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Metagenomic assembly enables new organism discovery from microbial
communities, butit can only capture few abundant organisms from most
metagenomes. Here we present MetaPhlAn 4, which integrates information
from metagenome assemblies and microbial isolate genomes for more
comprehensive metagenomic taxonomic profiling. From a curated
collection of 1.01 M prokaryotic reference and metagenome-assembled
genomes, we define unique marker genes for 26,970 species-level genome
bins, 4,992 of them taxonomically unidentified at the species level.
MetaPhlAn 4 explains ~20% more reads in most international human gut
microbiomes and >40% in less-characterized environments such as the
rumen microbiome and proves more accurate than available alternatives
on synthetic evaluations while also reliably quantifying organisms with

no culturedisolates. Application of the method to >24,500 metagenomes
highlights previously undetected species to be strong biomarkers for host
conditions and lifestyles in human and mouse microbiomes and shows that
even previously uncharacterized species can be genetically profiled at the
resolution of single microbial strains.

Over the last 25 years, shotgun metagenomic sequencing' and associ-  isolates have been expanded to apply to shotgun metagenomes, but
ated computational methods have developed asrobust, efficientways ~ while they excel in identifying new organisms from communities,

to study the taxonomic composition®®

and functional potential*’®of  their sensitivity is often limited by such environments’ complexity’.

complex microbial communities populating human, animaland natural ~ Reference-based computational approaches complement assembly
environments. Genome assembly methods developed for microbial  byrelying onannotated reference sequence information to accurately
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identify and quantify the known taxa and genes presentin a microbiome
by homology instead*”. This set of methods enabled deep exploration
of human microbiomes and the discovery of microbial associations
with multiple health conditions'**® and dietary patterns” 2, as well
asthe characterization of the evolution and transmission of microbial
species and strains®?’, However, reference-based methods can only
detect cataloged microbial species included in available reference
databases, which typically only represent afraction of the community
members across environments, thus limiting the interpretation of
shotgun metagenomes™.

Conversely, de novo metagenomic assembly to reconstruct
draft genes and genomes—called metagenome-assembled genomes
(MAGs)—has advanced to the point of very high specificity (albeit
oftenlow sensitivity) for recovery directly from metagenomes® *. This
allowsrecovery of microbial sequences that have not yet beenisolated
or characterized and are thus absent from reference databases’®. As
metagenomic assembly and binning have improved dramatically in
the last few years®*, large-scale MAG catalogs have been compiled
and comprise a vast amount of unknown and uncultivated microbial
species populating diverse environments” *¢. However, such metagen-
omic assembly techniques are typically able to capture only a limited
fraction of the organismsin complex communities due to insufficient
coverage for many taxa, the presence of genetically related taxaimped-
ing or creating spurious assemblies and difficulties in quality control
of the resulting MAGs”’.

Toleverage the best aspects of bothreference-and assembly-based
metagenome profiling, we present MetaPhlAn 4, a method that
exploits an integrated extended compendium of microbial genomes
and MAGs to define an expanded set of species-level genome bins*?
(SGBs) and accurately profile their presence and abundance in metage-
nomes. SGBs represent both existing species (known or kSGBs) or
yet-to-be-characterized species (unknown, uSGBs) defined solely
based onthe MAGs*. Froma collection of1.01 M bacterial and archeal
MAGs and isolate genomes integrating the most recent genome cata-
logs*~* and additional newly assembled MAGs spanning multiple
environments, we firstexpanded the definition of 54,596 SGBs and then
defined SGB-specific unique marker genes (that s, genes uniquely char-
acterizing each SGB) for 21,978 kSGBs and 4,992 uSGBs. The resulting
dataset expands the existing MetaPhlAn algorithm”* to enable deeper
and more accurate quantitative taxonomic analyses of human, host
associated and environmental microbiomes and providesinsightsinto
anumber of studies associating the microbiome with host conditions.

Results

MetaPhlAn 4 profiling of species-level genome bins

MetaPhlAn 4 expands and improves existing capabilities to perform
taxonomic profiling of metagenomes by exploiting a framework in
which extensive metagenomic assemblies are integrated with exist-
ing bacterial and archaeal reference genomes. These are then jointly
preprocessed to allow efficient metagenome mapping against mil-
lions of unique marker genes, ultimately quantifying both isolated
and metagenomically assembled organisms in new communities. The
algorithm augments that used by previous versions in four main ways
asfollows: (1) the adoption of SGBs**as primary taxonomic units, each
of which groups microbial genomes and MAGs into consistent existing
species and newly defined genome clusters of roughly species-level
diversity; (2) the integration of over 1 M MAGs and genomes into
this SGB structure to build one of the largest databases of confident
microbial reference sequences currently available; (3) the curation
of microbial taxonomic units based on the consistency of taxonomi-
cally labeled microbial genomes and the assignment of new taxonomic
labels to SGBs solely defined on MAGs and (4) the improved procedure
to extract unique marker genes out of each SGB for the MetaPhlAn
reference-based mapping strategy” . MetaPhlAn 4 thus leverages
aspects of both metagenomic assembly, with its potential to uncover

previously unseen taxa‘®~*>* and the sensitivity of reference-based pro-

filing to provide accurate taxonomic identification and quantification.

The adoption of SGBs as the primary unit of taxonomic analysis
is central to this approach*. Briefly, an SGB** delineates a microbial
species purely based on the clustering of whole-genome genetic dis-
tances at 5% genomic identity*” and a taxonomic label can then be
assigned to the SGB based on the presence (or not) of characterized
genomes from isolate sequencing. This definition permits arbitrary
microbial genomes to be organized ina manner not unlike amplicons
into operational taxonomic units (OTUs) and matches remarkably
well the expected boundaries of the existing taxonomy****5, Available
microbial reference genomes and medium-to-high-quality MAGs are
thus grouped into taxonomically well-defined species (‘known’ SGBs
or kSGBs when anisolate genome with available taxonomy is present
inthe SGB) or unknown equivalent clades (uSGBs).

Following the SGB clustering approach, the database employed by
MetaPhlAn 4 contains SGBs that result from the merging of species that
were originally incorrectly taxonomically labeled as separate species.
For example, genomes assigned in NCBI* to Lawsonibacter asaccha-
rolyticus and Clostridium phoceensis are 98.7% identical, likely due to
independent naming of members of a new species and were merged
into the SGB15154 (Supplementary Table 1). This merging also applies
to taxonomic species that are genetically difficult or impossible to
distinguish (for example, species of the Bacillus cereus group, geneti-
cally differentiated only by their plasmidic sequences®) and are thus
clusteredinthe same SGB. Conversely, species with subclades diverg-
ing for more than 5% genetic identity were splitinto multiple SGBs (for
example, Prevotella copri is represented by four different SGBs”, or
Faecalibacterium prausnitziiwith SGBs representing its distinct (sub)
species’; Supplementary Table 1). Finally, incorrectly or partially taxo-
nomically classified reference genomes were detected and amended
based onthe detection of outlier labels resulting from misspellings or
incorrect assignments by NCBI genome submitters (for example, the
Staphylococcus epidermidis SGB7865 is composed of 700 reference
genomes, 32 of which have different or unspecified species labels in
the NCBI database®’, Supplementary Table1).

To derive the database of SGBs to be profiled in MetaPhlAn 4, the
isolate genome component included 236,620 bacterial and archeal
genomes available in NCBI** and labeled as ‘reconstructed fromisolate
sequencing or single cells’. These were integrated with 771,528 MAGs
assembled from samples collected from humans (five distinct main
humanbodysites, 164 distinct human cohorts), animal hosts (including
22nonhuman primate species) and nonhost-associated environments
(including soil, fresh water and oceans; Supplementary Tables 2 and 3).
After removing reference genomes and MAGs that did not meet quality
control criteria (thatis, genome completeness above 50% and contami-
nationbelow 5%; see Methods), the catalog comprised 729,195 genomes
(560,084 MAGs and 169,111 reference genomes) and was Mash** clus-
tered into SGBs at 5% sequence similarity** for the final database of
70.9 kSGBs, 47.6 k of which are taxonomically unknown at the species
level (uUSGBs; Fig. 1a). This catalog spans 95 different phylathat are quite
consistently enriched by uSGBs (Supplementary Table 4). In compari-
sonwith the original SGB catalog*, the current collectionintegrates 3.6
times more MAGs from highly diverse environments (Supplementary
Table 3) and resulted in the definition of 4.3 times more SGBs. While
the repository can be used for genome-based studies at alarger scale
thanwhat has been described so far** #4555 we focused here on the
task of identification and quantification of taxafrom metagenomes. To
thisend, and to decrease the potential rate of false-positive detection
of SGBs without strong support or that are extremely rare, we retained
only the uSGBs containing at least five MAGs from distinct samples for
subsequent metagenome profiling, resulting in afinal catalog 0f29.4 k
quality-controlled SGBs (see Methods).

From this SGB genome catalog, we built the pangenome of each
SGB (collection of all gene families found in at least one genome in
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Fig.1|MetaPhlAn 4 integrates reference sequences fromisolate and
metagenome-assembled genomes for metagenome taxonomic profiling.
a,Fromacollection of 1.01 M bacterial and archeal reference genomes and
metagenomic-assembled genomes (MAGs) spanning 70,927 species-level
genome bins (SGBs), our pipeline defined 5.1 M unique SGB-specific marker
genes that are used by MetaPhlAn 4 (avg., 189 + 34 per SGB). b, The expanded
marker database allows MetaPhlAn 4 to detect the presence and estimate the

relative abundance 0f 26,970 SGBs, 4,992 of which are candidate species without
reference sequences (USGBs) defined by at least five MAGs. The profiling is
performed firstly by (1) aligning the reads of input metagenomes against the
markers database, then (2) discarding low-quality alignments and (3) calculating
the robust average coverage of the markersin each SGB that (4) are normalized
across SGBs to report the SGB relative abundances (see Methods). All data are
presented asmean +s.d.

the SGB) and used them to identify species-specific marker genes for
MetaPhlAn profiling. The pangenomes were built by categorizing the
coding sequences of all the 729 k genomes into UniRef90 clusters®®
when a 90% amino acid identity match was found within the UniRef
database, or by de novo clustering all remaining sequences at 90%
aminoacididentity following the Uniclust90 criteria®’ (see Methods).
From the resulting 50.6 M UniRef90 identities and 77.7 M new Uni-
clust90 gene families, we subsequently identified core gene families
(that is those present in almost all genomes and MAGs of an SGB; see
Methods) and then screened them for their species-specificity by
mapping against all sequences of all SGBs (see Methods). This pro-
cedure resulted in 5.1 M total unique marker genes spanning 26,970
high-quality SGBs, with an average of 189 + 34 unique marker genes per
SGB. MetaPhlAn 4 taxonomic profiling uses these markers to detect the
presence of an SGB (known or unknown) in new metagenomes based on
the detection viaread mapping of asufficient fraction of SGB-specific
marker genes (default 20%) and quantifies their relative abundance
based onthe within-sample-normalized average coverage estimations
(see Methods; Fig. 1b).

