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Abstract9

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which10

actions provide reward, but also put the newly acquired knowledge to use as quickly as possible.11

Optimal reinforcement learning strategies should therefore assess the uncertainties of these action–12

reward associations and utilise them to inform decision making. We propose a novel model whereby13

direct and indirect striatal pathways act together to estimate both the mean and variance of reward14

distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating15

effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our16

model of the basal ganglia, and we fitted exploration strategies derived from the model to data17

from behavioural experiments. We also compared the performance of directed exploration strategies18

inspired by our basal ganglia model with classic variants of upper confidence bound (UCB) strategy19

in simulation. The exploration strategies inspired by the basal ganglia model performed better than20

the classic algorithms in simulation in some cases, and we found qualitatively similar results in fitting21

model to behavioural data compared with the fitting of more idealised normative models with less22

implementation level detail. Overall, our results suggest that transient dopamine levels in the basal23

ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives24

exploration in reinforcement learning.25

1

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.17.558180doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/


Author summary26

Humans and other animals learn from rewards and losses resulting from their actions to maximise their27

chances of survival. In many cases, a trial-and-error process is necessary to determine the most rewarding28

action in a certain context. During this process, determining how much resource should be allocated29

to acquiring information (“exploration”) and how much should be allocated to utilising the existing30

information to maximise reward (“exploitation”) is key to the overall effectiveness, i.e., the maximisation31

of total reward obtained with a certain amount of effort. We propose a theory whereby an area within the32

mammalian brain called the basal ganglia integrates current knowledge about the mean reward, reward33

uncertainty and novelty of an action in order to implement an algorithm which optimally allocates34

resources between exploration and exploitation. We verify our theory using behavioural experiments and35

electrophysiological recording, and show in simulations that the model also achieves good performance36

in comparison with established benchmark algorithms.37

1 Introduction38

In order to survive, animals must develop efficient strategies of reinforcement learning to maximise the39

reward of their actions. An important factor in effective reinforcement learning is optimised modulation40

of exploration and exploitation. If an animal already possesses knowledge about a safe and nutritious41

food source, say a fruit, should it prioritise seeking for that familiar fruit in future foraging, or should it42

keep trying out unfamiliar alternatives?43

In this study, we generalise from real-world scenarios and define exploration to be any behaviour by44

a learning agent that favours actions which are sub-optimal in terms of their expected rewards accord-45

ing to the current best knowledge, and exploitation as behaviour that chooses the optimal action with46

highest expected reward. Modulating exploration and exploitation is no trivial task, not least because in47

real-world scenarios there are often factors such as motivation [1], non-stationarity of the environment [2]48

and balancing of short-term and long-term reward optimisation [3] that together influence the optimal49

strategy in complex ways. Here, we focus on a quintessential problem without the additional complex-50

ity to establish a feasible neural mechanism for exploration-exploitation modulation based on reward51

uncertainty estimation.52

The problem in question is the classic multi-armed bandit task [4, 5, 6, 7]. By design of the task,53

rewards are simplified to one-dimensional numerical values and actions to having no difference in effort54

exertion – these simplifications also effectively eliminate the necessity to consider the contribution of sen-55

sorimotor error to uncertainty. During the task, the agent has to choose one out of multiple slot machines56

(“arms of the bandit”) to play from on each trial. Each of the arms produces a reward represented as a57

scalar numerical value sampled when played. The rewards from each arm are sampled from a probability58
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distribution associated with the arm, which remains stationary throughout each block of trials. The59

agent is made aware of the start and end of each block of trials as well as the length of each block, and60

is instructed to maximise the total reward received within each block.61

In the context of this task, if an agent follows a greedy strategy [8] that does not involve any exploration62

at all and always prefers the optimal action according to current knowledge, they would simply play each63

arm exactly once at the beginning of each block of trials and proceed to always choose the one that returns64

the highest reward in the one trial for the rest of the block. The performance of this simple strategy65

quickly deteriorates as the spreads of the reward distributions get larger. A simple modification of the66

greedy strategy, often dubbed the ε-greedy strategy [8], adds unmodulated exploration. On each trial,67

there is a probability of 1− ε that the agent chooses the empirically optimal action, and a probability of68

ε that the agent explores by randomly choosing among the actions with equal probability. We call this69

unmodulated exploration since the chances of an exploratory choice of action is constant and therefore70

independent of the level of uncertainty the agent experiences. Such unmodulated exploratory behaviour71

already improves the robustness of the strategy significantly, but lacks in adaptability.72

Finding an optimal strategy for the multi-armed bandit with modulated exploration has been an73

ongoing quest in the world of statistics since Robbins [9] first mentioned it in the context of sequential74

analysis, and studies such as Lai and Robbins [10], Katehakis and Robbins [11] and Auer et al. [6]75

discussed optimal strategies that achieve the theoretical asymptotic performance bound [10] under certain76

constraints. These strategies belong to a class called the upper confidence bound (UCB) algorithm, which77

computes an uncertainty bonus for each action that modulates exploration. This falls under the category78

of directed exploration strategies that Gershman [12] discussed in comparison with random exploration79

strategies. A hybrid strategy combining features of directed and random exploration was also proposed80

and mathematically specified, and these three qualitatively different types of exploration strategies were81

fitted to human behavioural data from a two-armed bandit experiment [12]. Results show that the82

hybrid strategy explains human behaviour significantly better. In this work, we take inspiration from83

the normative modelling of behaviour in Gershman [12] and propose a novel model of the basal ganglia84

which facilitates similar exploration strategies, thus attempt to bridge the gap between algorithmic level85

study of behaviour and neural implementation.86

The novel basal ganglia model is based on a series of studies started by Mikhael and Bogacz [13], who87

proposed that the direct pathway with D1 receptor-expressing neurons and the indirect pathway with88

D2 receptor-expressing neurons in the striatum can together achieve learning of both expectation and89

variability of the reward resulting from an action during reinforcement learning. Based on this assumption,90

tonic dopamine level in the striatum can influence the overall level of risk seeking in behaviour because91

of the opposite effects dopamine has on D1 and D2 neurons. Specifically, higher dopamine level should92

result in a stronger preference for more risky actions with more variable outcomes. Mikhael and Bogacz93
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[13] reviewed experimental evidence consistent with this prediction. In this work, we further consider94

the effect of fast transient changes in dopamine level on decision making. Specifically, we note that the95

transient activity of dopaminergic neurons can encode novelty [14, 15, 16, 17, 18, 19], and show that96

with the novelty signal provided by dopamine, the basal ganglia circuit modelled can facilitate efficient97

uncertainty-driven exploration strategies.98

Later in this section, we introduce the example task used throughout this study and review the99

normative behavioural models of exploration from Gershman [12] in more detail. We also review a model100

of the basal ganglia learning reward uncertainty Mikhael and Bogacz [13]. In Results, we first show101

that an extended version of this model can approximate the normative exploration strategies. Next, we102

compare electrophysiologically recorded activities of dopaminergic neurons in the ventral tegmental area103

to the form of novelty signal required for efficient exploration according to our model. We then make104

adjustments to the model to more accurately reflect experimental results, and compare the resulting105

exploration strategies with the normative strategies in Gershman [12] when fitted to human behaviour106

in a bandit task. We also compare the performance of a strategy derived from the basal ganglia model107

with that of UCB strategies in Auer et al. [6] in a simulated bandit task. In Discussion, we compare108

our model with several other theories [16, 20, 21] on the role of dopaminergic neurons in exploration109

modulation, and formalise experimental predictions and future directions.110

1.1 The multi-armed bandit task111

Before introducing reinforcement learning models with uncertainty-driven exploration, we formalise here112

the nomenclature associated with the multi-armed bandit problem used as the example task throughout113

this work. On each of the Ä sequential trials (indexed t ∈ {1, 2, . . . , Ä}) within a block, the agent needs114

to choose one from a total of K available slot machines (“arms” of the bandit, indexed i ∈ {1, 2, . . . ,K})115

to play. The chosen arm on each trial is denoted c[t] ∈ {1, 2, . . . ,K}. After the selection is made on each116

trial, a reward of a certain numerical value is randomly sampled from the reward distribution associated117

with the selected arm (denoted Ri) and presented to the agent.118

1.2 Normative strategies of uncertainty-driven exploration119

The following strategies for uncertainty-driven exploration all rely on dynamically updated estimates of120

mean rewards from each arm, which we denote Qi[t] for arm i at trial t, as well as associated posterior121

uncertainty levels about the mean estimates, which we denote Ãi[t]. A conceptually straightforward122

approach to modelling the updating of these latent variables is with Kalman filtering [12], although the123

neural implementation of such algorithm is potentially complex [22, 23].124

4

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.17.558180doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/


