysed with commonly-used bioinformatic tools. A full detailed protocol
136 accompanies this paper (Supplemental File 1).

137

138 The 3-day workflow is shown in Figure 1B. Briefly, cells are treated with formaldehyde to
139 cross-link chromatin and 2 million cell aliquots stored at -80°C for up to 6 months. Cells are
140 gently lysed and treated with MNase to generate predominantly mononucleosomes and
141 chromatin pre-cleared by incubating with pre-washed dynabeads for 3 hours at 4°C to
142 reduce non-specific binding. During this time, the antibody-dynabead complexes are formed
143 for the IgG control, H3K4me3 and H3K27me3 immunoprecipitations. 5% of the precleared

144 chromatin is set aside as an input control and the remainder split across the three tubes of
145 antibody-dynabead complexes for the first overnight immunoprecipitation at 4°C.

146

147 Following the first immunoprecipitation, the chromatin-antibody-dynabead complexes are
148 thoroughly washed to remove any non-specific binding prior to chromatin elution.

149 Traditionally, reChIP protocols typically use one of two approaches to elute chromatin from
150 beads. DTT- or SDS-based elution buffers function by dissociating the affinity interactions
151 upon which the immunoprecipitation is based but requires additional dilution and/or
152 cleanup steps to ensure compatibility with a second immunoprecipitation reaction (11–
153 14,19,20). An alternative is to use high concentration of modified histone tail peptides to
154 compete with antibody binding sites (10). We compared these two approaches to elute
155 chromatin in single H3K4me3 ChIPs. SDS elution performed well in terms of specificity and
156 signal to noise ratio. While the 3-hour peptide competition gave similar results to SDS, the
157 amount of unspecific background signal increased when incubated overnight (Figure 1C).

158 After considering costs and availability of commercial peptides, we decided to implement
159 SDS elution in our final protocol. To mitigate against the presence of SDS inhibiting
160 subsequent antibody binding events, we diluted the chromatin and performed a buffer
161 exchange using 3 kDa molecular weight filters. From the first immunoprecipitation reaction,
162 10% of the sample representing in-line total H3K4me3 or total H3K27me3 control is set
163 aside. The second immunoprecipitation is then performed overnight using the alternate
164 antibody so that the reChIP is performed in both directions: H3K4me3 followed by
165 H3K27me3 (K4-K27) and H3K27me3 followed by H3K4me3 (K27-K4). As a negative control,
166 IgG followed by IgG (IgG-IgG) is also performed to control for non-specific enrichment during
167 the reChIP assay. Chromatin is then eluted in SDS-elution buffer, formaldehyde crosslinks
168 reversed, RNA and proteins degraded, and enriched DNA fragments purified ready to be
169 processed for qPCR analysis and/or high throughput sequencing.

170

171 ***Identification of 7,714 high confidence bivalent regions in mouse embryonic stem cells***

172 To date bivalent chromatin is best understood in mouse ESCs. Therefore, we used this model
173 to test our refined method. In total 9 datasets were generated from two biological replicates
174 (Figure 1D). These included two in-line H3K4me3 single ChIPs, two in-line H3K27me3 single

175 ChIPs, two each of K4-K27 and K27-K4 reChIPs, and one IgG-IgG replicate, with replicate 2
176 sequenced at a higher depth than replicate 1.

177

178 Initial data inspection of our reChIP datasets revealed strong peak distribution of reads for
179 the K4-K27 and K27-K4 reChIP samples at known bivalent regions with low intervening
180 background signal (Figure 1E). Furthermore, peaks were observed in the in-line total
181 H3K4me3 and total H3K27me3 samples, albeit these signals were noisier. This is not likely
182 due to sequencing coverage, which for replicate 1 was over 45 million aligned reads (Figure
183 1D), but rather due to the lower starting material for library preparation of these samples
184 which only correspond to approximately 60,000 cells. We had sequenced the two biological
185 replicates at different depths ranging from approximately 10 million through to 55 million
186 aligned reads (Figure 1D). From the higher coverage replicate, we performed *in silico*
187 downsampling analysis from which we concluded that 15-20 million reads was a good
188 compromise between number of peaks detected versus sequencing cost, and that
189 sequencing beyond this predominantly split peaks into multiple smaller peaks and/or called
190 non-convincing peaks (data not shown). Supporting this, even with approximately 10 million
191 mapped reads there were clear peaks in the reChIP samples (Figure 1E). To get a measure of
192 the specificity of our assay, we calculated the fraction of reads in called peak regions (FRIP
193 score) which is commonly used in ATAC-seq analysis to determine library quality. Notably, all
194 reChIP samples had very high FRIP scores, while IgG-IgG scores were all less than 0.1 (Figure
195 1F). This indicates a very high and specific enrichment and low background of these reChIP
196 libraries.

197

198 We called peaks separately for K4-K27 and K27-K4 reChIPs (see methods) obtaining 25,540
199 and 36,235 peaks respectively of which 21,857 peaks were shared (Figure 2A). We
200 subsequently classified these peaks based on whether they were shared with total H3K4me3
201 and/or total H3K27me3 datasets. Bivalent peaks were classified into four categories: high-
202 confidence peaks also overlapped peaks in both total H3K4me3 and H3K27me3 datasets; K4-
203 biased and K27-biased overlapped peaks only in total H3K4me3 or H3K27me3 respectively;
204 and low-confidence did not share a peak in either total H3K4me3 nor H3K27me3
205 (Supplemental Figure 1A-E). When we stratify bivalent peaks with these criteria using our in-
206 line total H3K4me3 and H3K27me3 single ChIPs, half of the peaks (n=11,334 of 21,857) were

207 classified as K4-biased with another 2,774 classified as high-confidence (Figure 2B, left).
208 Since the “in-line” total ChIPs represent approximately 60,000 cells, we also stratified the
209 21,857 reChIP peaks using independent total ChIPs from approximately 10 million cells
210 (Figure 2B, right) we previously generated using the same cell line (4). When using
211 independently derived total ChIP-seq datasets, the number of high-confidence bivalent
212 peaks increased three-fold to 7,714. Of note, the majority of these were due to re-
213 classification of peaks categorised as K4-biased using the in-line total ChIPs. This suggests
214 that the low input H3K27me3 single ChIP-seq dataset was masking many high-confidence
215 bivalent peaks. Importantly, almost all of the 2,774 high-confidence bivalent peaks called
216 using the in-line total ChIPs were contained within the 7,714 high-confidence bivalent peaks
217 called using independent total ChIPs, demonstrating the increased sensitivity of our assay
218 and very low false-positive rate. However, many high confidence bivalent regions are missed
219 when using the in-line total ChIPs, likely due to the increased signal-to-noise ratio in these
220 datasets. This is particularly important for the H3K27me3 single ChIP due to it's broader
221 distribution and consequently more dispersed signal which is challenging to capture in low-
222 input protocols. Thus, while using the in-line total H3K4me3 and total H3K27me3 controls is
223 suitable for accurately detecting some high-confidence bivalent regions, use of independent
224 total-ChIP datasets facilitates high-confidence classification of approximately three times as
225 many peaks. Therefore, when possible, we recommend generating independent total
226 H3K4me3 and total H3K27me3 datasets to capture as many high confidence bivalent regions
227 as possible.

228
229 Overlapping peaks *in silico* is often used as a proxy to define bivalent chromatin (Figure 1A).
230 To assess the fidelity of this approach in accurately calling bivalent regions, we overlapped
231 total H3K4me3 and total H3K27me3 peaks (called using the independent 10 million cell
232 dataset) *in silico* to obtain 7,868 overlapping regions. Of these, 7,613 (96.8%) and 7,801
233 (99.1%) regions also overlapped the bivalent K4K27 and K27K4 reChIP peaks respectively,
234 and 7,611 (96.7%) overlapped a peak in both reChIP datasets (Supplemental Figure 1F).
235 While this overlap is very strong, the increased sensitivity of our reChIP assay is evident
236 through the detection of an additional 13,632 peaks in both K4-K27 and K27-K4 directions.
237 This data implies that, at least in mouse embryonic stem cells, using independently derived
238 total ChIP-seq datasets is sufficient to detect bivalent regions with a very low false-positive

239 rate but that its sensitivity is limited. It remains unknown if this holds true in other cell types
240 or complex tissues.

241

242 The 7,714 high confidence bivalent regions classified using independent total H3K4me3 and
243 total H3K27me3 had the highest enrichment in both K4-K27 and K27-K4 reChIP orientations
244 (Figure 2C, D). The reChIP signal at K4-biased, K27-biased and low-confidence bivalent
245 regions was lower (Figure 2C, D). Unlike the broad total H3K27me3 peaks, bivalent reChIP
246 peaks were sharp and narrow (Figure 2E). This demonstrates the specificity of our approach
247 in enriching for chromatin fragments containing both modifications of interest and the
248 absence of carry-over of the broader H3K27me3 signal particularly in the K27-K4 reChIP
249 dataset. Orthogonal unbiased Hidden Markov Model approaches (21) using in-line totals and
250 reChIPs identified chromatin states that matched our peak-centric classifications (Figure 2F).
251 From the 5-state chromatin model we observed that state 3 was enriched for our high
252 confidence bivalent promoters, whilst state 4 and 5 represented a mix of high confidence
253 and K4-biased bivalent regions occurring around and at gene promoters respectively. This
254 analysis confirms the validity of these bivalent peak subclasses (Figure 2F).

255

256 Next, we wanted to determine the distribution of bivalent domains across different genomic
257 elements. The high confidence and K4-biased bivalent regions had the highest levels of
258 reChIP enrichment (Figure 2C, D) and were predominantly located at CpG (59.2% and 55.3%
259 respectively) and non-CpG promoters (20.1% and 25.4% respectively) (Figure 2G), consistent
260 with previous studies (1,2,8). In contrast, K27-biased and low confidence bivalent regions
261 had lower levels of enrichment (Figure 2C, D) and occurred predominantly at gene bodies
262 and intergenic regions (Figure 2G). Sequence analysis revealed that all classes of bivalent
263 regions had a higher GC content (Figure 2H) and CpG frequency (Figure 2I) than a size-
264 matched random set of genomic regions. Motif analysis revealed a strong enrichment for
265 motifs associated with developmental regulation including SOX1, HES5, PAX9 and ZIC5
266 (Figure 2J) in the high confidence and K4-biased but not the K27-biased and low confidence
267 bivalent regions. In summary our method is able to robustly detect thousands of high-
268 confidence bivalent regions in mouse embryonic stem cells occurring predominantly at CpG-
269 promoters enriched for developmental transcription factor binding sites.

270

271 ***Catalogue of 8,373 high-confidence bivalent genes in mouse embryonic stem cells***

272

273 Given the strong overlap between high confidence bivalent regions and gene promoters, we
274 next analysed gene promoters specifically. Using the independent 10 million cell totals for
275 classification revealed 8,373 gene promoters that overlapped a HC-bivalent peak.

276 Importantly this included 3,593 of 3,699 (97%) previously annotated bivalent genes in
277 mouse embryonic stem cells (14) (Figure 3A). Of note, however, is our improved sensitivity in
278 detecting an additional 4,780 high-confidence bivalent gene promoters. Representative
279 H3K4me3-only, high-confidence, K4-biased, K27-biased and low-confidence bivalent
280 promoters are shown in Supplemental Figure 1A-E.

281

282 The high confidence associated bivalent gene promoters had the highest levels of total
283 H3K4me3 and total H3K27me3 (Figure 3B) and bivalent K4-K27 and K27-K4 reChIP
284 enrichment (Figure 3C). The high confidence bivalent genes were expressed at low yet
285 detectable levels in pluripotent mouse embryonic stem cells (Figure 3D). In contrast the K4-
286 biased bivalent genes had higher expression values, consistent with their enrichment for
287 total H3K4me3 but not total H3K27me3, while expression of K27-biased bivalent genes was
288 barely detectable (Figure 3D). The high confidence bivalent genes were enriched in pathways
289 relating to ion channel activity, growth factor binding, cell adhesion, transcriptional
290 regulation and protein kinase activity (Figure 3E) of which many were shared with the K4-
291 biased or K27-biased classes (but not both). In line with current models (1,2,22), high
292 confidence bivalent genes were dynamically expressed upon differentiation resolving to
293 either an active or repressed state (Figure 3F). Therefore, our data supports the current
294 model of bivalent chromatin marking developmental genes in embryonic stem cells for
295 future activation or repression.

