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Abstract

Transposable elements (TEs) have long been shown to have deleterious effects on the survival and reproduction of their host organism.
As TEs are mobile DNA that jump to new positions, this deleterious cost can occur directly, by inserting into genes and regulatory
sequences. Classical population genetic theory suggests copy-number dependent selection against TEs is necessary to prevent TEs
from expanding so much they take over a genome. Such models have been difficult to interpret when applied to large genomes like
maize, where there are hundreds of thousands of TE insertions that collectively make up 85% of the genome. Here, we use nearly
5000 inbred lines from maize mapping populations and a pan-genomic imputation approach to measure TE content. Segregating TE
content gives rise to 100 Mb differences between individuals, and populations often show transgressive segregation in TE content.
We use replicated phenotypes measured in hybrids across numerous years and environments to empirically measure the fitness costs
of TEs. For an annual plant like maize, grain yield is not only a key agronomic phenotype, but also a direct measure of reproductive
output. We find weak negative effects of TE accumulation on grain yield, nearing the limit of the efficacy of natural selection in maize.
This results in a loss of one kernel (=0.1% of average per-plant yield) for every additional 14 Mb of TE content. This deleterious
load is enriched in TEs within 1 kilobase of genes and young TE insertions. Together, we provide rare empirical measurements of
the fitness costs of TEs, and suggest that the TEs we see today in the genome have been filtered by selection against their deleterious
consequences on maize fitness.

transposable elements | fitness | maize

Correspondence: mcs368@cornell.edu

Introduction

Across eukaryotes, the amount of nuclear DNA varies by five orders of magnitude. These differences do not scale with
eukaryotic organismal complexity, and whether differences in genome size are adaptive or shaped by genetic drift and evolving
neutrally remain contentious (Elliott and Gregory, 2015). The underlying cause of these interspecific differences in genome
size lies in the amount of nongenic DNA, almost certainly a consequence of past transposable element (TE) activity. When TEs
jump to a new position, they generate an insertion of their own DNA sequence, and uncontrolled transposition can generate
extreme costs to host genomes when TE insertions in genes and other functional sequences disrupt cellular function. TEs are
thus selfish DNA and parasitic to their host genome (Orgel and Crick, 1980; Doolittle and Sapienza, 1980).

The maize genome contains over 350,000 TEs (Stitzer et al., 2021), and fragments derived from TEs cumulatively make up
over 85% of the genome (Schnable et al., 2009; Hufford et al., 2021). These TEs come from over 27,000 families in all known
plant TE superfamilies, and are found in variable genic, chromatin, methylation, and recombinational environments within the
genome (Baucom et al., 2009; Stitzer et al., 2021). Maize TEs are extremely polymorphic, with only half of TE insertions
shared at the same position between any two individuals (Brunner et al., 2005; Morgante et al., 2005; Anderson et al., 2019;
Munasinghe et al., 2023). The high abundance and diversity of TEs in maize, as compared to previously investigated model
taxa, suggests the fitness costs of TEs cannot possibly be as high as those previously measured in yeast and flies. Although
maize is often cited as an example of a large genome, it is in fact below the average genome size of both plants (6.1 Gb) and
animals (4.2 Gb) (Dodsworth et al., 2015; Elliott and Gregory, 2015). Quantifying the fitness costs of maize TEs enriches our
understanding of the forces acting on TEs in a more typical eukaryotic genome.

Here, we combine measurements of TE content in maize mapping populations with fitness measurements of these indi-
viduals, to reveal that there is weak but pervasive negative selection acting on TEs in maize. Selection against TEs lies at the
boundary between drift and selection in maize, suggesting that although the maize genome is relatively large, its size is likely
constrained by the cumulative deleterious effects of the pesky TEs that make up the bulk of its sequence.
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Results and Discussion