�2�1
�2�1(a)

�UCB,2 �UCB,1
(b)

�Thompson,2�Thompson,1
(c)

�hybrid,2�hybrid,1
(d)

value

re
w

a
rd

 

p
o

st
e

ri
o

r

u
ti

li
ty value

re
w

a
rd

 

p
o

st
e

ri
o

r

u
ti

li
ty

value

re
w

a
rd

 

p
o

st
e

ri
o

r

u
ti

li
ty

R
a

n
d

o
m

 e
x
p

lo
ra

ti
o

n

Directed exploration

value

re
w

a
rd

 

p
o

st
e

ri
o

r

Figure 1. Demonstration of different types of exploration strategies. The distributions on the upward axis
in each panel represent the (Gaussian) posterior estimations of the mean rewards from two arms. The
distributions on the downward axes in panels (b)(c)(d) are example distributions of different types of value
utility functions (without noise). (a): Q1 and Q2 are posterior means and Ã1 and Ã2 are posterior standard
deviations, representations of posterior uncertainty levels. (b): with a directed exploration strategy such
as UCB, the value utilities (Equation 1) are deterministically biased from the posterior means by an
amount proportional to the posterior standard deviation. (c): with a random exploration strategy such
as Thompson sampling (in the two-arm case), the value utilities (Equation 4) are sampled around the
posterior means with spreads proportional to the posterior standard deviations, so the posterior standard
deviations do not bias the action selection, but only modulate the stochasticity. (d): with a hybrid
exploration strategy, the value utilities (Equation 27) are sampled around the deterministically biased
values of the directed strategy and with spreads proportional to the posterior standard deviations as in
the random strategy.

1.2.1 Directed exploration: upper confidence bound (UCB)125

With estimations of reward expectation and uncertainty levels for each arm of the bandit learned, the126

upper confidence bound strategy uses the value utility variable [12]127

VUCB,i[t] = Qi[t] + ¹Ãi[t] + eZ (1)128

associated with each arm to make the selection at each trial (Figure 1(b)). Here ¹ and e are weighting129

parameters and Z ∼ N (0, 1) is a standard Gaussian random variable. The arm with the greatest observed130

value utility is chosen on each trial. The sum of the first two terms gives the upper bound of a confidence131

interval for the mean reward estimation (hence “upper confidence bound”) and the third term introduces132

unmodulated stochasticity, which can be considered as accounting for system noise. Parameter ¹ controls133

the weighting of the “uncertainty bonus”, or equivalently the confidence level of the confidence interval.134

The larger its value, the more optimistic and exploratory the strategy is. In the two-armed case (K =135

2, i ∈ {1, 2}), the probability of choosing arm 1 over 2 is136

p(c[t] = 1) = p(VUCB,1[t] > VUCB,2[t]) (2)137

= Φ

(

Q1[t]−Q2[t] + ¹(Ã1[t]− Ã2[t])√
2e2

)

, (3)138

139
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where Φ(·) denotes the cumulative density function of the standard Gaussian distribution. This choice140

probability is dependent on the difference in mean reward estimations and the difference in uncertainty141

levels (“relative uncertainty” in Gershman [12]). Under this strategy, an action currently believed to142

be less rewarding can actually be the favoured option in terms of choice probability. This is a defining143

characteristic of a directed exploration strategy, and it generalises to bandit tasks with more than two144

arms.145

1.2.2 Random exploration: Thompson sampling146

A different exploration strategy named Thompson sampling [24, 12, 25, 3, 26] can be achieved by defining147

a different value utility (Figure 1(c))148

VThompson,i[t] = Qi[t] + µÃi[t]Z. (4)149

Instead of using the uncertainty level as a deterministic bonus, Thompson sampling samples from a150

posterior distribution defined by the estimated mean and uncertainty. The specific formalisation here151

assumes a Gaussian posterior of the form N (Qi[t], µÃi[t]). Similar to ¹ in Equation 1, the parameter µ152

controls the weighting of uncertainty levels by scaling the standard deviation of the Gaussian posterior.153

In the two-armed (K = 2) case, the probability of choosing arm 1 over 2 under Thompson sampling is154

then155

p(c[t] = 1) = p(VThompson,1[t] > VThompson,2[t]) (5)156

= Φ

(

Q1[t]−Q2[t]
√

µ2(Ã2
1 [t] + Ã2

2 [t])

)

. (6)157

158

This probability is again dependent on the difference in mean reward estimations, and also dependent on159

the sum in uncertainty levels rather than the difference. Thus, the action with higher estimated mean160

reward is always favoured in terms of choice probability. This is the defining characteristic of random161

exploration strategies [12]. However, when Thompson sampling is applied to a bandit task with more162

than two arms, this property does not generalise1, and therefore Thompson sampling is not strictly a163

random exploration strategy in this more general case.164

1.2.3 Hybrid exploration strategy165

Using regression analysis and model fitting on behavioural data, Wilson et al. [3] and Gershman [12] have166

shown that humans employ an uncertainty-driven strategy that shows characteristics of both directed167

1When there are more than two arms, the ranking of all the arms by choice probability is not necessarily the same as

the ranking by mean estimations, unlike in the two-arm case.
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Figure 2. Illustration of the basal ganglia model. (a): circuit diagram representing the basal ganglia,
adapted from Möller and Bogacz [1]. D1/D2 receptor-expressing neurons are involved in direct and
indirect striatal pathways, respectively, and dopamine has opposite effects on the two pathways. Both
pathways project to the thalamus. (b): mapping of learned latent parameters in the proposed algorithm
(left) onto neural metrics (right).

and random exploration during the bandit task. Gershman [12] used the choice probability168

p(c[t] = 1) = Φ

(

µ
Q1[t]−Q2[t]
√

Ã2
1 [t] + Ã2

2 [t]
+ ¹(Ã1[t]− Ã2[t])

)

, (7)169

to represent such a hybrid strategy. Here, a change in either total uncertainty or relative uncertainty170

independent of the other can influence action selection through either the sum of uncertainty levels on171

the denominator or the difference of uncertainty levels on the numerator, respectively. Note that this172

choice probability cannot be derived from explicit value utility variables (analogous to those given by173

Equations 1 and 4, Figure 1(d)) associated with each of the arms.174

1.3 The basal ganglia model175

These normative strategies presented above have so far not been connected to biological implementations.176

In this study, we show that basal ganglia circuits could potentially support a mechanism for both belief177

updating and producing value utilities for action selection. We first briefly review a previously described178

model, and in Results we show the necessary extensions to allow exploration strategies.179

1.3.1 Learning the mean and spread of reward distribution180

Mikhael and Bogacz [13] first proposed that, by utilising both direct and indirect striatal pathways that181

include D1 and D2 receptor-expressing neurons respectively, mean and spread (specifically the mean182

deviation) of the reward distribution associated with a certain action can be learned simultaneously183

in the basal ganglia. According to the model, the neural circuit containing both pathways (Figure 2)184

takes an input representing an available action at the current state from the cortex. The direct pathway185
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with D1 neurons has an excitatory effect on the thalamus, while the indirect pathway with D2 neurons186

has an inhibitory effect. The combined effects of both pathways in the thalamus represent the current187

value utility of the action. In a task involving action selection, multiple parallel circuits are required to188

represent all available actions. The model assumes that belief updating or learning occurs in the weights189

of corticostriatal projections. We denote the weights of projections from the cortex to the D1 neurons in190

the direct striatal pathway and D2 neurons in the indirect pathway Gi[t] (G for “GO”) and Ni[t] (N for191