296

297 ***Profiling bivalent chromatin dynamics in DPPA2/4 knockout mouse embryonic stem cells***

298

299 Lastly, we confirmed the sensitivity of our method to detect changes in bivalent chromatin
300 by profiling mouse embryonic stem cells deficient for the epigenetic priming factors DPPA2
301 and DPPA4 (4). We and others recently reported that Dppa2/4 are required to maintain
302 bivalent chromatin at a subset of bivalent genes (3,4) (Figure 4A). To test the dynamic

303 sensitivity of our method, we profiled two wild-type (WT) and two Dppa2/4 double
304 knockout (DKO) clones using our refined method. Our reChIP datasets recapitulated previous
305 observations where total H3K4me3 and total H3K27me3 signals were lost at Dppa2/4-
306 dependent bivalent genes yet retained at Dppa2/4-independent genes in the Dppa2/4
307 knockout cells (Figure 4B). Importantly, this was also observed in the both bivalent K4-K27
308 and K27-K4 reChIP directions. This highlights the ability of our improved method to detect
309 dynamics of bivalent chromatin between different samples.

310

311 Given the improved sensitivity of our method we next sought to determine whether there
312 may be more widespread changes in chromatin bivalency in Dppa2/4 knockout ESCs
313 compared to what had been previously reported (3,4). Firstly, we called peaks for the reChIP
314 samples. This revealed 13,813 peaks that were bivalently marked in either wild-type and/or
315 Dppa2/4 DKO cells in both reChIP directions. We then classified the bivalent peaks as above
316 using the in-line total H3K4me3 and total H3K27me3 ChIP datasets. This gave 6,146 high-
317 confidence bivalent peaks (i.e. enriched in both H3K4me3, H3K27me3 and both reChIP
318 orientations) in either WT and/or Dppa2/4 DKO cells. To determine if any peaks were gained
319 or lost specifically in Dppa2/4 DKO cells, we performed differential enrichment test using
320 EdgeR (see methods). There were 2,267 and 1,002 differentially enriched bivalent regions in
321 the K27-K4 and K4-K27 reChIP datasets respectively, of which 837 were shared (Figure 4C).
322 This included promoters previously described as Dppa2/4-dependent (4), but also novel
323 bivalent regions detected using the increased sensitivity of our method. Consistent with
324 previous results (3,4), the majority of these were downregulated or absent in the Dppa2/4
325 DKO cells (Figure 4C).

326

327 Promoter-centric analysis revealed differential enrichment of both bivalent K4-K27 and K27-
328 K4 at 493 gene promoters (Figure 4D) which is approximately 2-fold more than what had
329 previously been reported (4). The newly identified (novel) Dppa2/4 dependent promoters
330 had similar levels of enrichment of total H3K4me3, total H3K27me3 and K4-K27 and K27-K4
331 reChIPs compared to previously known (original) Dppa2/4 dependent promoters (Figure 4D,
332 E). Both original and novel Dppa2/4-dependent bivalent promoters were similarly expressed
333 in undifferentiated ESCs (Figure 4F). Moreover, similar to original Dppa2/4 dependent
334 promoters (4), the novel Dppa2/4 dependent promoters also failed to be upregulated upon

335 embryonic stem cell differentiation (Figure 4G). In summary, this proof-of-principle
336 experiment supports the ability of our method to detect dynamic changes in bivalent
337 chromatin landscapes with high sensitivity and resolution.

338

339 **Discussion**

340

341 Here we present a refined low-input sequential ChIP-reChIP method to robustly and
342 accurately map bivalent chromatin genome-wide. Compared to previously published
343 methods and datasets our approach has several advantages. Firstly, the method requires a
344 substantially reduced input number of cells with just 2 million cells sufficient to generate
345 high quality H3K4me3-H3K27me3 and H3K27me3-H3K4me3 reChIP datasets along with in-
346 line total H3K4me3, total H3K27me3 and IgG-IgG controls. This is a dramatic improvement
347 from the typically 10 million cells or more needed per dataset in other methods (10,14,19)
348 and will facilitate the investigation of these domains in samples where cell numbers are
349 limiting. Next, the data generated has very clear peak enrichments with low background
350 signal enabling standard peak-calling and bioinformatic pipelines to be used to call and
351 classify bivalent regions. While we optimised this method in mouse embryonic stem cells,
352 we envisage its widespread applicability in many different cell lines and tissues.

353

354 A key step in all chromatin immunoprecipitation experiments is generating high quality
355 mononucleosomes. The method presented here uses MNase digestion, however we have
356 successfully performed bivalent reChIP experiments from similar number of cells using
357 sonication to shear chromatin with very similar results (data not shown). Importantly
358 MNase/sonication conditions must be optimised for each cell type to ensure predominantly
359 mononucleosome distribution. Over-digested chromatin may not perform well in
360 immunoprecipitation reactions, while under-digested chromatin will confound downstream
361 analysis as it decreases the genomic resolution that can be analysed. In our protocol we
362 implemented a pre-clearing step and found that this drastically improved the signal-to-noise
363 in our experiments. By pre-incubating chromatin with dynabeads, non-specific binding of
364 chromatin fragments to the beads is reduced, removing background and facilitating lower
365 input amounts. Our protocol uses many wash rounds following the immunoprecipitation
366 reactions. We found these to be critical to achieve low background levels. Lastly, we also

367 tested different elution conditions and found that while both SDS-based and peptide-elution
368 approaches behaved similarly, peptide competition elution had higher background levels at
369 long incubation times. Either method could be used in reChIP protocols, however due to
370 cost and availability we opted for SDS-based elution followed by buffer exchange and
371 chromatin concentration prior to the second immunoprecipitation reaction.

372

373 Controls are an important part of any experimental design. The IgG-IgG reChIP control
374 provides an estimation of the level of background non-specific binding. When possible, we
375 recommend running a diagnostic qPCR for known bivalent regions and controls prior to
376 library preparation and sequencing. If the IgG-IgG reChIP pulldown amounts are high by
377 qPCR analysis this often indicates the reChIP experiment has not performed well. The IgG-
378 IgG can also be used as normalisation for peak calling in addition to or instead of input
379 samples. Perhaps the most critical control is to perform the reChIP experiment in both
380 orientations (H3K4me3 followed by H3K27me3 and *vice versa*). Our analysis revealed several
381 thousand peaks that are detected in one but not the other reChIP dataset, likely due to the
382 first immunoprecipitation signal carrying through non-specifically from the first
383 immunoprecipitation into the second. This is a common caveat in sequential ChIP
384 experiments and extremely hard to completely eliminate. Therefore, to control for this, any
385 reChIP experiment should always be performed in both orientations to be sure that the
386 detected peaks are indeed due to the presence of both marks on the chromatin.

387

388 We also explored other controls that have been used by other studies. One commonly used
389 control is to perform the first immunoprecipitation using H3K4me3 or H3K27me3 and then
390 follow this with a second immunoprecipitation using IgG (19). The rationale behind this is
391 that IgG is non-specific and so there should be no final overall enrichment. However, in our
392 experience, we found that H3K4me3-IgG or H3K27me3-IgG reChIPs mirrored the first
393 immunoprecipitation (data not shown). IgG immunoprecipitation will randomly sample from
394 the pool of chromatin and so if performed as the second immunoprecipitation, this will
395 subsample the already enriched H3K4me3 or H3K27me3 pool of chromatin. Consequently,
396 we have not found this to be a useful control in our experiments or analyses.

397

398 When assessing bivalent chromatin, many studies have performed *in silico* merges of
399 independently derived H3K4me3 and H3K27me3 datasets. Theoretically this is unable to
400 distinguish between *bona-fide* bivalent chromatin from allelic or sample heterogeneity.
401 Previous studies in human T-cells (10) have suggested that as much as 14% of bivalent
402 regions called using this approach are false-positives and not true bivalency. Similarly,
403 previous studies in mouse ESCs revealed 1,661 (24%) of 6,817 *in silico* merge bivalent
404 regions were not captured by sequential reChIP (14). In our data, almost all (97%) bivalent
405 regions called using the *in silico* merge approach were also classified as bivalent in our
406 reChIP data. Thus our method is able to capture all predicted bivalent regions suggesting
407 that in mouse embryonic stem cells either approach is sufficient to analyse bivalent
408 chromatin. However we also reveal thousands of additional K4-biased, K27-biased and low
409 confidence bivalent regions. Whether this is the case in other cell types remains unknown
410 and it remains highly likely that reChIP is still required to profile other cell types with stable
411 heterogeneity or complex samples containing multiple cell types and states.

412
413 In summary we present a detailed highly optimised method to accurately detect bivalent
414 chromatin dynamics from just 2 million cells. Our protocol uses readily available reagents
415 and equipment found in most molecular biology laboratories and can be adapted to profile
416 this unique form of epigenetic plasticity in any cellular context with the confidence that any
417 conclusions are free from potential confounding effects of cellular heterogeneity.

418

419 **Conclusions**

420

421 Our refined sequential reChIP method provides a useful resource for the wider epigenomics
422 and chromatin biology fields. The optimised protocol accurately and robustly detects twice
423 as many bivalent regions in mouse embryonic stem cells as previously identified (14), from
424 as little as 2 million cells. Consistent with current models, the bivalent regions occur
425 predominately at CpG-rich promoters that are dynamically regulated during differentiation.
426 Lastly our analysis of Dppa2/4 knockout cells confirms the ability of our method to detect
427 changes in the bivalent chromatin landscape. This method will facilitate accurate profiling of
428 the dynamics of bivalent chromatin in other contexts, greatly improving our understanding
429 of this unique form of epigenetic plasticity.

430 **Methods**

431

432 *Cell culture*

433 Mouse embryonic stem cells were cultured on feeder-free gelatinised plates at 37°C, 5% CO₂
434 using standard serum/LIF conditions (high-glucose DMEM supplemented with 15% fetal
435 bovine serum, 1x GlutaMax, 1x penicillin, 1x streptomycin, 0.1mM nonessential amino acids,
436 50mM beta-mercaptoethanol and LIF (made in house in HEK293 cells and titrated for
437 optimal ESC growth)). Cells were regularly tested for mycoplasma contamination using the
438 Mycoplasma PCR Detection Kit (abcam ab289834). E14 mouse embryonic stem cells were a
439 gift from W. Reik's laboratory. Wild type and Dppa2/4 double knockout clones were
440 generated in (4,23) and cultured as above. Cells were not authenticated. Cells were cultured
441 at least 2 passages from thawing prior to chromatin collection. Biological replicates were
442 collected from different passages on separate days.

443

444 *Cell collection and fixation*

445 Cells were seeded on multiple plates and grown to near-confluence. At time of harvest one
446 plate was used to determine cell concentration. Cells on remaining plates were washed with
447 PBS and fixed with 1% methanol-free formaldehyde (Thermo Scientific 28908) in DMEM at
448 room temperature for 8 minutes, quenched with 0.125M glycine and scraped off cell culture
449 dishes. Cell slurry was washed with ice-cold PBS, resuspended in PBS/EDTA, aliquoted to
450 2x10⁶ cells per vial, spun down and snap frozen on dry ice for storage at -80°C. Cell pellets
451 were used within 6 months of collection.

