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Abstract12

Transposable elements (TEs) have long been shown to have deleterious effects on the survival and reproduction of their host organism.13

As TEs are mobile DNA that jump to new positions, this deleterious cost can occur directly, by inserting into genes and regulatory14

sequences. Classical population genetic theory suggests copy-number dependent selection against TEs is necessary to prevent TEs15

from expanding so much they take over a genome. Such models have been difficult to interpret when applied to large genomes like16

maize, where there are hundreds of thousands of TE insertions that collectively make up 85% of the genome. Here, we use nearly17

5000 inbred lines from maize mapping populations and a pan-genomic imputation approach to measure TE content. Segregating TE18

content gives rise to 100 Mb differences between individuals, and populations often show transgressive segregation in TE content.19

We use replicated phenotypes measured in hybrids across numerous years and environments to empirically measure the fitness costs20

of TEs. For an annual plant like maize, grain yield is not only a key agronomic phenotype, but also a direct measure of reproductive21

output. We find weak negative effects of TE accumulation on grain yield, nearing the limit of the efficacy of natural selection in maize.22

This results in a loss of one kernel (≈0.1% of average per-plant yield) for every additional 14 Mb of TE content. This deleterious23

load is enriched in TEs within 1 kilobase of genes and young TE insertions. Together, we provide rare empirical measurements of24

the fitness costs of TEs, and suggest that the TEs we see today in the genome have been filtered by selection against their deleterious25

consequences on maize fitness.26
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Introduction29

Across eukaryotes, the amount of nuclear DNA varies by five orders of magnitude. These differences do not scale with30

eukaryotic organismal complexity, and whether differences in genome size are adaptive or shaped by genetic drift and evolving31

neutrally remain contentious (Elliott and Gregory, 2015). The underlying cause of these interspecific differences in genome32

size lies in the amount of nongenic DNA, almost certainly a consequence of past transposable element (TE) activity. When TEs33

jump to a new position, they generate an insertion of their own DNA sequence, and uncontrolled transposition can generate34

extreme costs to host genomes when TE insertions in genes and other functional sequences disrupt cellular function. TEs are35

thus selfish DNA and parasitic to their host genome (Orgel and Crick, 1980; Doolittle and Sapienza, 1980).36

The maize genome contains over 350,000 TEs (Stitzer et al., 2021), and fragments derived from TEs cumulatively make up37

over 85% of the genome (Schnable et al., 2009; Hufford et al., 2021). These TEs come from over 27,000 families in all known38

plant TE superfamilies, and are found in variable genic, chromatin, methylation, and recombinational environments within the39

genome (Baucom et al., 2009; Stitzer et al., 2021). Maize TEs are extremely polymorphic, with only half of TE insertions40

shared at the same position between any two individuals (Brunner et al., 2005; Morgante et al., 2005; Anderson et al., 2019;41

Munasinghe et al., 2023). The high abundance and diversity of TEs in maize, as compared to previously investigated model42

taxa, suggests the fitness costs of TEs cannot possibly be as high as those previously measured in yeast and flies. Although43

maize is often cited as an example of a large genome, it is in fact below the average genome size of both plants (6.1 Gb) and44

animals (4.2 Gb) (Dodsworth et al., 2015; Elliott and Gregory, 2015). Quantifying the fitness costs of maize TEs enriches our45

understanding of the forces acting on TEs in a more typical eukaryotic genome.46

Here, we combine measurements of TE content in maize mapping populations with fitness measurements of these indi-47

viduals, to reveal that there is weak but pervasive negative selection acting on TEs in maize. Selection against TEs lies at the48

boundary between drift and selection in maize, suggesting that although the maize genome is relatively large, its size is likely49

constrained by the cumulative deleterious effects of the pesky TEs that make up the bulk of its sequence.50
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Results and Discussion51

Genome size is determined by the combination of DNA sequences inherited from both parents, in the absence of novel mu-52

tations. Transposition events are infrequent in maize pedigrees, where few to no insertions occur per generation in most53

germplasm (Dooner et al., 2019). Thus, genome size and TE content can be well-approximated by imputation from assembled54

parental genomes to genotyped progeny. We used a maize pan-genome (Bradbury et al., 2021; Valdes Franco et al., 2020)55

to impute genome size and TE content, by projecting TE annotations and haplotype blocks from parental genome assemblies56

to genotyped RILs. We did so in the US Nested Association Mapping (NAM) population of maize (McMullen et al., 2009;57

Gage et al., 2020), a set of 4,975 genotyped recombinant inbred lines (RILs) generated from twenty-five parental inbred lines58

crossed to the original reference genotype of maize (B73) then self-pollinated for 4-6 generations (McMullen et al., 2009).59