MetaPhlAn 4 improves the performance of taxonomic
profiling

To evaluate the taxonomic profiling performance of MetaPhlAn 4,
we first assessed its ability to profile well-characterized species (that
is, those belonging to kSGBs) in comparison with available methods
by using 133 synthetic metagenomes (-4B total reads). Most of these
synthetic samples (128) are from the CAMI 2 taxonomic profiling
challenge® representing host-associated and marine communities,
whereas the other five are additional nonhuman synthetic metagen-
omes (derived from SynPhlAn; see Methods) representing more diverse
environments than in previous evaluations®.

Through the OPAL benchmarking framework®, we evaluated
MetaPhlAn 4 in comparison with MetaPhlAn 3 (ref. *), mOTUs 2.6
(ref. ®) (latest database available as for March 2021) and Bracken 2.5
(ref.°) (with two databases, one built using the April 2019 RefSeq
release®” and another one built using the GTDB release 207 (ref. ©*)).
Duetothe high false-positive rates reported by Bracken 2.5, we decided
to evaluate its performance by filtering out low-abundant hits (mini-
mum relative abundance 0.01%; Supplementary Fig. 1). MetaPhlAn
4 outperformed the other tools when assessing the F1 score (Fig. 2a)

computed based on the common reference NCBI taxonomy. This was
true despite the fact that OPAL does not consider SGB-defined spe-
cies groups (that is, single species incorrectly taxonomically labeled
as separated species and included in the same SGB), thus penalizing
MetaPhlAn 4 profiling that cannot match the corresponding labels;
the new version still achieved a higher number of species correctly
detected compared with MetaPhlAn 3 across all simulations (avg.,
96.65 £ 66.08 and 85.32 + 61.95 true positives, respectively) while
maintaining a low number of false positives (avg., 16.09 +17.65 and
13.63 +£16.56, respectively; Supplementary Fig. 2a,band Supplementary
Table 5). Most of the false positives (84.6%) were due to the new labels
of SGB-defined species groups (for example, the Marinilactibacillus sp.
15R, presentin almostall the CAMI 2 oral metagenomes, belongs to the
Marinilactibacillus piezotolerans SGB7875 species group) and are thus
also notstrictly false positives. In fact, further evaluation using single
isolate sequences (see Methods) showed no false-positive hits when
running MetaPhlAn 4 with default parameters, and no false negatives
inall cases witha coverage > 0.5x. This coverage threshold means that
MetaPhlAn4is guaranteed to detectall SGBs thatare at arelative abun-
dance of atleast 0.01% for ametagenomic sample at astandard depth
of 10Gbases with detection at lower abundances frequently possible
(Supplementary Table 6). The improvement in recall is substantially
explained by the expanded catalog of reference genomes included in
MetaPhlAn 4 (169.1 k genomes spanning 31.9 k species in comparison
with 99.2 kgenomes from13.5 k species in MetaPhlAn 3).

We then evaluated the relative abundance quantification per-
formance of MetaPhlAn 4 using Bray-Curtis (BC) dissimilarity and
root-mean-square error (RMSE) with respect to synthetic reference
community compositions. MetaPhlAn 4 outperformed the alter-
native methods (avg. BC, 0.13 + 0.07; avg. RMSE, 0.016 + 0.019),
including the previous MetaPhlAn version 3 (avg. BC, 0.19 + 0.12;
avg. RMSE, 0.019 + 0.018; Supplementary Table 7 and Fig. 2a). The
quality of the marker set is likely the driving factor of this improve-
ment, a consequence of the phylogenetic consistency of the SGBs
that ensures thatidentically-labeled taxa are genomically consistent.
This avoids hard-to-detect taxonomic mislabeling in the original,
manually assigned taxonomic labels and allowed us to obtain a set of
marker genes that (1) is larger (avg., 189 + 34 per SGB as compared to
84 + 47 per speciesin MetaPhlAn 3), (2) morereliable (Supplementary
Table 6 and Supplementary Fig. 3) and (3) more unique (99.3% of the
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Fig.2|MetaPhlAn 4 improves sensitivity and specificity of metagenome
taxonomic profiling. a, To evaluate its performance in taxonomic profiling,
MetaPhlAn 4 was applied to synthetic metagenomes representing host-
associated communities from the CAMI 2 taxonomic profiling challenge®
(n=128 samples) and the SynPhlAn-nonhuman dataset (n = 5 samples),
representing more diverse environments from previous evaluations®. Species-
level evaluation using the OPAL framework® shows that MetaPhlAn 4 is more
accurate than the available alternatives in both the detection of which taxa
are present (the F1score is the harmonic mean of the precision and recall of
detection) and their quantitative estimation (the BC beta-diversity is computed
between the estimated profiles and the abundances in the gold standard).
Additional evaluations performed using genomes within the SGB organization
(labeled ‘SGB evaluation’; see Methods) show that MetaPhlAn 4 further improves

T T
Ocean Fresh-
water

T T T
Rumen Soil Mixed
accuracy at this more refined taxonomic level. See Supplementary Tables 5 and
7 for more details (GI, gastrointestinal; UT, urogenital tract). b, MetaPhlAn 4 was
applied to synthetic metagenomes (n = 70 samples) modeling different host and
nonhost-associated environments and containing, on average, 47 genomes from
both kSGBs and uSGBs (see Methods). This evaluation directly on SGBs shows
the reliability of MetaPhlAn 4 to quantify both known and unknown microbial
species. Additional evaluation based on a mixture of new MAGs from samples
not considered in the building of the genomic database (mixed evaluation,
n=>5samples) stresses its accuracy independently from the inclusion of the
profiled datain the database. See Supplementary Tables 9 and 10 for more details
(NHP =nonhuman primates, W = westernized, NW =nonwesternized). Box plots
inaand b show the median (center), 25th/75th percentile (lower/upper hinges),
1.5xinterquartile range (whiskers) and outliers (points).

markers in comparison with 72.7% in MetaPhlAn 3, and from 3.8x to
15.55x less randomly assigned reads depending on the environments;
Supplementary Table 8).

Apropos, because these evaluations were not able to account
for modifications of species taxonomy that avoid these issues, we
then evaluated MetaPhlAn 4 on the same synthetic metagenomes, but
using SGB-based taxonomy (see Methods). By considering asthe gold
standard label for each genome in the synthetic community the SGBs
it belongs to, MetaPhlAn 4 achieved high accuracies when assessing
both the F1score (avg., 0.95 + 0.06) and the BC dissimilarity (avg.,
0.031+0.023; Fig. 2a).

Finally, we assessed the performance of MetaPhlAn 4 to specifi-
cally detect uSGBs representing clades without taxonomically charac-
terized isolates. We constructed 65 synthetic metagenomes simulating
microbiomes from 12 different human body sites, animal hosts and
nonhost-associated environments, using both kSGBs and uSGBs that

were found and reconstructed in real metagenomes in each of the
environments viametagenomic assembly (see Methods). We also built
five additional synthetic metagenomes using a mixture of MAGs and
reference genomes from samples notincludedin our original genomic
database (see Methods). MetaPhlAn 4 showed accuraciesin the detec-
tionand quantification of uSGBs (avg. F1score, 0.97 + 0.02; Fig.2b and
Supplementary Fig. 2¢,d) that were on par with those of known species
(kSGBs; avg. F1score, 0.96 + 0.024; Fig. 2a). Both the F1score and the
BCsimilarity tothe gold standard were consistent across all the differ-
entenvironments assessed. Synthetic samples based on the MAGs not
available at the time when the MetaPhlAn 4 database was built yielded
similar results (avg. F1score, 0.98 + 0.006; Fig. 2b and Supplementary
Tables 9 and 10). Altogether, MetaPhlAn 4 outperformed the other
available tools on synthetic data and further provided quantification
of yet-to-be-characterized species, while maintaining high accuracy
for taxonomically well-defined species.
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Fig.3|MetaPhlAn 4 expands observable microbial diversity, primarily

by quantifying yet-to-be-characterized species (uSGBs). a, We applied
MetaPhlAn 4 profiling to a total of 24.5 k metagenomic samples from diverse
environments, highlighting its ability to detect microbiome compositions and
clear differences between them, even when considering distinct human body
sites and variable host lifestyles (Supplementary Fig. 5b and Supplementary
Table11). b, The expanded genomic database of MetaPhlAn 4 substantially
increases the estimated fraction of classified reads in comparison with the
previous MetaPhlAn version across habitat types (n = 24,515 samples).

¢, MetaPhlAn 4 detects on average 48 unknown bacterial species (uSGBs) per
human gut microbiome, and reaches up to more than 700 in other nonhuman
environments (n = 24,515 samples). d, The most prevalent microbial speciesin
the gastrointestinal tract of westernized populations are known species (kSGBs).