452

453 *Sequential chromatin immunoprecipitation*

454 Pellets of 2x10⁶ cells were lysed with 100 l NP buffer (10mM TrisHCl pH7.4, 1M sorbitol,
455 50mM NaCl, 5mM MgCl₂, 0.075% IGEPAL) freshly supplemented with 0.385mM beta-
456 mercaptoethanol (Gibco 21985-023) and 1.8mM spermidine (Sigma 05292) on ice.
457 Chromatin was digested using 2.4 l per sample of MNase (NEB) for 37°C for 15 minutes with
458 gentle shaking at 600rpm. Reactions were stopped with 26.4 l STOP buffer (50mM EDTA,
459 0.5% TritonX-100, 0.5% sodium deoxycholate), incubated on ice for >5 minutes, vortexed
460 and sample diluted to 580 l in ChIP buffer (20mM TrisHCl pH8.0, 2mM EDTA, 150mM NaCl,

461 0.5% Triton X-100) containing protease inhibitor cocktail (cOmplete EDTA-free Protease
462 Inhibitor Cocktail, Roche). Chromatin was precleared by adding 20 μ l prewashed Protein A
463 dynabeads (Invitrogen 10002D) and incubating at 4°C on rotator for >2 hours. 5% of the
464 sample was set aside as input, the remaining chromatin was divided amongst separate tubes
465 containing protein A dynabeads pre-incubated with either 2 μ g anti-H3K4me3 (Millipore 07-
466 473), 10 μ g anti-H3K27me3 (CST 9733) or 1 μ g IgG (Invitrogen) antibodies. First
467 immunoprecipitation was performed overnight at 4°C with rotation. Antibody-chromatin
468 complexes were washed 3x in low salt buffer (20mM TrisHCl pH8.0, 2mM EDTA, 150mM
469 NaCl, 1% Triton X-100, 0.1% SDS), 3x in high-salt buffer (20mM TrisHCl pH8.0, 2mM EDTA,
470 500mM NaCl, 1% Triton X-100, 0.1% SDS), 2x in LiCl buffer (0.35M LiCl, 1% IGEPAL, 1%
471 sodium deoxycholate, 1mM EDTA, 10mM Tris-HCl pH7.5) and 2x in TE on ice. Complexes
472 were eluted in 100 μ l elution buffer (10mM TrisHCl pH8.0, 1mM EDTA, 1% SDS) containing
473 fresh protease inhibitor cocktails for 30 minutes at 37°C with shaking. 10% sample was set
474 aside as total in-line control ChIPs. To dilute SDS volume was increased to 300 μ l with ChIP
475 buffer containing protease inhibitor cocktails and purified using Amicon Ultra-0.5ml 3KDa
476 filter columns (Millipore) according to manufacturers instructions, recovering approximately
477 50 μ g chromatin per IP reaction. The second immunoprecipitation was performed using the
478 alternate antibody or IgG control overnight at 4°C with rotation and chromatin washed and
479 eluted as previously. In-line control, input and ChIP samples were heated at 65°C for 2.5
480 hours to reverse cross-links, treated with RNaseA (NEB) for 30 minutes at 37°C, proteinase K
481 (NEB) for 1 hour at 37°C, and purified using Ampure beads (Beckman Coulter) at a 1:1.8
482 ratio.

483

484 *Peptide elution experiments*

485 Peptide elution experiments were performed by resuspending washed dynabead-antibody-
486 chromatin complexes in 200 μ l peptide elution buffer (50mM Tris-HCl pH8.0, 5mM EDTA,
487 100mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease inhibitors
488 containing 10 μ g/ml H3K4me3 (abcam ab1342) or H3K27me3 peptides (abcam ab1782) on
489 rotator at 4°C for 3 hours or overnight. For the IgG control sample 10 μ g/ml of a 1:1 mix of
490 H3K4me3 and H3K27me3 peptides was used.

491

492

493 *qPCR analysis*

494 qPCR analysis of purified ChIP DNA was performed in technical duplicate for each primer
495 pair using 2x SYBR mastermix (Applied Biosystems Cat#4385612) according to
496 manufacturer's instructions in a 6-10 μ l reaction using the primer sequences as below.

497

498 H3K4me3-only controls

499	Dppa2_forward	GCCAAACACAGACTACGCTA
500	Dppa2_reverse	AACCTACACTATTTGCCAGGAT
501	Dppa4_forward	TTCTCAAGATGGAGACTGCTGG
502	Dppa4_reverse	TGGCTATACTCAAAAAATGAGGGGC

503 H3K27me3 only controls

504	Gm6116_forward	GCGGTGAGTACTCTGCTCAA
505	Gm6116_reverse	CCATCCAGTACTGTGGGCTC
506	K27me_R1_forward	TGCCTGCAATTGTCCTCTT
507	K27me_R1_reverse	ACGAAGCAGCCGTGTAAGAA

508 Bivalent regions

509	Csf1_forward	GAGCACCGAGGCAAACCTTC
510	Csf1_reverse	GAGCCAGGGTGATTCCCAT
511	Lmo1_forward	AAGCGGGCTCTAATTACCCG
512	Lmo1_reverse	CTGCGAAGTGCTTCACTCCT
513	Pou4f1_forward	CAAAGTGAGGCTGCTTGCTG
514	Pou4f1_reverse	GCGGACTTGCAGTGTTT
515	Sox6_forward	CGATACAGAAGCGCAGGCTA
516	Sox6_reverse	AGGGGCCCTGTAGATGGAT

517

518 *library preparation*

519 Sample DNA concentrations were quantified using Qubit and libraries prepared using
520 NEBNext Ultra II DNA library preparation kit (NEB) according to the manufacturer's
521 instructions with the following modifications. To achieve optimal final DNA concentrations,
522 samples were re-quantified on the Qubit 3.0 following PCR amplification and an additional 3
523 cycles (if concentration close to 20ng/ μ l) or 5 cycles (if concentration << 20ng/ μ l) performed

524 if needed to obtain the ideal final library concentration of 20-100ng/ l. A maximum of 20
525 cycles was used for any sample. Note that due to the low amounts of DNA obtained from
526 the protocol, concentration measurements prior to amplification typically occur at the lower
527 limit of detection and even if zero values are obtained, libraries can often still be generated.
528 Libraries were purified using NEBNext sample purification beads and checked using Agilent
529 Tapestation 2200 or 4150 on a high-sensitivity tape (HSD1000) aiming for a final library with
530 dominant peak size of 270bp. Libraries were pooled and sequenced using the Illumina
531 NextSeq500 platform with a target read depth of 20 million SE75bp reads per sample.

532

533 *Data pre-processing*

534 Single-end reads in fastqs were trimmed and filtered for quality (phred33 score > 20) and
535 length (>20bp) using TrimGalore (<https://github.com/FelixKrueger/TrimGalore>) v0.6.6 in
536 single-end mode. Trimmed and quality filtered reads were then aligned to the mm10 mouse
537 genome (GRCm38.p6) using bwa-mem(24) (bwa v0.7.13) with default parameters.
538 Alignments were then converted to the bam format and indexed using samtools v1.9.
539 Duplicate alignments were then marked with using *MarkDuplicates* (picard v2.6.0,
540 <https://broadinstitute.github.io/picard/>) and re-indexed with samtools(25). bigWig files
541 containing CPM/bp normalised coverage values for each sample were derived from
542 duplicate marked bam files using *bamCoverage* (DeepTools v3.5.0 (26)) whilst excluding
543 ENCODE blacklisted genomic regions (27) for the mm10 genome (v2).

544

545 *ChIP and reChIP data analysis*

546 Aligned read (bam) files were imported into SeqMonk software version (v1.48.1)
547 (<http://www.bioinformatics.babraham.ac.uk/projects/seqmonk>) for all downstream analysis
548 using standard parameters (no deduplication, MAPQ>20, primary alignments only),
549 extending reads by 200 bp. In-line total H3K4me3, in-line total H3K27me3, IgG-IgG, bivalent
550 K4K27 and bivalent K27K4 datasets for E14 ESCs, Dppa2/4 WT clones and Dppa2/4 DKO
551 clones were generated in this study. Single-ChIP-seq data from 10 million cells of H3K4me3,
552 H3K27me3 and input controls were obtained from (4) (GSE135841).

553

554 Peak calling for in-line total H3K4me3, total H3K27me3 and K4-K27 and K27-K4 reChIP
555 datasets was performed using the two biological replicates and IgG-IgG as input control

556 using the inbuilt MACS peak caller (p-value<1e-5, fragment size 300). For total H3K4me3 and
557 total H3K27me3 data derived from 10 million cells, input DNA was used in peak calling.
558 Peaks from different datasets were merged together and overlapping peaks or those within
559 200bp were stitched together. Differential enrichment was performed using edgeR (p-value
560 cut-off 0.05 with Benjamini-Hochberg corrections for multiple testing applied). Normalised
561 read densities within peaks were calculated as log₂-transformed read counts in peaks
562 corrected for library size (counts per million reads) and peak length (per bp) yielding
563 CPM/bp. Promoters were defined as the region spanning 1kb upstream and 1kb
564 downstream of the transcription start site of genes. For each peak set, the fraction of reads
565 in peaks (FRiP) were calculated by first counting the reads in each bam at each peak with the
566 csaw R package (v1.28.0) and then dividing the sum of these counts by the total number of
567 reads in the library. Alluvial plots demonstrating the differences in bivalent peak annotations
568 were plotted using the ggalluvial R package (v0.12.5).

569

570 *Gene expression analysis*

571 Gene expression data was obtained from (4) (GSE135841). Data was trimmed with Trim
572 Galore (v0.4.4, default parameters) and mapped using HiSat2 v2.1.0 to the mouse GRCm38
573 genome assembly. RNA-sequencing analysis was performed using SeqMonk software using
574 inbuilt RNA-sequencing quantification pipeline. Expression values represent log₂
575 transformed quantification of merged transcripts counting opposing-strand reads over
576 exons. Gene expression heatmaps are normalised for each transcript independently by
577 subtracting the median value for that transcript across all samples from each sample value.
578 Bean plots represent smoothed density of all points over the bandwidth window
579 corresponding to 5% of the total quantitation range displayed in the plot.

580

581 *Genomic enrichment heatmaps and trackplots*

582 To generate genomic enrichment heatmaps and trackplots bigWigs containing CPM/bp
583 normalised read densities were used. For heatmaps, each peak region was first extended by
584 5kb upstream and downstream and then split into 100 equally sized bins using the
585 GenomicRanges R package (v1.46.1) (28). The average CPM/bp was calculated for each bin
586 for each ChIP using the EnrichedHeatmap R package (v1.24.0) (29). Bins with values
587 surpassing the 99th percentile of all bins within each ChIP were masked (i.e. assigned the

588 99th percentile value) to eliminate extreme outliers from affecting colour scales. Each bin
589 was then scaled relative to the highest value (so values range between 0-1 and represent the
590 relative enrichment of signal across all regions). Enriched heatmaps were then plotted using
591 the same package, with the average bin value plotted as continuous curves atop each
592 heatmap. Genomic track plots were plotted using the rtracklayer (v1.54.0) (30) and Gviz R
593 packages (v1.38.4) (31). CpG island annotations for the mm10 genome were retrieved from
594 the UCSC genome browser (32).

595

596 *Gene ontology*

597 The enrichment of gene ontologies across subclasses of genes with bivalent promoters (HC,
598 K4,K27,LC) were determined using the clusterProfiler R package (v4.2.2) (33). Gene symbols
599 were first converted to entrez id's using the biomaRt R package (v2.50.3) (34) and were input
600 alongside a background list of all expressed genes to clusterProfiler using the
601 *compareCluster* function against the Gene Ontology (GO) database (35). Significantly
602 enriched GO terms were those with a Benjamini-Hochberg (BH) corrected p-value < 0.05,
603 had atleast 10 genes present in the pathway and a gene ratio (genes in subclass/genes in
604 pathway) > 0.01. Representative pathways were plotted using the ggplot2 R package (v3.3.5)
605 (36).

606

607 *Motif analysis*

608 Enrichments for transcription actor binding motifs in peak subclasses were calculated using
609 the monaLisa R package (v1.0.0). Position weight matrices for transcription factor binding
610 sites in vertebrates were retrieved from the JASPAR2020 database (37). Binned motif
611 enrichment for peak subclasses (HC, K4, K27, LC) were then conducted in monaLisa (38)
612 while including randomised sequences modelled off all bivalent peaks (made with the
613 regioneR R package (v1.26.1) (39)) as the background. Significant enrichments were those
614 with a BH-adjusted p-value < 0.05 and log2-fold enrichment over random sequences > 1.
615 Motif heatmaps were also plotted using monaLisa.

616

617 *CG- content*

618 CG content was determined for peak subclasses (HC, K4, K27, LC) as well as the same
619 random control sequences above using the Biostrings R package (v2.62.0) (40) by first

620 calculating all oligonucleotide frequencies and then by summing C and G frequencies. All
621 dinucleotide frequencies were calculated using monaLisa with the *plotBinDiagnostics*
622 function and then GC/CG dinucleotide frequencies were summed. These data were plotted
623 using ggplot2, and the significance of comparisons were determined using pairwise t-tests
624 followed by BH-adjustments of p-values to account for multiple comparisons.