Many maize inbred lines were publicly released while still containing residual heterozygosity, and these regions subsequently60

became homozygous for alternative alleles in different lineages (McMullen et al., 2009; Liang and Schnable, 2016). We ex-61

tensively filtered such regions of the genome that did not return the parents expected from the pedigree. While this filtering62

reduces total genome size, our imputed genome size is still highly correlated to flow cytometry metrics of DNA content (Supp63

Fig. S2). In RIL individuals, genome size varies by 97.8 megabases (Mb) (Fig 1A, Supp. Fig. S2), approximately 4.2 percent64

of the B73 reference genome size. Both genome size (Fig 1A) and TE content (Fig 1B) observed in the RILs vary by NAM65

biparental family, as each NAM parent contributes different alleles to the RIL progeny. We see transgressive segregation for66

both genome size and TE content in certain NAM families, such as CML322, where the majority of RILs have higher values67

than either parent (Fig 1A-B). This is likely contributed by high variance between parental genomes in alternative haplotype68

content. Much of the variation in genome size can be explained by the strong, positive relationship of genome size with TE69

content (Spearman’s correlation, rho=0.961, p<2.2e-16) (Fig 1C). Further, a high proportion (0.937, 95% CI 0.904-0.965) of70

variance in TE content can be explained by a kinship matrix describing relatedness of these RILs.71

To test whether genome size and TE content are associated with fitness related phenotypes, we use data from multi-72

environment yield trials of almost one million individual plants. These consist of F1 hybrids of each RIL with the former73

commercial tester, inbred line PHZ51 (Larsson et al., 2017; Ramstein et al., 2020). As modern corn breeding has focused on74

selection for alleles that perform well in a hybrid background, these phenotypes provide relevant effect estimates, particularly75

on traits related to fitness. We use phenotypes of flowering time and grain yield to measure fitness. For annual plants like maize76

and its wild relative teosinte, flowering time contributes to fitness, as the plant must appropriately incorporate environmental77

signals to flower synchronously with others, and before the end of the growing season. Fitness can more directly be measured78

as the number of viable seeds produced per plant, which is well-measured by grain yield. Maize breeding has targeted increased79

grain yield as measured through seed mass per field area (Hallauer et al., 1988; Duvick et al., 2003). To better assess genome80

content of these hybrids, we assembled the genome of the hybrid tester PHZ51, and added its genomic contribution to each81

RIL hybrid to generate a diploid value that reflects the diploid genome of the phenotyped F1 individuals. For all analyses, we82

use best linear unbiased estimator (BLUE) values for flowering time and grain yield calculated in Ramstein et al. (2020) for a83

subset of 1,723 RIL hybrids phenotyped in six environmental trials (Larsson et al., 2017). The mean TE content in the subset84

of phenotyped RILs is approximately 1 Mb larger than the 3,252 NAM RILs not phenotyped (difference = 1.24e+06, p<0.001;85

Supp. Fig S1). The phenotyped subset of RILs were originally chosen for similar flowering times to limit the effect of growing86

season length on grain yield, and in this experiment BLUE estimates of female flowering time (Days To Silking, DTS) range87

from 64 to 77.8 days (µ= 70.355, SD= 2.06). As previously shown (Ramstein et al., 2020), grain yield is negatively correlated88

with DTS (Supp. Fig. S3A), thus we introduce flowering time as a fixed effect in the calculation of grain yield BLUEs, to89

correct for flowering time (Supp. Fig. S3). These adjusted grain yield (GY) values range from 1.866 to 10.415 tonnes/hectare90

(µ= 6.99, SD= 0.86).91

We first associate genome size to flowering time, as multiple reports have shown that maize individuals with larger genomes92

flower later (Rayburn et al., 1994; Jian et al., 2017; Bilinski et al., 2018; Li et al., 2018). Consistent with previous work, we93

find that RIL hybrids with larger genomes flower later (Figure 2A). This association has previously been proposed as an effect94

of simply having more DNA that takes time to replicate (Bilinski et al., 2018), or specific effects from repeat classes like95

chromosomal knobs (Jian et al., 2017), ribosomal repeats (Li et al., 2018), or telomeres (Choi et al., 2021). To test the impact96

of components of genome size, we fit a series of linear models predicting female flowering time (DTS) in these hybrids from97

different repetitive categories (Table 1). These include the amount of TE base pairs in their genome, the amount of four98

tandem repeat class base pairs (ribosomal, centromeric, telomeric, and knob), and amount of the genome coming from the B7399