The ten most prevalent kSGBs in westernized and nonwesternized lifestyles
areshown ordered by their highest prevalence and reported together with the
number of MAGs assembled from human gut metagenomes in the MetaPhlAn
genome catalog. Species names are shown together with their SGB ID between
brackets. e, The most prevalent SGBs in nonwesternized populations belong
to yet-to-be-cultivated and named species. The ten most prevalent uSGBs of
each lifestyle are shown ordered by their highest prevalence. f, In westernized
populations, the most prevalent kSGBs and uSGBs vary across age categories.
The two most prevalent SGBs for each age category are shown. g, The fraction
of uSGBs relative to kSGB increases after infancy (n =19,468). Box plots in

b, cand g show the median (center), 25th/75th percentile (lower/upper hinges),
1.5x interquartile range (whiskers) and outliers (points). NHP, nonhuman
primates; W, westernized; NW, nonwesternized; A, ancient.
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Fig.4|MetaPhlAn 4 enables accurate metagenomic profiling of mouse
microbiomes containing few cultured isolate taxa. a, MetaPhlAn 4 taxonomic
profiling of a cohort of mouse gut microbiome samples (n = 181samples),
spanning eight genetic backgrounds and six different vendors® revealed that the
majority of detected microbial taxa are uncharacterized SGBs (uSGBs) that do
not containasequenced isolate representative. b, Some of the most prevalent
families in the mouse gut microbiome (n = 181 samples) are still unclassified at
the family level (uFGBs). FGBs detected in at least 20% of the samples (circles and
right-side y axis) and with amedian relative abundance above 1% (box plots and
left-side y axis) are shown. ¢, Random effects models applied to the MetaPhlAn

4 profiles revealed that most of the high- and low-fat diet microbial biomarkers
are uncharacterized species (FDR < 0.2). log,,-transformed relative abundances
of the microbial biomarkers are represented in the heatmap and their effect size
(linear model beta coefficient) in the bar plots. For kSGBs, species names are
shown together with their SGB ID between brackets. SGB41568 is reported in
NCBIl as assigned to an unclassified phylum, and we thus report only the kingdom
label. SMUC = Southern Medical University in China, CMR = Craniofacial Mutant
Resource at the Jackson Laboratory (Jax). Box plots ina and b show the median
(center), 25th/75th percentile (lower/upper hinges), 1.5 interquartile range
(whiskers) and outliers (points).

MetaPhlAn 4 expands the profiled fraction of metagenomes

The MetaPhlAn 4 database expands the number of quantifiable
known microbial species (18.4 k more species than in MetaPhlAn 3)
and refines the resolution of many species described by kSGBs
(21,978 kSGBs, with avg. 1.15 kSGBs per species), and includes 4,992

yet-to-be-characterized microbial species (USGBs). We assessed its
resulting increased ability to explain a larger fraction of the reads
in a metagenome by profiling a total of 24.5 k metagenomic sam-
ples (145 distinct studies, Supplementary Table 11) from different
human, animal and nonhost-associated environments (Fig. 3a and
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Fig.5|MetaPhlAn 4 reveals strong links between the unknown fraction of
the human gut microbiome and host diet and cardiometabolic markers.

a, Compared to the original results from the ZOE PREDICT 1study based on the
MetaPhlAn 3 taxonomic profiles®?, random forest (RF) models trained on the
MetaPhlAn 4 microbiome profiles (n =1,001samples) substantially improve
classification (circles and right-side y axis) and regression (box plots and left-
side y axis) result for a panel of 19 markers representative of nutritional and

-0.2-01 0 01 0.2

cardiometabolic health (see Methods). Box plots show the median (center),
25th/75th percentile (lower/upper hinges), 1.5x interquartile range (whiskers)
and outliers (points.) b, Panel of the 20 unknown microbial species (uUSGBs)
showing the strongest overall correlations with the positive (top-halflist)

and negative (bottom-halflist) dietary and cardiometabolic health markers,
respectively ("FDR < 0.2).

Supplementary Fig. 4). We further divided the 19.5 khuman metage-
nomes based on the body site of origin and the lifestyle (that is, west-
ernized or nonwesternized) of the donor (for a full description of
westernization, see Methods).

In the resulting taxonomic profiles, MetaPhlAn 4 detected 11,132
SGBs presentin at least 1% of the samples of one of the environments,
3,527 of which (31.68%) were taxonomically unknown at the species
level (uSGBs). The new profiles explained a much larger fraction of
thereadsin the metagenomic samples compared to the previous ver-
sion across all environments (Fig. 3b). Within the human body sites,

the improvement was high for the airways (avg. 1.95-fold increase
of explainable reads), and substantially higher improvements were
reached for samples from, for example, the gut microbiomes of nonhu-
man mammals ranging from the average 3.26-fold increase of the wild
miceto14.15-fold increase inthe rumen. For these animals, the average
number of uSGBs detected surpassed that of the kSGBs (with the excep-
tion of the nonhuman primates; Fig. 3c and Supplementary Fig. 5a).
Theseincreases were consistent with the number of newly considered
MAGs that defined new uSGBs from nonhuman microbiomes (90,606
MAGs defining 1,287 uSGBs).
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Fig. 6| StrainPhlAn 4 accurately reconstructs large-scale strain-level
phylogenies of uncharacterized microbial species. a, Relative abundances

(box plots and top-part yaxis) and prevalences (bar plots and bottom-part y axis)
ofthe uncharacterized species (USGB) Lachnospiraceae SGB4894 are substantially
higher in healthy individuals (n =738 samples) in comparison with patients
suffering from several gastrointestinal related diseases (n = 1,183 samples), and this
difference is reproducible across populations (one-sided Mann-Whitney Utest).

Lifestyle |
. Continent /-

Host ¥ Ancient v Captive NHP % Wild NHP
Lifestyle @ Westernized @ Nonwesternized
Continent © Africa @ Asia @ Europe O N.America
@ S. America @ Oceania

Box plots show the median (center), 25th/75th percentile (lower/upper hinges),
1.5xinterquartile range (whiskers) and outliers (points). b, Lachnospiraceae
SGB4894 shows within-species genetic diversity strongly linked to geographic
origin and lifestyle. c, Pairwise geographic distances between strains of different
countries correlate with their median genetic distances (Spearman’s p = 0.505;
see Methods), suggesting that human Lachnospiraceae SGB4894 strains could
have followed anisolation-by-distance pattern.

Environmental ecosystems had metagenomes that were gener-
ally less explained by the taxa considered in MetaPhlAn 4, with soil,
in particular, remaining poorly characterized due to its remarkable
microbial variability and the lack of systematic large metagenomic
efforts targeting it (only 2,495 MAGs defining 26 uSGBs in our data-
base), while the ocean microbiome had a 6.65-fold increase, largely
due to the inclusion of the Tara ocean MAGs*®* in the SGB database
(Fig. 3c). Overall, uSGBs were instrumental to increase the fraction of
metagenomes profileable by MetaPhlAn 4 (Fig. 3b), as they accounted
for an average of 23.13% (s.d.: 17.89%) of the richness of the resulting
profiles across all environments (Fig. 3¢).

SGB profiling reveals species overlaps across environments
Akeyadvantage of reference-based metagenomic profilingas compared
to assembly isits ability to detect low-abundant and hard-to-assemble
genomes’>**40424345 This allows the generation of confident ecologi-
cal statistics regarding prevalent and rare taxa, which are difficult to
quantifyaccurately in the presence of many technical nondetectionsin
datasolely from metagenome assemblies. On this dataset, MetaPhlAn
4identified1,657 SGBs found in at least 1% of the samples from the gut
of nonwesternized human populations (550 of these being uSGBs),
331SGBsat the same prevalence threshold in the typically low-diverse
human vaginal microbiome (61 of which are uSGBs) and intermediate
numbers in other environments (Supplementary Fig. 5b).

This confirmed that gut metagenomesretrieved fromancient sam-
ples (ranging from 5,300 to 150 years ago in the available datasets) pos-
sessed more SGBs in common with those at >1% prevalence in the gut
microbiome of modern nonwesternized populations (1,039 SGBs) than
of westernized ones (748 SGBs), despite the dominance in datasets and
databases of data derived from westernized populations (-ten times
more samples; Supplementary Fig. 5b and Supplementary Table 3).
Similarly, and adopting the same prevalence threshold at 1%, the SGBs
found in the gut of nonhuman primates (including those in captivity)
overlapped more with gut samples from ancient microbiomes (879
SGBs) than with modern ones (668 SGBs), further highlighting the
effect of lifestyle in shaping the human microbiome (Supplementary
Fig.5b). A similar environmental adaptation canbe observed in the gut
microbiome of laboratory mice, in which many more modern human
gut SGBs were found (481 SGBs) compared to those from wild mice
(53 SGBs). Twenty-eight SGBs were present at >1% prevalence in all
humanbody sites (Supplementary Table 12), comprising typically oral
microbes that canreach the lower gastrointestinal tract, can contami-
nate the skin and can colonize other mucosal sites such as the vagina,
that is, the Haemophilus parainfluenzae group (SGB9712), the Strep-
tococcus salivarius group (SGB8007), Veillonella parvula (SGB6939),
Rothia mucilaginosa (SGB16971) and Streptococcus oralis (SGB8130).

Species that overlap across environments at the same 1% prev-
alence threshold can also spot potential contamination as it is the
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case of the only nine SGBs shared between the modern human gut
and ocean water samples (Supplementary Table 13). These were pre-
dominantly skinand oral microbes likely to contaminate low-biomass
water samples during laboratory procedures as follows: Cutibacterium
acnes (SGB16955), Staphylococcus aureus (SGB7852), Streptococcus
thermophilus (SGB8002), Escherichia coli (SGB10068), V. parvula
(SGB6939), Staphylococcus epidermidis (SGB7865), Staphylococcus
hominis (SGB7858), Streptococcus mitis (SGB8163) and R. mucilaginosa
(SGB16971). Overall, the new MetaPhlAn 4 profiling highlights that
microbiomes from most nonhost-associated environments have little
overlap between themselves and the human microbiome (Supplemen-
tary Fig. 5¢), and that, as expected, human microbiomes from different
body sites have limited but relevant overlaps (Supplementary Table12).