625

626 *Chromatin state discovery*

627 bam files were first converted to the bed format using bedtools (*bamtobed*) (v2.27.1) (41).
628 bed files were then partitioned into 200bp bins and then binarized for the determination of
629 bin-specific enrichments (providing replicate in-line ChIPs or reChIPs and using IgG IgG as the
630 control) using ChromHMM (*BinarizeBed*) (v1.24) (42). Hidden Markov Models were then
631 used to discover chromatin states across these genomic bins using ChromHMM
632 (*LearnModel*) using a 5-state model. Segment bed files containing chromatin state
633 annotations were then overlapped with our bivalent peak annotations (HC, K4, K27, LC),
634 where each peak was then re-assigned to the chromatin state with the highest degree of
635 overlap using the GenomicRanges R package (*findOverlaps* and *pintersect*) (v1.46.1) (28).
636 Heatmaps containing emission probabilities, transition probabilities, TSS enrichments and
637 annotation overlaps from the ChromHMM model were then plotted using the
638 ComplexHeatmap R package (v2.10.0) (43).

639

640 *Software*

641 Plots were generated using SeqMonk software (v1.48.1) or R (v4.1.2/RStudio
642 v2022.02.0+443), and edited in Inkscape. Schematic figures were made with BioRender.com
643 with publishing licence agreement numbers *RM25UDOLG3*, *UQ25UDOE0U* and
644 *MC25UDOPHO*.

645

646 **Figure 1: Development of an optimised ChIP-reChIP protocol to robustly measure bivalent
647 chromatin**

648 (A) Potential limitations in using independent total H3K4me3 (green, circles) and total
649 H3K27me3 (red, triangles) datasets in distinguishing bone-fide bivalent chromatin, where
650 the two marks occur on the same nucleosome, from allelic and cellular heterogeneity. (B)
651 overview of sequential ChIPreChIP protocol. (C) Single H3K4me3 (green) and IgG control

652 (grey) ChIP-qPCR analysis comparing SDS-based elution (light) from peptide elution (dark).
653 Two H3K4me3-only (Dppa2, Dppa4), two H3K27me3-only (Gm6116, K27me_R1) and four
654 bivalently marked loci (Csf1, Lmo1, Pou4f1, Sox6) were analysed. Enrichment values
655 normalised to input are shown. (D) Summary table of samples sequenced in E14 mouse
656 embryonic stem cells indicating replicate, ChIP type and total aligned reads (E) Genome
657 browser view of reChIP datasets including IgG-IgG reChIP control (grey), in-line total
658 H3K4me3 (green, row 2 and 3), in-line total H3K27me3 (red, row 4 and 5) and bivalent
659 reChIP for H3K4me3 followed by H3K27me3 (K4-K27, purple, row 6 and 7) or vice-versa
660 (K27-K4, blue, row 8 and 9). Two biological duplicates (R1 and R1) are shown for all but IgG-
661 IgG libraries. CpG islands are denoted by orange bars. (F) FRiP scores showing proportion of
662 reads within peaks for each individual sample. IgG-IgG (grey) is shown to get background
663 levels.

664

665 **Figure 2: Identification of 7,714 high confidence bivalent regions in mouse embryonic stem
666 cells**

667 (A) Overlap between K27-K4 (blue) and K4-K27 (purple) reChIP datasets. (B) Alluvial plot
668 showing classification of 21,857 peaks that overlap in both K27-K4 and K4-K27 reChIP
669 datasets using in-line total H3K4me3 and H3K27me3 ChIPs from approximately 60,000 cells
670 (left) or separate total H3K4me3 and H3K27me3 single ChIPs from approximately 1 million
671 cells (right) from GSE135841 (4). Peaks were classified as high confidence (overlap peak in
672 both total H3K4me3 and total H3K27me3, blue), K4-biased (overlap peak in only total
673 H3K4me3, green), K27-biased (overlap peak in only H3K27me3, orange) or low confidence
674 (does not overlap peak in either H3K4me3 or H3K27me3, brown). (C) Scatter plot showing
675 log₂CPM/bp values for bivalent K4-K27 (x-axis) and bivalent K27-K4 (y-axis) datasets for all
676 bivalent peaks highlighting high confidence (blue), K4-biased (green), K27-biased (orange)
677 and low confidence (brown) peaks. (D) Box-whisker plots showing log₂CPM/bp values for
678 high confidence (top left), K4-biased (top right), K27-biased (bottom left) and low confidence
679 (bottom right) peaks in independent total H3K4me3 and total H3K27me3 datasets from
680 GSE135841 (4) (denoted by * and shaded grey background) or the in-line total and reChIP
681 datasets generated in this study. (E) Enrichment heatmaps showing CPM/bp normalised read
682 densities for high confidence (top row), K4-biased (second row), K27-biased (third row) and
683 low confidence (bottom row) peaks after scaling for all datasets analysed. Peaks were

684 extended by 5kb upstream and downstream. Values surpassing the 99th percentile have
685 been masked for visualisation. 10⁷ samples refers to independent total H3K4me3 and total
686 H3K27me3 datasets from GSE135841 (4) (F) 5-state chromHMM models using pooled
687 replicates for in-line total H3K4me3, in-line total H3K27me3 and K4-K27 and K27-K4 reChIP
688 datasets showing emission (left) and transmission (second from left) parameters,
689 enrichment across TSS +/- 2kb and overlap with high confidence (blue), K4-biased (green),
690 K27-biased (orange) and low-confidence (brown) bivalent regions (right). (G) Genomic
691 features associated with the four classes of bivalent regions. (H, I) Violin plots showing GC
692 fraction (H) and GC-CG dinucleotide frequency (I) within regions compared to random subset
693 of genomic regions with same number as high confidence regions. All comparisons are
694 statistically significant after multiple testing (Benjamini-Hochberg correction). (J) Motif
695 enrichment for the four classes of bivalent peaks compared to random genomic sequences.
696 Those with log₂enrichment over random sequences >1 are shown, along with their
697 enrichment scores and -log₁₀Adjusted P-value.
698

699 **Figure 3: Catalogue of 8,383 bivalent genes in mouse embryonic stem cells**

700 (A) Overlap of promoters classified as high-confidence bivalent in this study using in-line 60K
701 total H3K4me3 and total H3K27me3 (aqua), independent 10 million cell total H3K4me3 and
702 total H3K27me3 (GSE135841) (4) (blue) or previously published bivalent gene set (Mas et al.
703 2018) (14). Full list of bivalent promoter classifications are available in Supplemental Table 3.
704 (B,C) scatterplot showing log₂enrichment (CPM/bp) of (B) in-line total H3K4me3 (x-axis) and
705 in-line total H3K27me3 (y-axis) or (C) bivalent K4-K27 (x-axis) and K27-K4 (y-axis) reChIP
706 datasets for all promoters highlighting those that overlap different classes of bivalent peaks
707 defined using 10 million cell total H3K4me3 and total H3K27me3. (D) log₂ gene expression
708 levels in mouse embryonic stem cells for four different classes of bivalent genes and
709 previously annotated bivalent genes (14). Expression of the bottom 20% and top 20% are
710 shown as a comparison. Gene expression data reanalysed from GSE135841. (E) Gene
711 Ontology analysis showing overlap of enriched terms in the four classes of bivalent genes
712 (top) and gene ratios and adjusted P-value of selected terms (bottom). The full list of
713 enriched terms is available in Supplemental Table 4. (F) log₂ fold change in gene expression
714 levels for high confidence bivalent genes across 9 days of embryoid body differentiation.

715 Each gene has been normalised separately across the time series. Gene expression data
716 reanalysed from (GSE135841).

717 **Figure 4: Profiling bivalent chromatin dynamics in DPPA2/4 knockout mouse embryonic**
718 **stem cells**

719 (A) Schematic depicting how Dppa2/4 maintain both H3K4me3 and H3K27me3 at a subset of
720 bivalent genes, priming them for future activation. Loss of Dppa2/4 leads results in loss of
721 both H3K4me3 and H3K27me3 and gain of repressive DNA methylation. (B) Genome
722 browser view of wild type (WT, dark) and Dppa2/4 double knockout (DKO, light) embryonic
723 stem cell clones. Two clones of each genotype are shown. In-line total H3K4me3 (green),
724 total H3K27me3 (red) and bivalent K4-K27 (purple) and K27-K4 (blue) reChIP data tracks are
725 shown. Dppa2/4 dependent promoters (loose bivalency when Dppa2/4 absent) are denoted
726 by orange bars. (C) Scatterplots showing enrichment (\log_2 CPM/bp) for K4-K27 (top) and
727 K27-K4 (bottom) reChIPs between wild type (x-axis) and Dppa2/4 double knockout (DKO) (y-
728 axis) across all gene promoters. Highlighted are those differentially enriched in the K4-K27
729 (purple), K27-K4 (blue) or both (orange) reChIP datasets. (D) box plot showing normalised
730 enrichment (CPM/bp) of previously annotated Dppa2/4-dependent genes (light orange) and
731 novel Dppa2/4-dependent genes (dark orange) across the different datasets and clones. As a
732 comparison a subset of Dppa2/4-independent genes (high-confidence bivalent promoters
733 that do not change) are shown (blue). (E) Enrichment heatmaps showing normalised
734 enrichment of previously annotated Dppa2/4-dependent genes (top, light orange) and novel
735 Dppa2/4-dependent genes (middle, dark orange) across the different datasets averaging
736 across clones. As a comparison a subset of Dppa2/4-independent genes (bivalent promoters
737 that do not change) are shown (bottom, blue). (F) \log_2 RPM expression levels of original
738 (light orange), novel (dark orange) Dppa2/4 dependent genes and high confidence but not
739 differentially enriched (blue) genes across the different datasets between wild type (WT) and
740 Dppa2/4 double knockout (DKO) cells. As a comparison the bottom 20% (light grey) and top
741 20% (dark grey) expressed genes are shown. (G) \log_2 normalised expression levels of novel
742 Dppa2/4 dependent genes during 9 days of mouse embryoid body differentiation in wild
743 type cells (left) and Dppa2/4 double knockout cells (right). Each gene has been normalised
744 separately across the time series to aid visualisation of expression patterns.

745 **Supplemental Figures and Tables**

746

747 **Supplemental Figure 1, related to Figure 1 and 2:**

748 (A-E) Genome browser views of high-confidence (A), K4-biased (B), K27-biased (C), low
749 confidence (D) and H3K4me3-only (E) genes showing H3K4me3 (green), total H3K27me3
750 (red) and K4-K27 (purple) and K27-K4 (blue) reChIP datasets. Height of peak represents
751 CPM/bp. E-M represents data from independent 10 million cell total H3K4me3 and total
752 H3K27me3 (GSE135841) (4). R1 and R2 are two independent biological replicates from this
753 study. (F) Venn overlap between peaks classified using in silico merge of independent 10
754 million cell total H3K4me3 and total H3K27me3 (GSE135841) (4) (red) versus peaks called
755 with K4-K27 (purple) and K27-K4 (blue) reChIPs (this study). Note numbers are slightly
756 different to those in Figure 3A as the total number of peaks was summed across bivalent
757 reChIP and total ChIP datasets (as opposed to just bivalent reChIP in Figure 3A).

758

759 **Supplemental Table 1:** list of peaks for total H3K4me3, total H3K27me3, bivalent K4-K27 and
760 K27-K4 reChIP datasets, as well as classification of bivalent peaks as high-confidence, K4-
761 biased, K27-biased or low confidence.

762

763 **Supplemental Table 2:** motif analysis of bivalent peaks using monaLisa along with associated
764 statistics.

765

766 **Supplemental Table 3:** list of bivalent genes classified as high confidence, K4-biased, K27-
767 biased and low confidence along with log2 CPM/bp enrichment scores for IgG-IgG, in-line
768 total H3K4me3 and H3K27me3 ChIP and K4-K27 and K27-K4 bivalent reChIP datasets.

769

770 **Supplemental Table 4:** Gene ontology enrichment of different bivalent gene classifications
771 (first column) together with associated statistics and list of associated genes.

