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Abstract

When facing an unfamiliar environment, animals need to explore to gain new knowledge about which
actions provide reward, but also put the newly acquired knowledge to use as quickly as possible.
Optimal reinforcement learning strategies should therefore assess the uncertainties of these action—
reward associations and utilise them to inform decision making. We propose a novel model whereby
direct and indirect striatal pathways act together to estimate both the mean and variance of reward
distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating
effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our
model of the basal ganglia, and we fitted exploration strategies derived from the model to data
from behavioural experiments. We also compared the performance of directed exploration strategies
inspired by our basal ganglia model with classic variants of upper confidence bound (UCB) strategy
in simulation. The exploration strategies inspired by the basal ganglia model performed better than
the classic algorithms in simulation in some cases, and we found qualitatively similar results in fitting
model to behavioural data compared with the fitting of more idealised normative models with less
implementation level detail. Overall, our results suggest that transient dopamine levels in the basal
ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives

exploration in reinforcement learning.
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Author summary

Humans and other animals learn from rewards and losses resulting from their actions to maximise their
chances of survival. In many cases, a trial-and-error process is necessary to determine the most rewarding
action in a certain context. During this process, determining how much resource should be allocated
to acquiring information (“exploration”) and how much should be allocated to utilising the existing
information to maximise reward (“exploitation”) is key to the overall effectiveness, i.e., the maximisation
of total reward obtained with a certain amount of effort. We propose a theory whereby an area within the
mammalian brain called the basal ganglia integrates current knowledge about the mean reward, reward
uncertainty and novelty of an action in order to implement an algorithm which optimally allocates
resources between exploration and exploitation. We verify our theory using behavioural experiments and
electrophysiological recording, and show in simulations that the model also achieves good performance

in comparison with established benchmark algorithms.

1 Introduction

In order to survive, animals must develop efficient strategies of reinforcement learning to maximise the
reward of their actions. An important factor in effective reinforcement learning is optimised modulation
of exploration and exploitation. If an animal already possesses knowledge about a safe and nutritious
food source, say a fruit, should it prioritise seeking for that familiar fruit in future foraging, or should it
keep trying out unfamiliar alternatives?

In this study, we generalise from real-world scenarios and define exploration to be any behaviour by
a learning agent that favours actions which are sub-optimal in terms of their expected rewards accord-
ing to the current best knowledge, and exploitation as behaviour that chooses the optimal action with
highest expected reward. Modulating exploration and exploitation is no trivial task, not least because in
real-world scenarios there are often factors such as motivation [1], non-stationarity of the environment |2]
and balancing of short-term and long-term reward optimisation [3] that together influence the optimal
strategy in complex ways. Here, we focus on a quintessential problem without the additional complex-
ity to establish a feasible neural mechanism for exploration-exploitation modulation based on reward
uncertainty estimation.

The problem in question is the classic multi-armed bandit task [4} 5 |6l [7]. By design of the task,
rewards are simplified to one-dimensional numerical values and actions to having no difference in effort
exertion — these simplifications also effectively eliminate the necessity to consider the contribution of sen-
sorimotor error to uncertainty. During the task, the agent has to choose one out of multiple slot machines
(“arms of the bandit”) to play from on each trial. Each of the arms produces a reward represented as a

scalar numerical value sampled when played. The rewards from each arm are sampled from a probability
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distribution associated with the arm, which remains stationary throughout each block of trials. The
agent is made aware of the start and end of each block of trials as well as the length of each block, and
is instructed to maximise the total reward received within each block.

In the context of this task, if an agent follows a greedy strategy [§] that does not involve any exploration
at all and always prefers the optimal action according to current knowledge, they would simply play each
arm exactly once at the beginning of each block of trials and proceed to always choose the one that returns
the highest reward in the one trial for the rest of the block. The performance of this simple strategy
quickly deteriorates as the spreads of the reward distributions get larger. A simple modification of the
greedy strategy, often dubbed the e-greedy strategy [§], adds unmodulated exploration. On each trial,
there is a probability of 1 — e that the agent chooses the empirically optimal action, and a probability of
€ that the agent explores by randomly choosing among the actions with equal probability. We call this
unmodulated exploration since the chances of an exploratory choice of action is constant and therefore
independent of the level of uncertainty the agent experiences. Such unmodulated exploratory behaviour
already improves the robustness of the strategy significantly, but lacks in adaptability.

Finding an optimal strategy for the multi-armed bandit with modulated exploration has been an
ongoing quest in the world of statistics since Robbins [9] first mentioned it in the context of sequential
analysis, and studies such as Lai and Robbins [10], Katehakis and Robbins [11] and Auer et al. [6]
discussed optimal strategies that achieve the theoretical asymptotic performance bound [10] under certain
constraints. These strategies belong to a class called the upper confidence bound (UCB) algorithm, which
computes an uncertainty bonus for each action that modulates exploration. This falls under the category
of directed exploration strategies that Gershman [12] discussed in comparison with random exploration
strategies. A hybrid strategy combining features of directed and random exploration was also proposed
and mathematically specified, and these three qualitatively different types of exploration strategies were
fitted to human behavioural data from a two-armed bandit experiment [12]. Results show that the
hybrid strategy explains human behaviour significantly better. In this work, we take inspiration from
the normative modelling of behaviour in Gershman [12] and propose a novel model of the basal ganglia
which facilitates similar exploration strategies, thus attempt to bridge the gap between algorithmic level
study of behaviour and neural implementation.

