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Neural activity and behavior manifest a dual nature of state

and trait dynamics, exhibiting variations within and between

individuals. However, the joint properties of neural state-trait

variation and how they map onto individual behavior remain

understudied. To address this gap, we quantify moment-to-

moment changes in brain-wide co-activation patterns derived

from resting-state functional magnetic resonance imaging. We

identify reproducible spatio-temporal features of co-activation

patterns at the single subject level. We demonstrate that a

joint analysis of state-trait neural variations and feature reduc-

tion reveal general motifs of individual differences, encompass-

ing state-specific and state-general neural features that exhibit

day-to-day variability. The principal neural variations co-vary

with the principal variations of behavioral phenotypes, high-

lighting cognitive function, emotion regulation, alcohol and sub-

stance use. Person-specific probability of occupying a particular

co-activation pattern is reproducible and associated with neu-

ral and behavioral features. This combined analysis of state-

trait variations holds promise for developing reproducible neu-

roimaging markers of individual life functional outcome.
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Introduction

The field of functional human neuroimaging (fMRI) has

attempted to characterize the functional organization of the

human brain and how it relates to individual differences (1,

2). These emerging methods can identify low dimensional

representations of neural traits (i.e. subject-specific) (3, 4) or

states (i.e. varying over time within a subject) (5–7) which

may be predictive of behavioral phenotype. This growing

body of work suggests that fMRI may hold great potential for

characterizing how complex neural signals map onto human

behavioral variation.

Spontaneous fluctuations of brain activity measured at

rest (i.e resting state fMRI (rs-fMRI)) are embedded in time

and space, exhibiting rich spatial-temporal information that

vary within (state) and between (trait) individuals. The joint

properties of state-trait rs-fMRI signal variation remain un-

derstudied. This is a critical knowledge gap because an in-

dividual’s mental state at any given time of rs-fMRI may be

influenced by many intrinsic (e.g. metabolic) (8, 9) or extrin-

sic (e.g. medications) factors that directly affect the circuit

activity underlying complex behavior (10–18). On the other

hand, there may be more stable neural patterns that vary sys-

tematically between people. For instance, personality theo-

ries posit that traits are characterized as patterns of thoughts,

feeling and behavior that generalize across similar situations

within individuals and differ between individuals, whereas

behavioral states reflect patterns that vary over time and situ-

ations (19, 20). Historically, rs-fMRI studies have quantified

neural traits (e.g. stationary functional connectivity charac-

terizing a subject) to study how they vary across people in

relation to a given behavioral trait (e.g. fluid intelligence or

a set of clinical symptoms) (21–23). Yet, there is a knowl-

edge gap regarding how combined state and trait variation of

spontaneous brain dynamics map onto individual variation in

complex behavioral phenotypes.

A recent meta-analysis of three large consortia datasets

(N=38,863 in total) has shown that brain-behavior associa-

tions in the general population have small effect sizes (e.g.

|r| < 0.2) using data from thousands of individuals, when

correlating neural measures from structural MRI, rs-fMRI

and task fMRI activation to behavioral measures includ-

ing cognitive ability or psychopathology (24). While large

sample sizes are key for discovering and replicating small

brain-behavior relationships on average (24), these recent

advances leave the open question that there may be strong

brain-behavioral effects that can be seen with quantitative

approaches that consider time-varying signal dynamics (25–

27). Still, the application of state-related quantitative ap-

proaches in fMRI remain underutilized for characterizing

reproducible inter-individual differences in brain-behavioral

relationships (28, 29). Furthermore, combining state-related

and trait-related information from rs-fMRI signals may pro-

vide convergent information about individual brain-behavior

associations. To this end, we tested the hypothesis that re-

producible neural-behavioral mapping may be achieved by

quantifying combined state and trait information from time-

varying rs-fMRI signals across the brain.

One approach that captures both trait and state neu-

ral characteristics is the analysis of co-activation patterns

(CAPs) for rs-fMRI (30). This analysis focuses on moment-
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to-moment changes in the whole brain blood oxygenation

level dependent (BOLD) signals at each time point, provid-

ing a method to quantify the spatial patterns of co-activation

across people and individual variation in patterns of neural

temporal organization (30). Several studies have reported

similar average CAP patterns in healthy human adults (30),

which also show some notable sex differences (31) and are

impacted by proceeding task conditions (32). Alterations of

spatial and temporal organizations of CAPs (e.g. the number

of time-frames occupied by a CAP state) were found across

different levels of consciousness (33), schizophrenia (34),

pre-psychosis (35), depression (36, 37), and bipolar disorders

(38, 39). All of these studies characterized group-level effects

between patients and healthy controls with a fixed number of

CAPs across groups, often capturing a parsimonious snap-

shot of brain dynamics by selecting a small number of time

points associated with high-amplitude signals in pre-selected

(i.e. seed) regions. While these studies have provided in-

sights that CAPs contain rich information, they are system-

atically omitting full range of BOLD fluctuations. Put dif-

ferently, few studies have leveraged the entire BOLD signal

range to define CAPs (7). Moreover, no study to our knowl-

edge has investigated the properties of within and between-

subject variability across a reproducible set of CAPs that har-

ness the entire BOLD signal fluctuation range (40, 41). Fi-

nally, no study has in turn quantified how individual differ-

ences in CAP properties map onto complex behavior.

Here, we test the hypothesis that there is a reproducible

CAP feature set that reflects both state and trait brain dy-

namics and that this feature set relates to individual pheno-

types across multiple behavioral domains. To address this,

we studied rs-fMRI and behavioral data obtained from 337

unrelated healthy young adults in the individual Human Con-

nectome Project (HCP) S1200 data (42). To optimize neural

features accounting for CAP variation within and between

subjects, we develop a three-axes model of state-trait brain

dynamics using moment-to-moment changes in brain CAPs.

We identify three reproducible CAPs that can be quantified

at the single subject level, exhibiting recurrent snapshots of

resting-state network spatial profiles and individual-specific

temporal profiles. By analyzing spatio-temporal state-trait

dynamics of CAP patterns, the data revealed groups of in-

dividuals that consistently exhibit behaviorally-relevant CAP

characteristics. These results suggest that a critical step to-

ward the development of reproducible brain-behavioral mod-

els may involve initial mapping of neural features that can

robustly and reproducibly capture combined trait (between-

subject variability) and state (within-subject variability) vari-

ance in neural features.

Results

Three brain co-activation patterns are reproducibily

found in healthy subjects at rest. The analysis of

moment-to-moment changes in CAPs assumes a single neu-

ral state (i.e. CAP state) per each fMRI time-frame, and iden-

tifies a set of CAPs recurring over time and across subjects

by spatial clustering of fMRI time-frames (7, 30). We iden-

tify a reproducible set of CAPs from 4 runs of rs-fMRI data

(15-min/run) obtained over two days from 337 healthy young

adults (ages 22-37 years, 180 females) using a shuffled split-

half resampling strategy across 1,000 permutations. Here we

used the entire BOLD signal fluctuation range for CAP es-

timations, without sparse time-point sampling. In each per-

mutation, we randomly split the sample (N=337) into two,

each involving the equal number of non-overlapping subjects

(n=168 respectively, randomly excluding a subject) (Fig. 1A,

Supplementary Fig. S1). To analyze CAPs at a low di-

mension space and to reduce the computational burden of

CAP analysis that treats every 3-dimensional time-frame in

the clustering process (e.g. 4,000 time-frames/subject), we

used the Cole-Anticevic Brain Network Parcellation (CAP-

NP) that involves 718 cortical surface and subcortical volu-

metric parcels (43). We averaged the preprocessed BOLD

signals in the voxels belonging to each parcel (44). There-

fore, within each split, a 4,000 × 718 array of individual rs-

fMRI data are temporally concatenated across subjects. The

time-frames are clustered based on spatial similarity using

K-means clustering, where the number of clusters (k) is esti-

mated for each split using the elbow method varying k from

2 to 15. Finally, a CAP was obtained by averaging the time-

frames within each cluster with respect to each parcel.