772

773 **Supplemental Table 5:** list of peaks for bivalent K4-K27 and K27-K4 reChIP in Dppa2/4 WT
774 and DKO clones and classification of high confidence, K4-biased, K27-biased and low
775 confidence bivalent peaks along with log₂enrichment values (CPM/bp) for each individual
776 sample

777

778 **Supplemental Table 6:** list of Dppa2/4-dependent promoters along with log₂enrichment
779 values (CPM/bp) for each individual sample

780 **Declarations**

781

782 *Ethics approval and consent to participate*

783 Not applicable

784

785 *Consent for publication*

786 Not applicable

787

788 *Availability of data and materials*

789 The datasets generated during the current study have been deposited in the short read
790 archives (SRA) and gene expression omnibus (GEO) under the accession GSE242686. Gene
791 expression data and previous ChIP-seq data was obtained from (4) (GSE135841).

792

793 *Competing interests*

794 The authors declare that they have no competing interests

795

796 *Funding*

797 Research in the Eckersley-Maslin laboratory is funded by a Snow Medical Fellowship
798 awarded to M.A.E.-M. and the Lorenzo and Pamela Galli Medical Research Trust. M.A.E.-M.
799 also received support from The National Stem Cell Foundation of Australia Metcalf Prize.

800

801 *Authors' contributions*

802 M.A.E.-M. conceived, designed and supervised the study, performed experiments, analysed
803 data and wrote the paper. W.H. optimised and performed reChIP experiments and generated
804 libraries. J.S. processed data and performed data analysis. E.G. independently verified the
805 reChIP method and wrote the detailed protocol.

806

807 *Acknowledgements*

808 We would like to thank all past and present members of the Eckersley-Maslin laboratory for
809 their feedback throughout the project. Mouse E14 embryonic stem cells were kindly
810 provided by Wolf Reik's laboratory. We thank Billy Hamilton for assistance with synthesising
811 LIF in house. We thank Gisela Mir Anau, Tim Semple and Stuart Craig from the PeterMac
812 Molecular Genomics Core facility for advice in library preparation of low input samples and
813 high-throughput sequencing runs. Our laboratory is located on the lands of the Wurundjeri
814 people of the Kulin Nation and we pay our respects to their elders, past present and
815 emerging, and recognise their continuing connection to country and community.

816

817 **References**

- 818 1. Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and
819 transmission of bivalent chromatin during mammalian development. *Nat Rev Mol Cell Bio.*
820 2022;1–21.
- 821 2. Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. *Gene Dev.*
822 2013;27(12):1318–38.
- 823 3. Gretarsson KH, Hackett JA. Dppa2 and Dppa4 counteract de novo methylation to establish
824 a permissive epigenome for development. *Nat Struct Mol Biol.* 2020;27(8):706–16.
- 825 4. Eckersley-Maslin MA, Parry A, Blotenburg M, Krueger C, Ito Y, Franklin VNR, et al.
826 Epigenetic priming by Dppa2 and 4 in pluripotency facilitates multi-lineage commitment.
827 *Nat Struct Mol Biol.* 2020;27(8):696–705.
- 828 5. Zhang J, Zhang Y, You Q, Huang C, Zhang T, Wang M, et al. Highly enriched BEND3
829 prevents the premature activation of bivalent genes during differentiation. *Sci (N York, NY).*
830 2022;375(6584):1053–8.
- 831 6. Yakhou L, Azogui A, Gupta N, Albert JR, Miura F, Ferry L, et al. A genetic screen identifies
832 BEND3 as a regulator of bivalent gene expression and global DNA methylation. *Nucleic acids
833 Res.* 2023;
- 834 7. Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, et al. QSER1 protects DNA
835 methylation valleys from de novo methylation. *Science.* 2021;372(6538):eabd0875.
- 836 8. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin
837 structure marks key developmental genes in embryonic stem cells. *Cell.* 2006;125(2):315–
838 26.
- 839 9. Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, et al. Chromatin
840 signatures of pluripotent cell lines. *Nat Cell Biol.* 2006;8(5):532–8.

841 10. Kinkley S, Helmuth J, Polansky JK, Dunkel I, Gasparoni G, Frohler S, et al. reChIP-seq
842 reveals widespread bivalency of H3K4me3 and H3K27me3 in CD4(+) memory T cells. *Nat*
843 *Commun.* 2016;7(1):12514.

844 11. Beischlag TV, Prefontaine GG, Hankinson O. ChIP-re-ChIP: Co-occupancy Analysis by
845 Sequential Chromatin Immunoprecipitation. *Methods Mol Biology.* 2018;1689:103–12.

846 12. Desvoyes B, Sequeira-Mendes J, Vergara Z, Madeira S, Gutierrez C. Sequential ChIP
847 Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP). *Methods Mol Biology*
848 2018;1675:83–97.

849 13. Furlan-Magaril M, Rincon-Arano H, Recillas-Targa F. Sequential chromatin
850 immunoprecipitation protocol: ChIP-reChIP. *Methods Mol Biology.* 2009;543:253–66.

851 14. Mas G, Blanco E, Ballare C, Sanso M, Spill YG, Hu D, et al. Promoter bivalency favors an
852 open chromatin architecture in embryonic stem cells. *Nat Genet.* 2018;50(10):1452–62.

853 15. Weiner A, Lara-Astiaso D, Krupalnik V, Gafni O, David E, Winter DR, et al. Co-ChIP
854 enables genome-wide mapping of histone mark co-occurrence at single-molecule
855 resolution. *Nat Biotechnol.* 2016;34(9):953–61.

856 16. Gopalan S, Wang Y, Harper NW, Garber M, Fazzio TG. Simultaneous profiling of multiple
857 chromatin proteins in the same cells. *Mol Cell.* 2021;81(22):4736–4746.e5.

858 17. Bartosovic M, Castelo-Branco G. Multimodal chromatin profiling using nanobody-based
859 single-cell CUT&Tag. *Nat Biotechnol.* 2023;41(6):794–805.

860 18. Janssens DH, Otto DJ, Meers MP, Setty M, Ahmad K, Henikoff S. CUT&Tag2for1: a
861 modified method for simultaneous profiling of the accessible and silenced regulome in
862 single cells. *Genome Biol.* 2022;23(1):81.

863 19. Marsolier J, Prompsy P, Durand A, Lyne AM, Landragin C, Trouchet A, et al. H3K27me3
864 conditions chemotolerance in triple-negative breast cancer. *Nat Genet.* 2022;54(4):459–68.

865 20. Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, Chan KL, et al. Targeting
866 Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent
867 genes. *Nat Cell Biol.* 2023;25(2):258–72.

868 21. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and
869 characterization. *Nat Methods.* 2012;9(3):215–6.

870 22. Blanco E, Gonzalez-Ramirez M, Alcaine-Colet A, Aranda S, Croce LD. The Bivalent
871 Genome: Characterization, Structure, and Regulation. *Trends Genet.* 2020;36(2):118–31.

872 23. Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M, Kreibich E, Krueger C, Reik W.
873 Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program. *Gene*
874 *Dev.* 2019;33(3–4):194–208.

875 24. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
876 arXiv. 2013;

877 25. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
878 SAMtools and BCFtools. *GigaScience*. 2021;10(2):giab008.

879 26. Ramírez F, Dündar F, Diehl S, Grüning BA, Manke T. deepTools: a flexible platform for
880 exploring deep-sequencing data. *Nucleic acids Res.* 2014;42(Web Server issue):W187-91.

881 27. Amemiya HM, Kundaje A, Boyle AP. The ENCODE Blacklist: Identification of Problematic
882 Regions of the Genome. *Sci Rep.* 2019;9(1):9354.

883 28. Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for
884 Computing and Annotating Genomic Ranges. *PLoS Comput Biol.* 2013;9(8):e1003118.

885 29. Gu Z, Eils R, Schlesner M, Ishaque N. EnrichedHeatmap: an R/Bioconductor package for
886 comprehensive visualization of genomic signal associations. *BMC Genom.* 2018;19(1):234.

887 30. Lawrence M, Gentleman R, Carey V. rtracklayer: an R package for interfacing with
888 genome browsers. *Bioinformatics*. 2009;25(14):1841–2.

889 31. Hahne F, Ivanek R. Visualizing Genomic Data Using Gviz and Bioconductor. *Methods Mol
890 Biol* (Clifton, NJ). 2016;1418:335–51.

891 32. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human
892 Genome Browser at UCSC. *Genome Res.* 2002;12(6):996–1006.

893 33. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment
894 tool for interpreting omics data. *Innov.* 2021;2(3):100141.

895 34. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, et al. BioMart –
896 biological queries made easy. *BMC Genom.* 2009;10(1):22–22.

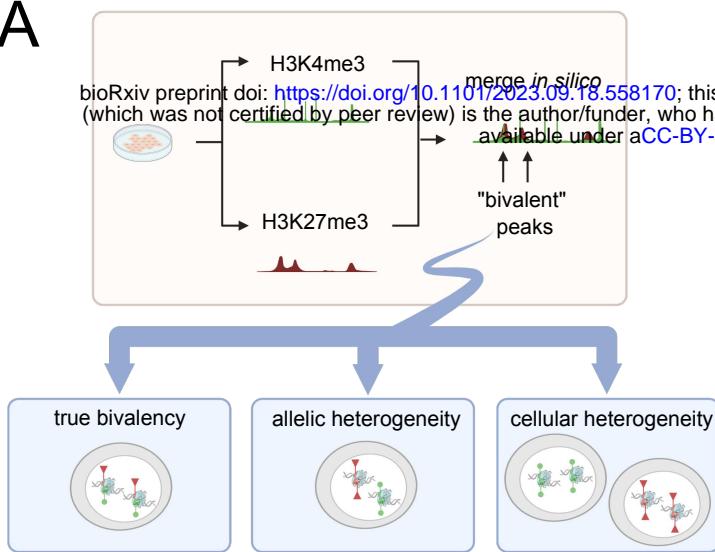
897 35. Carbon S, Douglass E, Dunn N, Good B, Harris NL, Lewis SE, et al. The Gene Ontology
898 Resource: 20 years and still GOing strong. *Nucleic Acids Res.* 2019;47(Database issue):D330–
899 8.

900 36. Wickham H. *ggplot2, Elegant Graphics for Data Analysis*. 2016;109–45.

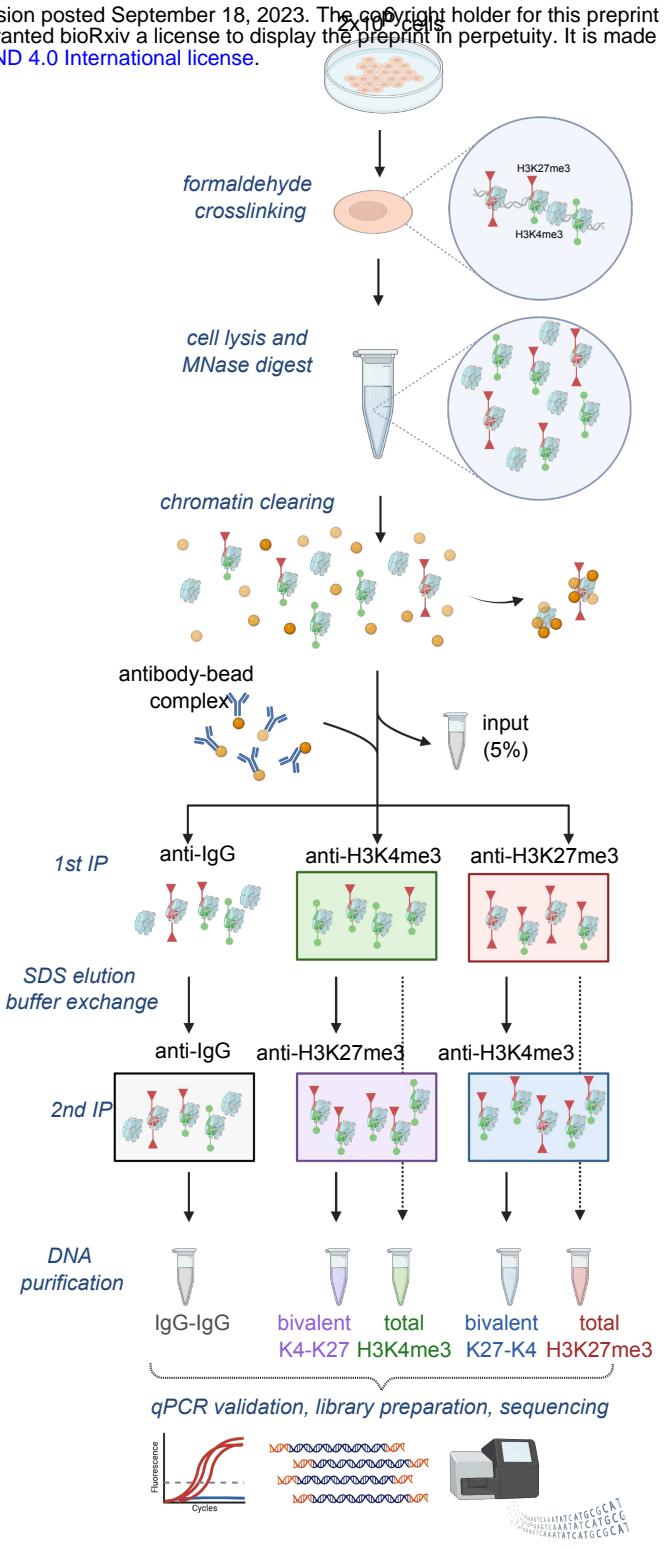
901 37. Fornes O, Castro-Mondragon JA, Khan A, Lee R van der, Zhang X, Richmond PA, et al.
902 JASPAR 2020: update of the open-access database of transcription factor binding profiles.
903 *Nucleic Acids Res.* 2020;48(D1):D87–92.