The novel basal ganglia model is based on a series of studies started by Mikhael and Bogacz [13], who
proposed that the direct pathway with D1 receptor-expressing neurons and the indirect pathway with
D2 receptor-expressing neurons in the striatum can together achieve learning of both expectation and
variability of the reward resulting from an action during reinforcement learning. Based on this assumption,
tonic dopamine level in the striatum can influence the overall level of risk seeking in behaviour because
of the opposite effects dopamine has on D1 and D2 neurons. Specifically, higher dopamine level should

result in a stronger preference for more risky actions with more variable outcomes. Mikhael and Bogacz
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[13] reviewed experimental evidence consistent with this prediction. In this work, we further consider
the effect of fast transient changes in dopamine level on decision making. Specifically, we note that the
transient activity of dopaminergic neurons can encode novelty [14, (15 |16, (17, |18, [19], and show that
with the novelty signal provided by dopamine, the basal ganglia circuit modelled can facilitate efficient
uncertainty-driven exploration strategies.

Later in this section, we introduce the example task used throughout this study and review the
normative behavioural models of exploration from Gershman [12] in more detail. We also review a model
of the basal ganglia learning reward uncertainty Mikhael and Bogacz [13]. In we first show
that an extended version of this model can approximate the normative exploration strategies. Next, we
compare electrophysiologically recorded activities of dopaminergic neurons in the ventral tegmental area
to the form of novelty signal required for efficient exploration according to our model. We then make
adjustments to the model to more accurately reflect experimental results, and compare the resulting
exploration strategies with the normative strategies in Gershman [12] when fitted to human behaviour
in a bandit task. We also compare the performance of a strategy derived from the basal ganglia model
with that of UCB strategies in Auer et al. [6] in a simulated bandit task. In we compare
our model with several other theories [16] 20, 21] on the role of dopaminergic neurons in exploration

modulation, and formalise experimental predictions and future directions.

1.1 The multi-armed bandit task

Before introducing reinforcement learning models with uncertainty-driven exploration, we formalise here
the nomenclature associated with the multi-armed bandit problem used as the example task throughout
this work. On each of the 7 sequential trials (indexed ¢ € {1,2,...,7}) within a block, the agent needs
to choose one from a total of K available slot machines (“arms” of the bandit, indexed ¢ € {1,2,...,K})
to play. The chosen arm on each trial is denoted c[t] € {1,2,..., K}. After the selection is made on each
trial, a reward of a certain numerical value is randomly sampled from the reward distribution associated

with the selected arm (denoted R;) and presented to the agent.

1.2 Normative strategies of uncertainty-driven exploration

The following strategies for uncertainty-driven exploration all rely on dynamically updated estimates of
mean rewards from each arm, which we denote Q;[t] for arm ¢ at trial ¢, as well as associated posterior
uncertainty levels about the mean estimates, which we denote o;[t]. A conceptually straightforward
approach to modelling the updating of these latent variables is with Kalman filtering [12], although the

neural implementation of such algorithm is potentially complex [22] 23].
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Figure 1. Demonstration of different types of exploration strategies. The distributions on the upward axis
in each panel represent the (Gaussian) posterior estimations of the mean rewards from two arms. The
distributions on the downward axes in panels (b)(c)(d) are example distributions of different types of value
utility functions (without noise). (a): @ and Q2 are posterior means and o and o9 are posterior standard
deviations, representations of posterior uncertainty levels. (b): with a directed exploration strategy such
as UCB, the value utilities (Equation (1) are deterministically biased from the posterior means by an
amount proportional to the posterior standard deviation. (c¢): with a random exploration strategy such
as Thompson sampling (in the two-arm case), the value utilities (Equation [4) are sampled around the
posterior means with spreads proportional to the posterior standard deviations, so the posterior standard
deviations do not bias the action selection, but only modulate the stochasticity. (d): with a hybrid
exploration strategy, the value utilities (Equation are sampled around the deterministically biased
values of the directed strategy and with spreads proportional to the posterior standard deviations as in
the random strategy.

1.2.1 Directed exploration: upper confidence bound (UCB)

With estimations of reward expectation and uncertainty levels for each arm of the bandit learned, the

upper confidence bound strategy uses the value utility variable
Vues,ilt] = Qilt] + 0o4[t] + eZ (1)

associated with each arm to make the selection at each trial (Figure [[{b)). Here 6 and e are weighting
parameters and Z ~ N(0,1) is a standard Gaussian random variable. The arm with the greatest observed
value utility is chosen on each trial. The sum of the first two terms gives the upper bound of a confidence
interval for the mean reward estimation (hence “upper confidence bound”) and the third term introduces
unmodulated stochasticity, which can be considered as accounting for system noise. Parameter 6 controls
the weighting of the “uncertainty bonus”, or equivalently the confidence level of the confidence interval.
The larger its value, the more optimistic and exploratory the strategy is. In the two-armed case (K =

2, i € {1,2}), the probability of choosing arm 1 over 2 is

p(c[t] = 1) = p(Vucs,1[t] > Vucs,2[t]) (2)

o [(Q1lt] — Qa[t] + 0(01[t] — 02]t])
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where ®(-) denotes the cumulative density function of the standard Gaussian distribution. This choice
probability is dependent on the difference in mean reward estimations and the difference in uncertainty
levels (“relative uncertainty” in Gershman [12]). Under this strategy, an action currently believed to
be less rewarding can actually be the favoured option in terms of choice probability. This is a defining
characteristic of a directed exploration strategy, and it generalises to bandit tasks with more than two

arms.