“NO-GO”), respectively, based on the effects of the two pathways on the thalamus. Subscript i indicates192

the action (choice of arm in the bandit task) being encoded, and t denotes the trial number within a193

block of trials, as in the previous section.194

Learning rules in this circuit have been extensively discussed previously [13, 1, 27]. One basic version195

can be written as196

¶[t] = Rc[t] −
1

2
(Gc[t][t]−Nc[t][t]), (8)197

Gc[t][t+ 1] = Gc[t][t] + ³c[t][t]fϵ(¶[t])− ´Gc[t][t], (9)198

Nc[t][t+ 1] = Nc[t][t] + ³c[t][t]fϵ(−¶[t])− ´Nc[t][t], (10)199

200

where fϵ(x) = x for x > 0 and fϵ(x) = ϵx for x < 0 (0 < ϵ < 1). ¶[t] gives the reward prediction201

error at each trial, as will be shown later. The piecewise linear activation function fϵ(·) over the reward202

prediction error is an essential element of this learning rule, and evidence shows dopaminergic neurons203

encoding reward prediction error do exhibit this type of modulation in their responses [28]. The decay204

terms with scaling parameter ´ keeps the learning variables bounded. Following this learning rule, Gi is205

a “satisfaction learning” reinforced by better-than-expected outcomes and to a lesser extent diminished206

by worse-than-expected outcomes, while Ni is a “disappointment learning” reinforced by worse-than-207

expected outcomes and to a lesser extent diminished by better-than-expected outcomes. ³i[t] is the208

learning rate parameter taking values in (0, 1) for all values of i and t. The substitutions209

Qi[t] = (Gi[t]−Ni[t])/2, (11)210

Si[t] = (Gi[t] +Ni[t])/2 (12)211

212

transform the learning rule in Equations 9 and 10 into213

Qc[t][t+ 1] = Qc[t][t] + ³c[t],q[t]¶[t]− ´Qc[t][t], (13)214

Sc[t][t+ 1] = Sc[t][t] + ³c[t],s[t]|¶[t]| − ´Sc[t][t], (14)215

216

where ³i,q[t] = ³i[t](1 + ϵ)/2 and ³i,s[t] = ³i[t](1− ϵ)/2.217
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Further idealisation of this learning rule gives218

¶[t] = Rc[t] −Qc[t][t], (15)219

Qc[t][t+ 1] = Qc[t][t] + ³c[t],q[t]¶[t], (16)220

Sc[t][t+ 1] = Sc[t][t] + ³c[t],s[t](|¶[t]| − Sc[t][t]) (17)221

222

as seen in Moeller et al. [27], with the constraint ³i,q[t] > ³i,s[t]. Here, we simply set these to be constant223

values across the experiments for each agent, so that224

³i,q[t] = ³q, (18)225

³i,s[t] = ³s. (19)226

227

Under this learning rule, Qi and Si converge to the stationary point228

Q∗

i = E{Ri}, (20)229

S∗

i = E{|Ri − E{Ri}|}, (21)230

231

which is to say that, at the stationary point, Qi and Si are the mean reward and mean deviation of232

reward for arm i, respectively. Without using the idealisation, the stationary point is different, but233

with appropriate parameters still a good representation of mean and spread of the reward distribution234

albeit with some additional scaling and bias [13]. Another variation of the learning rule that achieves235

the exact stationary point given in Equations 20 and 21 has also been proposed [23], but for the purpose236

of this study, we are satisfied with using the idealised learning rule given in Equations 15 to 17. The237

Qi[t] variable, like that in the normative strategies, is a dynamically updated estimation of the mean238

reward. The exact dynamics of this variable in the two implementations is different, since the normative239

strategies update using Kalman filtering, and the basal ganglia model uses the learning rule derived from240

the dynamics of direct and indirect pathways. The Si[t] variable fundamentally differs from Ãi[t] in the241

normative strategies, as it is only an estimation of the spread of reward distribution, whereas Ãi[t] is the242

posterior standard deviation of the mean estimation from Kalman filtering which eventually diminishes243

with repeated observations. We show later how the basal ganglia model might produce an equivalent244

Ãi[t] variable and use it to inform action selection.245

1.3.2 Effect of dopamine246

Dopamine was found to have opposite modulating effects on the excitability of D1 and D2 neurons [29],247

increasing that of D1 neurons and reducing that of D2 neurons (Figure 2). Denoting the dopamine level248

in the striatum as Di[t], we can thus express the thalamus activity as a result of the activities of the two249
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pathways using250

Ti[t] =

(

1 + ¼Di[t]

2

)

Gi[t]−
(

1− ¼Di[t]

2

)

Ni[t] + eZ, (22)251

where ¼ is a scaling factor that reflects the strength of dopaminergic modulation. The model assumes252

here that dopamine level in the circuit has the same modulating effect on the two pathways. Ti[t] is used253

as the value utility for action selection, much like VUCB,i[t] and VThompson,i[t] in the normative strategies.254

Despite this relationship, we will keep using Ti[t] to denote the value utilities derived from the basal255

ganglia model that can be directly mapped to activity in the thalamus. Gi[t] and Ni[t] in Equation 22256

follow the learning rule given above, and eZ is a noise term accounting for all sources of random noise257

within the circuit. Substituting Gi[t] and Ni[t] with Qi[t] and Si[t], Equation 22 is equivalent to258

Ti[t] = Qi[t] + ¼Di[t]Si[t] + eZ. (23)259

From Equation 23, it is easy to arrive at the experimental prediction that elevated tonic dopamine level260

in the striatum should lead to higher level of risk seeking in behaviour, and evidence in support of this261

prediction has been reviewed [13].262

2 Results263

2.1 Dopamine encoding novelty leads to effective exploration264

Following the reinforcement learning and action selection rules from Equations 15 to 23, if dopamine level265

in the basal ganglia circuit stays constant from trial to trial during action selection, actions with higher266

estimated mean reward (more rewarding on average) and greater reward spread (more risky) are always267

favoured. This has certain benefits in exploration modulation, especially at the early stages of exposure268

to a new environment (e.g. at the beginning of a new block of trials in the bandit task).269

We now know from previous studies discussed earlier that the posterior uncertainty of mean estimation270

is the more effective modulator for exploration. In other words, we need a representation of the Ãi[t]271

variable in the basal ganglia circuit as in the normative strategies. Once again, the learned variables Qi[t]272

and Si[t] according to Equations 15 to 17 are estimators of the mean and mean deviation of a reward273

distribution. The updates for a certain arm happen only when that arm is chosen and consequently the274

reward from it observed during a trial. Therefore, the number of times arm i has been chosen up until275

trial t, denoted ni[t], is the sample size from which these estimations are made. Following the central276

limit theorem and with a neutral prior on the mean reward, we can represent the posterior uncertainty277

on mean estimation using278

Ãi[t] =
Si[t]
√

ni[t]
. (24)279
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Since both Qi[t] and Si[t] are dynamically updated, and at the stationary point Si[t] gives the absolute280

mean deviation rather than standard deviation, Ãi[t] is a biased approximation of the posterior standard281

deviation unlike the equivalent value obtained through Kalman filtering in the normative strategies.282

It is evident now that, in order for the basal ganglia circuit modelled to compute posterior uncertainty,283

a signal correlated to the sample size ni[t] is necessary. This is where we formally look at the trial-by-trial284

variations of dopamine level. While more commonly associated with reward prediction error, transient285

dopamine activities have also been found to be correlated to novelty in certain reinforcement tasks [15,286

16]. Since novelty naturally has negative correlation with the sample size, we make the assumption about287

the specific form of dopamine level with288

Di[t] = (¸Z + ¿)
1

√

ni[t]
(25)289

or equivalently290

Di[t] ∼ N
(

¿
√

ni[t]
,
¸2

ni[t]

)

, (26)291

which is a noisy representation with both mean level and variability negatively correlated to the sample292

size. Substituting this into Equation 23 gives293

Ti[t] = Qi[t] + ¼(¸Z + ¿)Ãi[t] + eZ. (27)294

This represents a effective value utility (Vhybrid,i in Figure 1(d)). In the two-armed case, it leads to the295

choice probability296

p(c[t] = 1) = p(T1[t] > T2[t]) (28)297

= Φ

(

Q1[t]−Q2[t] + ¼¿(Ã1[t]− Ã2[t])
√

¼2¸2(Ã2
1 [t] + Ã2

2 [t]) + 2e2

)