parent (Table 1). The model explains a statistically significant and substantial proportion of variance (R2=0.133, p < 2.2e-16)100

and all significant positive associations of repeat classes with flowering time are positive, except for TE base pairs which is101

negative (Table 1). We additionally fit a model using three principal component (PC) terms from a kinship matrix to correct102

for population structure, which recovers similar effects (Supp. Table S1). Much of the early evolution of maize occurred in103

tropical environments, but dispersal to temperate environments over the last several millennia required major flowering time104

and photoperiod adaptations (Swarts et al., 2017). Additionally, germplasm from tropical environments tends to have larger105

genomes (Chia et al., 2012; Hufford et al., 2021). To detect whether the relationship varies across different biparental families,106

we fit models within each NAM family. For flowering time, 58% (14) of NAM families show positive effects of TE base pairs on107
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Fig. 1. Imputed genome size and TE content for each NAM RIL. (A) Imputed haploid genome size for each NAM RIL, split by NAM family, (B) Imputed haploid TE content

for each NAM RIL, split by NAM family (C) Relationship between imputed haploid genome content and imputed haploid TE content in each NAM RIL. Each colored point

reflects a NAM RIL, colored by maize subpopulation. Black outlined circle is the parental value calculated from its genome assembly, and black filled circles and dashed line

are values for the genome assembly of the B73 common parent.
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Fig. 2. Phenotype associations with imputed genome size. (A) Imputed diploid (2N) hybrid genome size vs Days to Silking, (B) Imputed diploid (2N) hybrid genome size

vs Grain Yield corrected for flowering time. Each colored point reflects a NAM RIL, colored by maize subpopulation. Lines show linear regression.
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DTS GY

(Intercept) 6.64×10
1*** 2.57×10

1**

TE bp −2.27×10
−8*** −6.93×10

−9*

nonTE, nonRepeat bp 1.48×10
−7*** 8.75×10

−9

Knob bp 1.62×10
−7*** 1.80×10

−8*

Centromere bp 3.64×10
−7*** −2.99×10

−8

Telomere bp 6.29×10
−7* 2.09×10

−7

Ribosomal bp 6.90×10
−7* 4.49×10

−7**

B73 bp −1.89×10
−9*** −1.33×10

−10

Num.Obs. 1561 1454

R2 0.133 0.018

R2 Adj. 0.129 0.013

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 1. Relationship between genomic repeats and flowering time (DTS) and grain yield (GY).

DTS, (Figure 3A), and positive effects combined using Fisher’s method are significant (p = 0.014). Although we see an overall108

negative effect of TE base pairs when considering all NAM families, within individual NAM families we see more balanced109

effects on flowering time. In other taxa (e.g. wheat, Capsella, Arabidopsis, Brassica; Yan et al., 2006; Nitcher et al., 2014;110

Niu et al., 2019; Baduel et al., 2018; Quadrana, 2020; Cai et al., 2022) and within maize (Salvi et al., 2007; Hung et al., 2012;111

Yang et al., 2013; Huang et al., 2018), large effect TE insertions consistently accelerate flowering by disrupting regulation of112

key flowering time pathway genes. Our results are in line with a polygenic view of such disruption of flowering, arising from113

quantitative variation in TE content with individually small effects on flowering time. Notably, the regression coefficient for114

TE bp implies 44 Mb of additional TE content would accelerate flowering only by one day – an effect size similar to the largest115

single locus QTLs segregating in this population (Buckler et al., 2009). Additionally, the presence of active TEs in maize has116

been associated with earlier flowering, hypothesized to be due to activation of general stress pathways (Skibbe et al., 2009). In117

total, TEs seem to have a disproportionate impact on flowering time beyond simply being made of DNA.118

Although flowering is essential to fitness, grain yield more directly quantifies maize fitness, and has been a target of se-119

lection for millennia. As expected for fitness, the genetic architecture underlying grain yield is highly polygenic, with few120

validated yield QTL segregating in maize breeding populations (Giraud et al., 2017; Ramstein et al., 2020; Simmons et al.,121

2021; Khaipho-Burch et al., 2023). Unlike flowering time, little is known about the relationship between grain yield and122

genome size. We see a non-significant negative relationship, where individuals with larger genomes show lower fitness (Figure123

2B). As with flowering time, we fit linear models predicting grain yield (GY) from TE and various types of non-TE repet-124

itive DNA, controlling for population structure with the amount of the genome coming from the common B73 parent. The125

model explains a statistically significant but weak amount of variation in grain yield (R2=0.018, p=0.0004; Table 1). A similar126

model using PCs of a kinship matrix for population structure control explains more variance, but effect sizes remain similar127