We first found that there are individual differences in the

number of reproducible brain states. Specifically, in both

splits, the estimated number of CAPs was either 4 or 5, each

exhibiting an ≈ 50% occurrence rate across permutations

(Fig. 1C, D). However, interestingly, the co-occurrence of

the same number of CAPs in both splits was rare (< 6%). In

other words, a half of the sample produced 5 CAPs, while the

other half produced 4 CAPs (Fig. 1E, Supplementary Fig.

S2). Because each of two non-overlapping halves contain a

distinct subset of samples, we hypothesized that individual

difference in the number of reproducible brain states plays a

role in the observed between-split differences. To test this

hypothesis, we quantified the individual’s preference toward

a specific number of CAPs by comparing the probability of

estimating 4 CAPs or 5 CAPs. The probability of estimating

k CAPs was quantified using the occurrence of k solution

estimations in a split across permutations (see Methods). In-

deed, there was a highly reproducible tendency for individual

subjects to occupy either 4 or 5 CAPs (Fig. 1F). Together,

these results suggest the presence of a CAP state that is re-

producibly found in a subset of subjects but not in others.

To identify reproducible spatial topography of CAPs

for further analyses, we generated two sets of basis CAPs

independently: the 4-CAP and the 5-CAP basis sets

(Supplementary Fig. S2). The 4-CAP basis set was ob-

tained by applying agglomerative hierarchical clustering to

the CAPs collected from only the permutations that resulted

in the estimation of 4 CAPs (Fig. 1G). Then, a basis CAP was

generated by averaging the CAPs belonging to each cluster,

and the value in each parcel of the basis CAP was normalized

to z-scores using the mean and standard deviation across 718

parcels (Supplementary Fig. S2). The 5-CAP basis set was

also obtained using the CAPs collected from the permuta-
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Fig. 1. A reproducible set of co-activation patterns (CAPs) in the whole-brain rs-fMRI involve recurring mixed representations of canonical resting state networks.

(A) Analysis overview. In each permutation, 337 subjects are randomly split into two equal-sized groups. Within each split, a parcel-by-time array of rs-fMRI data are
temporally concatenated across subjects. Time-frames are clustered based on spatial similarity using K-means clustering. The number of clusters (k) is estimated for each
split. Each CAP is obtained as the centroid of each cluster (Supplementary Fig. S1). (B) The number of time-frames used for analysis are not different between two splits
(two-sided paired t-test). (C) The estimated number of CAPs (k) in each split across 1,000 permutations. (D) Occurrence rate (%) of k = 4 or k = 5 solutions in each split.
(E) Co-occurrence rate (%) of k = 4 or k = 5 solutions in both splits. (F) Individual’s statistical preference toward a specific number of CAPs (k) is reproducible. In each split,
individual’s preference toward a specific number was quantified using the number of permutations that resulted in a specific solution (eg. 4 CAPs or 5 CAPs) across 1,000
permutations. Specifically, we compute the difference (occurrence of k = 5) − (occurrence of k = 4) for each subject (Methods). (G) Spatial correlation of the 5-CAP basis
set (left) and between the 4-CAP basis set and the 5-CAP basis set (right). r values were rounded to the nearest 2 decimal digits. (H) Spatial topography of 5 basis CAPs.
(I) Spatial similarity of the 5 basis CAPs to canonical resting state networks, pre-defined using the CAB-NP parcellation (see (J) (43)).

tions resulting in 5-CAP solutions. We found that the 4-CAP

basis set consisted of two pairs of anti-correlated CAPs (I+

and I-, II+ and II-), and the 5-CAP basis set consisted of the

same two pairs of anti-correlated CAPs and one additional

CAP (III) (Fig. 1G). The patterns of these basis CAPs were

consistent between two splits (Supplementary Fig. S3). The

number (I, II, and III) and sign (+ and -) of CAPs were labeled

arbitrarily. Overall, we found three CAPs recurring over time

and across healthy subjects in rs-fMRI.

Patterns of whole-brain co-activation are recurrent

snapshots of mixed resting state networks. As ex-

pected, the spatial patterns of three CAPs were associ-

ated with well-known rs-fMRI networks (Fig. 1H, I).

CAP I involved a strong bi-polarity between the default

mode and frontoparietal networks versus the dorsal atten-

tion, cingulo-opercular, somatomotor and secondary visual

networks. Here, bi-polarity stands for positive versus nega-

tive cosign similarity of each CAP with distinct resting state

networks (CAP+ versus CAP-). CAP II exhibited a weaker

bi-polarity between the primary visual, orbito-affective, de-

fault mode, and frontoparietal networks versus the dorsal at-

tention, somatomotor, and secondary visual networks. CAP

III showed a strong bi-polarity between the default mode, so-

matomotor, and secondary visual networks versus the fron-

toparietal, dorsal attention, and cingulo-opercular networks.

Considering that resting state networks are identified based

on the co-fluctuations of signals in distributed brain regions,

our results show that these CAPs represent recurring snap-

shots of the diverse signal co-fluctuations among regions in-

volved in different functional networks at each time-frame.

CAP III is reproducibly found in some individuals but

not in others. Our result in Fig. 1E, F suggests that there

are individual differences in the number of reproducible brain

states. Because CAPs are estimated using data from a group

of subjects, the contribution of a single subject to this esti-

mation is relatively small. In addition, it remains unknown

whether the spatial topography of estimated CAPs are repro-

ducible across permutations. To address these, we investi-
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gated three questions: (i) whenever 4 CAPs are estimated

from a split data, are their spatial patterns reproducible across

the permutations, (ii) whenever 5 CAPs are estimated from a

split data, are their spatial patterns reproducible across the

permutations, and (iii) is there a specific CAP state that is

reproducibly missing in 4-CAP solutions when compared to

the 5-CAP solutions.

First, we calculated the marginal distribution of spatial

correlation values (r(ECi,BCj)) between the CAPs esti-

mated from each split data (Estimated CAP; ECi, i = 1, ..,4
or 5) and a given basis CAP (Basis CAP; BC)(Fig. 2A).

Note that these pre-defined basis CAPs are the group-average

and permutation-average CAPs obtained using the agglomer-

ative hierarchical clustering of all CAPs across permutations

(Fig. 1H). In each permutation, each ECi was labeled ac-

cording to the maximum rank correlation with the given basis

CAP. As a result, the marginal distribution of r values showed

that the spatial patterns of 4-CAP solutions and 5-CAP solu-

tions were strongly reproducible (Supplementary Fig. S4).

The CAPs estimated from each split were highly correlated

with at least one of the basis CAPs, demonstrating a 1-on-1

matching for all CAPs. In addition, CAP III was reproducibly

found in one split but not in another split across permutations

(Fig. 2, Supplementary Fig. S5). Together, this analysis

demonstrates that the presence or absence of CAP III is not

a random artefact but actually associated with reproducible

neural dynamics of individuals.