Genome size is determined by the combination of DNA sequences inherited from both parents, in the absence of novel mu-
tations. Transposition events are infrequent in maize pedigrees, where few to no insertions occur per generation in most
germplasm (Dooner et al., 2019). Thus, genome size and TE content can be well-approximated by imputation from assembled
parental genomes to genotyped progeny. We used a maize pan-genome (Bradbury et al., 2021; Valdes Franco et al., 2020)
to impute genome size and TE content, by projecting TE annotations and haplotype blocks from parental genome assemblies
to genotyped RILs. We did so in the US Nested Association Mapping (NAM) population of maize (McMullen et al., 2009;
Gage et al., 2020), a set of 4,975 genotyped recombinant inbred lines (RILs) generated from twenty-five parental inbred lines
crossed to the original reference genotype of maize (B73) then self-pollinated for 4-6 generations (McMullen et al., 2009).
Many maize inbred lines were publicly released while still containing residual heterozygosity, and these regions subsequently
became homozygous for alternative alleles in different lineages (McMullen et al., 2009; Liang and Schnable, 2016). We ex-
tensively filtered such regions of the genome that did not return the parents expected from the pedigree. While this filtering
reduces total genome size, our imputed genome size is still highly correlated to flow cytometry metrics of DNA content (Supp
Fig. S2). In RIL individuals, genome size varies by 97.8 megabases (Mb) (Fig 1A, Supp. Fig. S2), approximately 4.2 percent
of the B73 reference genome size. Both genome size (Fig 1A) and TE content (Fig 1B) observed in the RILs vary by NAM
biparental family, as each NAM parent contributes different alleles to the RIL progeny. We see transgressive segregation for
both genome size and TE content in certain NAM families, such as CML322, where the majority of RILs have higher values
than either parent (Fig 1A-B). This is likely contributed by high variance between parental genomes in alternative haplotype
content. Much of the variation in genome size can be explained by the strong, positive relationship of genome size with TE
content (Spearman’s correlation, tho=0.961, p<2.2e-16) (Fig 1C). Further, a high proportion (0.937, 95% CI 0.904-0.965) of
variance in TE content can be explained by a kinship matrix describing relatedness of these RILs.

To test whether genome size and TE content are associated with fitness related phenotypes, we use data from multi-
environment yield trials of almost one million individual plants. These consist of F1 hybrids of each RIL with the former
commercial tester, inbred line PHZ51 (Larsson et al., 2017; Ramstein et al., 2020). As modern corn breeding has focused on
selection for alleles that perform well in a hybrid background, these phenotypes provide relevant effect estimates, particularly
on traits related to fitness. We use phenotypes of flowering time and grain yield to measure fitness. For annual plants like maize
and its wild relative teosinte, flowering time contributes to fitness, as the plant must appropriately incorporate environmental
signals to flower synchronously with others, and before the end of the growing season. Fitness can more directly be measured
as the number of viable seeds produced per plant, which is well-measured by grain yield. Maize breeding has targeted increased
grain yield as measured through seed mass per field area (Hallauer et al., 1988; Duvick et al., 2003). To better assess genome
content of these hybrids, we assembled the genome of the hybrid tester PHZ51, and added its genomic contribution to each
RIL hybrid to generate a diploid value that reflects the diploid genome of the phenotyped F1 individuals. For all analyses, we
use best linear unbiased estimator (BLUE) values for flowering time and grain yield calculated in Ramstein et al. (2020) for a
subset of 1,723 RIL hybrids phenotyped in six environmental trials (Larsson et al., 2017). The mean TE content in the subset
of phenotyped RILs is approximately 1 Mb larger than the 3,252 NAM RILs not phenotyped (difference = 1.24e+06, p<0.001;
Supp. Fig S1). The phenotyped subset of RILs were originally chosen for similar flowering times to limit the effect of growing
season length on grain yield, and in this experiment BLUE estimates of female flowering time (Days To Silking, DTS) range
from 64 to 77.8 days (u= 70.355, SD=2.06). As previously shown (Ramstein et al., 2020), grain yield is negatively correlated
with DTS (Supp. Fig. S3A), thus we introduce flowering time as a fixed effect in the calculation of grain yield BLUEs, to
correct for flowering time (Supp. Fig. S3). These adjusted grain yield (GY) values range from 1.866 to 10.415 tonnes/hectare
(p=6.99, SD= 0.86).