. (29)298

299

The exploration strategy this basal ganglia model produces shares the same essential property of the300

hybrid strategy given earlier by Equation 7, in that both the relative uncertainty and total uncertainty301

levels affect the choice probability. This model also has isolated UCB and Thompson sampling strategies302

nested in, which can be recovered when either ¸ or ¿ is zero.303

We have thus shown that an extension of an existing biological model of the basal ganglia yields304

an exploration strategy with important similarities to efficient normative strategies, that qualitatively305

matches past experiments.306

In the rest of Results, we demonstrate the merits of the extended model of the basal ganglia from307

three perspectives. First, we verify the assumption made in extending the model about the specific308

mathematical form of the response of dopamine level to novelty using electrophysiological recording data.309

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.17.558180doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/


0 10 20 30

Trials

0

2

4

6

N
or

m
 r

es
po

ns
e

Average

Data
Power
Inv. sq. rt.
Exponential

0 10 20 30

Trials

0

5

10

15

N
or

m
 r

es
po

ns
e

Neuron 1

0 10 20 30

Trials

-2

0

2

4

6

8

N
or

m
 r

es
po

ns
e

Neuron 2

1 52 3 4 
Mean activity

1.5

2

2.5

3

Ac
tiv

ity
 s

.d
.

Average

Inv. sq. rt. Power Exponential

Function type

0

5

10

15

20

25

B
IC

Hierarchical

Inv. sq. rt. Power Exponential

Function type

6670

6680

6690

6700

6710

B
IC

Correlated
Uncorrelated

-1 -0.8 -0.6 -0.4 -0.2

Power parameter p

0

5

10

15

N
um

be
r 

of
 n

eu
ro

ns

Hierarchical
Average

r=0.843

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Results from function fitting to recording data collected during the early phase of the response
of VTA dopamine neurons to stimuli during Pavlovian learning. (a): experimental data points of average
activity and standard error overlaid with best fitting curves of three different function forms (power
function, inverse square root function i.e. power function with power parameter fixed at −0.5, exponential
function). (b)(c): experimental data points of the activity of two example neurons overlaid with best
fitting curves of the same three function forms obtained through hierarchical model fitting. (d): scatter
plot of standard deviation of activity against average activity at each trial overlaid with best fitting
straight line (correlation r = 0.843). (e): Bayesian information criterion (BIC) values for the fitting of
functions to average activity data, showing that the power function is the best fitting. (f): BIC values for
fitting hierarchical models (with correlated and uncorrelated model parameters) to individual neurons’
recording data, again showing the power function is the best fitting. (g): power parameter p obtained
through fitting to average activity and hierarchical model fitting (shown as a histogram).

Next, we compare the fitting to human behavioural data of the exploration strategies from the model310

with that of the normative strategies. Finally, we show the performance of the basal ganglia strategy in311

more difficult tasks in comparison with classic UCB strategies.312

2.2 Modelling of dopaminergic novelty response313

In Equations 25, it is assumed that the dopamine level is inversely proportional to the square root of314

the number of observations of outcomes from an arm. We seek experimental evidence that supports this315

assumption on the specific mathematical form of dopaminergic response to novelty.316

Lak et al. [14] studied the response of dopaminergic neurons to conditioned stimuli during the Pavlo-317

vian learning task using electrophysiological recording in awake behaving monkeys. During the experi-318

ment, novel reward-predicting visual stimuli, which the animals have never seen before, were presented319

to animals. Different stimuli were associated with one of three (25%, 50% or 75%) probabilities of re-320

ward (a drop of juice). Neural data were collected during the learning task using extracellular single-cell321

recording of 58 neurons in the ventral tegmental area (VTA) identified as dopaminergic neurons using322
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established criteria. These neurons likely projected to the ventral striatum where D1 and D2 neurons are323

found [30, 31]. It was shown that the response of the dopaminergic neurons was divided into two distinct324

temporal phases. The firing rates during the late phase 0.2 to 0.6 s after cue onset differentiated reward325

probabilities predicted by different stimuli in learned animals. This response pattern is consistent with326

the theory that dopamine signals reward prediction error. The firing rates during the early phase 0.1 to327

0.2 s after cue onset were independent of reward probabilities associated with the cue throughout the328

experiment even after learning was completed, but decreased as the stimuli causing the response were329

repeatedly presented, thus reflected stimulus novelty [14]. We focus on the early phase novelty signal330

here to investigate whether its quantitative form resembles the normatively ideal form given earlier in331

Equations 25 and 26.332

We performed function fitting on the trial-by-trial evolution of normalised and baseline-subtracted333

firing rates of dopaminergic neurons during the novelty response phase (Figure 3). The fitting was done334

using both the average activity of the 58 recorded neurons (Figure 3(a)), and using individual neuron data335

with a hierarchical model (Figure 3(b)(c)). The functions and fitting methods used are described in more336

detail in Methods. Results from both hierarchical model fitting and fitting to average activity suggest337

that the inverse square root function (the closest to the normatively ideal form) fits better than the338

exponential function, but the best fitting function is the power function with three function parameters339

(Figure 3(e)(f)). For fitting using the average activity, the best fitting function is therefore of the form340

D̄i[t] = E{Di[t]} = m+ knÃ
i [t], (30)341

and the best fitting power parameter Ã is −0.791 to three s.f., which differs significantly from −0.5 which342

gives the inverse square root function (p < 0.05, two-tailed t-test). Also differing from the ideal form is343

the non-zero intercept m (p < 0.05, two-tailed t-test). In further analysis, we focus on the fitting using344

average activity. This allows us to analyse the relationship between novelty and variability of the neuronal345

responses – the normative analysis (Equations 24 to 29) show that there should also be positive correlation346

between novelty and neuronal response variability. Specifically, we assume that the relationship between347

standard deviation of activities and the number of observations takes identical form as the mean activity.348

We therefore performed linear regression analysis on the mean and standard deviation of activities from349

the 58 recorded neurons (Figure 3(d)), and found a strong relationship (r = 0.843 to three s.f., p < 10−8,350

two-tailed t-test). This relationship can be expressed as351

s.d.(Di[t]) =

√

E{(Di[t]− E{Di[t]})2} = a+ bD̄i[t]. (31)352

One difference we found between the best fitting function to experimental data and the normatively ideal353

form is again the non-zero (p < 10−18) intercept a in Equation 31.354
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2.3 Model refinement based on dopamine data355

We can now make some amendments to the extensions on the basal ganglia model, utilising the form of356

dopaminergic novelty response derived from electrophysiological recording data given in Equations 30 and 31.357

The modified expression for dopamine level is358

Di[t] = (a+ bD̄i[t])Z + D̄i[t] (32)359

= (a+ bm+ bknÃ
i [t])Z +m+ knÃ

i [t], (33)360

361

or equivalently362

Di[t] ∼ N
(

m+ knÃ
i [t], (a+ b (m+ knÃ

i [t]))
2
)