1.2.2 Random exploration: Thompson sampling

A different exploration strategy named Thompson sampling |24} |12} [25] 13| 126] can be achieved by defining
a different value utility (Figure [Ij(c))

VThompson,i[t] = Qz[t] + YO [t]Z (4)

Instead of using the uncertainty level as a deterministic bonus, Thompson sampling samples from a
posterior distribution defined by the estimated mean and uncertainty. The specific formalisation here
assumes a Gaussian posterior of the form N (Q;[t],yo;[t]). Similar to 6 in Equation [} the parameter v
controls the weighting of uncertainty levels by scaling the standard deviation of the Gaussian posterior.
In the two-armed (K = 2) case, the probability of choosing arm 1 over 2 under Thompson sampling is

then

P(C[t] = 1) = p(VThompson,l[ﬂ > VThompson,Q[t]) (5)

:(D( Q1[t] — Qa2lt] > (6)

V2 (ot[t] + o3 [t])

This probability is again dependent on the difference in mean reward estimations, and also dependent on
the sum in uncertainty levels rather than the difference. Thus, the action with higher estimated mean
reward is always favoured in terms of choice probability. This is the defining characteristic of random
exploration strategies [12]. However, when Thompson sampling is applied to a bandit task with more
than two arms, this property does not generalise', and therefore Thompson sampling is not strictly a

random exploration strategy in this more general case.

1.2.3 Hybrid exploration strategy

Using regression analysis and model fitting on behavioural data, Wilson et al. [3] and Gershman [12] have

shown that humans employ an uncertainty-driven strategy that shows characteristics of both directed

1When there are more than two arms, the ranking of all the arms by choice probability is not necessarily the same as
the ranking by mean estimations, unlike in the two-arm case.
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Figure 2. Illustration of the basal ganglia model. (a): circuit diagram representing the basal ganglia,
adapted from Moller and Bogacz . D1/D2 receptor-expressing neurons are involved in direct and
indirect striatal pathways, respectively, and dopamine has opposite effects on the two pathways. Both
pathways project to the thalamus. (b): mapping of learned latent parameters in the proposed algorithm
(left) onto neural metrics (right).
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and random exploration during the bandit task. Gershman used the choice probability

Qut] — Qot]

plft]=1)=2 (’Ym

+0(o1[t] - Uﬂﬂ)) ; (7)

to represent such a hybrid strategy. Here, a change in either total uncertainty or relative uncertainty
independent of the other can influence action selection through either the sum of uncertainty levels on
the denominator or the difference of uncertainty levels on the numerator, respectively. Note that this
choice probability cannot be derived from explicit value utility variables (analogous to those given by

Equations [1] and 4] Figure[I|(d)) associated with each of the arms.

1.3 The basal ganglia model

These normative strategies presented above have so far not been connected to biological implementations.
In this study, we show that basal ganglia circuits could potentially support a mechanism for both belief
updating and producing value utilities for action selection. We first briefly review a previously described

model, and in [Results| we show the necessary extensions to allow exploration strategies.

1.3.1 Learning the mean and spread of reward distribution

Mikhael and Bogacz first proposed that, by utilising both direct and indirect striatal pathways that
include D1 and D2 receptor-expressing neurons respectively, mean and spread (specifically the mean
deviation) of the reward distribution associated with a certain action can be learned simultaneously
in the basal ganglia. According to the model, the neural circuit containing both pathways (Figure

takes an input representing an available action at the current state from the cortex. The direct pathway
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18 with D1 neurons has an excitatory effect on the thalamus, while the indirect pathway with D2 neurons
1e7 has an inhibitory effect. The combined effects of both pathways in the thalamus represent the current
188 value utility of the action. In a task involving action selection, multiple parallel circuits are required to
189 represent all available actions. The model assumes that belief updating or learning occurs in the weights
wo of corticostriatal projections. We denote the weights of projections from the cortex to the D1 neurons in
01 the direct striatal pathway and D2 neurons in the indirect pathway G;[t] (G for “GO”) and N;[t] (N for
2 “NO-GO”), respectively, based on the effects of the two pathways on the thalamus. Subscript ¢ indicates
103 the action (choice of arm in the bandit task) being encoded, and ¢ denotes the trial number within a
14 block of trials, as in the previous section.

195 Learning rules in this circuit have been extensively discussed previously |13} 1, 27]. One basic version

16 can be written as

1

107 (S[t} = Rc[t] — §(Gc[t] [t] - Nc[t] [tD7 (8)
198 Geglt +1] = Gepglt] + aeylt] fe(O[t]) — BG [t (9)
190 Nelt + 1] = Nepg [t] + aep (8] fe(—6[t]) — BNy [t], (10)

200

21 where fe(x) = x for z > 0 and f(z) = ex for < 0 (0 < € < 1). 4[t] gives the reward prediction
22 error at each trial, as will be shown later. The piecewise linear activation function f,(-) over the reward
203 prediction error is an essential element of this learning rule, and evidence shows dopaminergic neurons
20 encoding reward prediction error do exhibit this type of modulation in their responses [28]. The decay
25  terms with scaling parameter 8 keeps the learning variables bounded. Following this learning rule, G; is
206 a “satisfaction learning” reinforced by better-than-expected outcomes and to a lesser extent diminished
27 by worse-than-expected outcomes, while N; is a “disappointment learning” reinforced by worse-than-
s expected outcomes and to a lesser extent diminished by better-than-expected outcomes. «;t] is the

200 learning rate parameter taking values in (0,1) for all values of ¢ and ¢. The substitutions

" Qult] = (Gilt] - Nilt)) /2. (11)

. Silt] = (Gilt] + Ni[f) /2 (12)