We first associate genome size to flowering time, as multiple reports have shown that maize individuals with larger genomes
flower later (Rayburn et al., 1994; Jian et al., 2017; Bilinski et al., 2018; Li et al., 2018). Consistent with previous work, we
find that RIL hybrids with larger genomes flower later (Figure 2A). This association has previously been proposed as an effect
of simply having more DNA that takes time to replicate (Bilinski er al., 2018), or specific effects from repeat classes like
chromosomal knobs (Jian et al., 2017), ribosomal repeats (Li et al., 2018), or telomeres (Choi et al., 2021). To test the impact
of components of genome size, we fit a series of linear models predicting female flowering time (DTS) in these hybrids from
different repetitive categories (Table 1). These include the amount of TE base pairs in their genome, the amount of four
tandem repeat class base pairs (ribosomal, centromeric, telomeric, and knob), and amount of the genome coming from the B73
parent (Table 1). The model explains a statistically significant and substantial proportion of variance (R2=0.133, p < 2.2e-16)
and all significant positive associations of repeat classes with flowering time are positive, except for TE base pairs which is
negative (Table 1). We additionally fit a model using three principal component (PC) terms from a kinship matrix to correct
for population structure, which recovers similar effects (Supp. Table S1). Much of the early evolution of maize occurred in
tropical environments, but dispersal to temperate environments over the last several millennia required major flowering time
and photoperiod adaptations (Swarts et al., 2017). Additionally, germplasm from tropical environments tends to have larger
genomes (Chia et al., 2012; Hufford et al., 2021). To detect whether the relationship varies across different biparental families,
we fit models within each NAM family. For flowering time, 58% (14) of NAM families show positive effects of TE base pairs on
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DTS GY

(Intercept) 6.64 x 101 2.57 x 101
TE bp —2.27 x 107 8*%* 6,93 x 107 9*
nonTE, nonRepeat bp ~ 1.48 x 107 7##% 8.75x 1079
Knob bp 1.62x 10~ 7*** 1,80 x 107 8%
Centromere bp 3.64 x 10 Tk —2.99x 1078
Telomere bp 6.29 x 10~ 7* 2.09x 107
Ribosomal bp 6.90 x 10~ 7* 4.49 x 107 7#*
B73 bp —1.89 x 107 9#** 133 x 10710
Num.Obs. 1561 1454

R2 0.133 0.018

R2 Adj. 0.129 0.013

+p<0.1,%p < 0.05, % p < 0.01, ** p < 0.001

Table 1. Relationship between genomic repeats and flowering time (DTS) and grain yield (GY).

DTS, (Figure 3A), and positive effects combined using Fisher’s method are significant (p = 0.014). Although we see an overall
negative effect of TE base pairs when considering all NAM families, within individual NAM families we see more balanced
effects on flowering time. In other taxa (e.g. wheat, Capsella, Arabidopsis, Brassica; Yan et al., 2006; Nitcher et al., 2014;
Niu et al., 2019; Baduel et al., 2018; Quadrana, 2020; Cai et al., 2022) and within maize (Salvi et al., 2007; Hung et al., 2012;
Yang et al., 2013; Huang et al., 2018), large effect TE insertions consistently accelerate flowering by disrupting regulation of
key flowering time pathway genes. Our results are in line with a polygenic view of such disruption of flowering, arising from
quantitative variation in TE content with individually small effects on flowering time. Notably, the regression coefficient for
TE bp implies 44 Mb of additional TE content would accelerate flowering only by one day — an effect size similar to the largest
single locus QTLs segregating in this population (Buckler et al., 2009). Additionally, the presence of active TEs in maize has
been associated with earlier flowering, hypothesized to be due to activation of general stress pathways (Skibbe et al., 2009). In
total, TEs seem to have a disproportionate impact on flowering time beyond simply being made of DNA.