Reproducible state-trait neural features at the sin-

gle subject level. We identified three CAPs that reflect

brain-wide motifs of time-varying neural activity. Here

we demonstrate a reproducible estimation of spatial CAP

features at the single-subject level. The CAP analysis in-

volves the assignment of individual time-frames to one of the

estimated CAPs using the K-means clustering process (Fig.

3A). The CAPs estimated in each split were labeled using

the maximum ranked correlation with the pre-identified

5-CAP basis set (Supplementary Fig. S4). In turn, this

frame-wise identification of CAP states allows the estimation

of temporal profiles of CAP states for individual subjects.

We demonstrate that reproducible state and trait features

of neural dynamics can be quantified using several key

parameters of CAP temporal characteristics (see Fig. 3A).

Definitions.

1. Fractional occupancy (FO(s, i)): the total number of

time-frames (or MRI time of repetition; TR) that a sub-

ject s spends in CAP state i per day, normalized by the

total number of time-frames spent in any CAP state by

subject s per day. FO is a relative measure (%TR),

such that the sum of FO of all CAP states is 1 within a

subject per day. FO reflects between-subject variance

(trait variance) of CAP dynamics.

2. Time-consecutive segment (c): the period between two

time-frames when a subject enters a CAP state and

when transitioning to another CAP state.

Fig. 2. The spatial patterns of the CAPs estimated across split-half permu-

tations are reproducible, demonstrating the consistent absence of a specific

spatial pattern (CAP III) in one split but not in another split across permu-

tations. (A) Proof of concept. First, we collect all CAPs estimated from the 502
permutations out of 1,000, where the proposed method estimated 4 CAPs from
each data (Fig. 1C). Spatial similarity (r, correlation coefficient) is computed be-
tween each of the estimated CAPs (EC; denoted as a, b, c, d, and e) and a given
basis CAP (BC). In this example, we select BC 1 from the 5-CAP basis set. r val-
ues were rounded to the nearest 2 decimal digits for visualization. Finally, we obtain
the marginal distribution of r values between BC 1 and the estimated CAPs across
502 permutations. (B) The CAP III is reproducibly found in the 5-CAP solutions and
not in the 4-CAP solutions across permutations. We repeated the spatial similarity
analysis for the 4 CAPs estimated from each split-half data, when compared to the
5-CAP basis set. In each permutation, each estimated CAP was labeled according
to the maximum rank correlation with the basis CAPs. Data-points (r-values) es-
timated from the CAPs with a same label were coded using the same color. The
marginal distributions of r between all estimated CAPs and each BC from the 5-
CAP basis set are illustrated using kernel density estimation. Results obtained from
the split 1 data are shown in (B) and replicated in the split 2 data (see Supplemen-

tary Fig. S5).

3. Dwell time (DT(s, i,c)): the number of time-frames

(#TR) of a time-consecutive segment c occupying the

same CAP state i within a subject s per day.

4. Within-subject mean of DT (Mean DT(s, i)): the

mean of estimated values of DT for all time-

consecutive segments during which CAP i is occupied

by subject s per day.

5. Within-subject variance of DT (Var DT(s, i)): the

standard deviation of estimated values of DT from all

time-consecutive segments occupying a CAP i within

a subject s per day. DT measures involve both trait

(between-subject) and state (within-subject) compo-

nents of neural dynamics.

The quantification of these CAP measures was performed

for each split data per permutation. To evaluate day-to-day

variability of CAP dynamics, we computed these measures

for each day separately. In summary, we estimated FO, mean

DT and var DT for each CAP per subject. This allowed us to

average the estimated neural measures across permutations,

providing a summary statistic of neural measures for each

CAP for each subject per day. These statistics are statistically

reproducible at the single-subject level, as shown in Figure

3B (45–47). Care is needed when interpreting the results, be-
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Fig. 3. Resting state brain CAPs have distinct between and within-subject variance of temporal characteristics and test-retest reliability, as revealed by the 3-axes

representation of neural trait variance space. (A) Analysis overview. In each split-half data from each permutation per day, fractional occupancy (FO), within-subject
mean of dwell time (Mean DT) and within-subject standard deviation of dwell time (Var DT) are estimated for each CAP state. (B) Stability of individual mean DT of CAP I+
across permutations and across two days. Individual subjects were rank-ordered from top to bottom using the split 1 data from Day 1. We also found that individual Var DT
and individual FO for these CAPs are reproducible across permutations and two days (Supplementary Fig. S6). (C) Days 1 and 2 reliability of FO (top), Mean DT (middle)
and Var DT (bottom) in each CAP state were quantified by the intraclass correlation coefficient using two-way random effect models (ICC(2,1)). When computing ICC for
CAP III, permutations resulting in the absence of CAP III was not considered, because the values of temporal metrics are zero for both days. (D) Test-retest reliability of
neural measures between two days of scan. (top) Scatter plots of individual FO, within-subject mean and variance of DT between days 1 and 2 for CAP I+ state. r-value is
estimated from the linear fitting lines (red) for each scatter plot. (bottom) The same analysis was performed for all CAPs (Supplementary Fig. S7) and summarized here
using r-values. (E) CAPs on the neural trait variance space. Relative variance (coefficient of variance) of each CAP measure was computed across subjects: individual FO
(x-axis), Mean DT (y-axis) and Var DT (z-axis). The three-axes representation allows for unifying and optimizing the variations of temporal CAP characteristics and distinct
patterns of temporal organizations of brain activity.

cause stable individual-specific properties of state dynamics

such as mean DT in this study can also be considered as traits.

Here, we demonstrate that state-trait CAP dynamics are

reproducible at the single subject level across permutations,

whereas within-subject between-day reliability was lower

than between-permutation reliability on a same day (Fig. 3B,

C, Supplementary Fig. S7). First, we measured the test-

retest reliability of the neural measures using a linear regres-

sion (Fig. 3D). The correlation of individual neural measures

between day 1 and day 2 was 0.41±0.07 for FO (mean ± SD

over five CAPs), 0.41 ± 0.06 for mean DT, and 0.38 ± 0.07
for var DT. CAP I+ showed the highest between-day reli-

ability and CAP III was the lowest. Secondly, we com-

puted the intraclass correlation coefficients using two-way

random effect models (ICC(2,1)) for each split in each per-

mutation. Therefore, for each CAP, we measure 2,000 ICC

values across 1,000 permutations. The average ICC across all

CAPs are 0.39 ± 0.06 (Mean ± Standard Deviation) for FO,

0.39±0.05 for Mean DT, and 0.34±0.06 for Var DT. These

state-trait neural measures show fair test-retest (day-to-day)

reliability, when compared to the meta-analytic estimate of

average ICC (0.29 ± 0.03, Mean ± Standard Error) across

other studies reported using edge-level functional connectiv-

ity (48).

Joint analysis of state and trait neural variations. We

propose an analytic framework of joint state and trait neu-

ral variations, taking the test-retest (or day-to-day) reliabil-

ity of neural features into account. Importantly, this frame-

work allows us to visualize how CAP properties that vary

within a person (state) also vary between people (trait). In

Fig. 3E, we illustrate a three-axes representation of state

and trait variance components of spatio-temporal CAP dy-

namics. For each CAP, we estimate the normalized inter-

subject variance (coefficient of variance) of three neural fea-

tures. Then, the five CAP states (CAPs I+/-, II+/- and III)

are projected on this space. Interestingly, we found that CAP

II exhibits the highest relative between-subject variation (i.e.

trait) across all three measures, the FO, mean DT and var DT.