(R2=0.068, p < 2.2e-16; Supp Table S1). In both models, higher TE content is significantly associated with reduced grain yield,128

while higher abundance of ribosomal and knob repeats are significantly associated with increased grain yield only without PC129

correction for population structure (Table 1). Quicker protein production with more abundant ribosomes may accelerate growth130

rates, although it is not clear how much compensation occurs between genomic rDNA copy number and rRNA expression (Li131

et al., 2018). Similarly, a fitness benefit of chromosomal knobs has been previously implicated in models explaining equilibrium132

frequencies of meiotic drive in maize (Hall and Dawe, 2018). The negative association of TE abundance with fitness confirms133

theoretical and empirical evidence of the deleterious costs of TEs (Charlesworth and Charlesworth, 1983; Charlesworth and134

Langley, 1989). We replicate this negative association between TE abundance and grain yield within individual NAM families,135

and find a negative effect for the majority of NAM families. Individuals with more TEs show lower grain yield, in 70% (17) of136

NAM families (Figure 3B), and a combined p-value using Fisher’s method shows a significant negative association between TE137

base pairs and fitness (p = 0.033). Making a number of simplifying assumptions about average per-plant yield (see Methods),138

our models predict a loss of one kernel’s worth of yield for every additional 14.43 Mb of TEs. Making further assumptions139

about the average length of a TE, this fitness cost reflects a selection coefficient against individual TE insertion of s=-1.4e-7.140

The per-locus impact of TEs on fitness in maize is much smaller than seen in other taxa. Quite simply, the maize genome could141

not exist if every one of the 350,000 TEs were reducing fitness by 0.1% to 5%, as seen in fly and yeast experiments (Wilke142

and Adams, 1992; Mackay, 1989; Pasyukova et al., 2004). The proximate cause of these small differences in fitness are small143

enough to be due to the bioenergetic cost to replicate the additional TE DNA. As such, differences between taxa in genome144
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Fig. 3. Phenotype associations with transposable element content, for each NAM family. (A) Female flowering time (Days to Silking), (B) Grain yield. Each colored

point reflects the regression coefficient of a NAM family, colored by maize subpopulation, and point size reflects the coefficient of determination (R2) for the entire model.

Families that are significantly associated are plotted in a darker color, and labeled with their family name. All model coefficients are plotted in Supp. Figure S4, and model

summaries in Supp. Tables S3 and S4.

size, TE content, and population history likely affect how selection acts on TEs. The shift between regimes where genetic drift145

dictates the fate of an allele and where selection is effective lies at 2Ns, where N is the effective population size, and s is the146

selection coefficient (Kimura, 1962). Maize underwent a population bottleneck as it was domesticated from its wild relative147

teosinte, and the effective population size is estimated around 100,000 (Beissinger et al., 2016). Our crude estimate of s thus148

suggests that 2Ns = 0.28, well within the range of estimated values where genetic drift will predominate, and selection cannot149

push TE content even lower.150

To better understand the properties of TEs that may underlie these effects, we consider a number of characteristics previously151

shown to impact how deleterious a TE is to host fitness. We present the relationship with grain yield in the text, as it best explains152

fitness, although associations with flowering time are presented in Supplemental Tables S5, S6, and S7. One relationship that153

has been widely supported is that TEs close to genes may disrupt host fitness to a greater effect than those far from genes154

(Medstrand et al., 2002; Wright et al., 2003; Hollister and Gaut, 2009). We partition TE bp to those TEs inside of a gene155

model, 1 kb from a gene, 1 - 5 kb from a gene, and all other TEs greater than 5 kb from a gene, then fit a linear model relating156

TE bp in these categories to grain yield. This model explains more variance (R2=0.040, p=1.941e-11) than previous models157

considering TEs in bulk. While the majority of TE bp is found greater than 5 kb away from genes (mean 2,980.7 Mb diploid,158

83.3% of all TE base pairs), this does not show a significant association with grain yield (Figure 4A, Supp. Table S5). There159

are significant positive effects for TE base pairs inside of genes, most often intronic insertions (mean 73.7 Mb, 2.1% of all TE160

bp). This positive effect is contrary to the expectation that TEs that insert within genes will have a high deleterious cost, as161

they are likely to disrupt transcription, splicing, or even coding sequence of that gene (Lisch, 2013; Hirsch and Springer, 2017;162