212

23 transform the learning rule in Equations [9] and [I0] into

214 Qc[t] [t + 1] = Qc[t] [t] + ac[t],q[t](;[ﬂ - ﬂQc[t] [t]a (13)

215 Seiglt + 1] = Sepg [t] + e, s [t1IO[E]] — BSep[t], (14)

216

a7 where a; o[t] = a;[t](1 4 €)/2 and a; [t] = a;[t](1 —€) /2.
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218 Further idealisation of this learning rule gives

219 5[t] = Rc[t] - Qc[t] [tL (15)
220 Qc[t] [t + 1] = Qc[t] [t] + Ozc[t]yq[t](S[t], (16)
21 Sep[t + 1] = Sep[t] + cveey,s [ (10[t]] — Serq[t]) (17)

222

23 as seen in Moeller et al. [27], with the constraint «; 4[t] > o s[t]. Here, we simply set these to be constant

24 values across the experiments for each agent, so that

225 ai,q[t] = g, (18)

226 (67 s[t] = Og. (19)

227 ?

28 Under this learning rule, @); and S; converge to the stationary point

229 Q;k = E{Ri}, (20)

230 Sz* = E{|Rz - E{Rz}”’v (21)

231

22 which is to say that, at the stationary point, @; and S; are the mean reward and mean deviation of
a3 reward for arm 4, respectively. Without using the idealisation, the stationary point is different, but
2 with appropriate parameters still a good representation of mean and spread of the reward distribution
235 albeit with some additional scaling and bias [13]. Another variation of the learning rule that achieves
2 the exact stationary point given in Equations [20] and 21| has also been proposed 23], but for the purpose
237 of this study, we are satisfied with using the idealised learning rule given in Equations to The
2 Q;[t] variable, like that in the normative strategies, is a dynamically updated estimation of the mean
29 reward. The exact dynamics of this variable in the two implementations is different, since the normative
a0 strategies update using Kalman filtering, and the basal ganglia model uses the learning rule derived from
21 the dynamics of direct and indirect pathways. The S;[t] variable fundamentally differs from o;[t] in the
22 normative strategies, as it is only an estimation of the spread of reward distribution, whereas o;[t] is the
a3 posterior standard deviation of the mean estimation from Kalman filtering which eventually diminishes
24 with repeated observations. We show later how the basal ganglia model might produce an equivalent

us  0;[t] variable and use it to inform action selection.

x5 1.3.2 Effect of dopamine

27 Dopamine was found to have opposite modulating effects on the excitability of D1 and D2 neurons |29,
2s  increasing that of D1 neurons and reducing that of D2 neurons (Figure . Denoting the dopamine level

20 in the striatum as D;[t], we can thus express the thalamus activity as a result of the activities of the two
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pathways using

Tt = (”;Dm) Gilt] - (“AQD[’U Nilt] + 2, (22)

where A is a scaling factor that reflects the strength of dopaminergic modulation. The model assumes
here that dopamine level in the circuit has the same modulating effect on the two pathways. T;[t] is used
as the value utility for action selection, much like Ve ;[t] and Vinompson,:[t] in the normative strategies.
Despite this relationship, we will keep using T;[t] to denote the value utilities derived from the basal
ganglia model that can be directly mapped to activity in the thalamus. G;[t] and N;[t] in Equation
follow the learning rule given above, and eZ is a noise term accounting for all sources of random noise

within the circuit. Substituting G;[t] and N;[t] with Q;[t] and S;[t], Equation [22]is equivalent to

From Equation 23] it is easy to arrive at the experimental prediction that elevated tonic dopamine level
in the striatum should lead to higher level of risk seeking in behaviour, and evidence in support of this

prediction has been reviewed [13].

2 Results

2.1 Dopamine encoding novelty leads to effective exploration

Following the reinforcement learning and action selection rules from Equations[I5]to 23] if dopamine level
in the basal ganglia circuit stays constant from trial to trial during action selection, actions with higher
estimated mean reward (more rewarding on average) and greater reward spread (more risky) are always
favoured. This has certain benefits in exploration modulation, especially at the early stages of exposure
to a new environment (e.g. at the beginning of a new block of trials in the bandit task).

We now know from previous studies discussed earlier that the posterior uncertainty of mean estimation
is the more effective modulator for exploration. In other words, we need a representation of the o;]t]
variable in the basal ganglia circuit as in the normative strategies. Once again, the learned variables Q;]t]
and S;[t] according to Equations (15| to [17] are estimators of the mean and mean deviation of a reward
distribution. The updates for a certain arm happen only when that arm is chosen and consequently the
reward from it observed during a trial. Therefore, the number of times arm ¢ has been chosen up until
trial ¢, denoted n;[t], is the sample size from which these estimations are made. Following the central
limit theorem and with a neutral prior on the mean reward, we can represent the posterior uncertainty

on mean estimation using

oilt] = . (24)

10


https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.558180; this version posted September 18, 2023. The copyright holder for this

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

2908

299

300

301

302

303

304

305

306

307

308

309

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Since both Q;[t] and S;[t] are dynamically updated, and at the stationary point S;[t] gives the absolute
mean deviation rather than standard deviation, o;[t] is a biased approximation of the posterior standard
deviation unlike the equivalent value obtained through Kalman filtering in the normative strategies.