Conversely, CAP III exhibits lower between-subject variance

but higher within-subject variance than CAP II (as seen in

the distance between the measures on two different days; see

Fig. 3E). Indeed, the proposed joint analysis of state-trait

neural variations provides a rich landscape of within-person
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and between-person variance of neural co-activations.

Neural feature reduction captures general motifs of in-

dividual variation. An important and interesting question

would be whether neural features with distinct patterns of

state-trait variation can provide vital information about indi-

vidual differences. Put differently, we are interested in study-

ing if there is a set of neural features that can be commonly

found across a number of healthy subjects that have a re-

producible set of neural co-activation properties, which can

in turn be related to behavioral phenotypes. To address this

question, we first collected thirty neural features estimated

for each individual: three neural measures (FO, mean DT,

and var DT) × five CAPs (I+, I-, II+, II-, and III) × 2 days.

We performed the agglomerative hierarchical clustering of a

subject-by-feature (337 × 30) matrix (Fig. 4A). We deter-

mined the number of clusters using a distance cut-off value

of 70% of the final merge in the dendrogram (Fig. 4B). As a

result, we found three subgroups (A, B, and C), each consist-

ing of 163, 127 and 47 individuals (Fig. 4C).

To further study if there is a low-dimensional geome-

try of neural state-trait variation capturing individual differ-

ences, we applied principal component analysis (PCA) to

the subject-by-feature matrix. Clearly, the three subgroups

identified using hierarchical clustering were distributed in

the low-dimensional space represented by the first three neu-

ral PCs, which explain 33.5%, 23.9% and 16% of variance,

respectively (Fig. 4D). Notably, subgroup A shows higher

scores on neural PC 1 than the other groups, and subgroup

C shows higher scores on neural PC 2 than subgroup B (Fig.

4C). Our further analysis of feature loadings on these PCs re-

vealed a unique and reduced feature set of neural variation,

each representing CAP-specific (PC 1) and CAP-general (PC

2) neural state-trait variations, which also exhibit day-to-day

variability (PC 3). In addition, we found that each pair of

positive and negative CAP patterns (states I+ and I-, states

II+ and II-) exhibit similar temporal CAP profiles (Fig. 4E,

Supplementary Fig. S8).

Specifically, the neural PC 1 is characterized by distinct

temporal profiles on CAPs I/III versus CAP II. It includes

higher loadings of FO, mean DT and var DT at CAPs I/III

and lower loadings of DT measures at CAP II (Fig. 4F).

Note that the FO is a relative measure (%TR) such that the

sum of FO at all CAP states is 1, whereas the DT measures

are absolute (#TR). This indicates that individuals exhibit-

ing high scores on neural PC 1 occupy CAPs I and III for

a relatively longer time, whereas individuals with low PC 1

scores occupy CAP II state for a longer time. Regarding CAP

II, the FO exhibits a more pronounced negative loading on

neural PC 1 compared to the dwell time measures (mean DT

and var DT). On the other hand, the neural PC 2 highlights a

CAP-general pattern of state persistence (high within-subject

mean DT and high within-subject variance of DT), while also

exhibiting a weak CAP-specific effect on FO (lower loadings

of the FO at CAPs I/III and higher loadings of FO at CAP

II) (Fig. 4F). In addition, in neural PC 2, the DT measures

of CAP II showed higher loadings than FO. A lengthy dwell

time indicates that an individual occupies a state for an ex-

tended duration before transitioning to another CAP, suggest-

ing strong state persistence. In contrast to the neural PCs 1

and 2 that showed strong between-day reliability, neural PC 3

showed a strong negative correlation between days (|r| > 0.9;

Fig. 4G). In particular, neural PC 3 captures a specific com-

ponent of day-to-day variability: the CAP-specific patterns

observed in neural PC 1 can undergo systematic changes be-

tween days (e.g., sign-flipped feature loadings in Fig. 4F).

Together, our results demonstrate that both state and trait

variance of spatio-temporal CAP dynamics involve pivotal

information for identifying individual differences. The as-

sessment of individual distributions of each neural measure

supported these findings (Fig. 5). Indeed, our analyses com-

bining the hierarchical clustering and PCA of individual neu-

ral feature sets revealed three subgroups exhibiting distinct

patterns of neural variations.

Principal variations of neural state-trait features co–

vary with principal variations of behavioral pheno-

types. The subgroups identified using the neural state-trait

features exhibit distinct functional life outcomes (Fig. 6).

To estimate the geometry of principal variations in behav-

ioral phenotypes, we performed PCA on 262 variables across

15 behavioral domains from the HCP S1200 unrestricted

and restricted behavioral data: alertness (1-2), cognition

(3-39), emotion (40-63), personality (64-68), emotion task

performances (69-74), gambling task performances (75-86),

language task performances (87-94), relational task perfor-

mances (95-100), social task performances (101-113), work-

ing memory task performances (114-167), psychiatric dimen-

sions (168-189), alcohol use (190-222), tobacco use (223-

252), illicit drug use (253-258), and marijuana use (259-262)

(Fig. 6A). Find the list of behavioral variables in Supple-

mentary Fig. S10. Before performing PCA, several vari-

ables reflecting the reaction time (RT) in tasks were converted

to 1/RT for a better interpretation of PC geometry.

After performing PCA, the significance of derived PCs

was evaluated using permutation testing. Specifically, PCA

was performed for each permutation where the order of sub-

jects was randomly shuffled, which in turn provided a null

model (23). As a result, we found 27 PCs that accounted

for a proportion of variance that exceeded chance (p < 0.05
across 10,000 permutations). Subsequently, we considered

the first 15 PCs, which collectively explained approximately

50% of the total variance, for further analyses. Reproducibil-

ity of these 15 PCs was evaluated using a split-half permuta-

tion approach, where we randomly splitted 337 subjects into

two equal sized groups (n = 168) and applied PCA for each

split. Then, the similarity (Pearson’s correlation) of PC ge-

ometry between the n-th PCs estimated from two split-halves

was computed for each permutation, where n is the ranked

order of each PC based on explained variance.