Although flowering is essential to fitness, grain yield more directly quantifies maize fitness, and has been a target of se-
lection for millennia. As expected for fitness, the genetic architecture underlying grain yield is highly polygenic, with few
validated yield QTL segregating in maize breeding populations (Giraud et al., 2017; Ramstein et al., 2020; Simmons et al.,
2021; Khaipho-Burch et al., 2023). Unlike flowering time, little is known about the relationship between grain yield and
genome size. We see a non-significant negative relationship, where individuals with larger genomes show lower fitness (Figure
2B). As with flowering time, we fit linear models predicting grain yield (GY) from TE and various types of non-TE repet-
itive DNA, controlling for population structure with the amount of the genome coming from the common B73 parent. The
model explains a statistically significant but weak amount of variation in grain yield (R2=0.018, p=0.0004; Table 1). A similar
model using PCs of a kinship matrix for population structure control explains more variance, but effect sizes remain similar
(R2=0.068, p < 2.2e-16; Supp Table S1). In both models, higher TE content is significantly associated with reduced grain yield,
while higher abundance of ribosomal and knob repeats are significantly associated with increased grain yield only without PC
correction for population structure (Table 1). Quicker protein production with more abundant ribosomes may accelerate growth
rates, although it is not clear how much compensation occurs between genomic rDNA copy number and rRNA expression (Li
etal., 2018). Similarly, a fitness benefit of chromosomal knobs has been previously implicated in models explaining equilibrium
frequencies of meiotic drive in maize (Hall and Dawe, 2018). The negative association of TE abundance with fitness confirms
theoretical and empirical evidence of the deleterious costs of TEs (Charlesworth and Charlesworth, 1983; Charlesworth and
Langley, 1989). We replicate this negative association between TE abundance and grain yield within individual NAM families,
and find a negative effect for the majority of NAM families. Individuals with more TEs show lower grain yield, in 70% (17) of
NAM families (Figure 3B), and a combined p-value using Fisher’s method shows a significant negative association between TE
base pairs and fitness (p = 0.033). Making a number of simplifying assumptions about average per-plant yield (see Methods),
our models predict a loss of one kernel’s worth of yield for every additional 14.43 Mb of TEs. Making further assumptions
about the average length of a TE, this fitness cost reflects a selection coefficient against individual TE insertion of s=-1.4e-7.
The per-locus impact of TEs on fitness in maize is much smaller than seen in other taxa. Quite simply, the maize genome could
not exist if every one of the 350,000 TEs were reducing fitness by 0.1% to 5%, as seen in fly and yeast experiments (Wilke
and Adams, 1992; Mackay, 1989; Pasyukova et al., 2004). The proximate cause of these small differences in fitness are small
enough to be due to the bioenergetic cost to replicate the additional TE DNA. As such, differences between taxa in genome
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Fig. 3. Phenotype associations with transposable element content, for each NAM family. (A) Female flowering time (Days to Silking), (B) Grain yield. Each colored
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size, TE content, and population history likely affect how selection acts on TEs. The shift between regimes where genetic drift
dictates the fate of an allele and where selection is effective lies at 2N s, where N is the effective population size, and s is the
selection coefficient (Kimura, 1962). Maize underwent a population bottleneck as it was domesticated from its wild relative
teosinte, and the effective population size is estimated around 100,000 (Beissinger ef al., 2016). Our crude estimate of s thus
suggests that 2N s = 0.28, well within the range of estimated values where genetic drift will predominate, and selection cannot
push TE content even lower.

To better understand the properties of TEs that may underlie these effects, we consider a number of characteristics previously
shown to impact how deleterious a TE is to host fitness. We present the relationship with grain yield in the text, as it best explains
fitness, although associations with flowering time are presented in Supplemental Tables S5, S6, and S7. One relationship that
has been widely supported is that TEs close to genes may disrupt host fitness to a greater effect than those far from genes
(Medstrand et al., 2002; Wright et al., 2003; Hollister and Gaut, 2009). We partition TE bp to those TEs inside of a gene
model, 1 kb from a gene, 1 - 5 kb from a gene, and all other TEs greater than 5 kb from a gene, then fit a linear model relating
TE bp in these categories to grain yield. This model explains more variance (R2=0.040, p=1.941e-11) than previous models
considering TEs in bulk. While the majority of TE bp is found greater than 5 kb away from genes (mean 2,980.7 Mb diploid,
83.3% of all TE base pairs), this does not show a significant association with grain yield (Figure 4A, Supp. Table S5). There
are significant positive effects for TE base pairs inside of genes, most often intronic insertions (mean 73.7 Mb, 2.1% of all TE
bp). This positive effect is contrary to the expectation that TEs that insert within genes will have a high deleterious cost, as
they are likely to disrupt transcription, splicing, or even coding sequence of that gene (Lisch, 2013; Hirsch and Springer, 2017;
Wells and Feschotte, 2020). Our observation could reflect a filtering process, where new genic insertions are rapidly removed
by selection, leaving only TEs in genes that have neutral or even conditionally beneficial fitness effects. Consistent with such a
model, Qiu ez al. (2021) find TE insertions within genes are found at elevated frequencies in a maize diversity panel compared
to insertions elsewhere in the genome. A positive effect of TE bp on grain yield is also seen for TE bp one to five kb from a
gene (mean 326.0 Mb, 9.1% of all TE bp). In maize, this region encompasses the transition from genic euchromatin to silenced
heterochromatin (Li et al., 2015; Martin et al., 2021). For many genes, this occurs due to the presence of an ‘island’ of CHH
methylation, which prevents genic euchromatin from spreading out to TE-dense regions (Li ef al., 2015; Martin et al., 2021).
Higher load of TEs in this region 1-5 kb from genes may thus strengthen the differentiation between compartments of the maize
genome, enforcing silencing of TEs. The only subset of TEs significantly negatively associated with grain yield are those within
1 kb of a gene (mean 93.7 Mb, 2.6% of all TE bp). It has been extensively shown that TE insertions can alter gene expression
(Lisch, 2013; Hirsch and Springer, 2017; Uzunovié et al., 2019), either due to disruption of existing regulatory sequence, or
the contribution of new regulatory sequence encoded by the TE. In total, these analyses partitioning TE bp into distance classes
from genes suggests that the negative impact of TEs on fitness is predominantly due to TE bp in this close regulatory space near
genes. It is important to note that although this group has the largest negative effect, its burden is smaller in magnitude than
other classes as they only make up 2.6% of all TE base pairs.