It is evident now that, in order for the basal ganglia circuit modelled to compute posterior uncertainty,
a signal correlated to the sample size n;[t] is necessary. This is where we formally look at the trial-by-trial
variations of dopamine level. While more commonly associated with reward prediction error, transient
dopamine activities have also been found to be correlated to novelty in certain reinforcement tasks [15]
16]. Since novelty naturally has negative correlation with the sample size, we make the assumption about

the specific form of dopamine level with

D) = (17 +) e (25)
or equivalently
v 2
1mﬂ~N< n#r£m>, (26)

which is a noisy representation with both mean level and variability negatively correlated to the sample

size. Substituting this into Equation [23] gives
Ti[t] = Qi[t] + A(nZ + v)oi[t] + eZ. (27)

This represents a effective value utility (Viybria,; in Figure d)) In the two-armed case, it leads to the

choice probability

p(cft] = 1) = p(T1[t] > Tat]) (28)

_ o [ @] = Qaft] + Mv(01[t] — oo[t])
VA2 (2] + o2t]) + 22 )

The exploration strategy this basal ganglia model produces shares the same essential property of the
hybrid strategy given earlier by Equation [7] in that both the relative uncertainty and total uncertainty
levels affect the choice probability. This model also has isolated UCB and Thompson sampling strategies
nested in, which can be recovered when either 7 or v is zero.

We have thus shown that an extension of an existing biological model of the basal ganglia yields
an exploration strategy with important similarities to efficient normative strategies, that qualitatively
matches past experiments.

In the rest of we demonstrate the merits of the extended model of the basal ganglia from
three perspectives. First, we verify the assumption made in extending the model about the specific

mathematical form of the response of dopamine level to novelty using electrophysiological recording data.

11
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Figure 3. Results from function fitting to recording data collected during the early phase of the response
of VTA dopamine neurons to stimuli during Pavlovian learning. (a): experimental data points of average
activity and standard error overlaid with best fitting curves of three different function forms (power
function, inverse square root function i.e. power function with power parameter fixed at —0.5, exponential
function). (b)(c): experimental data points of the activity of two example neurons overlaid with best
fitting curves of the same three function forms obtained through hierarchical model fitting. (d): scatter
plot of standard deviation of activity against average activity at each trial overlaid with best fitting
straight line (correlation r = 0.843). (e): Bayesian information criterion (BIC) values for the fitting of
functions to average activity data, showing that the power function is the best fitting. (f): BIC values for
fitting hierarchical models (with correlated and uncorrelated model parameters) to individual neurons’
recording data, again showing the power function is the best fitting. (g): power parameter p obtained
through fitting to average activity and hierarchical model fitting (shown as a histogram).

Next, we compare the fitting to human behavioural data of the exploration strategies from the model
with that of the normative strategies. Finally, we show the performance of the basal ganglia strategy in

more difficult tasks in comparison with classic UCB strategies.

2.2 Modelling of dopaminergic novelty response

In Equations it is assumed that the dopamine level is inversely proportional to the square root of
the number of observations of outcomes from an arm. We seek experimental evidence that supports this
assumption on the specific mathematical form of dopaminergic response to novelty.

Lak et al. studied the response of dopaminergic neurons to conditioned stimuli during the Pavlo-
vian learning task using electrophysiological recording in awake behaving monkeys. During the experi-
ment, novel reward-predicting visual stimuli, which the animals have never seen before, were presented
to animals. Different stimuli were associated with one of three (25%, 50% or 75%) probabilities of re-
ward (a drop of juice). Neural data were collected during the learning task using extracellular single-cell

recording of 58 neurons in the ventral tegmental area (VTA) identified as dopaminergic neurons using

12
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established criteria. These neurons likely projected to the ventral striatum where D1 and D2 neurons are
found [30} 31]. It was shown that the response of the dopaminergic neurons was divided into two distinct
temporal phases. The firing rates during the late phase 0.2 to 0.6 s after cue onset differentiated reward
probabilities predicted by different stimuli in learned animals. This response pattern is consistent with
the theory that dopamine signals reward prediction error. The firing rates during the early phase 0.1 to
0.2 s after cue onset were independent of reward probabilities associated with the cue throughout the
experiment even after learning was completed, but decreased as the stimuli causing the response were
repeatedly presented, thus reflected stimulus novelty [14]. We focus on the early phase novelty signal
here to investigate whether its quantitative form resembles the normatively ideal form given earlier in
Equations [25] and 26

We performed function fitting on the trial-by-trial evolution of normalised and baseline-subtracted
firing rates of dopaminergic neurons during the novelty response phase (Figure [3]). The fitting was done
using both the average activity of the 58 recorded neurons (Figure (a)), and using individual neuron data
with a hierarchical model (Figure[3|(b)(c)). The functions and fitting methods used are described in more
detail in Results from both hierarchical model fitting and fitting to average activity suggest
that the inverse square root function (the closest to the normatively ideal form) fits better than the
exponential function, but the best fitting function is the power function with three function parameters

(Figure [3{(e)(f)). For fitting using the average activity, the best fitting function is therefore of the form

Dilt] = E{Di[t]} = m + kn 1], (30)

and the best fitting power parameter 7 is —0.791 to three s.f., which differs significantly from —0.5 which
gives the inverse square root function (p < 0.05, two-tailed ¢-test). Also differing from the ideal form is
the non-zero intercept m (p < 0.05, two-tailed t-test). In further analysis, we focus on the fitting using
average activity. This allows us to analyse the relationship between novelty and variability of the neuronal
responses — the normative analysis (Equationsto show that there should also be positive correlation
between novelty and neuronal response variability. Specifically, we assume that the relationship between
standard deviation of activities and the number of observations takes identical form as the mean activity.
We therefore performed linear regression analysis on the mean and standard deviation of activities from
the 58 recorded neurons (Figure d)), and found a strong relationship (r = 0.843 to three s.f., p < 1078,

two-tailed ¢-test). This relationship can be expressed as

sd.(Dilt]) = \E{(Dlf] — E{Di[t]})*} = a+ bD 1. (31)