As a result, we found that the first behavioral PC (PC 1)

explaining 11.2% of variance (Fig. 6B) was highly repro-

ducible, exhibiting the similarity (r = 0.9 ± 0.03, mean ±
SD across 1,000 permutations) of PC geometry between the

first PCs estimated from two split-halves (Fig. 6C). The be-

havioral PC 1 highlighted individual life function outcomes
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Fig. 4. Identification of subgroups in healthy subjects exhibiting distinct neural state-trait variances. Three subgroups of healthy subjects in the HCP data (A, B, and
C) are identified using the agglomerative hierarchical clustering of thirty individual neural state-trait features, which are estimated from temporal CAP characteristics (fractional
occupancy, FO; within-subject mean of dwell time, mean DT; within-subject variance of dwell time, var DT). (A) For each subject, thirty neural features estimated from five
CAPs and two days are collected. For each CAP, each neural feature was obtained by averaging the values estimated across permutations. Each data-point in the 3-axis
scatter plots indicate a subject. Individual neural features were obtained by averaging the feature values across permutations within subject for each day. (B) Agglomerative
hierarchical clustering is performed on the feature matrix. In the dendrogram, three clusters are found using a distance cut-off value of 70% of the final merge. In addition,
to estimate the principal geometry of this state-trait feature space identifying subgroups, we applied principal component analysis (PCA) to the feature matrix. (C) Clustered
subjects are embedded onto a 2-dimensional space using principal component analysis. (D) Variance explained (%) by each neural PC. (E) Similarity of individual neural
features between positive and negative CAPs. An example of CAPs I+ and I- are shown. See Supplementary Fig. S9 for all results (0.9 ± 0.04, mean ± SD). (F) Loadings
of each neural feature on the first three neural PCs. In each radar plot, three lines indicating FO (colored in slateblue), Mean DT (steelblue), and Var DT (turquoise) are shown
for five CAPs. Feature loadings from days 1 (top) and 2 (bottom) are shown separately for an easier interpretation, while the neural PCs were obtained using neural features
from both days as shown in (A). (G) The loadings of neural features on each PC are reliable between days. For each neural PC, Pearson’s correlation coefficient (r) was
computed between two vectors of feature loadings collected from days 1 and 2. Neural PC 3 reflects the contribution of within-subject (between-day) variance in temporal
CAP profiles.

associated with cognitive function, emotion regulation, and

alcohol and substance use (Fig. 6D). The variables of work-

ing memory task performances have the highest loadings on

the behavioral PC 1, followed by the emotion, relational,

languages, gambling task performances, fluid intelligence,

self-regulation/impulsivity, and episodic memory. In con-

trast, variables associated with alcohol and substance use

(e.g. short-term tobacco use) and psychiatric dimensions

(e.g. self-report measures of positive and negative affect,

stress, anxiety, depression and social support) exhibited the

lowest, negative loadings on the behavioral PC 1.

To assess the association between the principal variation

of behavioral variables and the principal variations of neu-

ral features, we first compared the distribution of individual

scores on 15 behavioral PCs between the subgroups, iden-

tified using the neural features (Fig. 4). Individuals classi-

fied as subgroup A (n = 163) exhibited significantly higher

scores on behavioral PC 1 compared to subgroup B (n = 127)

(pBON < 0.05, t = 3.05, two-sample two-sided t-tests) (Fig.

6F). When comparing the individual scores of behavioral PC

1 between sex, we found no relationship. We did not ob-

serve any behavioral relevance of neural state-trait dynam-

ics in identifying subgroup C (n = 47). In addition, the

second behavioral PC (PC 2) involves the variables in the

domains of emotion, psychiatric dimensions, and personal-

ity (no neural relevance, no age relevance using two-sample

two-sided t-tests) (Supplementary Fig. S11A). The third

behavioral PC (PC 3) involves the variables of alcohol, to-

bacco and other substance uses, exhibiting a strong sex effect

(pBON < 0.005) (Supplementary Fig. S11B).

Next, we studied if individual scores on the behavioral

PC 1 are associated with individual scores on the three neural

PCs using the multiple linear regression model (behavioral

PC 1 ∼ neural PC 1 + neural PC 2 + neural PC 3 + age

+ sex). The neural PC 1 was associated with the behavioral

PC 1 (partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8,

p = 0.005), where the multiple R2 = 0.041, adjusted R2 =
0.026, F (5,331) = 2.814 and p-value = 0.017 for the full
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DT of each CAP state are color-coded by the three subgroups (Fig. 4). Results from days 1 and 2 data are shown separately and compared between groups (Supplementary

Fig. S8). Each data-point indicates a subject. Blue lines: p-values with Bonferroni-correction across five CAPs are estimated using two-sided two-sample t-tests between
groups, pBON < .001 (bold) and pBON < .05 (dotted).

model for predicting the behavioral PC 1. The neural PCs 2

and 3 and age did not show any association. Sex exhibited

a weak association with the behavioral PC 1 (partial R2 =
0.016, β1 = −1.44, SE = 0.61, t = −2.34, p = 0.02).

Impact of CAP III on the principal neuro-behavioral

relationships. It remains unclear whether and how the

presence of CAP III impacts the temporal CAP profiles of

other CAPs and how it relates to individual differences in

behavior. To address these, we studied the relationship of

CAP III to the three neural PCs (Fig. 4) and the first behav-

ioral PC (Fig. 6). Specifically, to quantify the probability of

CAP III occurrence, we compared the probability to have 5

CAPs involving CAP III and the probability to have 4 CAPs

without involving CAP III. We found that subgroup C had a

high probability of CAP III occurrence, when compared to

other subgroups (Fig. 7A). Individuals that have a high prob-

ability of CAP III occurrence present low scores of neural

PC 1 (r = −0.26,p < 0.001) and high scores of neural PC 2

(r = 0.24,p < 0.001; Fig. 7B, C). There was no relationship

to individual scores of neural PC 3 (Supplementary Fig.

S12). There was a weak negative correlation between the

probability of CAP III occurrence and individual scores of

behavioral PC 1 (r = −0.18,p < .005; Fig. 7D). These

results together indicate that the spatio-temporal properties

of CAP III contribute to the positive correlation between the

neural PC 1 and the behavioral PC 1 (Fig. 6G). Moreover,

subgroup C shows a clear tendency when mapped on

the neural PC 2 (Fig. 7C), which relates to global CAP

persistence (Fig. 4F, Fig. 5).

In summary, we tested the hypothesis that there is a re-

producible CAP feature set that reflects both state and trait

brain dynamics and that this combined feature set relates to

individual phenotypes across multiple behavioral domains.

Our analyses demonstrate that individuals with a longer FO

at CAP I than at CAP II (neural PC 1; subgroup A versus

B) exhibit higher cognitive function, emotion regulation and

less alcohol and substance use (behavioral PC 1). Subgroup

A also showed a good CAP-general state persistence com-

pared to subgroup B, exhibiting a longer dwell time (within-

subject average) and higher within-subject variance of dwell

time (Fig. 5). However, subgroup C that have a high prob-

ability to occupy CAP III than other subgroups, exhibited

a unique pattern of neural state-trait features: longer FO at

CAP II than at CAP I (neural PC 1), longer CAP-general state

persistence and higher within-subject variability of state per-

sistence (neural PC 2).

Discussion

This study provides evidence to highlight the importance

of quantifying both within-subject and between-subject vari-

ance components of brain dynamics and their link to indi-

vidual differences in functional behavioral outcomes. Here,

we show that the dynamics of rs-fMRI can be quantified via

CAP analyses and reveal reproducible neural features that

can maximize effects of state variance, trait variance, and

test-retest reliability.