Wells and Feschotte, 2020). Our observation could reflect a filtering process, where new genic insertions are rapidly removed163

by selection, leaving only TEs in genes that have neutral or even conditionally beneficial fitness effects. Consistent with such a164

model, Qiu et al. (2021) find TE insertions within genes are found at elevated frequencies in a maize diversity panel compared165

to insertions elsewhere in the genome. A positive effect of TE bp on grain yield is also seen for TE bp one to five kb from a166

gene (mean 326.0 Mb, 9.1% of all TE bp). In maize, this region encompasses the transition from genic euchromatin to silenced167

heterochromatin (Li et al., 2015; Martin et al., 2021). For many genes, this occurs due to the presence of an ‘island’ of CHH168

methylation, which prevents genic euchromatin from spreading out to TE-dense regions (Li et al., 2015; Martin et al., 2021).169

Higher load of TEs in this region 1-5 kb from genes may thus strengthen the differentiation between compartments of the maize170

genome, enforcing silencing of TEs. The only subset of TEs significantly negatively associated with grain yield are those within171

1 kb of a gene (mean 93.7 Mb, 2.6% of all TE bp). It has been extensively shown that TE insertions can alter gene expression172

(Lisch, 2013; Hirsch and Springer, 2017; Uzunović et al., 2019), either due to disruption of existing regulatory sequence, or173

the contribution of new regulatory sequence encoded by the TE. In total, these analyses partitioning TE bp into distance classes174

from genes suggests that the negative impact of TEs on fitness is predominantly due to TE bp in this close regulatory space near175

genes. It is important to note that although this group has the largest negative effect, its burden is smaller in magnitude than176

other classes as they only make up 2.6% of all TE base pairs.177

Actively jumping TEs generate mutations that selection may not yet have had a chance to remove from populations. To178

measure the fitness consequences of recent TE insertions, we measure which TEs have accumulated no substitutions from179

their consensus copy, and contrast this to older, degraded TEs with at least one substitution. We require insertions to be a180

minimum of 500 bp long, as this means these recent insertions are younger than 30,000 years, given a mutation rate of 3.3e-8181

substitutions/generation (Clark et al., 2005). When we associate these two classes of TEs with grain yield, only recent insertions182

have a significant negative effect on yield (Figure 4B, Supp. Table S6), and the model explains similar variance to that of models183

containing all repeat classes (R2=0.016, p=3.536e-05). This suggests that old segregating TEs have minimal impact on yield,184

much less than that observed for recent insertions that are not yet purged from maize populations.185

The deleterious cost of TEs near genes has been shown to be more extreme when TEs near genes are silenced by DNA186

methylation (Hollister and Gaut, 2009; Choi et al., 2021), but unmethylated TEs also pose a deleterious cost due to their ability187
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Fig. 4. GY associations with different subsets of TE base pairs. Effect size of associations of TE base pairs with grain yield, for distance to gene (A), age of insertion (B),

presence of unmethylated regions (UMR) (C), and TE families (D). Significant effects (p<0.05) shown with larger circle. Small gray points in A-C lack statistical significance,

as do small points in D.

to jump to new positions and make mutations. To test the effect of methylation state of TEs on fitness, we use measures of188

unmethylated regions (UMRs) of the maize NAM genome assemblies (Hufford et al., 2021). These unmethylated regions189

likely encompass accessible chromatin regions across maize tissues (Crisp et al., 2020). We find a significant positive effect190

of load of methylated TEs (those without a UMR), and a nonsignificant positive effect for those TEs that contain a UMR on191

grain yield (Figure 4C, Supp. Table S7). This model explains very little variance in grain yield, and does not reach statistical192

significance (R2=0.005, p=0.0638). While more subtle methylation differences between maize individuals surely exist, it is not193

clear whether methylation can be imputed to RILs, and future studies directly measuring methylation in hybrids could address194

this.195

Finally, we consider the effects of different TE families on fitness. Often considered as a single category of masked196

DNA, TEs are extremely variable in their replication mechanisms and impacts on their host genomes (Lisch, 2013; Wells and197

Feschotte, 2020). Although superfamilies of TEs demonstrate general genomic patterns and can be related to our phenotypes198

(Supp Table S2), the true unit of selection for a TE is that of closely related lineages of TE families. Maize TEs vary in their199

genomic position, activity, and age, which is best captured at the level of TE family (Stitzer et al., 2021). To ensure we are200

capturing genome-wide signal for each TE family, and not simply linkage to flowering or grain yield QTL, we analyze the 170201