904 38. Machlab D, Burger L, Soneson C, Rijli FM, Schübeler D, Stadler MB. monaLisa: an
905 R/Bioconductor package for identifying regulatory motifs. *Bioinformatics*. 2022;38(9):2624–
906 5.

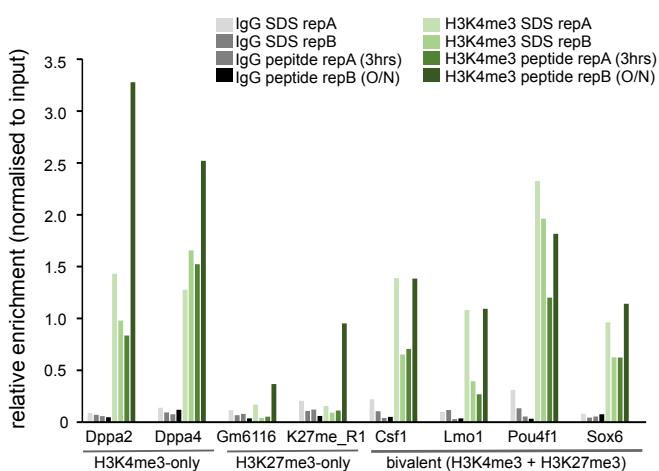
907 39. Gel B, Díez-Villanueva A, Serra E, Buschbeck M, Peinado MA, Malinvern R. *regioneR*: an
908 R/Bioconductor package for the association analysis of genomic regions based on
909 permutation tests. *Bioinformatics*. 2016;32(2):289–91.


910 40. H P, P A, R G, S D. Efficient manipulation of biological strings. R package version 2.68.1;
911 2023.

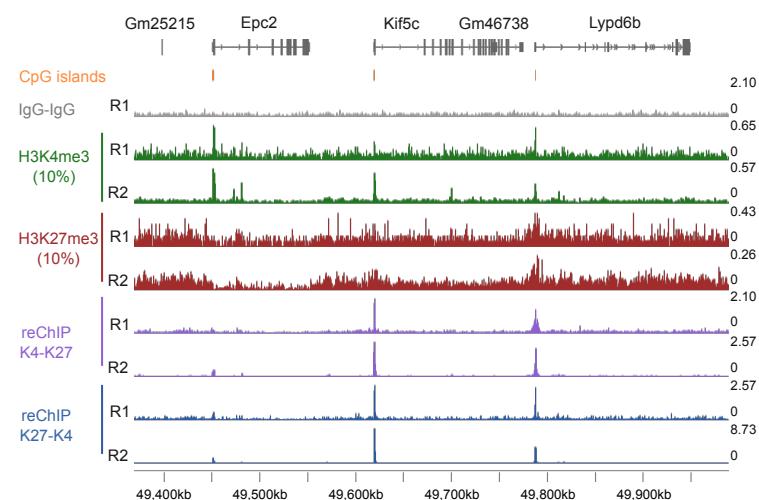
912 41. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
913 features. *Bioinformatics*. 2010;26(6):841–2.

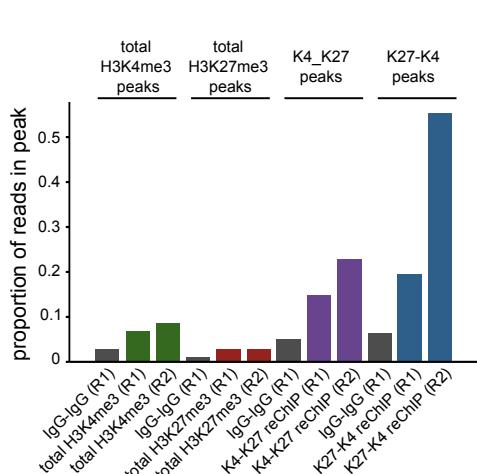

914 42. Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM.
915 *Nat Protoc.* 2017;12(12):2478–92.

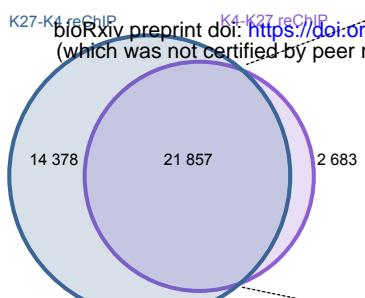
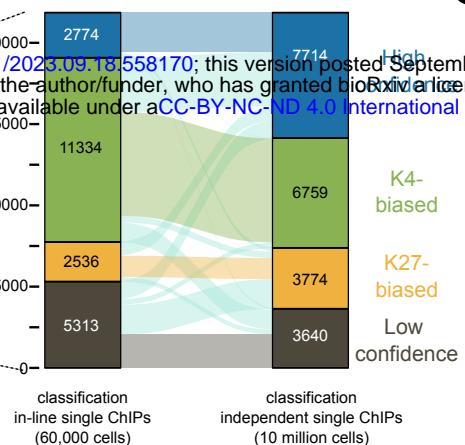
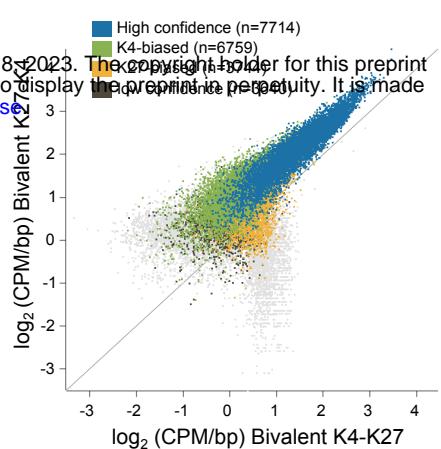
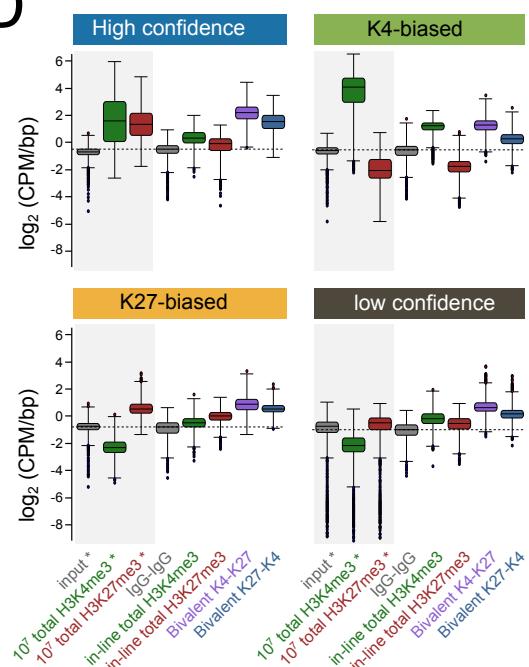
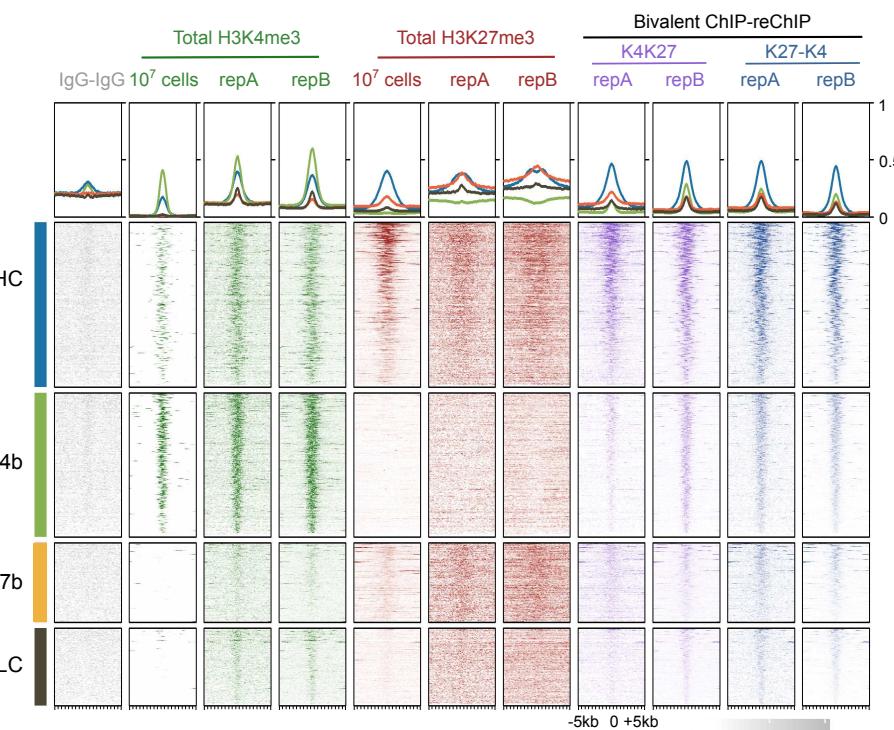
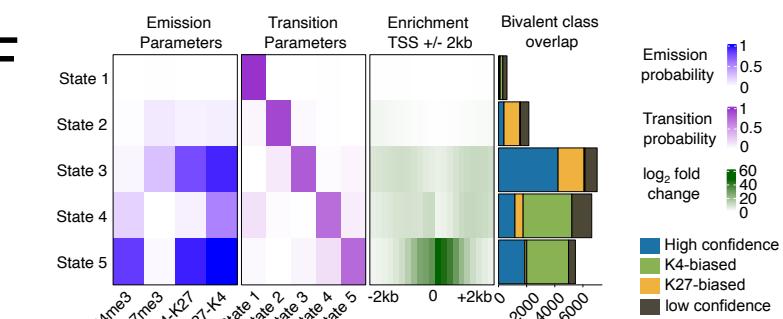
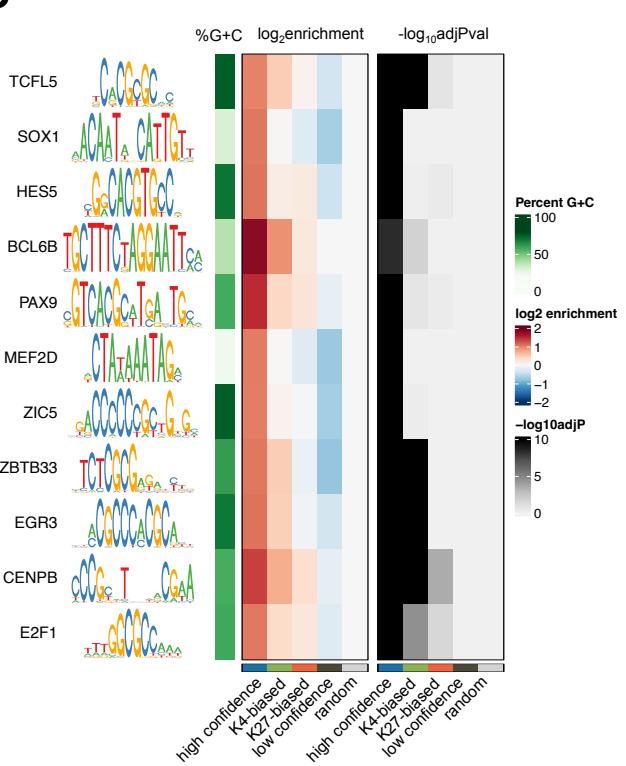
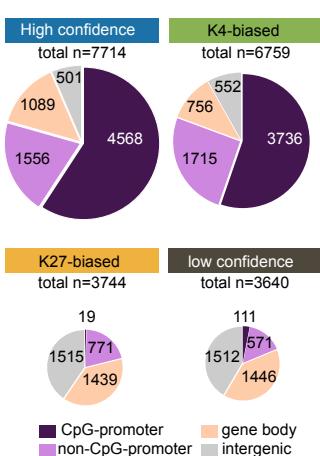
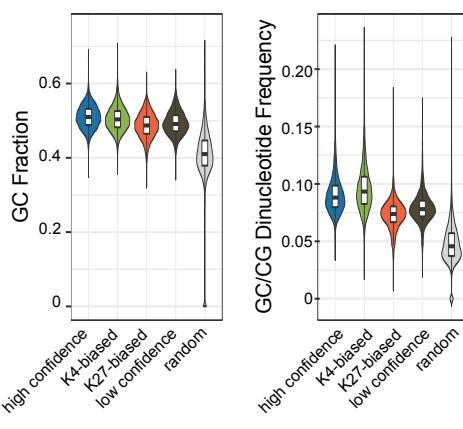
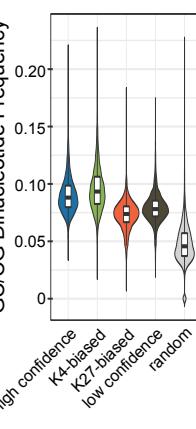
916 43. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
917 multidimensional genomic data. *Bioinformatics*. 2016;32(18):2847–9.