We identified three CAPs representing recurrent snap-

shots of mixed resting state networks in healthy young adults,

which exhibit distinct spatio-temporal profiles that are repro-
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Fig. 6. Principal variations of neural state-trait features co-vary with the principal variations of behavioral phenotypes, highlighting individual life function

outcomes associated with emotion regulation, cognitive function and alcohol and substance use. (A) Correlation structure between 262 behavioral variables, which
were obtained from the HCP S1200 unrestricted and restricted data. Colorbars along each axis of the correlation matrix indicate color-codes for the category of each variable.
Categories were defined from the HCP data dictionary available online (HCP_S1200_DataDictionary_April_20_2018.csv). Variables measuring response time
(RT) from tasks were transformed into 1/RT to account for the fact that a shorter response time indicates better task performance. See Supplementary Fig. S10 for the list of
all behavioral variables. (B) The first PC explained 11.2% of variance. The first 15 PCs explaining ∼ 50% of variance were considered in further analysis. (C) Across 1,000
permutations for split-half resampling, we compared if the geometry of estimated PCs in two splits are consistent. Pearson’s correlation coefficient (r) was computed for each
pair of behavioral PCs. (D) Rank-ordered loadings of each behavioral variable on the first principal component (PCA). Each data-point indicates a behavioral variables. PCA
was performed for all 262 variables in (A). 39 subcategories shown on the y-axis were also defined using the HCP data dictionary. Several subcategories belonging to the
same category are coded using the same color as in (A). (E) The geometry of behavioral PC 1 (black, left circle) reflects the difference in group-average behavioral variables
(standardized behavioral data, right circle) between subgroups A (yellow) and B (green). Subgroup C is not shown because no significant group differences are found in (F).
(F) Comparison of individual PC 1 scores between subgroups identified using neural state-trait measures (Fig. 4). Two-sample two-sided t-tests were performed between
subgroups for each behavioral PC. pBON : Bonferroni corrected p-values. (G) Multiple linear regression model of three neural PC 1 with two covariates (age and sex) showed
that the neural PC 1 was associated with the behavioral PC 1 (Partial R2 = 0.023, β1 = 0.26, SE = 0.09, t = 2.8, p = 0.006), where multiple R2 = 0.041, adjusted
R2 = 0.026, F (5,331) = 2.814, p-value = 0.017 for the full model.

ducible at the single subject level. In turn, three subgroups

of individuals were identified using hierarchical clustering

of temporal CAP profiles, which mapped onto distinct as-

pects of CAP dynamics capturing both state (i.e. within per-

son) and trait (i.e. between person) variance components.

We found that the principal variations of neural state and

trait CAP features co-vary with the principal variations of

behavioral phenotypes, which were linked to functional life

outcomes. Specifically, individuals that showed longer time

spent in CAP I, longer persistent periods within a CAP, as

well as higher variation of transitioning between all CAPs,

also showed higher cognitive function, emotion regulation

and less alcohol and substance use. Put differently, we iden-

tified specific properties of rs-fMRI dynamics that mapped

onto a person’s life outcome profile. Critically, person-

specific probability of occupying a given CAP was highly re-

producible and associated with the neural and behavioral fea-

tures. Collectively, these results show that a reproducible pat-

tern of neural dynamics can capture both within-person and

between-person variance that quantitatively map onto distinct
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Fig. 7. The probability of CAP III occurrence is associated with the neural and behavioral PCs. (A) The probability of CAP III occurrence (x-axis) for each individual,
which can be interpreted as individual’s preference to have CAP III, was evaluated by the difference in the occurrence of 4 CAPs versus 5 CAPs, as described in Fig. 1F.
For each subject, we computed the number of permutations (occurrence out of 1,000 permutations) when 4 CAPs were estimated and the number of permutations for the
same subject to be involved when 5 CAPs were estimated. Then, for each subject, we compared the difference in the occurrence (∆ Occurrence = Occurrence(k = 5)
- Occurrence(k = 4)) from each split. Then, for each individual, the ∆ Occurrence was averaged over two splits. Finally, the within-subject average ∆ Occurrence was
normalized across subjects to z-scores. Individuals were color-coded by subgroups defined using the hierarchical clustering of 30 neural features (Fig. 4). (B)-(D) Scatter
plots of individual’s preference to have CAP III with respect to the individual scores on the neural PC 1 (B), neural PC 2 (C), and behavioral PC 1 (D).

functional outcomes across individuals.

Identifying reproducible neural dynamics profiles in hu-

mans. In this study (n=337, Fig. 1H), we identified three

reproducible CAPs. These CAPs captured spatial patterns

similar to the analysis results of zero-lag standing waves and

time-lag traveling waves of rs-fMRI BOLD fluctuations pre-

viously identified by Bolt et al., using complex PCA and a

variety of latent dimension-reduction methods for the HCP

dataset (n = 50) (49). The spatial correspondence between

the three patterns identified by Bolt et al. and the CAPs

discovered in our study aids in the interpretation of our re-

sults. Specifically, the spatial topography of CAPs I+/I- may

be linked to task-positive/task-negative dynamics of BOLD

signals, while CAPs II+/II- may be associated with global

signal fluctuations (49). However, similar to most early stud-

ies on CAPs in rs-fMRI (30), Bolt et al. employed a sparse

time point sampling strategy (15%) based on high-amplitude

signals of time-courses in pre-defined regions, along with

an arbitrary choice of two-cluster solution (49). The sparse

time point sampling is based on a hypothesis that patterns

of functional connectivity arise from discrete neural events

(6), often driven by high-amplitude co-fluctuations in cor-

tical activity (50). These studies demonstrated the spatial

correspondence between estimated CAPs and widely-studied

resting-state functional connectivity patterns, such as the de-

fault mode network (6, 30, 51).

Nevertheless, no study to our knowledge has investigated

the joint properties of within and between-subject variation

of CAPs patterns across the entire BOLD signal range. Ad-

ditionally, no study has examined the impact of consider-

ing the full BOLD signal range on the relationship between

CAP properties and behavior (33–39). Here, we present

an analytic approach that optimizes within-subject variance,

between-subject variance, and test-retest reliability of iden-

tified CAPs using the entire BOLD signal range. Critically,

we demonstrate reproducible spatio-temporal CAP features

for each subject (Fig. 2, Fig. 3, Supplementary Fig. S6,

Supplementary Fig. S7). In turn, we show an association

between the principal variations of CAP neuro-phenotypes

and the principal variation of behavioral phenotypes (Fig. 6).

Collectively, these results highlight that state-trait CAP

dynamics are reproducible at the single subject level across

permutations and between days (Fig. 3, Supplementary

Fig. S7). For context, the statistics reported here (Fig. 3C)

demonstrate higher reproducibility than the meta-analytic es-

timate for group-level reproducibility of area-to-area func-

tional connectivity matrices (48). Reducing the number of

neural features into a reproducible set of CAPs may enable

a more robust and reproducible mapping between neural fea-

tures and behavior. In other words, we hypothesize that fur-

ther optimization of reproducible data-reduced neural fea-

tures presents a critical step toward mapping rs-fMRI signals

to healthy and clinically-relevant behavioral variation and ob-

taining robust neuro-behavioral models.

Quantifying joint state and trait variance components of

neural dynamics. The three-axes representation of spatio-

temporal CAP dynamics, illustrated in Fig. 3E, highlights

an approach to consider temporal CAP characteristics that

can inform feature selection. Put differently, we show that

by projecting CAP measures derived within each subject into

a trait variance space, it is possible to visualize how CAP

properties that vary within a person (state) also vary between

people (trait).