One difference we found between the best fitting function to experimental data and the normatively ideal

form is again the non-zero (p < 10718) intercept a in Equation

13
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s 2.3 Model refinement based on dopamine data

6 We can now make some amendments to the extensions on the basal ganglia model, utilising the form of
% dopaminergic novelty response derived from electrophysiological recording data given in Equations[30]and [31]

s The modified expression for dopamine level is

359 Di [t] = (CL + bD7 [t])Z + DZ [t] (32)

360 = (a+bm+bknl[t]))Z + m + knT]t], (33)

361

2 Or equivalently

Dilt] ~ N (m+ knT[t], (a + b (m + kng[t])f). (34)

s 'To summarise, this experimentally determined expression of dopaminergic activity is different from the
s ideal form given in Equations 25| and [26]in that it has the general power function in place of the inverse
s square root function, and it also has additional constant terms in both the deterministic (mean) and
57 stochastic (standard deviation) components. This leads to an alternative form of posterior uncertainty
w8 level (modified from Equation

369 &:[t] = Si[tInT[t], (35)

s which then leads to the output to the thalamus (analogous to the ideal version given in Equation [27) to
sn take the form

s T;[t] = Qi[t] + A (((a + bm)Z + m)S;[t] + (bkZ + k)6;[t]) + eZ. (36)

s Compared to the ideal form, there remains a term with S;[t] which is the result of the constant parameters

s m and a in the fitted functions in Equations [30] and

w 2.4 Model fitting to behavioural experiment data

s~ We have previously drawn comparison in multiple occasions between the exploration strategies derived
s from the basal ganglia model and the normative strategies from Gershman [12]. While these share
;s common characteristics in their algorithms, we also highlighted some important differences, most notably
s in the learning rules and the resulting representation of posterior uncertainty. Gershman [12] designed a
0 two-armed bandit task and performed behavioural experiment involving human participants, and fitted
s the normative strategies to the behaviour of the participants during the task. It was discovered that the
2 hybrid strategy fitted the data better than isolated directed or random exploration strategies. In this
s study, we fitted strategies from the basal ganglia model (with parameters describing dopamine novelty
s« response fixed to values estimated above from the activity of dopaminergic neurons) to the same data for

s an algorithmic level comparison of the strategies. For completeness, we fitted not only the general hybrid

14
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Figure 4. Mean of BIC values from trail-by-trial model fitting to behaviour of individual participants in
a two-armed bandit task. The reinforcement learning models fitted employ two different learning rules
(Kalman filtering as in Gershman and basal ganglia derived learning rule (see for details).
Four models with each learning rule were fitted, each with a different exploration strategy. Following
each of the two learning rules, the model with hybrid exploration strategy is the best fitting.

strategy defined by Equation but also the special directed and random exploration only strategies.

During the experiment of Gershman [12], participants faced blocks of ten trials during which the
rewards from two arms were drawn from fixed Gaussian distributions with different means but identical
variances. The participants were instructed to maximise the total reward over each block (length known).
It is worth highlighting at this point that all of the strategies fitted to this dataset are based on the
fundamental assumption that the exploration strategy used by the agent remains stationary on a trial-
by-trial basis, i.e. the strategy is indifferent to the number of trials remaining. This assumption is mostly
valid for this experimental setup.

Trial-by-trial fitting with stochastic maximum likelihood methods was used to obtain optimal param-
eters of the basal ganglia strategies for each individual participant. Once the optimal parameters were
obtained, the corresponding maximum likelihoods were further converted into Bayesian information crite-
rion (BIC) statistics used for comparison. This offsets the potential benefits brought by extra parameters
with a penalty. The strategies fitted to behaviour and methods for fitting are described in more detail in
[Methodsl

Figure [4 shows comparison of BIC values from fitting two sets of strategies with different learning
rules — one with Kalman filtering as the learning rule from Gershman , and the other derived from the
novel basal ganglia model, with fixed reinforcement learning rates defined in Equations |18| and Each
set consists of four variations with different types of uncertainty-driven exploration (or lack thereof) —
the hybrid exploration strategy, the directed and random exploration only strategies, and a “value-only”
strategy that does not use any modulated exploration (equivalent to standard Rescorla—Wagner learning
for the basal ganglia strategies). There is no significant difference in the goodness of fit between models
with same exploration strategies but different learning rules (except for the value-only models, p < 0.01,
two-tailed t-test). Among models with the same learning rule, the model with hybrid exploration strategy

is significantly better fitting than others (p < 0.01, two-tailed t-test). We have thus confirmed the key

15


https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/

Regret

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.558180; this version posted September 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

0.075 A
0.050 A
0.025 A

0.000 -
T T T T T T T T
0 1000 2000 3000 4000 50000 1000 2000 3000 4000 50000

410

412

413

414

415

416

418

419

420

421

422

424

425

426

427

428

429

430

Bernoulli, u* =0.55, u~ =0.45

Bernoulli, u* =0.9, u~ =0.8 Gaussian, u* =0.55, u~ =0.45,0=0.3

L -

~

Trial

Trial

T T T T
1000 2000 3000 4000
Trial

5000

UCB1

ucB2

UCB1-tuned

UCB1-normal

Kalman

Neural, fixed, 1= — 0.5
Neural, fixed, m= —0.791
Neural, dynamic, m= — 0.5
Neural, dynamic, n= —0.791