TE families that account for greater than 10 Mb of DNA sequence across all NAM parent assemblies. These 170 TE families202

belong to 11 different superfamilies of TEs, that are representative of TE diversity in the maize genome (Stitzer et al., 2021). We203

simultaneously estimate the effect of each TE family on grain yield by fitting a linear model with terms summarizing the base204

pairs of the TE family in each RIL (Supp. Table S8), as well as terms for the summed base pairs of all other TEs families and205

base pairs contributed by the B73 parent. This model contains more parameters, but also explains more variance in grain yield206

than any other model we fit (R2=0.265, p<2.2e-16). We find that 23 TE families are significantly associated with grain yield;207

12 are associated with lower grain yield, while 11 TE families are associated with higher grain yield (Fig 4D), but none of these208

associations surpass FDR correction. Families associated with negative effects include DTC00048, an En/Spm family originally209

named Doppia, that was discovered when active transposition generated chromosomal rearrangements and gene duplications at210

the r1 locus (Walker et al., 1995; Bercury et al., 2001). Families associated with positive effects include RLG00017, a Ty3 LTR211

retrotransposon family originally named Dagaf, that confers salt responsiveness to nearby genes (Makarevitch et al., 2015). The212

great variability of associations between TE family abundance and fitness highlights the great variability of TE families, and213

the limitations of summarizing all TE content into a single category. We are unable to test individually the impact of smaller TE214

families, but in aggregate these show a significant negative effect on fitness (effect estimate = -9.05e09; Supp. Table S8). Many215

of the actively transposing TEs in maize, particularly for LTR retrotransposons, come from families with a handful of copies216

in the genome (Dooner et al., 2019; Wessler, 2019). It is likely that these families may have disproportionately large effects217

on fitness, relative to their abundance, and future studies of TE deleterious load should develop strategies to test the effects of218

these rare variants.219
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Conclusion220

The mutagenic impact of de novo TE insertion has been extensively documented through genetic analysis of spontaneous221

mutants of many model species, including those in maize that led to the discovery of transposition itself (McClintock, 1950).222

While maize has an abundance of TEs, making up over 85% of the genome (Schnable et al., 2009; Hufford et al., 2021), TE223

content is extremely variable between maize individuals (Brunner et al., 2005; Morgante et al., 2005; Anderson et al., 2019;224

Munasinghe et al., 2023). However, most TEs present in the maize genome have not transposed recently – the median age of225

a TE insertion is 150,000 years (Stitzer et al., 2021). This landscape of old TE insertions are still highly polymorphic even226

among inbred breeding lines like the maize NAM parents, emphasized by the nearly 100 Mb variation in TE content we see227

in the NAM RILs. Here, we show that the cost of TEs in the maize genome is quantifiably small using large-scale fitness228

data sets from close to a million plants. While maize breeders have purged the most deleterious TE insertions, the cumulative229

load of small effects persists even in elite maize breeding populations as their selection coefficients are too small to effectively230

eradicate.231

Materials and Methods232

Code to generate figures and analyses for this manuscript can be accessed at https://github.com/mcstitzer/233

maize_TE_load_fitness. The PHZ51 genome assembly is available upon request, and will be deposited at NCBI/ENA234

under Project PRJEB59044.235

Imputation of RIL haplotypes. To impute information from parental genome assemblies onto recombinant inbred lines236

(RILs), we use genotyping by sequencing (GBS) genotyping data of 6,624 replicates of 4,975 RILs derived from crosses237

between one of 25 inbred lines and the inbred line B73 (McMullen et al., 2009; Rodgers-Melnick et al., 2015, NCBI SRA238

SRP009896). We map reads from these individuals to a pangenome representation of parental assemblies using the Practical239

Haplotype Graph (PHG) (Bradbury et al., 2021), to capture parental haplotypes present in each RIL. Our reference pangenome240

database is Maize_1.0, with reference ranges based on B73v5 genes (Valdes Franco et al., 2020). We restrict haplotypes identi-241

fied to those from any of B73 and 25 NAM parental assemblies from Hufford et al. (2021). For each RIL sample, we impute a242

path through the pangenome graph, allowing only haploid paths because these samples are inbred. This may ignore remaining243

residual heterozygosity, which is limited to less than 4% of markers in (McMullen et al., 2009). The individuals genotyped in244

this study have been self-fertilized for additional generations since McMullen et al. (2009), likely further increasing homozy-245

gosity. 1,649 individuals were genotyped in replicate – often biological replicates – when contamination or error was suspected246

or additional sequencing capacity was available. We select a single replicate to retain based on 1) if the two most likely parents247

imputed are those expected from the pedigree, 2) historical knowledge of GBS run failure, and if all else is equal, and 3) the248

replicate with highest read coverage.249

Over several decades, mutation and contamination have generated true genetic differences between independent replicates250

of the B73 inbred line (Liang and Schnable, 2016). The B73 germplasm used to generate the NAM RILs comes from Major251