. (34)363

To summarise, this experimentally determined expression of dopaminergic activity is different from the364

ideal form given in Equations 25 and 26 in that it has the general power function in place of the inverse365

square root function, and it also has additional constant terms in both the deterministic (mean) and366

stochastic (standard deviation) components. This leads to an alternative form of posterior uncertainty367

level (modified from Equation 24)368

Ã̂i[t] = Si[t]n
Ã
i [t], (35)369

which then leads to the output to the thalamus (analogous to the ideal version given in Equation 27) to370

take the form371

Ti[t] = Qi[t] + ¼ (((a+ bm)Z +m)Si[t] + (bkZ + k)Ã̂i[t]) + eZ. (36)372

Compared to the ideal form, there remains a term with Si[t] which is the result of the constant parameters373

m and a in the fitted functions in Equations 30 and 31.374

2.4 Model fitting to behavioural experiment data375

We have previously drawn comparison in multiple occasions between the exploration strategies derived376

from the basal ganglia model and the normative strategies from Gershman [12]. While these share377

common characteristics in their algorithms, we also highlighted some important differences, most notably378

in the learning rules and the resulting representation of posterior uncertainty. Gershman [12] designed a379

two-armed bandit task and performed behavioural experiment involving human participants, and fitted380

the normative strategies to the behaviour of the participants during the task. It was discovered that the381

hybrid strategy fitted the data better than isolated directed or random exploration strategies. In this382

study, we fitted strategies from the basal ganglia model (with parameters describing dopamine novelty383

response fixed to values estimated above from the activity of dopaminergic neurons) to the same data for384

an algorithmic level comparison of the strategies. For completeness, we fitted not only the general hybrid385
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Figure 4. Mean of BIC values from trail-by-trial model fitting to behaviour of individual participants in
a two-armed bandit task. The reinforcement learning models fitted employ two different learning rules
(Kalman filtering as in Gershman [12] and basal ganglia derived learning rule (see Methods for details).
Four models with each learning rule were fitted, each with a different exploration strategy. Following
each of the two learning rules, the model with hybrid exploration strategy is the best fitting.

strategy defined by Equation 36, but also the special directed and random exploration only strategies.386

During the experiment of Gershman [12], participants faced blocks of ten trials during which the387

rewards from two arms were drawn from fixed Gaussian distributions with different means but identical388

variances. The participants were instructed to maximise the total reward over each block (length known).389

It is worth highlighting at this point that all of the strategies fitted to this dataset are based on the390

fundamental assumption that the exploration strategy used by the agent remains stationary on a trial-391

by-trial basis, i.e. the strategy is indifferent to the number of trials remaining. This assumption is mostly392

valid for this experimental setup.393

Trial-by-trial fitting with stochastic maximum likelihood methods was used to obtain optimal param-394

eters of the basal ganglia strategies for each individual participant. Once the optimal parameters were395

obtained, the corresponding maximum likelihoods were further converted into Bayesian information crite-396

rion (BIC) statistics used for comparison. This offsets the potential benefits brought by extra parameters397

with a penalty. The strategies fitted to behaviour and methods for fitting are described in more detail in398

Methods.399

Figure 4 shows comparison of BIC values from fitting two sets of strategies with different learning400

rules – one with Kalman filtering as the learning rule from Gershman [12], and the other derived from the401

novel basal ganglia model, with fixed reinforcement learning rates defined in Equations 18 and 19. Each402

set consists of four variations with different types of uncertainty-driven exploration (or lack thereof) –403

the hybrid exploration strategy, the directed and random exploration only strategies, and a “value-only”404

strategy that does not use any modulated exploration (equivalent to standard Rescorla–Wagner learning405

for the basal ganglia strategies). There is no significant difference in the goodness of fit between models406

with same exploration strategies but different learning rules (except for the value-only models, p < 0.01,407

two-tailed t-test). Among models with the same learning rule, the model with hybrid exploration strategy408

is significantly better fitting than others (p < 0.01, two-tailed t-test). We have thus confirmed the key409
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Figure 5. Performance comparison of neural UCB strategies inspired by the basal ganglia model against
other UCB algorithms in different bandit tasks. Per-trial regret (defined as the difference between the
expected reward of the optimal action and the expected reward of the chosen action at each trial) is
plotted against trial number in each panel. Error bars show standard errors over N = 1000 repeated
simulations. Panel titles describe the tasks – each task had one arm with mean reward µ+ and nine arms
with mean reward µ−. For the Gaussian task, all arms have the same standard deviation Ã = 0.3. We
tested neural UCB strategies with two different values of power parameter Ã which are the ideal value
predicted by the model (−0.5) and the value that best describes neural recording data (−0.791). Both
fixed learning rate (solid lines) and dynamic (decaying) learning rate (dashed lines) versions of the neural
UCB strategies were tested.

finding of Gershman [12] that humans use a hybrid strategy of directed and random exploration in bandit410

tasks using a more mechanistic modelling framework based on physiology. Our results also show that411

the exploration strategies derived from the basal ganglia model are similar to the normative strategies412

with Kalman filtering in terms of their abilities to interpret behaviour at the algorithmic level. Given the413

more idealised learning rule used in the normative strategies that does not account for potential individual414

differences across participants, one would perhaps expect significantly better fitting from the basal ganglia415

strategies. However, since BIC is a metric that penalises larger numbers of model parameters, a potential416

explanation could be that the effect of individual differences in this task is relatively small, so that417

the decrease in BIC from better fitting is outweighed by the increase from additional penalty for extra418

parameters.419

2.5 Performance in simulation of bandit tasks420

Variations of UCB strategies have been extensively investigated in analytical studies to assess their421

performances in multi-armed bandit tasks [10, 11, 6]. We compared the performance of UCB strategies422

that use the learning rule and value utility based on the basal ganglia model with several other efficient423

UCB variations [6, 12] in simulation. More details about the models used can be found in Methods.424

The simulated multi-armed bandit tasks all involve ten arms, with the reward from each arm drawn425

from distributions of the same form. Nine of these ten reward distributions in each task were identical,426

with the other having a slightly higher mean reward. Due to the difficulty of these tasks, a large number of427

trials were simulated for each experiment. We follow the convention used by Auer et al. [6] and define the428

regret at each trial as the difference between the mean reward of the most rewarding action and the mean429

reward of the chosen action on that trial. Figure 5 shows the results from simulations of three different430
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tasks. For each task, regret is plotted over trial number for each strategy. The first two tasks were two431

cases of the Bernoulli bandit with the same difference in mean reward between optimal and sub-optimal432

actions, and the third was a Gaussian bandit task with the same mean rewards as the first Bernoulli task433

but smaller reward variances. We were able to reproduce the qualitative findings from Auer et al. [6]434

regarding the classic UCB strategies: the more complex UCB2 and UCB1-tuned perform better than UCB1435

in all experiments; UCB1-normal (which is a variation of UCB1 optimised for Gaussian bandits) performs436

better than standard UCB1 only in the Gaussian task – despite the Gaussian task being less demanding437

than the Bernoulli task with the same mean rewards due to smaller reward variances, all strategies from438

Auer et al. [6] except UCB1-normal performed worse in the Gaussian task. The Kalman filter strategy from439

Gershman [12] consistently outperform all the classic strategies. It is also able to take advantage of the440

smaller reward variances in the Gaussian task, and therefore has the most significant advantage against441

the other strategies in this task. The neural strategies with fixed learning rates (Equations 18 and 19)442

have worse performance than the Kalman filter strategy and the best performing strategies from Auer443

et al. [6]. Following this observation, we experimented with variations of the neural strategies with444

dynamically adjusted learning rates defined by445

³i,q[t] = ³0,q
m+ knÃ

i [t]

m+ k
, (37)446

³i,s[t] = ³0,s
m+ knÃ

i [t]

m+ k
, (38)447

448

which gradually reduce the rate of updating mean reward and reward variability estimations as learning449

progresses, and result in significantly improved performance over the fixed learning rate strategies in450

all tasks. The improved performance of the neural strategies overall exceeds that of the Kalman filter451

strategy. Note that in fitting the different models to human behaviour, we did not observe a significant452

difference between the fixed learning rate neural models and the Kalman filter model unlike in these453

simulations. This is likely due to the behavioural experiments involving much shorter blocks of trials454

compared with the simulations.455

We also discovered in analysing neural recording data that the representation of novelty by dopaminer-456

gic neurons does not necessarily follow the ideal form the normative model predicts. Here we see that the457

difference in the specific representation of novelty (i.e. the difference in the value of the power parameter458

Ã) has little effect on the performance of the resulting exploration strategies in simulations.459

Overall, the results of the simulations suggest that a strategy based on the basal ganglia model can460

perform better than the classic UCB strategies and the Kalman filter UCB strategy in a range of bandit461

tasks, given that the learning rate is dynamically adjusted and decays with novelty. However, fixed462

learning rate strategies do not perform nearly as well.463
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3 Discussion464