Figure 5. Performance comparison of neural UCB strategies inspired by the basal ganglia model against
other UCB algorithms in different bandit tasks. Per-trial regret (defined as the difference between the
expected reward of the optimal action and the expected reward of the chosen action at each trial) is
plotted against trial number in each panel. Error bars show standard errors over N = 1000 repeated
simulations. Panel titles describe the tasks — each task had one arm with mean reward p+ and nine arms
with mean reward p~. For the Gaussian task, all arms have the same standard deviation ¢ = 0.3. We
tested neural UCB strategies with two different values of power parameter m which are the ideal value
predicted by the model (—0.5) and the value that best describes neural recording data (—0.791). Both
fixed learning rate (solid lines) and dynamic (decaying) learning rate (dashed lines) versions of the neural

UCB strategies were tested.

finding of Gershman [12] that humans use a hybrid strategy of directed and random exploration in bandit

tasks using a more mechanistic modelling framework based on physiology. Our results also show that

the exploration strategies derived from the basal ganglia model are similar to the normative strategies

with Kalman filtering in terms of their abilities to interpret behaviour at the algorithmic level. Given the

more idealised learning rule used in the normative strategies that does not account for potential individual

differences across participants, one would perhaps expect significantly better fitting from the basal ganglia

strategies. However, since BIC is a metric that penalises larger numbers of model parameters, a potential

explanation could be that the effect of individual differences in this task is relatively small, so that

the decrease in BIC from better fitting is outweighed by the increase from additional penalty for extra

parameters.

2.5 Performance in simulation of bandit tasks

Variations of UCB strategies have been extensively investigated in analytical studies to assess their

performances in multi-armed bandit tasks [10} |11} [6]. We compared the performance of UCB strategies

that use the learning rule and value utility based on the basal ganglia model with several other efficient

UCB variations [6} |12] in simulation. More details about the models used can be found in

The simulated multi-armed bandit tasks all involve ten arms, with the reward from each arm drawn

from distributions of the same form. Nine of these ten reward distributions in each task were identical,

with the other having a slightly higher mean reward. Due to the difficulty of these tasks, a large number of

trials were simulated for each experiment. We follow the convention used by Auer et al. [6] and define the

regret at each trial as the difference between the mean reward of the most rewarding action and the mean

reward of the chosen action on that trial. Figure [b| shows the results from simulations of three different

16


https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.558180; this version posted September 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a1 tasks. For each task, regret is plotted over trial number for each strategy. The first two tasks were two
a2 cases of the Bernoulli bandit with the same difference in mean reward between optimal and sub-optimal
a3 actions, and the third was a Gaussian bandit task with the same mean rewards as the first Bernoulli task
s¢  but smaller reward variances. We were able to reproduce the qualitative findings from Auer et al. [6]
.5 regarding the classic UCB strategies: the more complex UCB2 and UCB1-tuned perform better than UCB1
w6 in all experiments; UCB1-normal (which is a variation of UCB1 optimised for Gaussian bandits) performs
a7 better than standard UCB1 only in the Gaussian task — despite the Gaussian task being less demanding
ss  than the Bernoulli task with the same mean rewards due to smaller reward variances, all strategies from
a0 Auer et al. [6] except UCB1-normal performed worse in the Gaussian task. The Kalman filter strategy from
w0 Gershman [12] consistently outperform all the classic strategies. It is also able to take advantage of the
a1 smaller reward variances in the Gaussian task, and therefore has the most significant advantage against
w2 the other strategies in this task. The neural strategies with fixed learning rates (Equations |18 and
w3 have worse performance than the Kalman filter strategy and the best performing strategies from Auer
ue et al. [6]. Following this observation, we experimented with variations of the neural strategies with

s dynamically adjusted learning rates defined by

446 ai,q[t] = Qp,q m —|—/:J s (37)
m + knZ [t]

44 %,8 t| = 571, 38

44; « ’ [ ] a07 m + k ( )

ao  which gradually reduce the rate of updating mean reward and reward variability estimations as learning
w0 progresses, and result in significantly improved performance over the fixed learning rate strategies in
w1 all tasks. The improved performance of the neural strategies overall exceeds that of the Kalman filter
2 strategy. Note that in fitting the different models to human behaviour, we did not observe a significant
ss3  difference between the fixed learning rate neural models and the Kalman filter model unlike in these
s simulations. This is likely due to the behavioural experiments involving much shorter blocks of trials
w5 compared with the simulations.

456 We also discovered in analysing neural recording data that the representation of novelty by dopaminer-
w7 gic neurons does not necessarily follow the ideal form the normative model predicts. Here we see that the
s difference in the specific representation of novelty (i.e. the difference in the value of the power parameter
w0 ) has little effect on the performance of the resulting exploration strategies in simulations.