Goodman and is derived from the sub-line used by Pioneer Hi-Bred, while the stock used to assemble the genome is descended252

from USDA PI 550473 (Coe and Schaeffer, 2005), and further propagated by Michael McMullen. Regions of retained heterozy-253

gosity in the originally released B73 inbred line sorted into fixed homozygous differences between these lineages. Differences254

between genotyped regions of B73 have been noted before, including a region on chromosome 5 (Gore et al., 2009, ,Sup-255

plemental Material). We take 38 genotyped replicates of B73 and 10 of each NAM parent (Romay et al., 2013), and impute256

their genotypes using the PHG as we did for each RIL. Regions with less than 60% (23 for B73, 6 for other parents) correctly257

assigned to the parental haplotype for the named genotyped sample are removed from future analysis. This removes a region258

on chromosome 5, found in none of the B73 individuals, as well as blocks on chromosomes 1 and 10. The PHG deals with259

large structural variation in a practical manner, collapsing regions such as inversion breakpoints into a single reference range,260

relative to the B73 allele, while positioning internal sequence at colinear regions. As there is segregating structural variation261

among the NAM parents, we removed 107 reference ranges with high variance in haplotype length among individuals (1 Mb262

difference between the maximum and minimum haplotype length).263

For all figures, we show classification of NAM parents into categories of temperate, tropical, sweet, popcorn, and mixed264

germplasm from Flint-Garcia et al. (2005).265

TE Annotation. We project the TE annotation from each NAM parent onto haplotypes, summing contributions of TEs in total,266

each superfamily and family of TE, and knob, centromere, telomere, and ribosomal repeats. We used TE and repeat anno-267

tations updated from Hufford et al. (2021) and presented in Ou et al. (2022) (downloaded from https://de.cyverse.268

org/anon-files//iplant/home/shared/NAM/NAM_Canu1.8_TE_annotation_03032022/), collapsing by269

TE superfamily and repeat type. We summarized copies into superfamilies based on the Classification field in each parental gff,270

resulting in superfamilies DTA (Ac/Ds), DTC (CACTA), DTH (pIF/Harbinger), DTM (Mutator), DTT (Tc1/Mariner), DHH271

(Helitron), RIL (L1 LINE), RIT (RTE LINE), RIX (unknown LINE), RLC (Ty1/Copia), RLG (Ty3), RLX (Unknown LTR). We272
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further assess contribution of TE families, focusing on the 170 families with greater than 10 Mb of sequence across all NAM273

parents. We combine LTR and internal regions of LTR retrotransposon records, and collapse different consensus copies of the274

same family into a single family identifier (e.g. ‘tekay_AC200856_6996’ and ‘tekay_AC211245_11065’ are both included in275

the Ty3 family ‘tekay’). For family-specific analyses, we remove families with names starting with ‘TE_’, due to inconsisten-276

cies between structural and homology-based superfamily assignment. In addition to TEs, we summarize the contribution of277

knob repeats, centromere repeats, telomere repeats, and ribosomal repeats to each haplotype. We repeat this process for each278

parental assembly, again, removing regions that cannot be genotyped or that differ between germplasm sources.279

TE characterization. We further assess features of TEs that have previously been tied to the deleterious impact of TEs on280

genes. We measure distance of each insertion to a core gene, as defined in Hufford et al. (2021). We sum TE base pairs281

within the gene, within 1 kilobase (kb) from the gene, from 1-5 kb from the gene, and greater than 5 kb. We assess the TE282

bp contributed by recent TE insertions, using a conservative metric that the TE copy has no divergence from the TE family283

consensus and is at least 500 bp, summarizing the youngest insertions in these maize genomes. We categorize all other TEs284

as ‘old’ insertions. As most TE families were originally defined based on the initial B73 genome assembly (Schnable et al.,285

2009), a majority of young TEs are inherited from the B73 parent. We identify TEs carrying an unmethylated region (UMRs)286

(Hufford et al., 2021), and calculate the amount of base pairs of TEs carrying UMRs in each RIL, and the amount of base pairs287

of TEs that lack an UMR.288

PHZ51 genome assembly and annotation. We assembled the genome of the former commercial tester line PHZ51, us-289

ing PacBio CCS sequencing. We generated 212 Gb of sequence, and error-corrected these reads using mecat2 v20190314-290

8-gf54c542 (Xiao et al., 2017) with CNS_OPTIONS="-r 0.6 -a 1000 -c 4 -l 3000", selected the longest 40291

reads when greater than 40x coverage with CNS_OUTPUT_COVERAGE=40 and used a minimum read length of 2000.292