Our results suggest that the fast transient variations of dopaminergic neuron activity can encode novelty465

in a way that could contribute to representation of posterior uncertainty in the basal ganglia during rein-466

forcement learning. The uncertainty representation could then be used to facilitate exploration strategies467

that perform well in simulation and are similar to a normatively ideal construction. In this section, we468

further discuss the implications of the results and new experimental predictions that can be derived from469

the model, as well as potential future directions.470

3.1 Functions of dopamine in reinforcement learning471

The quantitative analysis on the novelty response of dopaminergic neurons made possible by high resolu-472

tion recording is fundamental to all results from this study. The role of dopamine has always been central473

in efforts of understanding reinforcement learning. In particular, the transient activity of dopaminergic474

neurons is widely considered to encode reward prediction errors [32, 15] used to update the predictions475

of action outcomes. This theory is supported by a plethora of experimental evidence. In fact, the exper-476

imental results [14] we analysed also provide support for this theory. The activity of VTA dopaminergic477

neurons recorded from 0.2 to 0.6 s after cue onset as well as their responses to rewards are highly con-478

sistent with the pattern predicted by the reward prediction error theory [14]. Saliently for this work,479

there has also been observations of correlation between activity of dopaminergic neurons and novelty [16,480

15]. This additional variability is often treated as being multiplexed into the reward prediction error481

signals as a bonus component. Experimental results from Lak et al. [14] provide an alternative view on482

the multiple factors correlated with transient activity of dopaminergic neurons by observing the different483

response patterns during the temporal window 0.1 to 0.2 s after cue versus the later 0.2 to 0.6 s window.484

This suggests the possibility that the novelty and reward prediction error signals are carried by the same485

dopaminergic neurons yet can still be fully decoupled. Based on this hypothesis, we constructed our rein-486

forcement learning model of the basal ganglia that uses the reward prediction error in belief updates and487

uses the novelty signal combined with other learned latent variables to modulate exploration in decision488

making, which is fundamentally different from the “novelty as a bonus” view in many previous models489

[16]. The dual function of fast transient dopamine variations is also supported by evidence uncovered490

more recently that dopamine conveys motivational value on short timescales and that there exist possible491

mechanisms for the same target neurons of dopamine to switch between different interpretation modes492

[33].493

We found from simulations of challenging multi-armed bandit tasks that learning rates dynamically494

adjusted according to novelty level can have significant performance benefits. Naturally, this leads to the495

speculation that the novelty signal delivered by dopaminergic neurons can also modulate the plasticity496
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of corticostriatal connections. Some recent experiments suggest that this mechanism could in fact exist497

in the brain [34, 35]. From the data used in this study, one could theoretically find conjectural evidence498

for or against the hypothesis, e.g. by investigating whether the outcome of an “explore” trial (a trial499

on which the option with lower Q value is chosen, likely to be associated with higher novelty signal) is500

statistically more influential on the outcome of the next trial (suggesting a higher learning rate). Within501

the model framework of reinforcement learning through direct and indirect striatal pathways, Möller502

et al. [23] had a different take on modulated belief updating, which considers the circuit dynamics at the503

time of reward presentation and predicts that the reward prediction error itself should be scaled by the504

estimated spread of the reward distribution (Equation 12). Theoretically, this could be combined with505

the learning rate modulation by novelty, and from a physiological perspective, the novelty signal should506

take effect on the target striatal neurons before reward presentation, whereas the dynamics that leads to507

the scaled prediction error signal occurs after reward presentation.508

While the analysis in this work is centred around the transient changes in dopamine level, the tonic509

dopamine level in the striatum could also influence the circuit dynamics and consequently reinforcement510

learning behaviour. According to our model, the most significant effect of higher tonic dopamine level511

should be an overall higher level of risk preference, and consequently a stronger effect of relative un-512

certainty on directed exploration. Mikhael and Bogacz [13] reviewed experimental evidence in support513

of this prediction, and Costa et al. [17] demonstrated that elevated tonic dopamine level resulted in in-514

creased novelty seeking, which can be interpreted as a form of uncertainty preference. However, a more515

up to date literature contains interesting experimental results that are not necessarily consistent with516

this prediction. For example, [36] found that stronger striatal dopamine transmission reduced the effect517

of relative uncertainty on directed exploration.518

There are also several studies suggesting that high level of tonic dopamine reduces random exploration.519

Cieślak et al. [37] discovered that genetic disruption of glutamate receptors in dopaminergic and D1520

neurons (which reduced dopamine transmission) lead to overall more stochastic and less reward-driven521

choices, while Adams et al. [38] found similar effects of reduced D2 receptor occupancy (which also522

indicated reduced dopamine transmission). Cinotti et al. [39] also found similar results through the use523

of dopamine receptor antagonist. However, it is worth emphasising that our model makes prediction524

on the effects of dopamine on directed exploration, rather than random exploration, and the opposite525

effects of tonic dopamine level on these two types of exploration may suggest they rely on fundamentally526

different mechanisms.527

This literature of experimental work highlights the overall complex nature of the influence of tonic528

dopamine level on reinforcement learning. In this work, we used normalised firing rate data which529

themselves does not contain any information about the tonic baseline. Correspondingly, our model of the530

basal ganglia does not explicitly account for the effect of tonic dopamine levels, but the different resulting531
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model parameters across individual participants from fitting model to behavioural data could potentially532

be correlated to this.533

We used electrophysiological recording data obtained during a Pavlovian conditioning task to study the534

novelty response of dopaminergic neurons [14]. In this context, novelty is naturally associated with each535

cue presented in the experiment since there was no action required, whereas the model we are proposing536

handles reinforcement learning tasks with action selections, and includes a novelty value assigned to each537

action. In fact, within the same study, Lak et al. [14] also recorded during a two-armed bandit task in538

which one familiar cue and one novel cue (and actions associated with each) were present. The recorded539

dopaminergic neurons showed response to the number of times the novel action was selected that is highly540

similar to the cue novelty response in the conditioning task, therefore suggesting that the recorded VTA541

dopaminergic neurons could also encode action novelty during learning.542

3.2 Alternative theories of exploration modulation in the brain543

The model we propose in this work suggests that the basal ganglia are responsible for both learning544

the associations of high-level actions with resulting rewards and using this information to select actions545

following near-optimal strategies. A related model from Humphries et al. [20] also highlights the role of546

the basal ganglia in decision making while describing the relevant circuit dynamics in more detail. These547

authors made experimental predictions about the effect of tonic dopamine level on the level of random548

exploration, which suggest that an increase in dopamine level should generally lead to more exploitative549

behaviour. This qualitatively differs from what our model would suggest, and is supported by some but550

not all related experimental evidence as discussed in the previous section. Jaskir and Frank [21] proposed551

another model of exploration modulation in the basal ganglia, which includes a description of the trial-552

by-trial variation of dopamine level at action selection. Instead of a simple novelty signal, these authors553

proposed a “meta-critic” mechanism that learns the overall reward level of the entire environment and554

controls the dopamine level at action selection accordingly. This results in more exploratory behaviour in555

overall “richer” environments. This meta-critic also operates on a longer timescale compared to the type556

of dopaminergic dynamics in the model we propose in this study. The authors also compared in silico557

performance comparison which put their model ahead of classic UCB strategies. However, this model558

is only defined for Bernoulli bandit tasks that produced binary reward outcomes in experiments and559

simulations. The mean reward and reward standard deviation following a Bernoulli reward distribution560

are always correlated, and it is not trivial what effect this feature had on the conclusion reached by the561

authors. A continuous reward distribution is a more realistic representation of real-world scenarios, and562

we have shown in this work that the exploration strategy based on our basal ganglia model can effectively563

modulate exploration and exploitation in a bandit task with continuous (Gaussian) reward distribution.564

Our analysis of the novelty response of dopaminergic neurons suggests that the way novelty is encoded565
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in dopamine level could be the source of a hybrid strategy of directed and random exploration. Given566

that this type of strategy is prominent in behaviours, there have also been prior studies looking for567

the underlying mechanism in the brain. Some of these studies found significant correlations between568

exploratory behaviour and activities in certain cortical regions, and specifically found cortical regions569

that are linked with only one of directed or random exploration but not the other [40, 41]. These theories570

on the role of the cortex in exploration are mostly beyond the field of view of this study, but it is of course571

entirely plausible that the basal ganglia are not the sole source of control over exploration modulation.572