Actively jumping TEs generate mutations that selection may not yet have had a chance to remove from populations. To
measure the fitness consequences of recent TE insertions, we measure which TEs have accumulated no substitutions from
their consensus copy, and contrast this to older, degraded TEs with at least one substitution. We require insertions to be a
minimum of 500 bp long, as this means these recent insertions are younger than 30,000 years, given a mutation rate of 3.3e-8
substitutions/generation (Clark et al., 2005). When we associate these two classes of TEs with grain yield, only recent insertions
have a significant negative effect on yield (Figure 4B, Supp. Table S6), and the model explains similar variance to that of models
containing all repeat classes (R2=0.016, p=3.536e-05). This suggests that old segregating TEs have minimal impact on yield,
much less than that observed for recent insertions that are not yet purged from maize populations.

The deleterious cost of TEs near genes has been shown to be more extreme when TEs near genes are silenced by DNA
methylation (Hollister and Gaut, 2009; Choi et al., 2021), but unmethylated TEs also pose a deleterious cost due to their ability
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Fig. 4. GY associations with different subsets of TE base pairs. Effect size of associations of TE base pairs with grain yield, for distance to gene (A), age of insertion (B),
presence of unmethylated regions (UMR) (C), and TE families (D). Significant effects (p<0.05) shown with larger circle. Small gray points in A-C lack statistical significance,

as do small points in D.

to jump to new positions and make mutations. To test the effect of methylation state of TEs on fitness, we use measures of
unmethylated regions (UMRs) of the maize NAM genome assemblies (Hufford et al., 2021). These unmethylated regions
likely encompass accessible chromatin regions across maize tissues (Crisp et al., 2020). We find a significant positive effect
of load of methylated TEs (those without a UMR), and a nonsignificant positive effect for those TEs that contain a UMR on
grain yield (Figure 4C, Supp. Table S7). This model explains very little variance in grain yield, and does not reach statistical
significance (R2=0.005, p=0.0638). While more subtle methylation differences between maize individuals surely exist, it is not
clear whether methylation can be imputed to RILs, and future studies directly measuring methylation in hybrids could address
this.

Finally, we consider the effects of different TE families on fitness. Often considered as a single category of masked
DNA, TEs are extremely variable in their replication mechanisms and impacts on their host genomes (Lisch, 2013; Wells and
Feschotte, 2020). Although superfamilies of TEs demonstrate general genomic patterns and can be related to our phenotypes
(Supp Table S2), the true unit of selection for a TE is that of closely related lineages of TE families. Maize TEs vary in their
genomic position, activity, and age, which is best captured at the level of TE family (Stitzer et al., 2021). To ensure we are
capturing genome-wide signal for each TE family, and not simply linkage to flowering or grain yield QTL, we analyze the 170
TE families that account for greater than 10 Mb of DNA sequence across all NAM parent assemblies. These 170 TE families
belong to 11 different superfamilies of TEs, that are representative of TE diversity in the maize genome (Stitzer et al., 2021). We
simultaneously estimate the effect of each TE family on grain yield by fitting a linear model with terms summarizing the base
pairs of the TE family in each RIL (Supp. Table S8), as well as terms for the summed base pairs of all other TEs families and
base pairs contributed by the B73 parent. This model contains more parameters, but also explains more variance in grain yield
than any other model we fit (R2=0.265, p<2.2e-16). We find that 23 TE families are significantly associated with grain yield,;
12 are associated with lower grain yield, while 11 TE families are associated with higher grain yield (Fig 4D), but none of these
associations surpass FDR correction. Families associated with negative effects include DTC00048, an En/Spm family originally
named Doppia, that was discovered when active transposition generated chromosomal rearrangements and gene duplications at
the r/ locus (Walker et al., 1995; Bercury et al., 2001). Families associated with positive effects include RLG00017, a Ty3 LTR
retrotransposon family originally named Dagaf, that confers salt responsiveness to nearby genes (Makarevitch ez al., 2015). The
great variability of associations between TE family abundance and fitness highlights the great variability of TE families, and
the limitations of summarizing all TE content into a single category. We are unable to test individually the impact of smaller TE
families, but in aggregate these show a significant negative effect on fitness (effect estimate = -9.05e09; Supp. Table S8). Many
of the actively transposing TEs in maize, particularly for LTR retrotransposons, come from families with a handful of copies
in the genome (Dooner et al., 2019; Wessler, 2019). It is likely that these families may have disproportionately large effects
on fitness, relative to their abundance, and future studies of TE deleterious load should develop strategies to test the effects of
these rare variants.
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Conclusion