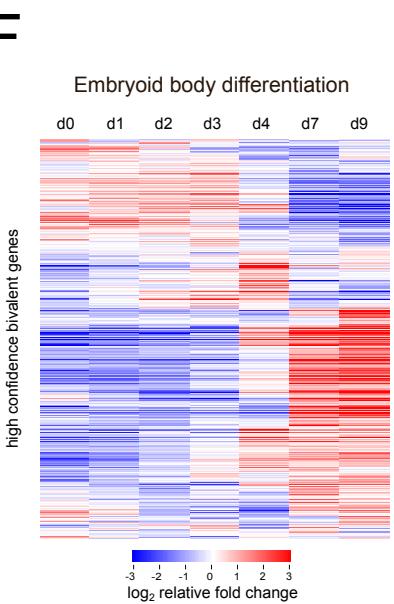
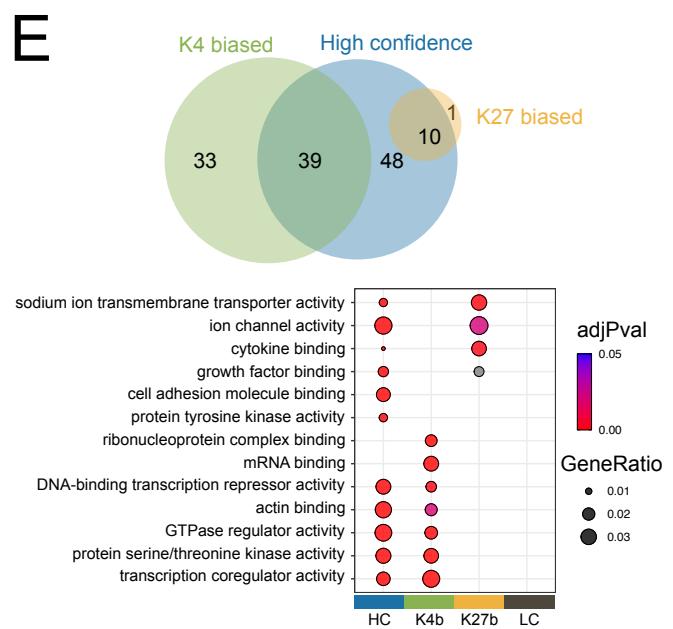
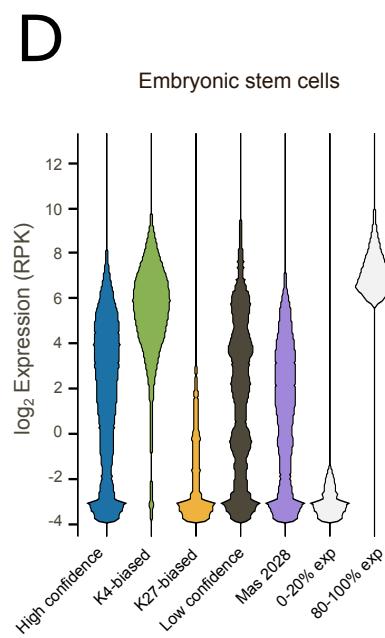
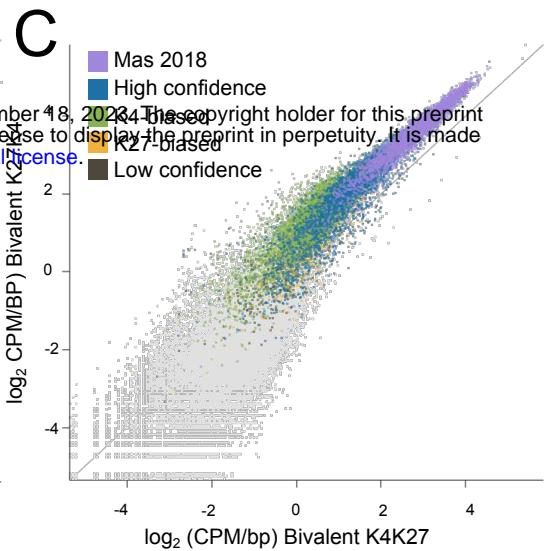
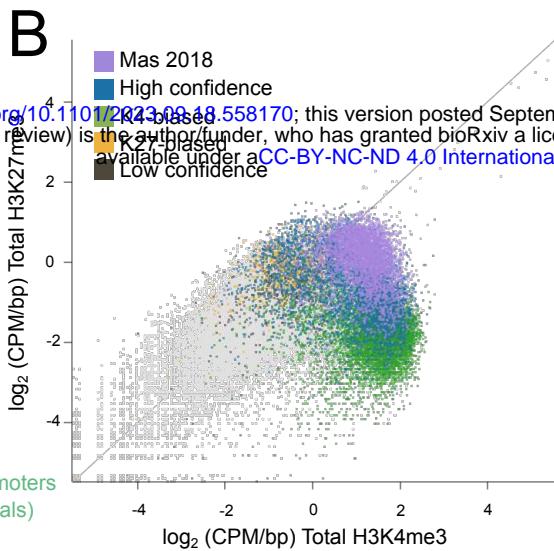
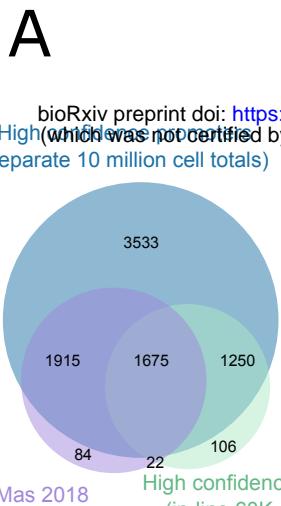

A

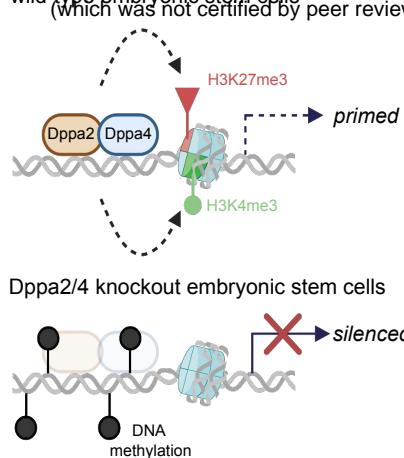
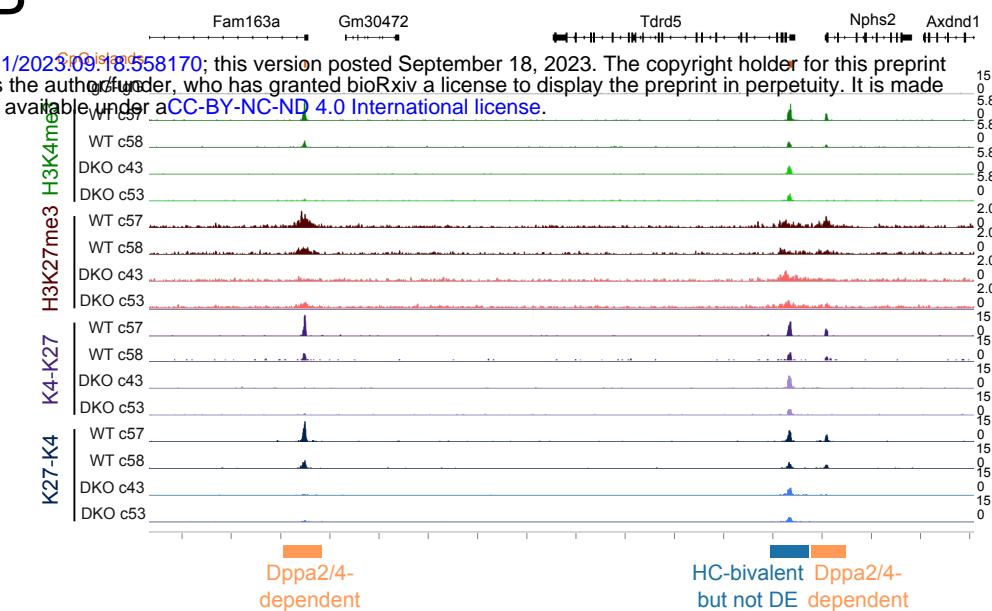
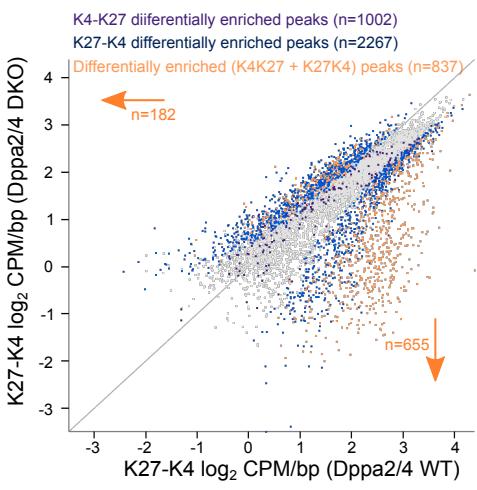
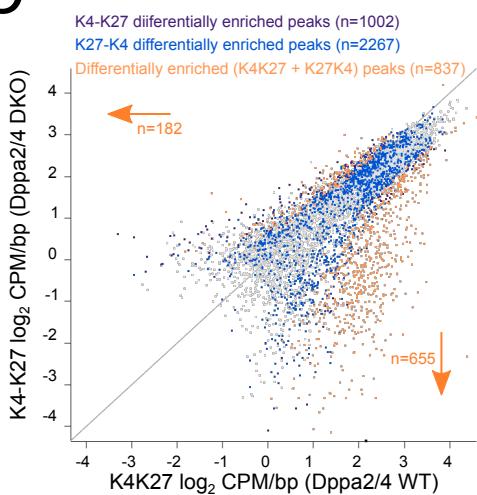
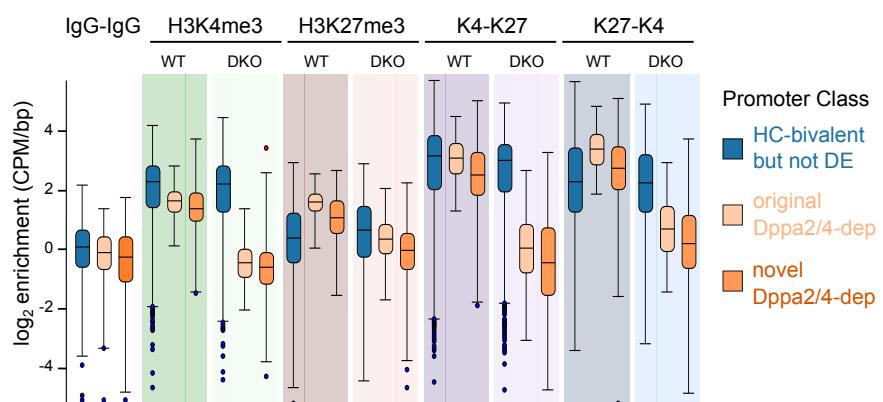
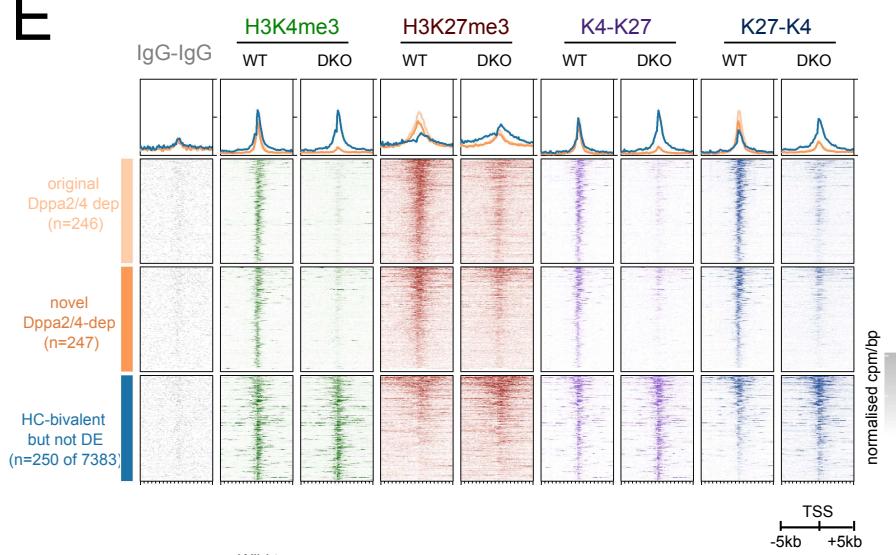
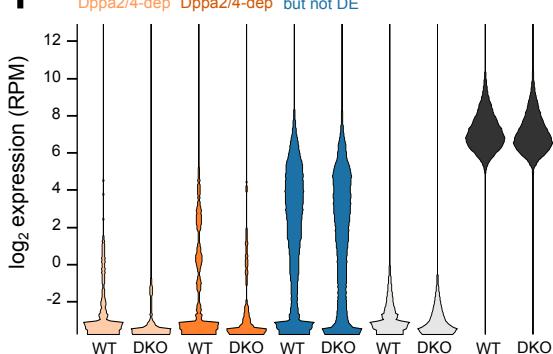
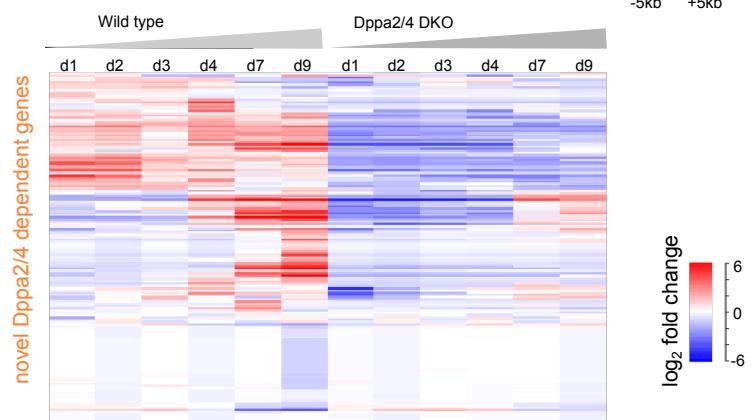
B