3.3 Experimental predictions and future directions573

From a higher level perspective, the ideal follow-up to this work would involve an integrated experimental574

design with suitable cognitive task and capability to manipulate and monitor dopamine level or activity575

level of dopaminergic neurons in the relevant brain areas. To begin with, purely regarding the task576

design, the setup of Gershman [12] is not the most suitable for a study comparing the fitting of different577

strategies. Longer trial blocks with more challenging tasks would be better for distinguishing the learning578

rules, and having different reward variances both for different options in the same block and from block to579

block would provide more informative data and also prevent the subjects forming a prior on the variances580

over multiple blocks. A task design with both the mean rewards and reward variances for each option581

randomly chosen for each block of trials would theoretically be the best at revealing the learning dynamics582

at the algorithmic level.583

At the implementation level, the most interesting next step would be to directly verify the role of584

transient variations in dopamine level in exploration modulation. This would need to involve manipulation585

of the activity of dopaminergic neurons with high temporal precision relative to option presentation586

during a multi-armed bandit task. Specifically, manually inducing a short temporal period of high587

dopamine release in the striatum right after presentation of options (within 0.2 s) should lead to higher588

tendency of exploration (risk seeking) in the action selection that immediately follows. Since this action589

selection occurs before any belief update can happen, any such effect can only be the result of exploration590

modulation but not learning. Conversely, inhibition of dopaminergic signals within the same temporal591

window should lead to stronger exploitative tendency in the following action selection. The strength of592

the effect of this manipulation should also vary with the spread of the reward distribution, since this is593

combined with the novelty signal to produce the posterior uncertainty according to our model.594

For the basal ganglia to facilitate a hybrid exploration strategy, the variability of the transient novelty595

response of dopaminergic neurons as well as the mean response needs to be modulated (Equation 34).596

The source of this variability is currently ambiguous. The mechanism most consistent with the model597

would involve a large number of dopaminergic neurons projecting to each striatal neuron, and only one598

or a few taking effect on any given trial. This does not seem very realistic, and yet another unlikely599
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requirement of this setup is that somehow the relevant D1 and D2 striatal neurons encoding for the600

same option need to read out from the same dopaminergic neurons on each trial. A somewhat more601

likely assumption is that the trial-by-trial variability of the same dopaminergic neurons projecting to each602

striatal neuron facilitates the sampling. This also does not require the unrealistic assumption that related603

D1 and D2 neurons always selectively receive from the same dopaminergic neurons, but still requires the604

dopaminergic neurons projecting to them to have the same upstream source, which is nevertheless much605

more reasonable. Given the large differences in functions fitted to individual neurons even when using606

normalised firing rates (Figure 3(b)(c)), it is tricky to build a completely rigorous model based on this607

assumption since additional scaling would be required, but the key properties of the model should remain608

the same. Available experimental data from Lak et al. [14] does not particularly support any one of these609

assumptions over the other, since neurons were recorded one at a time and each neuron was recorded610

only over one block of trials. Simultaneous recording from multiple dopaminergic neurons that respond611

to the same cue would be the most effective method. Any correlation between the deviations of activity612

from their respective fitted functions would be strong evidence for the second assumption above.613

All analyses in this study are based on two fundamental constraints. Firstly, the reward distributions614

of all options always remain constant within each block, and the agent always has perfect knowledge of615

when the contingency changes occur at block crossovers. When the task is generalised to a non-stationary616

multi-armed bandit, the monotonic novelty representation by dopaminergic neurons is clearly no longer617

optimal. An abrupt contingency change leads to a transient increase in the estimated reward variability618

according to the learning rules of our model, and from a normative perspective, this is certainly as a marker619

that could be used to trigger a reset or adjustment of the novelty representation. On the other hand, a620

continuous graduate shift in the reward distribution would be more difficult to optimise for. The learning621

rule with scaled reward prediction error proposed by Möller et al. [23] is beneficial when the spread of622

the reward distribution (“noisiness” of the reward) is variable, but not when drastic changes in the mean623

reward occur. It would be interesting to further investigate the learning dynamics and the resulting effect624

on exploration modulation in these scenarios with this alternative learning rule, potentially also combined625

with the dynamic learning rate we used in this study. Other models with variable learning rate such as626

the adaptive learning rate models in Nassar et al. [42] and Diederen and Schultz [43] show significant627

advantage in their adaptability in changing environments, which is an important complimenting feature628

to our model.629

Secondly, given the first constraint is satisfied, the agent should employ a stationary strategy in630

respect of the trial number within a block. This could be violated when a situation with a known and631

very limited number of trials are left before a contingency change, and there are still high uncertainty632

levels associated with some of the actions. In such scenarios, exploratory behaviour could give way to633

risk aversion. This is a possible but unlikely occurrence in the Gershman [12] experiments due to the634
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relatively small reward variability. Wilson et al. [3] investigated this phenomenon, but a mechanistic635

model is yet to be developed. Since this mechanism would involve dynamics on a longer timescale, we636

could potentially look for a shift in the tonic dopamine level as a contributor once the model is expanded637

to account for its effect.638

In conclusion, the model we propose in this work provides novel insights on how effective exploration639

strategies could be achieved in the brain, specifically the basal ganglia, and generates interesting experi-640

mental predictions. We expect future work to verify the new predictions and to further refine the model641

for greater levels of detail and better generality.642

4 Methods643

4.1 Function fitting to neural recording data644

The neural recording data used for function fitting is in the form of normalised and baseline-subtracted645

average firing rate over the fixed-length temporal window after cue onset. Normalisation is performed by646

dividing the raw firing rate during the measurement period by a reference firing rate taken immediately647

before cue onset.648

Three different functions were fitted to the novelty response of dopaminergic neurons. The inverse649

square root function with two free parameters:650

f(n) = m+
k√
n
. (39)651

The power function with three free parameters:652

f(n) = m+ knÃ. (40)653

The exponential function with three free parameters:654

f(n) = m+ keÃn. (41)655

Two different techniques were used for model fitting. First, the average activity of all recorded neurons656

at each given trial number was computed, and maximum likelihood fitting of three generative models657

was done on the average activity using MATLAB function fminsearch. Bayesian information criterion658

(BIC) statistics were then computed manually using the resulting maximum likelihood values. Second,659

hierarchical mixed-effects models were fitted to individual neurons’ recording data using MATLAB’s660

nlmefit function. BIC values were returned directly by the function. The population distribution of661

model parameters were modelled both as a fully joint distribution and independent distributions of each662
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of the free parameters.663

4.2 Model fitting to behavioural data664

Eight different reinforcement learning strategies were fitted to behaviour of human participants. These665

differ in two dimensions: learning rule and exploration type. Two learning rules and four exploration666

types were tested, giving the total of eight models. One learning rule is derived from the basal ganglia667

model and the other is the Kalman filtering as described in Gershman [12]. A full list of relevant equations668

that define the strategies and the free parameters that were fitted to behaviour are listed in Table 1. Note669

that the value utility function for random exploration (Thompson sampling) strategies with basal ganglia670

model-derived learning rules is not nested within Equation 36 (since these strategies are not realistic671

according to the results of our neural data analysis – they are included for completeness only). The value672

utility for them is given by673

Ti[t] = Qi[t] + ¼ (((a+ bm)Z)Si[t] + bkZÃ̂i[t]) . (42)674

675

The Kalman filter-based strategies used as a baseline and the methods used for fitting were described676

in detail in Gershman [12]. Trial-by-trial model fitting of the strategies derived from the basal ganglia677

model was done using MATLAB’s fmincon function. Each individual participant were independently678

fitted with a unique set of optimal parameters. Maximum likelihood fitting was used, with the choice679

likelihood computed using the value utility function at each trial, and the sum-log-likelihood for each680

individual participant maximised. The optimiser function was run repeatedly with 50 different initial681

guesses, and the best results out of the repeated runs were taken. Initialisation of latent parameters682

followed the same protocols of those used in Gershman [12].683

4.3 Models used in simulation684

We compared the performance of several different directed exploration (UCB) strategies in simulation685

using more challenging bandit tasks. Specifically, we used a series of efficient deterministic strategies686

detailed in Auer et al. [6] as well as the Kalman filter-based strategy [12] and neural-inspired strategies.687