MetaPhlAn 4 expands the panel of prevalent human gut species
We assessed the prevalence of SGBs in the gut microbiome of human
individuals (Supplementary Table 14) using 19.5 k human gut metagen-
omes from 86 datasets, spanning different age categories, geographic
locations and lifestyles (Supplementary Table 15). The most prevalent
SGBs in westernized populations were from known species (Fig. 3d),
specifically Blautia wexlerae (SGB4837, 89.2%), the Bacteroides uni-
formis group (SGB1836, 88.1%) and Phocaeicola vulgatus (previously
Bacteroidesvulgatus, SGB1814, 85.8%). Four distinct F. prausnitzii SGBs
appeared within the top ten most prevalent species, and three of them
had quite distinct prevalence in both lifestyles (Fig. 3d), highlighting
the ability of SGB profiling to increase the resolution of species that
are particularly genetically divergent™. Cibionibacter quicibialis**, as
well as several other species of interest considered kSGBs because
they have asequenced representative even though they remain largely
uncharacterized (for example, Oscillibacter sp. ER4) were also found
at high prevalence (Fig. 3d).

While most uSGBs had lower prevalence in this population,
4 uSGBs from the Ruminococcaceae family exceeded 75% prevalence,
and many of them were substantially more prevalent in nonwestern-
ized compared to westernized populations (Fig. 3e). The species with
the highest prevalence in each specific age category displayed variable
prevalence in the other age groups (Fig. 3f, Supplementary Fig. 6 and
Supplementary Table 14), and uSGBs tended to be particularly com-
moninchildhood, whichmay be under-studied relative toinfancy and
adulthood (Fig. 3g and Supplementary Table 16). Overall, the newly
established SGBs prevalence across population and lifestyles (Supple-
mentary Table 14) expands both the size and detail of that established
by prior metagenomic studies.

Biomarkers of diet in mice are dominated by uSGBs

MetaPhlAn 4 integrates 22,718 MAGs assembled from 1,906 mouse
gut metagenomes (both research laboratory mice and wild mice)
and defines 540 uSGBs, allowing greater resolution in profiling the
mouse gut. When applied to a heterogeneous public dataset of 184
mouse gut microbiomes spanning eight genetic backgrounds and six
different vendors (Supplementary Table 17)*>, MetaPhlAn 4 detected
632 different SGBs, 45.57% of them that would not be detected using
only MAGs reconstructed from the same samples’ set (Supplemen-
tary Table 18). As already noted in recent studies®® employing a
metagenomic-assembly-based workflow®’, most of the detected SGBs in
the mouse gut (60.8%) were uSGBs (Fig. 4a and Supplementary Fig. 7a).
Incontrast, only 108 total species were detected by MetaPhlAn 3 from
the same samples. Interestingly, of the 43 SGBs present in more than
75% of the samples, most are uSGBs; the 12 kSGBs themselves represent
poorly characterized species such as Lachnospiraceaebacterium28_4
(SGB7272), Doreasp.5_2(SGB7275) and Oscillibactersp.1_3 (SGB7266),
which were also the only ones detectable by MetaPhlAn 3. The poor
mappability of many mouse microbiomes against isolate genomes is
also reflected at taxonomic levels higher than species, as more than
half of the families (that is, family-level genome bins (FGBs) defined

similarly to SGBs but spanning up to 30% nucleotide divergence; see
Methods) present in more than 20% of the samples are still uncharac-
terized (UFGBs; Fig. 4b and Supplementary Fig. 7b).

To test the relevance of uSGBs in the context of typical mouse
microbiome studies, we recapitulated prior statistical tests to iden-
tify taxonomic biomarkers of high-fat (HF) versus normal chow diets
across host genetic backgrounds and vendors®. Applying linear mixed
models on the MetaPhlAn 4 taxonomic profiles and controlling for
sex, age, genetic background and vendor (see Methods; Supplemen-
tary Table 19), we identified 18 SGB biomarkers at FDR < 0.2 with an
averagerelative abundancein the associated diet >1% (Fig. 4c). Most
of the over-abundant biomarkers of a hyper-caloric diet were uSGBs
(13 uSGBs, 72% of the 18 biomarkers), in addition to three taxa that
could be detected using MetaPhlAn 3 (Lachnospiraceae bacterium
28_4SGB7272, Lactobacillusjohnsonii SGB7041and Faecalibaculum
rodentium SGB4047) and 2 kSGBs representing poorly characterized
species (Lachnospiraceae bacterium SGB41544 and Bacteroidales
bacterium SGB27761). While other approaches are already available
to exploit environment-specific MAG catalogs for metagenomic
profiling®¢°, MetaPhlAn 4’s ability to rapidly and accurately profile
species defined solely by MAGs (that is, uSGBs) appears particularly
relevant for under-characterized microbial environments in which
cultivated and sequenced taxastill represent asmall fraction of over-
all microbial diversity.

Stronger links between gut microbiome, diet and metabolism
We used MetaPhlAn 4 to extend links between the gut microbiome,
diet and host metabolism'*>*”° by re-analyzing metagenomes from
1,001 deeply phenotyped individualsinthe ZOE PREDICT 1study?. As
inthe original study, strengths of association between the microbiome
and both dietary and cardiometabolic host variables were evaluated
by testing the predictive power of random forest (RF) classifiers and
regressors trained on the taxonomic profiles (see Methods). Among
the 19 health and diet markers most strongly linked with the microbi-
ome according to MetaPhlAn 3 in the original work, all but two were
better predicted when incorporating MetaPhlAn 4 taxa (new median
AUC = 0.74,4.84% improvement; Fig. 5a). The highestimprovement was
found forthe10-year atherosclerotic cardiovascular disease (ASCVD)
risk (0.106 higher AUC, 16.24% improvement), and the Healthy Eating
Index (HEI) score” achieved the strongest association (0.072 higher
AUC,10.05% improvement and 31% regression improvement).

Microbiome links with dietary indices were particularly improved
by considering uSGBs (Fig. 5a); previously, visceral fat and blood lipid
levels were generally more strongly microbiome-associated than
dietary indices using MetaPhlAn 3 profiles. This was substantiated by
the analysis of correlation between the abundance of each uSGB with
all 19 host diet, anthropometric and physiology indices. Indeed, the
strongest correlations (after accounting for age, sex and BMI; Fig. 5b)
mostly involved uSGBs (6 of the 10 SGBs most associated with healthy
conditions were uSGBs), and the three highest (absolute) correlations
involved Alphaproteobacteria SGB4777, positively correlating with
the alternate Mediterranean diet (aMED"?, p = 0.21) and HEI (p = 0.19)
scores, and negatively correlating with the uPDI (p = -0.25).

We further compared the SGBs newly linked to diet and biometrics
inthe ZOE PREDICT 1re-analysis to those associated with other health
and disease conditions in our broader human gut data MetaPhlAn 4
profiles. Among the ten uSGBs most health-associated based on the
average correlation ranks with the 19 reference markers selected from
the ZOE PREDICT 1 study, Lachnospiraceae SGB4894 emerged as a
particularly relevant taxon. This uSGB was prevalent in both contem-
porary human cohorts (44.33%in healthy individuals) and innonhuman
primates (41.36% prevalence). It was also present in 60% of the metage-
nomes available from ancient stool samples (Supplementary Fig. 8a),
suggesting that this taxon is an important, as-yet-uncharacterized
member of the healthy human microbiome.
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When comparing the relative abundances of Lachnospiraceae
SGB4894 in case/control studies across datasets spanning 11 dif-
ferent human diseases (see Methods; Supplementary Table 20), we
found statistically significant associations not only with conditions
directly linked with cardiometabolic health suchas ASCVD (P = 0.045)
and cirrhosis (P=9.20 x 107) but also with the inflammatory bowel
diseases (IBD; Fig. 6a). This included associations over three dif-
ferent cohorts of a higher abundance and prevalence of Lachno-
spiraceae SGB4894 with both of the main IBD subtypes, Crohn’s
disease (P=2.50 x10%,4.67 x 10°and 0.0016) and ulcerative colitis
(P=1.85x107%,3.89 x10"°and 1.28 x 10°%). Altogether, these results
show theimportance of profiling the unknown fraction of the micro-
biome even for relatively well-characterized environments, such
as the human gut, as microbial links with cardiometabolic blood
metabolites, dietary patterns and host diseases can alsoincorporate
and shed light on newly defined uSGBs.

StrainPhlAn 4 reconstructs large phylogenies of uSGBs

The unique clade-specific marker genes exploited by MetaPhlAn to
detect and quantify microbial taxa can also be used to reconstruct
the sample-specific genetic makeup of individual strains with the
StrainPhlAn approach*”®, MetaPhlAn 4 also extends StrainPhlAn 4 to
be applicable to SGBs, and thus to uncharacterized species (USGBs).
StrainPhlAn 4 uses the MetaPhlAn 4 mapping of reads against markers
to produce per-sample genotypes for the dominant strains per species
(for all SGBs with sufficient coverage). Compared to StrainPhlAn 3, we
improved the procedure to select and process markers and samples
with amore robust and validated set of default parametersand amore
stringent gap-trimming strategy. We also exploit the larger marker’s
database of more phylogenetically consistent SGBs (avg., 189 + 34 mark-
ers per SGB). This resulted in more accurate phylogenies compared to
the previous version, with an average of 1.33% increase in correlation
between StrainPhlAn phylogenetic distances and MAG-based phylog-
enies built onthe fraction of samples, in which high-quality MAGs could
bereconstructed (evaluation done on100 samples for the three most
prevalent kSGBs with consistent MetaPhlAn 3 species; Supplementary
Table 21 and Supplementary Fig. 9a-f; see Methods).

To illustrate the potential of StrainPhlAn profiling for uSGBs,
we continued our exploration of the health-linked Lachnospiraceae
SGB4894 introduced above, exploiting the same collection 0f 19.5 k gut
metagenomic samples used for MetaPhlAn 4 (Supplementary Table12).
This analysis incorporated all 5.8 k samples in which MetahlAn 4
detected Lachnospiraceae SGB4894, including 79 nonhuman primates
and 12 ancient human gut metagenomes (Supplementary Table 22).
StrainPhlAn 4 retained 37 SGB4894-specific marker genes (spanning
19,449 nucleotide positions after trimming the alignment to exclude
nonvariable positions) across the 1,683 samples, in which the tar-
get uSGB had enough coverage for strain profiling (samples with, at
least, 20 Lachnospiraceae SGB4894 markers reconstructed with >80%
breadth of coverage) and automatically built aphylogeny integrating
all strain profiles from among host types.