The mutagenic impact of de novo TE insertion has been extensively documented through genetic analysis of spontaneous
mutants of many model species, including those in maize that led to the discovery of transposition itself (McClintock, 1950).
While maize has an abundance of TEs, making up over 85% of the genome (Schnable et al., 2009; Hufford et al., 2021), TE
content is extremely variable between maize individuals (Brunner et al., 2005; Morgante et al., 2005; Anderson et al., 2019;
Munasinghe et al., 2023). However, most TEs present in the maize genome have not transposed recently — the median age of
a TE insertion is 150,000 years (Stitzer et al., 2021). This landscape of old TE insertions are still highly polymorphic even
among inbred breeding lines like the maize NAM parents, emphasized by the nearly 100 Mb variation in TE content we see
in the NAM RILs. Here, we show that the cost of TEs in the maize genome is quantifiably small using large-scale fitness
data sets from close to a million plants. While maize breeders have purged the most deleterious TE insertions, the cumulative
load of small effects persists even in elite maize breeding populations as their selection coefficients are too small to effectively
eradicate.

Materials and Methods

Code to generate figures and analyses for this manuscript can be accessed at https://github.com/mcstitzer/
maize_TE_load_fitness. The PHZ51 genome assembly is available upon request, and will be deposited at NCBI/ENA
under Project PRIEB59044.

Imputation of RIL haplotypes. To impute information from parental genome assemblies onto recombinant inbred lines
(RILs), we use genotyping by sequencing (GBS) genotyping data of 6,624 replicates of 4,975 RILs derived from crosses
between one of 25 inbred lines and the inbred line B73 (McMullen et al., 2009; Rodgers-Melnick et al., 2015, NCBI SRA
SRP009896). We map reads from these individuals to a pangenome representation of parental assemblies using the Practical
Haplotype Graph (PHG) (Bradbury et al., 2021), to capture parental haplotypes present in each RIL. Our reference pangenome
database is Maize_1.0, with reference ranges based on B73v5 genes (Valdes Franco et al., 2020). We restrict haplotypes identi-
fied to those from any of B73 and 25 NAM parental assemblies from Hufford et al. (2021). For each RIL sample, we impute a
path through the pangenome graph, allowing only haploid paths because these samples are inbred. This may ignore remaining
residual heterozygosity, which is limited to less than 4% of markers in (McMullen et al., 2009). The individuals genotyped in
this study have been self-fertilized for additional generations since McMullen e? al. (2009), likely further increasing homozy-
gosity. 1,649 individuals were genotyped in replicate — often biological replicates — when contamination or error was suspected
or additional sequencing capacity was available. We select a single replicate to retain based on 1) if the two most likely parents
imputed are those expected from the pedigree, 2) historical knowledge of GBS run failure, and if all else is equal, and 3) the
replicate with highest read coverage.