Here, the Kalman filter strategy and neural strategies were always initialised with mean reward and688

standard deviation estimators all at 0.5 (which differs from the initialisation used in Gershman [12]689

which assumes more knowledge about the task). Otherwise, the Kalman filter strategy follow the same690

description given previously in Table 1, but with e = 0 to make the action selections deterministic (since691

we are comparing here against other deterministic strategies). The free parameter ¹ was optimised for692

each task. The neural strategies inspired by the basal ganglia model also largely follow the descriptions693
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Learning 

rule

Exploration 

type
Fixed parameters

Fitted 

parameters
Equations

Kalman filter

Hybrid

N/A

�, � 7

Directed �, � 1

Random � 4

Value � = 0 � 1

Basal ganglia

(fixed LR)

Hybrid

� = 1.380, � = 0.306, 

� = 0.677, � = 4.486, 

� = 20.791

�!, �", �, �

15, 16, 17, 18, 19, 36Directed

� = 0, � = 0, 

� = 0.677, � = 4.486, 

� = 20.791

�!, �", �, �

Value

� = 0, � = 0, 
� = 0, � = 0, 

� = 0, �" = 0

�!, �

Random

� = 1.380, � = 0.306, 

� = 0.677, � = 4.486, 

� = 20.791, � = 0

�!, �", � 15, 16, 17, 18, 19, 42

Table 1. Full description of strategies fitted to behavioural data. The fixed parameters are determined
either by model constraints or neural recording data. The fitted parameters are the free parameters
fitted to the behaviour of individual participants. Equations are the numbers of equations in previous
text that describe the models. Note that for the Kalman filter models, the equations cited only describe
the action selection but not learning through Kalman filtering. To see a full description of these models
see Gershman [12].

given in Table 1, except all with fixed parameters a = b = m = 0. k then becomes a redundant694

parameter and is fixed to 1. Noise level e is also set to 0, same as for the Kalman filter strategy. Ã is695

set to either −0.5 (the value giving optimal reward posterior estimates) or −0.791 (the value obtained696

from experimental data). The remaining free model parameters ³q, ³s and ¼ were optimised for each697

of the tasks with a crude global minimisation search. In addition, we also fitted variations of the neural698

strategies with dynamically adjusted learning rates as described in Equations 37 and 38, in which cases699

the initial learning rate parameters ³0,q and ³0,s were optimised instead of ³q and ³s.700
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[1] Möller, M. and Bogacz, R. “Learning the payoffs and costs of actions”. PLOS Computational Biology704

15.2 (2019), e1006285. doi: 10.1371/journal.pcbi.1006285.705

[2] Whittle, P. “Restless Bandits: Activity Allocation in a Changing World”. Journal of Applied Prob-706

ability 25 (1988), pp. 287–298. doi: 10.2307/3214163.707

[3] Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A., and Cohen, J. D. “Humans use directed and708

random exploration to solve the explore–exploit dilemma”. Journal of Experimental Psychology:709

General 143.6 (2014), pp. 2074–2081. doi: 10.1037/a0038199.710

[4] Gittins, J. C. “Bandit Processes and Dynamic Allocation Indices”. Journal of the Royal Statistical711

Society: Series B (Methodological) 41.2 (1979), pp. 148–164. doi: 10.1111/j.2517-6161.1979.712

tb01068.x.713

[5] Katehakis, M. N. and Veinott, A. F. “The Multi-Armed Bandit Problem: Decomposition and Com-714

putation”. Mathematics of Operations Research 12.2 (1987), pp. 262–268. doi: 10.1287/moor.12.715

2.262.716

[6] Auer, P., Cesa-Bianchi, N., and Fischer, P. “Finite-time Analysis of the Multiarmed Bandit Prob-717

lem”. Machine Learning 47.2 (2002), pp. 235–256. doi: 10.1023/A:1013689704352.718

[7] Gittins, J., Glazebrook, K., and Weber, R. Multi-armed Bandit Allocation Indices. John Wiley &719

Sons, 2011. 287 pp.720

[8] Sutton, R. S. and Barto, A. G. Reinforcement Learning, second edition: An Introduction. MIT721

Press, 2018. 549 pp.722

[9] Robbins, H. “Some aspects of the sequential design of experiments”. Bulletin of the American723

Mathematical Society 58.5 (1952), pp. 527–535. doi: 10.1090/S0002-9904-1952-09620-8.724

[10] Lai, T. and Robbins, H. “Asymptotically efficient adaptive allocation rules”. Advances in Applied725

Mathematics 6.1 (1985), pp. 4–22. doi: 10.1016/0196-8858(85)90002-8.726

[11] Katehakis, M. N. and Robbins, H. “Sequential choice from several populations.” Proceedings of the727

National Academy of Sciences 92.19 (1995), pp. 8584–8585. doi: 10.1073/pnas.92.19.8584.728

[12] Gershman, S. J. “Deconstructing the human algorithms for exploration”. Cognition 173 (2018),729

pp. 34–42. doi: 10.1016/j.cognition.2017.12.014.730

[13] Mikhael, J. G. and Bogacz, R. “Learning Reward Uncertainty in the Basal Ganglia”. PLOS Com-731

putational Biology 12.9 (2016), e1005062. doi: 10.1371/journal.pcbi.1005062.732

[14] Lak, A., Stauffer, W. R., and Schultz, W. “Dopamine neurons learn relative chosen value from733

probabilistic rewards”. eLife 5 (2016). Ed. by M. J. Frank, e18044. doi: 10.7554/eLife.18044.734

26

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 18, 2023. ; https://doi.org/10.1101/2023.09.17.558180doi: bioRxiv preprint 

https://doi.org/10.1371/journal.pcbi.1006285
https://doi.org/10.2307/3214163
https://doi.org/10.1037/a0038199
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1287/moor.12.2.262
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1090/S0002-9904-1952-09620-8
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1073/pnas.92.19.8584
https://doi.org/10.1016/j.cognition.2017.12.014
https://doi.org/10.1371/journal.pcbi.1005062
https://doi.org/10.7554/eLife.18044
https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/


[15] Schultz, W. “Predictive reward signal of dopamine neurons”. Journal of Neurophysiology 80.1735

(1998), pp. 1–27. doi: 10.1152/jn.1998.80.1.1.736

[16] Kakade, S. and Dayan, P. “Dopamine: generalization and bonuses”. Neural Networks 15.4 (2002),737

pp. 549–559. doi: 10.1016/S0893-6080(02)00048-5.738

[17] Costa, V. D., Tran, V. L., Turchi, J., and Averbeck, B. B. “Dopamine Modulates Novelty Seeking739

Behavior During Decision Making”. Behavioral neuroscience 128.5 (2014), pp. 556–566. doi: 10.740

1037/a0037128.741

[18] Ljungberg, T., Apicella, P., and Schultz, W. “Responses of monkey dopamine neurons during learn-742

ing of behavioral reactions”. Journal of Neurophysiology 67.1 (1992), pp. 145–163. doi: 10.1152/743

jn.1992.67.1.145.744

[19] Horvitz, J. C., Stewart, T., and Jacobs, B. L. “Burst activity of ventral tegmental dopamine neurons745

is elicited by sensory stimuli in the awake cat”. Brain Research 759.2 (1997), pp. 251–258. doi:746

10.1016/S0006-8993(97)00265-5.747

[20] Humphries, M., Khamassi, M., and Gurney, K. “Dopaminergic control of the exploration-exploitation748

trade-off via the basal ganglia”. Frontiers in Neuroscience 6 (2012).749

[21] Jaskir, A. and Frank, M. J. On the normative advantages of dopamine and striatal opponency for750

learning and choice. 2022. doi: 10.1101/2022.03.10.483879.751

[22] Wilson, R. C. and Finkel, L. “A Neural Implementation of the Kalman Filter”. Advances in Neural752

Information Processing Systems. Vol. 22. Curran Associates, Inc., 2009.753
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