The resulting phylogeny showed that Lachnospiraceae SGB4894
is composed of multiple subclades, including one comprising strains
mostly fromindividuals from westernized populations and other two
instead dominated by individuals from nonwesternized or Chinese
populations, the latter also with higher intraclade diversity (Fig. 6b).
One strain reconstructed from a sample of palaeofaeces from -1,300
years ago”* was also integrated within the Lachnospiraceae SGB4894
phylogeny and placed as basal for the subclade of mostly European and
North Americanstrains (Fig. 6b), whereas the strains from nonhuman
primates tended to populate acommon, divergent region of the tree.

Lachnospiraceae SGB4894's phylogeny further demonstrated
geneticstructure linked to the geographic origin of the hosts (Fig. 6b).
Indeed, when considering pairs of strains sampled in different coun-
tries, we found a correlation between geographic and median genetic

distance (Spearman’s P = 0.505) that can be used to hypothesize
isolation-by-distance effects”, as previously shown for Helicobacter
pylori’® and Eubacterium rectale> (Fig. 6¢). Correspondingly, SGB4894
had a higher intrapopulation genetic variability in nonwesternized
populations (Mann-Whitney U test, P <2.22 x 107*¢; Supplementary
Fig.8b) and higherintrasubject polymorphism rates (calculated as the
percentage of basesinthe reconstructed markers withan allele domi-
nance below 80%, Mann-Whitney Utest, P=8.6 x 10™; Supplementary
Fig. 8c). StrainPhlAn 4 thus readily enabled phylogenetic reconstruc-
tion and population genetics for uncultivated, yet-to-be-named spe-
cies with high precision (see Methods; Supplementary Table 21 and
Supplementary Fig. 9g,h).

StrainPhlAn 4 also allows the analysis of strain sharing and trans-
mission between communities***?*”>””7 for uncharacterized species,
that is, uSGBs (see Methods). Notably, StrainPhlAn 4 estimated that
strains of Lachnospiraceae SGB4894 were not shared between mothers
and their <1-yearinfantsinall 21 cases inwhichit was reliably detected
inbothrelatives (Supplementary Fig. 8d). Similarly, only 5.63% of adults
inthe same household that were positive for Lachnospiraceae SGB4894
shared the same strain (Supplementary Fig. 8d), suggesting that stable
vertical and horizontal transmission for this species are both rare.
Thereis someevidence for horizontal transmission between host spe-
cies, however, as we found evidence of two captive nonhuman primates
sharing closely related Lachnospiraceae SGB4894 strains with humans
(Fig. 6b). Overall, this example shows that the extension of StrainPhlAn
4 toincorporate SGBs alongside MetaPhlAn 4 enables the analysis of
highly-resolved, sub-species phylogenies for both well-characterized
and yet-to-be-cultivated microbial species.

Discussion

MetaPhlAn 4 provides a strategy for integrating metagenomic assem-
bly with reference-based profiling approaches to achieve novelty by
incorporating diverse high-quality metagenome assemblies, and sen-
sitivity and specificity using refined mapping to prescreened marker
sequences. This strategy leverages multiple recent large efforts in
metagenomically cataloging microbial diversity> ¢, organizing over
1M prokaryotic sequencesinto species-level genome bins, improving
the diversity of the microbiome types in comparison to the current
biasesinavailable databases and efficiently using them to profile new
metagenomes using amarker-based strategy. Thisapproach improved
the resolution of health-associated biomarkers and enabled phylo-
genetic reconstruction and population genetics inference for both
known and uncharacterized taxaacross tens of thousands of shotgun
metagenomes spanning dozens of distinct environments.

Notably, even with the extended MetaPhlAn 4 SGB and marker
set, further work remains to better profile under-characterized habi-
tats. Environmental, nonhost-associated, and other under-studied
microbial communities are still highly enriched for sequences not
captured even by current uSGBs, although the algorithm and software
architecture can be continuously updated as new MAGs become avail-
able.Indeed, we plantorelease at least two new MetaPhlAn databases
per year, substantially expanding the profilable microbial diversity.
The current methods also do not extensively incorporate viral or
eukaryotic microbial sequences, due to their unique genomic archi-
tectures and quality control requirements relative to bacterial and
archaeal genomes. Interestingly, because SGBs represent essentially
whole-genome OTU clusters®®, many related downstream statistical
challenges also remain to be addressed; for example, the tradeoff
between sensitivity and specificity when applying quality control
measures to identify real but rare taxa. Another important aspect of
increasing relevancein current metagenomic researchis the phyloge-
neticand taxonomic contextualization of under-characterized species,
specifically uSGBs. While MetaPhlAn 4 has been designed to provide
taxonomiclabels corresponding to the part of the taxonomy that canbe
confidentially transferred fromthe closest (if any) reference genomes,
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and PhyloPhlAn® provides specific workflows for phylogenetic char-
acterization, further integration of isolate genomes and new methods
for defining taxonomic clades above the level of the microbial family
arestillneeded. We expect to continue addressing these challengesin
future versions of the methodology, which will also form the basis for
other MAG-aware updates of the bioBakery platform**,

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41587-023-01688-w.
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Methods

Overview of the approach

MetaPhlAn 4 taxonomic profiling relies on detecting the presence and
estimatingthe coverage of acollection of species-specific marker genes
to estimate the relative abundance of known and unknown microbial
taxain shotgun metagenomic samples. Since version 4, MetaPhlAn s
relying onthe concept of sequence-defined species-level genome bins
(SGBs)**that addresses many limitations of manual taxonomy assign-
mentand encompasses taxonomic units both with available reference
genomes from cultivation (kSGBs) and taxa defined solely based onthe
metagenome-assembled genomes (uSGBs).

As abrief summary of the approach (details in the following sub-
sections), to build the MetaPhlAn database of SGB-specific markers,
we collected a catalog of 729,195 dereplicated and quality-controlled
genomes (560,084 MAGs and 169,111 reference genomes) that was
used to expand the SGB organization by Pasolli et al. **. This led to the
definition of 21,373 FGBs, 47,643 genus-level genome bins (GGBs) and
70,927 SGBs, with 23,737 of them containing at least one reference
genome (kSGBs) and 47,190 containing only MAGs (uSGBs). To mini-
mize the chance that SGBsincorporate assembly artifacts or chimeric
sequences, we considered only those uSGBs with at least five MAGs (no
filtering for kKSGBs). The genome catalog was then annotated using
the UniRef90 database® (see below) and, within each SGB, the genes
that could not be assigned to UniRef90 gene families were de novo
clustered together using the UniClust90 (ref.*°) criteria (>90% iden-
tity and >80% coverage of the cluster centroid). Using the resulting
UniRef- and UniClust90 annotations, we defined a set of core genes
for each quality-controlled SGB (genes present in almost all genomes
composing anSGB), and after mapping all core genes against the entire
genomic catalog, we defined a set of 5.1 M SGB-specific marker genes
(core genes not present in any other SGB) for a total of 21,978 kSGBs
and 4,992 uSGBs.

For the taxonomic profiling step that uses the markers based
on the SGB data, MetaPhlAn 4 maps metagenomic reads (preferably
already quality controlled) against the marker database using Bowtie 2
(ref.®). From these mapping results, MetaPhlAn estimates the coverage
of each marker and computes the clade’s coverage as the robust aver-
age of the coverage across the markers of the same clade. Finally, the
clade’s coverages are normalized across all detected clades to obtain
the relative abundance of each taxon. Several downstream analyses
are included in the MetaPhlAn package, including the strain-level
phylogenetic profiling of SGBs by StrainPhlAn.

The starting catalog of reference genomes and MAGs

Starting from the original catalog 0f 154,724 human MAGs and 80,990
reference genomes collected by Pasolli et al. >, we retrieved an addi-
tional set of 616,805 MAGs spanning different human body sites, animal
hosts and nonhost-associated environments (Supplementary Table 2),
and 155,767 new reference genomes available as of November 2020 in
the NCBI Genbank database®. To ensure the quality of the downloaded
sequences, we executed CheckM version 1.1.4 (ref. %) on the complete
catalogof1,008,148 genomes (that is, reference sequences and MAGs),
filtering those with completeness below 50% or contamination above
5%.To avoid multiple inclusions of the same strains, we computed the
all-versus-allMASH distances’* (version 2.0) on the quality-controlled
sequences, followed by the dereplication at 99,99% genetic identity.
This resultedina quality-controlled catalog of 729,195 genomes, com-
prising 560,084 MAGs and 169,111 reference genomes.

Building the expanded SGB catalog

Using the new genomic catalog, we expanded the SGB organization
proposed by Pasolli et al. **. First, we apply the ‘phylophlan_metagen-
omic’subroutine of PhyloPhlAn 3 (ref. *') on the 493,482 new MAGs
andreference genomesto identify their closest SGB, GGB and FGB and
their MASH distances. Based on the reported distances, we assigned

the genomes to the already existing SGBs, GGBs and FGBs according
tothe thresholds defined by Pasollietal. (5%, 15% and 30% genetic dis-
tance, respectively)*’. We then applied a hierarchical clustering with
average linkage on the all-versus-all MASH distances of the genomes
not assigned to any existing SGB, using the ‘fastcluster’ python pack-
ageversion1.1.25. Theresulting dendrogram was divided with cutoffs
at5%,15% and 30% genetic distance to define 54,596 new SGBs, 37,546
new GGBs and 18,211 new FGBs, respectively. In short, from the initial
filtered catalog of 729,195 MAGs and reference genomes, we defined
21,373 FGBs, 47,643 GGBs and 70,927 SGBs, with 23,737 of them contain-
ing, atleast, one reference genome (kSGBs) and 47,190 containing only
MAGs (uSGBs; Supplementary Table 1). In comparison with the latest
largest MAG collections***, our genome catalog spans 5,092 more
kSGBs and 19,121 more uSGBs.