We then assembled these error-corrected reads using canu v 2.0 (Koren et al., 2017) with the -trim-assemble pa-293

rameter, a kmer frequency threshold of -ovlMerThreshold=500, and -genomeSize=2.5g . This resulted in a294

2 Gb assembly in 591 contigs, with an N50 of 3.5 Mb. To annotate TEs, we ran RepeatMasker v. 4.1.0, using295

NAM.EDTA2.0.0.MTEC02052020.TElib.fa as the repeat library, rmblastn as the search engine, and -q -no_is296

-norna -nolow -div 40 parameters to match those used on the NAM maize assemblies. We summarized TEs from the297

gff3 output as above for other assemblies. For phenotypic analyses of hybrid maize, we add the genomic complement of TEs298

and repeats present in the PHZ51 parent to the RIL, creating a diploid genotypic value for the hybrid. To estimate the distance299

of TEs from genes, we projected the B73 gene models onto the PHZ51 assembly using Liftoff (Shumate and Salzberg, 2021).300

Phenotype Data. We used phenotypes collected from 1,723 hybrids of NAM RILs with a common PHZ51 tester parent from301

yield trials (Ramstein et al., 2020; Larsson et al., 2017). We use best linear unbiased estimator (BLUE) values from Ramstein302

et al. (2020) for days to silking (female flowering; N=1559), and a measure of grain yield incorporating female flowering as a303

fixed effect (N=1452), as yield is correlated to flowering time. The Hp301 popcorn family is not assayed in this experiment, so304

it is not present in results involving phenotypes.305

Associations. We associate genotypic descriptions of TE and repeat content with flowering time and grain yield phenotypes306

using a series of linear models. First, we associate the phenotype with genome size of each hybrid, in the form of phenotypei ∼307

totalbpi, where i indicates a NAM RIL hybrid. We next split this genome size phenotype into component parts - TE base308

pairs, knob, centromere, telomere, and ribosomal repeats, and nonTE-nonRepeat base pairs. We also include a fixed effect309

for the amount of base pairs of the B73 common parent to control for proportion ancestry of this common parent, resulting310

in a model of phenotypei ∼ TEbpi + nonTEnonRepeatbpi + knobbpi + centromerebpi + telomerebpi + ribosomalbpi +311

B73bpi. As a complementary, more stringent correction for population structure, we incorporate three principal components312

(PCs) of a kinship matrix of the NAM RILs. We built this kinship matrix using SNPs from each chromosome. This model is313

thus phenotypei ∼ TEbpi + nonTEnonRepeatbpi + knobbpi + centromerebpi + telomerebpi + ribosomalbpi + PC1i +314

PC2i +PC3i. To make use of the nested structure of the NAM population, we repeat the model using B73 bp control 24 times315

for each NAM family individually.316

We test gene distance, TE age, and TE UMR presence in similar models. For gene distance, we fit a linear regression317

as phenotypei ∼ TEbpingenei + TEbp1kbfromgenei + TEbp1to5kbfromgenei + TEbpgreaterthan5kbfromgenei +318

B73bpi + nonTEnonRepeatbpi. For TE age, we fit a linear regression as phenotypei ∼ youngTEbpi + oldTEbpi +319

B73bpi + nonTEnonRepeatbpi. For TE UMRs, we fit a linear regression as phenotypei ∼ TEbpwithUMRi +320

TEbpwithoutUMRi + B73bpi + nonTEnonRepeatbpi. To test the impact of individual TE families, we fit a linear re-321

gression in the form of phenotype ∼ TEbpfam1i +TEbpfam2i + ...+TEbpfam170i +TEbpSmallerFamsi +B73bp+322

nonTEnonRepeatbpi.323

Assumptions about yield. We aimed to convert our effect estimates from tonnes/hectare into easily interpretable values.324

These experiments were planted in two-row plots, with 40–80 plants per plot and 50,000–75,000 plants per hectare (Larsson325
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et al., 2017; Ramstein et al., 2020). We thus use a mean value of 62,500 plants per hectare. An average ear of hybrid maize326

has 800 kernels, and each kernel weighs about 0.2 grams. By dividing our effect estimate using B73 bp as population structure327

correction by these values, we find 14.43 Mb of additional TE content decreases fitness by one kernel. An average TE fragment328

(across all genotypes) in Hufford et al. (2021) is 1599 base pairs. We consider the relative fitness between an individual with329

800 kernels and 799 kernels, and divide the 14.4 Mb of TEs by their average length to count the 9005 TEs. This reduces to an330

average selection coefficient against a TE of 1.4e-7.331
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