Over several decades, mutation and contamination have generated true genetic differences between independent replicates
of the B73 inbred line (Liang and Schnable, 2016). The B73 germplasm used to generate the NAM RILs comes from Major
Goodman and is derived from the sub-line used by Pioneer Hi-Bred, while the stock used to assemble the genome is descended
from USDA PI 550473 (Coe and Schaeffer, 2005), and further propagated by Michael McMullen. Regions of retained heterozy-
gosity in the originally released B73 inbred line sorted into fixed homozygous differences between these lineages. Differences
between genotyped regions of B73 have been noted before, including a region on chromosome 5 (Gore et al., 2009, ,Sup-
plemental Material). We take 38 genotyped replicates of B73 and 10 of each NAM parent (Romay et al., 2013), and impute
their genotypes using the PHG as we did for each RIL. Regions with less than 60% (23 for B73, 6 for other parents) correctly
assigned to the parental haplotype for the named genotyped sample are removed from future analysis. This removes a region
on chromosome 5, found in none of the B73 individuals, as well as blocks on chromosomes 1 and 10. The PHG deals with
large structural variation in a practical manner, collapsing regions such as inversion breakpoints into a single reference range,
relative to the B73 allele, while positioning internal sequence at colinear regions. As there is segregating structural variation
among the NAM parents, we removed 107 reference ranges with high variance in haplotype length among individuals (1 Mb
difference between the maximum and minimum haplotype length).

For all figures, we show classification of NAM parents into categories of temperate, tropical, sweet, popcorn, and mixed
germplasm from Flint-Garcia et al. (2005).

TE Annotation. We project the TE annotation from each NAM parent onto haplotypes, summing contributions of TEs in total,
each superfamily and family of TE, and knob, centromere, telomere, and ribosomal repeats. We used TE and repeat anno-
tations updated from Hufford et al. (2021) and presented in Ou et al. (2022) (downloaded from https://de.cyverse.
org/anon-files//iplant/home/shared/NAM/NAM Canul.8_TE_annotation 03032022/), collapsing by
TE superfamily and repeat type. We summarized copies into superfamilies based on the Classification field in each parental gff,
resulting in superfamilies DTA (Ac/Ds), DTC (CACTA), DTH (pIF/Harbinger), DTM (Mutator), DTT (Tc1/Mariner), DHH
(Helitron), RIL (L1 LINE), RIT (RTE LINE), RIX (unknown LINE), RLC (Ty1/Copia), RLG (Ty3), RLX (Unknown LTR). We
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further assess contribution of TE families, focusing on the 170 families with greater than 10 Mb of sequence across all NAM
parents. We combine LTR and internal regions of LTR retrotransposon records, and collapse different consensus copies of the
same family into a single family identifier (e.g. ‘tekay_AC200856_6996’ and ‘tekay_AC211245_11065" are both included in
the Ty3 family ‘tekay’). For family-specific analyses, we remove families with names starting with “TE_’, due to inconsisten-
cies between structural and homology-based superfamily assignment. In addition to TEs, we summarize the contribution of
knob repeats, centromere repeats, telomere repeats, and ribosomal repeats to each haplotype. We repeat this process for each
parental assembly, again, removing regions that cannot be genotyped or that differ between germplasm sources.

TE characterization. We further assess features of TEs that have previously been tied to the deleterious impact of TEs on
genes. We measure distance of each insertion to a core gene, as defined in Hufford ef al. (2021). We sum TE base pairs
within the gene, within 1 kilobase (kb) from the gene, from 1-5 kb from the gene, and greater than 5 kb. We assess the TE
bp contributed by recent TE insertions, using a conservative metric that the TE copy has no divergence from the TE family
consensus and is at least 500 bp, summarizing the youngest insertions in these maize genomes. We categorize all other TEs
as ‘old’ insertions. As most TE families were originally defined based on the initial B73 genome assembly (Schnable et al.,
2009), a majority of young TEs are inherited from the B73 parent. We identify TEs carrying an unmethylated region (UMRs)
(Hufford et al., 2021), and calculate the amount of base pairs of TEs carrying UMRs in each RIL, and the amount of base pairs
of TEs that lack an UMR.