We assigned a taxonomic label to all 70,927 SGBs according to
the NCBI taxonomy database (as of February 2021)*. For kSGBs, we
assigned taxonomy by applying a majority rule to the taxonomic labels
of the reference genomes contained in each SGB. In case of a tie, the
taxonomic labelis resolved by choosing the representative taxon, the
one alphabetically first. For uSGBs, we applied a similar majority rule
butonthe taxonomies of the reference genomes contained at the GGB
level, assigning ataxonomiclabelup to the genuslevel. If no reference
genomes were present at the GGB level, we further applied the same
procedure atthe FGB level. If no reference genomes were found at the
FGB level, we assigned the taxonomic labels only up to the phylum
level by considering the phylum that is most recurrent within the set
of taxonomic labels of the closest reference genome and, at most, up
toone hundred reference genomes within 5% genomic distance to the
closest asidentified by ‘phylophlan_metagenomic’. For the taxonomic
levels not receiving any taxonomy label, we assigned all the internal
taxonomic nodes with SGB, GGB and FGB identifiers to maintain the
taxonomy withallits levels and for providing categorization of uSGBs.

Genome annotation and pangenome generation
The filtered catalog of 729,195 MAGs and reference genomes was sub-
jectedtoanannotation workflow, inwhich (1) the FASTA files were pro-
cessed with Prokka (version 1.14)% to detect and annotate the coding
sequences (CDS) and (2) subsequently assign the CDS to a UniRef90
cluster® usinga DIAMOND-based pipeline (available in https://github.
com/biobakery/uniref_annotator). The DIAMOND-based pipeline
performs a sequence search (DIAMOND version 0.9.24)% of the pro-
tein sequences against the UniRef90 database (release 2019_06) and
thenapplies the UniRef90 inclusion criteriaon the mapping results to
annotate the inputsequences (>90% identity and >80% coverage of the
cluster centroid). Within each SGB, protein sequences that were not
assigned to any UniRef90 cluster were clustered using MMseqs2 (ref. %)
following the Uniclust90 criteria (‘-c 0.80-min-seq-id 0.9 parameters)*.
For each SGB, based on the UniRef90 and UniClust90 annotations,
a pangenome was generated by collecting all the UniRef/UniClust90
clusters presentinatleast one of the SGB’s genomes. For each cluster,
the representative sequence was randomly selected within all the
genomes and a coreness value was calculated based on the cluster
prevalence within the 2 k highest quality genomes of the SGB. uSGBs
containing less than five MAGs were discarded for the following steps.
Weimplemented thisrestriction because we found evidence that some
of the small uSGBs contained likely assembly artifacts or chimeric
genomes, and they were also more likely to generate false positives by
failing to omit potential markers that later proved to be ambiguous.
In this step, 41,498 uSGBs of the 70,927 SGBs were discarded, while
allkSGBs were retained as they are represented by theoretically more
reliable sequences.

The MetaPhlAn 4 vJan21 markers database
From these pangenomes, the construction of the marker database
for MetaPhlAn 4 is divided into two sequential steps as follows: the
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identification of the core genes within each SGB and the screening of
the core genes for their SGB-specificity.

Fortheidentification of the core genes, the procedure first defines
acoreness percentage threshold (that s, the percentual prevalence of
agene withinthe SGB) based on the SGB pangenomes. Specifically, we
selected the maximum coreness threshold that allowed the retrieval
of at least 800 core genes (of length between 450 and 4,500 nucleo-
tides). The minimum coreness threshold was bound to 60% for SGBs
with less than 100 genomes and 50% for the others. For each SGB, a
core gene set was generated using the inferred coreness thresholds.
On average, we retrieved 2,985 core genes per SGB (median, 2,687;
s.d.,1,861). SGBs with lessthan 200 core genes were discarded and not
considered further (9 SGBs).

To detect the SGB-specific marker genes, each set of core genes
was then aligned against the genomes of the other SGBs using Bowtie
2 (version 2.3.5.1; --sensitive parameter)®. For each SGB, a subset
comprising up to the highest quality 100 genomes was selected for
the mapping for computational reasons. Each core gene was split
into fragments of 150-nt length to simulate metagenomicreads, and
then they were mapped against the representative subset of the SGB’s
genomes. An alignment hit of a fragment was considered a hit for its
corresponding core gene. Core genes hitting none (perfectly unique
markers) or less than 1% (quasi-markers) of the genomes of any other
SGB and hitting a number of the genomes of their SGB above or
equal to their coreness threshold were selected as marker genes.
Crucially, this uniqueness procedure was substantially stricter than
those used in previous MetaPhlAn versions owing to the improved
consistency of the SGBs compared to original species taxonomic
assignments.

The smallfraction of SGBs producing less than100 marker genes
(810 SGBs) was subjected to the following workflow:

1. Ifmore than 200 core genes of the target SGB were matching
an external SGB (a kSGB belonging to the same species, or a
uSGB) and if the external SGB had less than 10% of the genomes
inthe target SGB, then the external SGB was discarded (this
occurred for 392 kSGBs and 150 uSGBs). This step was repeated
every time an external SGB was removed until the target SGB
produced 100 marker genes or there were no more external
SGBs that could be evaluated. In the latter case, the removal of
the external SGBs was rolled back.

2. Ifthetarget SGB still could not identify ten marker genes,
external SGBs with low-quality species taxonomic labels were
discarded (this occurred for 822 kSGBs and 286 uSGBs). Specifi-
cally, the regular expressions used to detecting low-quality
species taxonomic labels are
‘(Clc)andidat(e|us) | _sp(_.*I$) | (.*_|*)(bIB)acterium(_*|) |.*(eury|)
archaeo(n_|te|n$).* |.*(endo|)symbiont.* |.*genomosp_.*
|.*unidentified.* |.* bacteria_.* |.* taxon_*|.* et_al .*|.* and_.*
|.*(cyano|proteolactino)bacterium_*) This step was repeated
every time an external SGB was removed until the target SGB
produced ten marker genes or there were no more external
SGBs that could be evaluated. In the latter case, the removal of
the external SGBs was rolled back.

3. Forthe SGBs that still did not produce at least ten marker genes,
a conflict graph was generated collecting all the core gene hits
against external SGBs in which more than 200 core genes were
in conflict. The graph was then processed by merging SGBs with
aprocedure that minimizes the number of merged SGBs and
maximizes the number of markers retrieved. After this process,
849 SGBs were merged, producing 237 SGB groups.

Finally, for each SGB, a maximum of 200 marker genes were
selected based first on their uniqueness and then on their size (longer
first). SGBs that still had fewer than ten markers were discarded (188
SGBs). Each marker was associated with an entry in the MetaPhlAn 4

vJan21 database which includes the SGB for which the sequence is a
marker, the list of SGBs sharing the marker, the sequence length, and
the taxonomy of the SGB. This produced alist of 5.1 M marker genes for
atotal 0f 21,978 kSGBs and 4,992 uSGBs (4,863 kSGBs and 1,198 uSGBs
still not captured by the latest largest genomes catalogs*>*).

MetaPhlAn 4 taxonomic profiling

MetaPhlAn 4 taxonomic profiling is based on the read homology to
and coverage of SGB-specific markers to estimate the relative abun-
dance of taxonomic clades present in a metagenomic sample. The
MetaPhlAn pipeline starts by mapping the raw reads of metagen-
omicsamples against the SGB-specific markers’ database using Bow-
tie 2 (ref. **). Input metagenomic reads can be provided as a single
FASTQ file (compressed with several algorithms), multiple FASTQ
filesincludedin a single (compressed) archive, or as a preperformed
mapping (bowtie2out format). By default, the Bowtie 2 mapping is
performed using the ‘--very-sensitive’ preset. For read-mapping qual-
ity purposes, short reads (reads shorter than 70 bp; ‘--read_min_len’
parameter) and low-quality alignments (alignments witha MAPQ value
lower than 5; *--min_mapq_val parameter) are discarded.

Using the quality-controlled mapping results, MetaPhlAn esti-
mates the coverage of each marker and computes the clade’s cov-
erage as the robust average of the coverage across the markers of
the same clade, but excluding the top and bottom quantiles of the
marker abundances (‘--stat_q’ parameter). For the SGB profiling, this
parameter by default set to 0.2, thus excluding the 20% of markers
withthe highest abundance and the 20% of markers with the lowest
abundance. The coverage of quasi-markers is not considered from
this computation when at least 33% (default value, ‘--perc_nonzero’
parameter) of the markers of their respective external SGB were pre-
sent. The clade’s coverages are finally normalized across all detected
clades to obtain the relative abundance of each taxon as previously
described in (refs. 7).

MetaPhlAn 4 compatibility with the GTDB taxonomy
MetaPhlAn 4 supports additional taxonomies via genome and MAG
matching against other systems. We specifically implemented the
mapping of the MetaPhlAn 4 SGB-based taxonomic profiles to those
based onthe speciesinthe GTDB®. Thisis available via the utility script
‘sgb to gtdb_profile.py includedinthe version 4 release. To assign each
SGBtoaGTDB species, we used the GTDB-Tk taxonomic classification
tool (version 2.1.1)* to assign a GTDB-defined species (release 207) to
each centroid genome of the 26,970 SGBs included in the MetaPhlAn
4 database.

MetaPhlAn 4 unclassified reads calculation

MetaPhlAn 4 includes a feature for estimating the fraction of input
reads that cannot be assigned to taxa in the database (‘--unclassified_
estimation’ parameter). This is calculated by subtracting from the
total number of input reads the average read depth of each reported
SGB normalized by its SGB-specific average genome length as follows:

%uncl.reads =

Total reads—(Z"

sp=0 (avg nonzero markers coverage,, xavg genome lengthg, ))/avg read length

Total reads

sp = indices of all the SGBs reported in the MetaPhlAn profile

The average read depth of a SGB is calculated as the mean read
depth of all its detected (nonzero) marker genes. The SGB-specific
genome length for kSGBs is calculated using only the genome lengths
ofitsreference genomes, while for uSGBs the average genome length
isincremented by 7% (calculated to be the average difference between
the genome sizes of references genomes and MAGs within the
same SGB).
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Building the MetaPhlAn 4 tree of life

The MetaPhlAn 4 package includes the phylogenetic tree of allthe SGBs
available in the MetaPhlAn database (the ‘microbial tree of life’; Sup-
plementary Fig.10), enabling both the calculation of phylogeny-based
beta-diversity estimates between samples such as the UniFrac’® (Sup-
plementary Fig. 4), and the further exploration of phylogenetic rela-
tions between SGBs. To build the tree, we selected the highest quality
genomes for each of the 26,970 SGBs based on the CheckM. We then
executed PhyloPhlAn 3 (ref. ') with the optimized set of parameters for
very large phylogenies as described in (ref. ®). In particular, PhyloPhlAn
performed a DIAMOND® mapping (version 0.9.24) against the 400
PhyloPhlAn’s universal markers’ database, used TrimAl version1.4.revl5
(ref.”") for the trimming, MAFFT version 7.475 (ref. °) to generate the
multiple-sequence alignment, and IQ-TREE version 2.0.3 (ref. **) for the
phylogenetic reconstruction, together with the PhyloPhlAn presets
‘-diversity high—fast.