For instance, we found that CAP II exhibits the highest

relative between-subject variation (i.e. trait) across all mea-

sures presented here. Conversely, CAP III exhibits lower

between-subject variance but higher within-subject variance

than CAP II. This suggests that, although there is less individ-

ual variation in CAP III overall, any given person may exhibit

marked variation in this pattern between days. These obser-

vations were highly reproducible and were generally agreed

with the variance explained by the three patterns reported in

(49). This raises the question of whether the joint consid-

eration of both state and trait metrics can reveal key proper-

ties of neural features that, in turn, can inform their mapping

to behavior. For instance, one would expect that a neural

feature that varies markedly between individuals but shows

little within-subject variance may serve as a reliable neu-
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ral marker for tracking longitudinal behavioral changes (e.g.,

neurodevelopmental changes or rapid mood swings observed

in certain psychiatric populations, which may not occur in

healthy populations). In contrast, neural features that maxi-

mize within-subject variation, while still exhibiting notable

trait variance, may be better at detecting neuro-behavioral

relationships expected to undergo substantial changes over

time.

Indeed, using both state and trait variance components

of identified CAPs revealed three subgroups of healthy sub-

jects. This finding aligns with the notion that using neural

features with distinct patterns of state variances can provide

vital information about individual differences (Fig. 4). The

objective of this clustering was not to categorize individual

subjects. Rather, we aimed to test whether there exists a set

of neural features commonly observed across a number of

healthy subjects, exhibiting reproducible neural co-activation

properties that can be related to behavioral phenotypes. We

first found that the three subgroups (n = 163, 127 and 47
for each group) could be projected into a data-reduced PCA

model. Neural PC 1 is characterized by distinct patterns

of FO and DT measures between CAPs I/III versus CAP II

(CAP-specific), neural PC 2 represents the general persis-

tence of all CAP states (CAP-general), and neural PC 3 rep-

resents day-to-day variations within individuals (Fig. 4D-F).

This additional level of neural feature reduction captured a

general motif of how individuals vary in terms of complex

temporal patterns of neural co-activation.

Linking neural patterns of co-activation to behavioral and

life functioning. One of the key goals in human neuroimag-

ing is to identify features that relate to human function. More

specifically, do signals derived from fMRI carry informa-

tion that can be related to positive or negative life functional

outcomes in adults? Prior work tested this hypothesis us-

ing multi-variation canonical correlation approaches (CCA)

(22). While these initial findings were compelling, it is not

widely appreciated that CCA models that use many neu-

roimaging features are prone to overfitting. To address this

issue, we investigated whether the reduced and reproducible

neural feature set, identified by the joint state and trait vari-

ance components of neural dynamics, can explain variation

in functional behavioral outcomes in a sample of adults rep-

resentative of the general population. Here we computed a

PCA model on 262 behavioral features from the HCP sam-

ple, which revealed a solution with n = 27 PCs that passed

permutation testing. However, we found that the first behav-

ioral PC captured > 11% of all behavioral variance and it was

highly reproducible (between-split correlation of behavioral

PC 1 loadings was r > 0.9; Fig. 6C). Therefore, we exam-

ined the relationship between the first CAP-derived neural

PC (Fig. 4) and the first behavioral PC, which revealed that

individuals with higher neural PC 1 scores (subgroup A, Fig.

4F) also have higher behavioral PC 1 scores (Fig. 6F, G).

The behavioral PC 1 highlights individual life function out-

comes associated with cognition, emotion regulation, alcohol

use and substance use (Fig. 6D).

These results suggest that individuals who preferentially

occupy CAP I and exhibit strong state persistence also

demonstrate higher cognitive and affective functional out-

comes (4, Fig. 6D). In contrast, individuals who predomi-

nantly occupy CAP II for extended periods tend to exhibit

relatively lower cognitive scores, along with higher levels of

alcohol and substance use. This aligns with the notion that

general brain-wide patterns of co-activation in fMRI signal

are associated with an individual’s level of functioning. Of

note, CAP II exhibited the highest relative between-subject

variation across all measures (Fig. 6D). Furthermore, CAP II

showed a spatial motif that appeared to be ‘global’. This is

consistent with prior findings showing that a global rs-fMRI

signal topography, which contained a major contribution of

the fronto-parietal control network, was associated with pos-

itive and negative life outcomes and psychological function

(52). Interestingly, we found that observing CAP III might

be related to the composition of the studied sample. In other

words, there is a group of people with high occurrence of

CAP III (subgroup C), which if sampled in the reported per-

mutation testing will yield a 3-CAP solution (I, II and III).

A higher probability of CAP III presence across individuals

was associated with lower behavioral PC 1 scores, indicating

poor functional life outcome (Fig. 1, Fig. 2, Fig. 7, Supple-

mentary Fig. S5). More specifically, individuals with high

probability of CAP III neural signal pattern exhibit relatively

lower cognitive function, higher alcohol use, and higher sub-

stance use.

This strongly supports the idea that reproducible func-

tional co-activation patterns in the human brain can map onto

behavioral outcomes that have implications for mental health.

Here we found this pattern by considering only the first PCs

of the neural and behavioral feature spaces. It remains un-

known whether further feature optimization of CAP dynam-

ics would reveal stronger effects in relation to more severe

mental health symptoms, which can be detected in clinical

samples. In fact, spatial and temporal organization of CAPs

has been linked to psychiatric symptoms in previous work

(34–39). However, it is unknown if the neural features de-

rived from CAPs that are reproducible in the healthy gen-

eral adult population are also predictive of severe psychiatric

symptoms. In other words, it is possible that there are CAPs

(and associated state-trait variance components we quanti-

fied) that are only detectable in individuals who experience a

certain level of symptom severity. In this context, it is vital to

consider the likelihood and the timescale on which state neu-

ral measures are defined - namely how likely is a state to be

present in a person and how long does it last to be relevant for

behavior. Relatedly, it is key to consider how much between-

person variation there has to be in a given CAP state pattern

to reveal individual symptom variation across a clinical sam-

ple - thus making it a trait-like neural marker of psychiatric

symptoms. The results of this study highlight how critical it

might be to parse transient (state) or persisting (trait) CAP

properties when it comes to clinical applications.

In other words, mental health symptoms can be consid-

ered to vary between people (i.e. as a trait) or vary within a

person (i.e. as a state), which can be quantified separately.
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Trait anxiety, for example, is the tendency of a person to

experience anxious affect across a broad range of contexts

and for extended periods of time. In contrast, state anxiety

is clinically defined anxiety occurring in the present moment

(53, 54). The current findings suggest that the probability of

exhibiting high anxiety in general and the likelihood of be-

ing anxious at any given moment may be linked to the same

underlying neural co-activation pattern occurrence. We posit

that this may be a general phenomenon that can be extended

to other mental health outcomes. Therefore, it would be valu-

able in future work to study the combined contributions of

state and trait neural features in predicting the severity and

likelihood of occurrence for a mental health outcome (55).

Finally, an important consideration here is that we did not

evaluate the impact of sample size on the estimation of CAPs

and their properties. It is possible that with a smaller sample

size or different composition of the sample, there might be a

reduced chance of observing a specific CAP (e.g. CAP III)

or even detect new CAPs. This could occur because a partic-

ular CAP may be rare, especially when it relates to a neural

pattern that is uncommon in the general population, which

may be the case for neuropsychiatric or neurological symp-

toms. Another important aspect to consider is the extension

of this work to pediatric and adolescent samples, given that

there may be a substantially different configuration of CAPs

as the human brain develops.