C

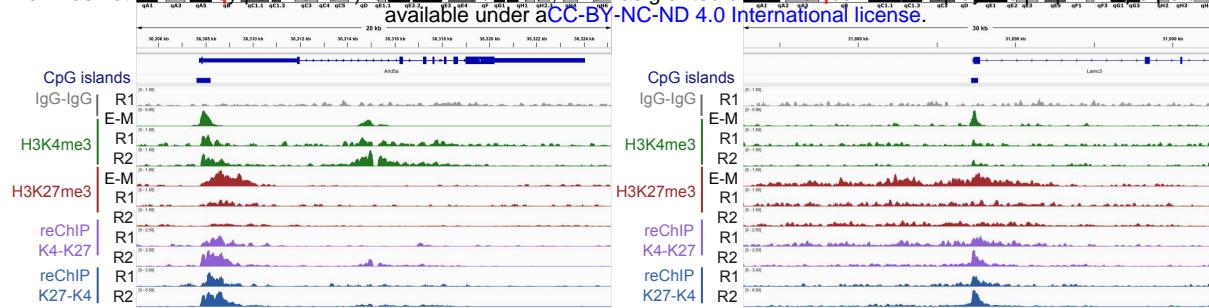
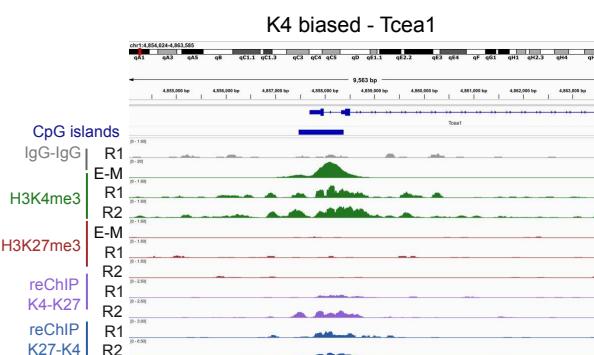
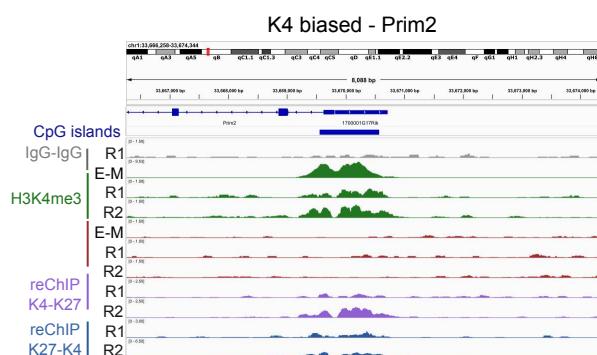
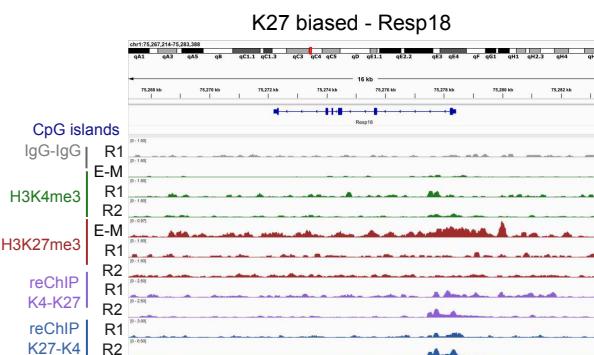
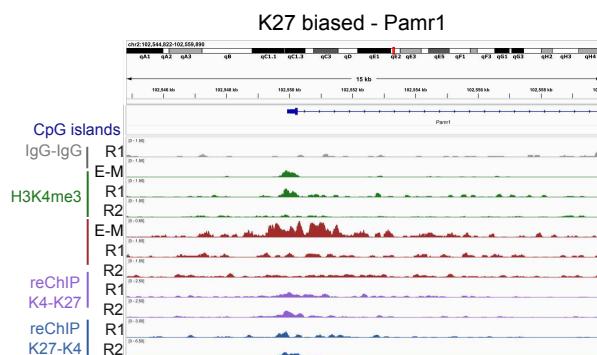
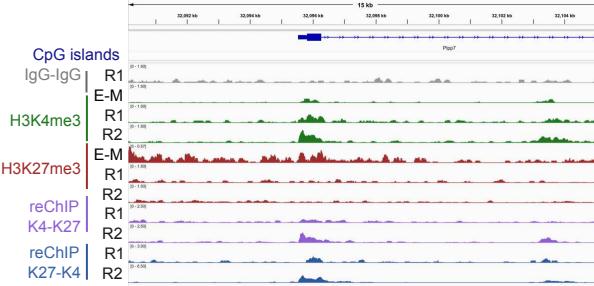
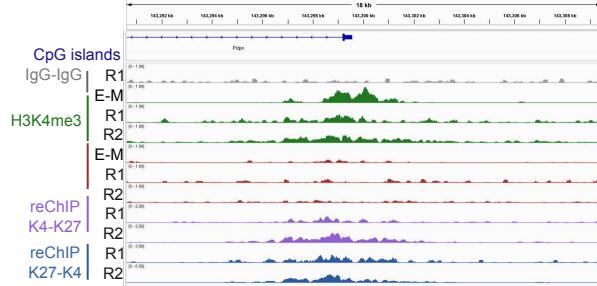
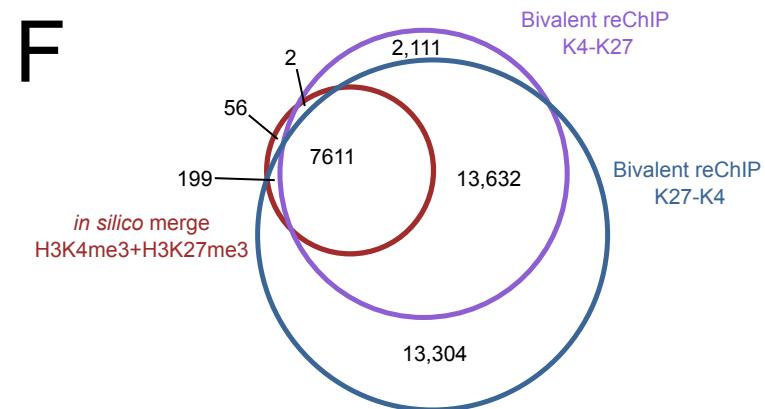
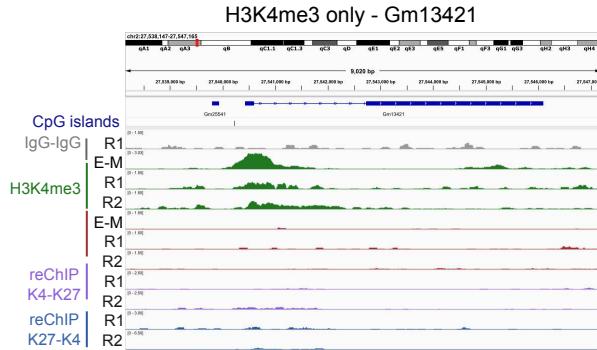

D











Sample	Rep	ChIP	Total aligned reads
E14-R1-IgG IgG	1	IgG-IgG reChIP	11836458
E14-R1-totalK4	1	in-line H3K4me3	19636113
E14-R2-totalK4	2	in-line H3K4me3	45137400
E14-R1-totalK27	1	in-line H3K27me3	16806958
E14-R2-totalK27	2	in-line H3K27me3	45264741
E14-R1-K4K27	1	K4-K27 reChIP	13506431
E14-R2-K4K27	2	K4-K27 reChIP	44992940
E14-R1-K27K4	1	K27-K4 reChIP	9392611
E14-R2-K27K4	2	K27-K4 reChIP	55500170







E

F










A**B****C****D****E****F****J****G****H****I**

AbioRxiv preprint doi: <https://doi.org/10.1101/2023.09.18.558170>; this version posted September 18, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.**B****C****D****E****F****G**

A

bioRxiv preprint doi: <https://doi.org/10.1101/2018.05.18.18.558170>; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-NC-ND 4.0 International license.

B**C****D****E**