MetaPhlAn 4 synthetic evaluation

We evaluated MetaPhlAn 4 using different published and newly created
synthetic metagenomes. Firstly, we assessed the performance of Met-
aPhlAn 4 in comparison to several available alternatives, that is, Met-
aPhlAn 3 (ref.*), mOTUs 2.6 (Iatest database available as of March 2021)°
and Bracken 2.5 (ref.°). Through the OPAL benchmarking framework®,
we evaluated the performance of each tool by profiling the CAMI 2 taxo-
nomic profiling challenge metagenomes®® and SynPhlAn-nonhuman
synthetic metagenomes®. The CAMI2 metagenomes include 128 sam-
ples representing five human body site-specific microbiomes (that
is, airways, oral, the gastrointestinal tract, skin and the urogenital
tract), themarine environment and the mouse gut microbiome, while
the SynPhlAn-nonhuman metagenomes were designed to mirror the
sequencing depth and community structure of the CAMI 2 metage-
nomes (thatis, 30 million, 150-nt paired-end sequencing reads from
genomes in kSGBs with alog-normal abundance distribution), but for
environments different than the human body.

We ran each tool using default parameters. For mOTUs 2.6, we
considered two different settings, and it was thus run twice with param-
eters ‘-Crecall and ‘-C precision’ to optimize for precision and recall
separately, respectively. Both parameters are preset configurations of
mOTUs 2 created by its developers for the CAMI 2 challenge. Results
from Bracken 2.5 were filtered out discarding species reported with
arelative abundance below 0.01%. Additionally, to better evaluate
the SGB architecture, we performed an alternative evaluation assess-
ing the detection and quantification of the genomes included in the
synthetic metagenomes. To this end, we defined (1) ‘true positive’ as
the detection of an SGB containing agenome present in the synthetic
metagenome, (2) ‘false positive”as the detection of an SGB that does not
containany genome in the metagenome and (3) ‘false negative’ as the
nondetection of an SGB containing agenome presentin the synthetic
metagenome. Detection of an SGB that represents an overlapping SGB
presentinthe community was also accounted as ‘true positive’. For the
goldstandard, relative abundances were obtained by summing up the
relative abundances of the genomes belonging to the same SGB. For
MetaPhlAn 3 that contains markers describing species groups, we con-
sidered (1) ‘true positive’ aspecies group containing a species present
inthe synthetic metagenome and (2) ‘false positive’ aspecies group that
does not contain any species present in the synthetic metagenome.

Tofurther assess the performance of MetaPhlAn 4 to profileboth
known and unknown SGBs complementing the synthetic samples from
CAMI 2 and SynPhlAn, we constructed additional synthetic metagen-
omes from different environments, hosts and human body sites using
ART** with the Illumina HiSeq 2500 error model (available at http://
segatalab.cibio.unitn.it/tools/metaphlan/). For eachenvironment, we
simulated five metagenomes containing 30 million, 150-nt paired-end
sequencing reads using randomly selected genomes from SGBs con-
taining MAGs coming from that environment (with a restriction of

one genome per SGB), and following a log-normal abundance distri-
bution. MetaPhlAn 4 evaluation was then performed by assessing the
detection and quantification of the genomesincludedin the synthetic
metagenomes as described above. Additionally, to demonstrate that
the evaluation was not biased by the usage of genomes included in
the genomic catalog, we built, using the same procedure, another five
metagenomes using amixture of new MAGs and reference genomes not
includedin our genomic database. SGB assignment of the new genomes
was performed using the ‘phylophlan_metagenomic’ subroutine of
PhyloPhlAn 3 (ref. ®) against the Jan21 database.

Finally, to assess the minimum relative abundance at which Met-
aPhlAn 4 can confidently assign a species, we randomly selected five
reference genomes and five MAGs from the mixture genomes not
includedinour genomic database to simulate single-isolate synthetic
metagenomes at different depths of coverage using ART** with the
Illumina HiSeq 2,500 error model (available at http://segatalab.cibio.
unitn.it/tools/metaphlan/). For each genome, we generated reads at
0.01%, 0.05x%, 0.1%, 0.5%,1x, 5x,10%, 50x and 100x coverage.

MetaPhlAn 4 application to human and nonhuman
metagenomes

To measure the increase of the fraction of classified reads when com-
pared with MetaPhlAn 3, we profiled 24,515 samples from 145 datasets
spanning different humanbody sites (airways, gastrointestinal tract,
oral, skin and urogenital tract) and lifestyles, animal hosts (nonhu-
man primates, mice and ruminants) and other nonhost-associated
environments (soil, fresh water and ocean) (Supplementary Table 11)
with both MetaPhlAn 3 (version 3.0.12) and MetaPhlAn 4 (version
4.beta.l) using the unknown/unclassified estimation feature (Sup-
plementary Table 23). Improvements were reported using only the
samplesinwhichbothtoolsreported, at least, one species. An SGB was
reported tobe presentinaspecific environment ifit was detectedin, at
least, 1% of the samples from that environment. Finally, to investigate
the abundance and prevalence of gut-related SGBs across different
age categories and lifestyles, we selected a subset 0f 19,468 human
gut metagenomes from 86 datasets for which age information was
available (Supplementary Table 15) as reported and curated in the
curatedMetagenomicData” 3 package.

Westernization definition

The process of westernization brought by industrialization and urbani-
zation over the past two hundred years has had asignificantimpact on
human populations. These changesinclude access to pharmaceuticals
and healthcare, improved sanitation and hygiene, increased urban
dwelling and decreased exposure to livestock; and changes in habitual
diets (with westernized diets tending to consist of increased fat and
animal proteins, high salt and simple carbohydrates). In this study, we
characterize westernized or nonwesternised individuals or populations
based on either the distinction given in the primary publication or an
assessment based on the criteria outlined above.

Analysis of diet-related taxa in the mouse microbiome

We performed a differential abundance analysis of HF versus normal
chow diets in a public cohort of 181 mouse gut microbiome®. From
the original cohort, we excluded ten samples missing age informa-
tion, and we selected only the samples from genetic backgrounds
tested for both types of diet. In total, we analyzed 43 HF-fed mice and
88 mice fed with normal control chow, further stratified into two
genetic backgrounds and five vendors (Supplementary Table 17). To
correct data compositionality, we first imputed the zero values with
the minimum value for an abundance found in the dataset, then we
applied the centered-log-ratio transformation to the SGB’s relative
abundance distribution (‘scikit-bio’ Python package, version 0.5.6).
We then built arandom-intercept model for each feature (SGB) using
the ‘statsmodels’ Python package version 0.11.1. We associated the diet
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(HF or chow, encoded as abinary factor) to the transformed abundance
ofthe strain, using the sex, age-in-days and genetic background of the
mice as fixed effects and the vendor as agrouping variable. Significance
was determined by the Wald test. P values were corrected accord-
ing to Benjamini-Hochberg (‘statsmodels’ Python package, Q < 0.2).
Before plotting, we selected the biomarkers having amean abundance
in the associated group greater than 1%. The reported heatmap was
printed using the ‘pheatmap’ R package version 1.0.12 (parameters
‘clustering distance_cols = ‘euclidean, clustering method = ‘complete,
cluster rows = FALSFE).

Re-analysis of the ZOE PREDICT lintervention study

We assessed the associations between microbiome and cardiometa-
bolic health and dietary patterns using 1,001 deeply phenotyped
individuals from the United Kingdom retrieved from the ZOE PRE-
DICT 1intervention study”. Machine learning (ML) analyses were
performed using the ‘scikit-learn’ Python package (version 0.22.2) on
apanel of 19 representative nutritional and cardiometabolic markers
described in the original study?®. A cross-validation approach was
implemented with a random split of 80/20 of training and testing
sets, repeated for 100 bootstrapiterations, again with the same exact
approach as the original study. Because the ZOE PREDICT 1 cohort
includestwins, to avoid overfitting, the twin from the training set was
removed ifits twin pair was presentin the testing set. The ML model
is based on RFs using SGBs-level taxonomic relative abundances
as estimated by MetaPhlAn 4 and relative abundance values were
arcsin-sqrt transformed.

For the RF classification task, continuous features were divided
into two classes, the top and bottom quartiles. The ‘RandomForest-
Classifier’ function was used with parameters ‘n_estimators=1000,
max_features="sqrt”. For the RF regression task, the RandomFore-
stRegressor function was used with parameters ‘n_estimators=1000,
criterion="mse, max_features = ‘sqrt’. Alinear regressor (‘LinearRegres-
sion’function with default parameters) was also trained on training
target values to calibrate the range of output values predicted by the
RF regressor model. Pairwise Spearman’s correlations were calculated
betweentherelative abundance of uSGBs with a prevalence of at least
20% (atleast 200 of 1001 samples), and the panel of 19 nutritional and
cardiometabolic markers, correcting for age, sexand body massindex.
Correlations were computed using the ‘ppcor’ R package version 1.1
(Supplementary Table 24) and P values were corrected through the
Benjamini-Hochberg procedure.