Conclusions

Understanding how the brain generates co-activated pat-

terns of neural activity over time is critcal to derive repro-

ducible brain-wide patterns of neural dynamics that occur

in humans. Here we advance this goal by quantifying state

(within-subject) and trait (between-subject) variance com-

ponents of neural co-activations. We do so by leverag-

ing rich spatial-temporal information embedded in the en-

tire range of rs-fMRI BOLD signals, which reveals three co-

activation patterns (CAPs) that reflect brain-wide motifs of

time-varying neural activity. Critically, we demonstrate a

reproducible estimation of spatio-temporal CAP features at

the single-subject level. We found that distinct parameters of

CAP temporal characteristics, such as occupancy and persis-

tence, can be studied together and represented as either state

or trait features. In turn, we show that a low-dimensional

neural feature space captures both state and trait variation in

CAP parameters, which in turn exhibit behaviorally-relevant

characteristics. Specifically, people who showed longer time

spent in a given CAP, longer persistent periods within a CAP,

as well as higher variation in transitioning between all CAPs,

also showed higher cognitive function, improved emotion

regulation, and lower alcohol and substance use. Critically,

person-specific probability of occupying a particular CAP

was highly reproducible and associated with both neural and

behavioral features. This highlights the importance of study-

ing CAP-derived measures as a neural marker that may be

altered as a function of mental health symptoms and may

change developmentally. Collectively, these results show that

a reproducible pattern of neural co-activation dynamics in hu-

man, which capture both within- and between-subject vari-

ance that in turn maps onto functional life outcomes across

people.

Methods

Human Connectome Project (HCP) dataset. Participants

were recruited from Washington University (St. Louis, MO)

and the surrounding area. We selected participants from the

S1200 release of the HCP who had no family relations, re-

sulting in a total of 337 participants included in our analyses.

The dataset contains resting-state fMRI data from 180 fe-

males and 157 males, with age range 22-37 (mean age=28.6,

SD=3.7), 90% right-handed. Informed consent was obtained

from each participant as directed by the institutional review

board at Washington University at St. Louis. Each partici-

pant underwent a total of four resting-state BOLD sessions.

Additional details about the dataset and preprocessing meth-

ods can be found in the Supplementary Materials and in the

work by Ji et al. (2023) (44). All analyses were approved by

the Yale IRB.

Functional brain-wide parcellation. We applied a re-

cently developed Cole-Anticevic Brain Network Parcella-

tion (CAB-NP) parcellation (43), which defines 12 func-

tional networks and 718 regions across cortex and sub-

cortex that leveraged the Human Connectome Project’s

Multi-Modal Parcellation (MMP1.0) (43, 56). The fi-

nal published CAB-NP 1.0 parcellation solution can

be visualized via the Brain Analysis Library of Spa-

tial maps and Atlases (BALSA) resource (https://

balsa.wustl.edu/rrg5v) and downloaded from the

public repository (https://github.com/ColeLab/

ColeAnticevicNetPartition). The CAP-NP parcel-

lation is comprised of (i) 180 bilateral cortical parcels (a to-

tal of 360 across both left and right hemispheres), consistent

with the Human Connectome Project’s Multi-Modal Parcel-

lation (MMP1.0) (56), and (ii) 358 subcortical parcels de-

fined using resting-state functional BOLD covariation with

the cortical network solution (43).

CAP analysis. We identified moment-to-moment changes in

the whole brain rs-fMRI BOLD signals at each time point and

quantified the spatial patterns of co-activation (CAPs) across

individuals, as well as individual variations in CAP tempo-

ral organization (30). The analytic framework proposed in

this study is described in Supplementary Fig. S1 and imple-

mented using Python 3.6.15 using the Yale High Performance

Computing resources. In each permutation, N = 337 subjects

are randomly split into two equal-sized groups (n = 168, non-

overlapping subjects). Within each split, a 4,000 × 718 ar-

ray of rs-fMRI data are temporally concatenated across sub-

jects. The time-frames are clustered based on spatial similar-

ity using the K-means clustering algorithm, with the number

of clusters (k) estimated by varying k from 2 to 15. The

K-means clustering was initialized by selecting randomly-

generated centroids using sampling based on an empirical

probability distribution of the points’ contribution to the over-
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all inertia. The maximum iteration for a single run was set to

1,000. Once an optimal number k is determined, a CAP was

obtained by averaging the time-frames within each cluster in

each parcel.

Occurrence rate (%) of the k = a solution was calculated

by the number of permutations resulting in a clusters divided

by the total number of permutations (1,000). Co-occurrence

rate (%) of the k = a solution in both splits was determined

by the number of permutations resulting in the same num-

ber of clusters divided by the total number of permutations.

Lastly, an k-CAP basis set was obtained by using the agglom-

erative hierarchical clustering of the CAPs estimated from all

permutations (Supplementary Fig. S2).

The probability of CAP occurrence, which can be in-

terpreted as an individual’s preference for a specific CAP,

was quantified examining the number of permutations that

resulted in a specific solution k out of 1,000 permutations.

Specifically, we compared the probability to have k CAPs in-

volving the CAP of interest and the probability to have k −1
CAPs without involving the CAP of interest, similar to the

approaches comparing full and reduced models. First of all,

for example, across 1,000 split-half permutations, a subject

may be involved in split 1 data (and not in split 2) for 500

permutations. Then, when only considering split 1 data from

these 500 permutations, we can compute the number of per-

mutations that resulted in k and the number of permutations

that resulted in k − 1, assuming the reproducible estimation

of spatial topography of k CAPs across permutations. In each

split, we compute the difference (occurrence of k CAPs) mi-

nus (occurrence of k − 1 CAPs) to quantify an individual’s

preference for a specific CAP.

To identify the principal geometry of the state-trait neural

feature space, thirty neural features are estimated for each in-

dividual: three neural measures (FO, mean DT, and var DT)

× five CAPs (I+, I-, II+, II-, and III) × 2 days. These neural

features were collected across subjects to create a subject-by-

feature matrix. Two analyses are performed on this subject-

by-feature matrix. First, agglomerative hierarchical cluster-

ing was applied to the feature matrix. The number of clusters

was determined using a distance cut-off value of 70% of the

final merge in the dendrogram. Second, PCA was applied to

this subject-by-feature matrix to estimate the principal geom-

etry of this state-trait feature space identifying subgroups.

Behavioral data analysis. The analysis of behavioral data

was implemented using the method described in (23). We

performed PCA on 262 variables across 15 behavioral do-

mains from the HCP S1200 unrestricted and restricted be-

havioral data (Supplementary Fig. S10). Behavioral vari-

able names and the corresponding domains used in this anal-

ysis were identical to the variable names provided by the

HCP data dictionary for the S1200 data release. When both

age-adjusted and un-adjusted data are available, we use age-

adjusted data only. To study the association between indi-

vidual scores on the first behavioral PC and individual scores

on the first three neural PCs, we use the multiple linear re-

gression model (behavioral PC 1 ∼ neural PC 1 + neural PC

2 + neural PC 3 + age + sex). The association between a

neural PC and the behavioral PC 1 was assessed by calcu-

lating the partial R2, regression coefficient β, standard error

(SE). The significance of regression coefficients was deter-

mined by computing the corresponding t-scores. Partial R2

was defined as the coefficient of partial determination which

is measured by the proportional reduction in sums of squares

after a variable of interest is introduced into a model. Visual-

ization and statistical analyses were conducted using Python

3.6.15 and R Studio v.2022.12.0.

Data Availability. All primary results derive from data that

is publicly available from sources described above.

Code Availability. Codes used in this paper are available

from https://github.com/Kangjoo/pycap.
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