PHZ51 genome assembly and annotation. We assembled the genome of the former commercial tester line PHZ51, us-
ing PacBio CCS sequencing. We generated 212 Gb of sequence, and error-corrected these reads using mecat2 v20190314-
8-gf54c542 (Xiao et al., 2017) with CNS_OPTIONS="-r 0.6 —-a 1000 -c 4 -1 3000", selected the longest 40
reads when greater than 40x coverage with CNS_OUTPUT_COVERAGE=40 and used a minimum read length of 2000.
We then assembled these error-corrected reads using canu v 2.0 (Koren et al., 2017) with the —trim-assemble pa-
rameter, a kmer frequency threshold of -ovlMerThreshold=500, and ~genomeSize=2.5g . This resulted in a
2 Gb assembly in 591 contigs, with an N50 of 3.5 Mb. To annotate TEs, we ran RepeatMasker v. 4.1.0, using
NAM.EDTA2.0.0.MTEC02052020.TElib. fa as the repeat library, rmblastn as the search engine, and —q -no_is
-norna -nolow —-div 40 parameters to match those used on the NAM maize assemblies. We summarized TEs from the
gff3 output as above for other assemblies. For phenotypic analyses of hybrid maize, we add the genomic complement of TEs
and repeats present in the PHZ51 parent to the RIL, creating a diploid genotypic value for the hybrid. To estimate the distance
of TEs from genes, we projected the B73 gene models onto the PHZ51 assembly using Liftoff (Shumate and Salzberg, 2021).

Phenotype Data. We used phenotypes collected from 1,723 hybrids of NAM RILs with a common PHZ51 tester parent from
yield trials (Ramstein et al., 2020; Larsson et al., 2017). We use best linear unbiased estimator (BLUE) values from Ramstein
et al. (2020) for days to silking (female flowering; N=1559), and a measure of grain yield incorporating female flowering as a
fixed effect (N=1452), as yield is correlated to flowering time. The Hp301 popcorn family is not assayed in this experiment, so
it is not present in results involving phenotypes.

Associations. We associate genotypic descriptions of TE and repeat content with flowering time and grain yield phenotypes
using a series of linear models. First, we associate the phenotype with genome size of each hybrid, in the form of phenotype; ~
totalbp;, where ¢ indicates a NAM RIL hybrid. We next split this genome size phenotype into component parts - TE base
pairs, knob, centromere, telomere, and ribosomal repeats, and nonTE-nonRepeat base pairs. We also include a fixed effect
for the amount of base pairs of the B73 common parent to control for proportion ancestry of this common parent, resulting
in a model of phenotype; ~ T Ebp; +nonT EnonRepeatbp; + knobbp; 4+ centromerebp; 4+ telomerebp; + ribosomalbp; +
B73bp;. As a complementary, more stringent correction for population structure, we incorporate three principal components
(PCs) of a kinship matrix of the NAM RILs. We built this kinship matrix using SNPs from each chromosome. This model is
thus phenotype; ~ T Ebp; + nonT EnonRepeatbp; + knobbp; + centromerebp; + telomerebp; + ribosomalbp; + PC1; +
PC2;+ PC3;. To make use of the nested structure of the NAM population, we repeat the model using B73 bp control 24 times
for each NAM family individually.

We test gene distance, TE age, and TE UMR presence in similar models. For gene distance, we fit a linear regression
as phenotype; ~ T Ebpingene; + T Ebplkbfromgene; + T Ebpltobkbfromgene; + T Ebpgreaterthanbkbfromgene; +
B73bp; + nonT EnonRepeatbp;. For TE age, we fit a linear regression as phenotype; ~ young1 Ebp; + old1T Ebp; +
B73bp; + nonT EnonRepeatbp;. For TE UMRs, we fit a linear regression as phenotype; ~ T EbpwithUMR; +
T EbpwithoutU M R; + B73bp; + nonT' EnonRepeatbp;. To test the impact of individual TE families, we fit a linear re-
gression in the form of phenotype ~ T Ebpfam1; +TEbpfam2;+ ...+ TFEbpfam170; +T EbpSmaller Fams; + B73bp +
nonT EnonRepeatbp;.

Assumptions about yield. We aimed to convert our effect estimates from tonnes/hectare into easily interpretable values.
These experiments were planted in two-row plots, with 40-80 plants per plot and 50,000-75,000 plants per hectare (Larsson
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et al., 2017; Ramstein et al., 2020). We thus use a mean value of 62,500 plants per hectare. An average ear of hybrid maize
has 800 kernels, and each kernel weighs about 0.2 grams. By dividing our effect estimate using B73 bp as population structure
correction by these values, we find 14.43 Mb of additional TE content decreases fitness by one kernel. An average TE fragment
(across all genotypes) in Hufford er al. (2021) is 1599 base pairs. We consider the relative fitness between an individual with
800 kernels and 799 kernels, and divide the 14.4 Mb of TEs by their average length to count the 9005 TEs. This reduces to an
average selection coefficient against a TE of 1.4e-7.
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