Lachnospiraceae SGB4894 association with health conditions

To investigate associations between Lachnospiraceae SGB4894 with
host health conditions across several diseases, we collected 21 disease
case—control datasets available through curatedMetagenomicData®
(Supplementary Table 20). For each dataset, we assessed the asso-
ciations of Lachnospiraceae SGB4894 with the subjects reported as
healthy controls by computing a one-sided Mann-Whitney U test
on the arcsin square root transformed relative abundances profiles
using the ‘stats.mannwhitneyu’ function of the ‘scipy’ Python pack-
age version 1.5.2. Samples from westernized adults were used and
comparisons were performed only when at least ten healthy and ten
disease samples were available. Statistically significant associations
were defined by aP<0.05.

StrainPhlAn 4 profiling

StrainPhlAn profiling estimates strain-level species-specific phyloge-
nies, anditisbased on the reconstruction of sample-specific consensus
sequences of MetaPhlAn species-specific marker genes followed by
multiple-sequence alignment and phylogenetic inference*’>. Com-
pared to StrainPhlAn 3, the accuracy and performance of StrainPhlAn
4 have beenimproved mostly because of (1) the redesigned procedure
to select and process markers and samples to be considered in the

phylogeny, and (2) the use of the same MetaPhlAn 4 database of markers
from the extensive set of phylogenetically consistent SGBs.

Foritem (1), StrainPhlAn 4 considers asinput the reads-to-markers
alignment results (in SAM format®®) from the MetaPhlAn 4 profiling
together withthe MetaPhlAn 4 database. For each sample, StrainPhlAn
4 reconstructs consensus sequences of the species-specific marker
genes by considering, for each position, the nucleotide with the highest
frequency amongthe reads mapping against it. By default, consensus
markers covered by less than eight reads or withabreadth of coverage
below 80% are discarded (thatis, the proportion of the marker covered
by reads, ‘--breadth_threshold’ parameter). For this step, ambiguous
bases (that is, positions in alignment with quality lower than 30 or
with major allele dominance below 80%) are considered unmapped
positions. After the reconstruction of the markers, StrainPhlAn dis-
cards samples with less than 80% of the available markers and markers
present in less than 80% of the samples (‘--sample with_n_markers
and ‘-marker in_n_samples’ parameters, respectively). Then, markers
are trimmed by removing the leading and trailing 50 bases (‘~trim_
sequences’ parameter), and a polymorphic rates report is generated.
Finally, the remaining samples and markers are processed by Phy-
loPhlAn®. By default, multiple-sequence alignment is performed by
MAFFT??, gappy positions (that is, positions with more than 67% of
gaps) are trimmed by trimAI° and phylogenetic trees are inferred
by RAXML”.

Lachnospiraceae SGB4894 strain-level analyses

For the Lachnospiraceae SGB4894 strain-level analysis, we selected
5,883 human gut metagenomic samples from 86 datasetsin which Lach-
nospiraceae SGB4894 was reported to be present based by MetaPhlAn
4 (Supplementary Table15). Seventy-nine nonhuman primates (NHP)
and 12 ancient human gut metagenomic samples were also included
from 12 different datasets (Supplementary Table 22). SGB4894-specific
marker genes were successfully reconstructed from 2,787 metagen-
omes, of which 2,738 were from contemporary human gut microbiome
samples, five from ancient gut microbiome samples, and 44 from NHP
gut microbiome samples. Strain-level profiling with StrainPhlAn 4
was performed using parameters ‘--marker_in_n_samples 70 —sam-
ple_with.n_markers10 --phylophlan_mode accurate’. The phylogenetic
tree generated by StrainPhlAn was plotted with GraPhlAn version1.1.4
(ref. °®). Phylogenetic distances were extracted based on the distance
betweensamplesinthetree and normalized by the total branchlength
of the tree. Geographic distances between countries were calculated
using the ‘distGeo’ function of the ‘geosphere’ R package version1.5-10.
Spearman’s correlation between genetic and geographic distance was
then calculated using the ‘cor.test’ function of the ‘stats’R package
version 4.0.5. Finally, to assess the transmissibility of Lachnospiraceae
SGB4894, we executed the StrainPhlAn’s ‘strain_transmission.py’ script
using as input the phylogenetic tree (default parameters). The script,
which is part of the StrainPhlAn release, can use the species-specific
cutoffs on the normalized phylogenetic distances precomputed on
the available datasets with longitudinal sampling.

StrainPhlAn 4 evaluation

The three most prevalent single-species kSGBs whose species were
available in the MetaPhlAn 3 database, that is, B. wexlerae (SGB4837),
B.uniformis (SGB1836) and E. rectale (SGB4933), were selected to evalu-
atetheimprovementsincludedin StrainPhlAn4in comparisonwith the
previous version. As a gold standard, for each species, we considered
100 high-quality MAGs randomly selected from the genomic catalog
(Supplementary Table 25) and obtained a phylogeny by processing the
MAGs viaRoary core gene alignment and RAXML tree reconstruction.
Specifically, we computed a multiple-sequence alignment from each
setof coregenes (presentin atleast 90% of genomes) using Roary ver-
sion 3.13.0 (ref. °’) with parameters ‘-cd 90 -i 90 -e--mafft, and launched
RAXML version 8.2.4 (ref.”’) with parameters ‘-fa-#100 -p 12345 -x 12345
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-m GTRGAMMA'. Using the metagenomic samples from which the con-
sidered MAGs were assembled, we executed StrainPhlAn 3 and 4 using
their respective database and with default parameters and ‘~muta-
tion rates'. Additionally, we executed a similar evaluation (but using
the MetaPhlAn 4 database in the StrainPhlAn 3 call) on the uSGB Lach-
nospiraceae SGB4894, using the 170 MAGs from the genomic catalog
with publicly available metagenomic samples. Pairwise phylogenetic
distances normalized by the total branch length were calculated using
the PyPhlAn package (https://github.com/SegatalLab/pyphlan). Pear-
son correlations between StrainPhlAn and the gold standard results
were calculated using the ‘stats.pearsonr’ function of the ‘scipy’ Python
package version1.5.2.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All metagenomic studies analyzed in this work are publicly available
throughthe corresponding publications listed in Supplementary Table
11. All reference genomes and taxonomic data are publicly available
through the NCBI GenBank database (https://www.ncbi.nlm.nih.gov/
genbank/). The GTDB release 207 is publicly available at https://gtdb.
ecogenomic.org/. The CAMI2 Challenge synthetic metagenomes and
gold standards are available at https://www.microbiome-cosi.org/
cami/cami/cami2. The SynPhlAn-nonhuman synthetic metagenomes
and gold standards are available at http://segatalab.cibio.unitn.it/
tools/biobakery. The new synthetic metagenomes containing kSGBs
and uSGBs and gold standards as well as the single-isolate synthetic
metagenomesare available at http://segatalab.cibio.unitn.it/tools/met-
aphlan/.Prevalences of the SGBs across environments, age categories
and lifestyles are available in Supplementary Tables 13 and 14. Metadata
ofthe publicly analyzed human metagenomesis also available through
the curatedMetagenomicData R package®. The full list of metagenomic
studies used for the strain-level analysis of Lachnospiraceae SGB4894
isreportedinSupplementary Tables 15 and 22.

Code availability

The MetaPhlAn 4 version described inthisworkis labeled as MetaPhlAn
4.beta.land is available at http://segatalab.cibio.unitn.it/tools/met-
aphlan with the open source code at https://github.com/biobakery/
MetaPhlAn (ref.'°°) together with StrainPhlAn 4. It is also available via
Bioconda https://anaconda.org/bioconda/metaphlan (ref.'*") and PIP
https://pypi.org/project/MetaPhlAn.
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Software and code

Policy information about availability of computer code

Data collection  No software was used for data collection.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
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All metagenomic studies analyzed in this work are publicly available through the corresponding publications listed in Supplementary Table 11. All reference
genomes and taxonomic data are publicly available through the NCBI GenBank database (https://www.ncbi.nlm.nih.gov/genbank/). The GTDB release 207 is publicly
available at https://gtdb.ecogenomic.org/. The CAMI Il Challenge synthetic metagenomes and gold standards are available at https://www.microbiome-cosi.org/
cami/cami/cami2. The SynPhlAn-nonhuman synthetic metagenomes and gold standards are available at http://segatalab.cibio.unitn.it/tools/biobakery. The novel
synthetic metagenomes containing kSGBs and uSGBs and gold standards as well as the single-isolate synthetic metagenomes are available at http://
segatalab.cibio.unitn.it/tools/metaphlan/. Prevalences of the SGBs across environments, age categories and lifestyles are available in Supplementary Tables 13-14.
Metadata of the publicly analyzed human metagenomes is also available through the curatedMetagenomicData Rpackage 95. The full list of metagenomic studies
used for the strain-level analysis of Lachnospiraceae SGB4894 is reported in Supplementary Tables 15 and 22.
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Ecological, evolutionary & environmental sciences study design
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Study description Here, we present a method - MetaPhlAn 4 - to integrate information from both metagenome assemblies and microbial isolate
genomes for improved and more comprehensive metagenomic taxonomic profiling.

Research sample To derive the database of SGBs we recovered 236,620 bacterial and archeal genomes available in NCBI and labeled as “reconstructed
from isolate sequencing or single cells”. These were integrated with 771,528 MAGs assembled from samples collected from humans
(5 distinct main human body sites, 164 distinct human cohorts), animal hosts (including 22 non-human primate species), and non-
host associated environments (including soil, fresh water, and oceans, Tables S2 and S3). To assess the improvements of the tool, we
also recovered a total of 24,515 metagenomic samples (145 distinct studies, Table S8) from different human, animal, and non-host
associated environments.

Sampling strategy No sampling was performed.

Data collection All data from NCBI and GTDB was obtained using their respective publicly available FTP sites. Synthetic metagenomes from CAMI II
challenge and the BioBakery 3 were downloaded from their respective web sites. No software was used for data collection.

Timing and spatial scale  All data was downloaded on November 2020.
Data exclusions Genomes were quality filtered based on their completeness (>50%) and contamination (<5%).

Reproducibility All the code employed in the study is deterministic. All the analyses shown in the manuscript can be reproduced following the
Methods section.
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Randomization No randomization was performed.

Blinding No blinding was performed.

Did the study involve field work? [ ves No
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