460 Overall, the results of the simulations suggest that a strategy based on the basal ganglia model can
w1 perform better than the classic UCB strategies and the Kalman filter UCB strategy in a range of bandit
w2 tasks, given that the learning rate is dynamically adjusted and decays with novelty. However, fixed

w3 learning rate strategies do not perform nearly as well.
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« 3 Discussion

w5 Our results suggest that the fast transient variations of dopaminergic neuron activity can encode novelty
w6 in a way that could contribute to representation of posterior uncertainty in the basal ganglia during rein-
w7 forcement learning. The uncertainty representation could then be used to facilitate exploration strategies
ws  that perform well in simulation and are similar to a normatively ideal construction. In this section, we
w0 further discuss the implications of the results and new experimental predictions that can be derived from

a0 the model, as well as potential future directions.

m 3.1 Functions of dopamine in reinforcement learning

a2 The quantitative analysis on the novelty response of dopaminergic neurons made possible by high resolu-
a3 tion recording is fundamental to all results from this study. The role of dopamine has always been central
s in efforts of understanding reinforcement learning. In particular, the transient activity of dopaminergic
w5 neurons is widely considered to encode reward prediction errors (32} |15] used to update the predictions
as  of action outcomes. This theory is supported by a plethora of experimental evidence. In fact, the exper-
w7 imental results |14] we analysed also provide support for this theory. The activity of VTA dopaminergic
as neurons recorded from 0.2 to 0.6 s after cue onset as well as their responses to rewards are highly con-
wo  sistent with the pattern predicted by the reward prediction error theory [14]. Saliently for this work,
0 there has also been observations of correlation between activity of dopaminergic neurons and novelty [16,
s [15]. This additional variability is often treated as being multiplexed into the reward prediction error
w2 signals as a bonus component. Experimental results from Lak et al. [14] provide an alternative view on
w3 the multiple factors correlated with transient activity of dopaminergic neurons by observing the different
s response patterns during the temporal window 0.1 to 0.2 s after cue versus the later 0.2 to 0.6 s window.
a5 This suggests the possibility that the novelty and reward prediction error signals are carried by the same
w6 dopaminergic neurons yet can still be fully decoupled. Based on this hypothesis, we constructed our rein-
w7 forcement learning model of the basal ganglia that uses the reward prediction error in belief updates and
a3 uses the novelty signal combined with other learned latent variables to modulate exploration in decision
w0 making, which is fundamentally different from the “novelty as a bonus” view in many previous models
wo  [16]. The dual function of fast transient dopamine variations is also supported by evidence uncovered
w1 more recently that dopamine conveys motivational value on short timescales and that there exist possible
sz  mechanisms for the same target neurons of dopamine to switch between different interpretation modes
w3 [33].

404 We found from simulations of challenging multi-armed bandit tasks that learning rates dynamically
a5 adjusted according to novelty level can have significant performance benefits. Naturally, this leads to the

w5 speculation that the novelty signal delivered by dopaminergic neurons can also modulate the plasticity

18


https://doi.org/10.1101/2023.09.17.558180
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.558180; this version posted September 18, 2023. The copyright holder for this

497

498

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

of corticostriatal connections. Some recent experiments suggest that this mechanism could in fact exist
in the brain [34, [35]. From the data used in this study, one could theoretically find conjectural evidence
for or against the hypothesis, e.g. by investigating whether the outcome of an “explore” trial (a trial
on which the option with lower @ value is chosen, likely to be associated with higher novelty signal) is
statistically more influential on the outcome of the next trial (suggesting a higher learning rate). Within
the model framework of reinforcement learning through direct and indirect striatal pathways, Moller
et al. [23] had a different take on modulated belief updating, which considers the circuit dynamics at the
time of reward presentation and predicts that the reward prediction error itself should be scaled by the
estimated spread of the reward distribution (Equation . Theoretically, this could be combined with
the learning rate modulation by novelty, and from a physiological perspective, the novelty signal should
take effect on the target striatal neurons before reward presentation, whereas the dynamics that leads to
the scaled prediction error signal occurs after reward presentation.

While the analysis in this work is centred around the transient changes in dopamine level, the tonic
dopamine level in the striatum could also influence the circuit dynamics and consequently reinforcement
learning behaviour. According to our model, the most significant effect of higher tonic dopamine level
should be an overall higher level of risk preference, and consequently a stronger effect of relative un-
certainty on directed exploration. Mikhael and Bogacz [13] reviewed experimental evidence in support
of this prediction, and Costa et al. [17] demonstrated that elevated tonic dopamine level resulted in in-
creased novelty seeking, which can be interpreted as a form of uncertainty preference. However, a more
up to date literature contains interesting experimental results that are not necessarily consistent with
this prediction. For example, [36] found that stronger striatal dopamine transmission reduced the effect
of relative uncertainty on directed exploration.

There are also several studies suggesting that high level of tonic dopamine reduces random exploration.
Ciedlak et al. |37] discovered that genetic disruption of glutamate receptors in dopaminergic and D1
neurons (which reduced dopamine transmission) lead to overall more stochastic and less reward-driven
choices, while Adams et al. [38] found similar effects of reduced D2 receptor occupancy (which also
indicated reduced dopamine transmission). Cinotti et al. [39] also found similar results through the use
of dopamine receptor antagonist. However, it is worth emphasising that our model makes prediction
on the effects of dopamine on directed exploration, rather than random exploration, and the opposite
effects of tonic dopamine level on these two types of exploration may suggest they rely on fundamentally
different mechanisms.

This literature of experimental work highlights the overall complex nature of the influence of tonic
dopamine level on reinforcement learning. In this work, we used normalised firing rate data which
themselves does not contain any information about the tonic baseline. Correspondingly, our model of the

basal ganglia does not explicitly account for the effect of tonic dopamine levels, but the different resulting
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s model parameters across individual participants from fitting model to behavioural data could potentially
s be correlated to this.

534 We used electrophysiological recording data obtained during a Pavlovian conditioning task to study the
s35  novelty response of dopaminergic neurons |14]. In this context, novelty is naturally associated with each
s cue presented in the experiment since there was no action required, whereas the model we are proposing
sv handles reinforcement learning tasks with action selections, and includes a novelty value assigned to each
s action. In fact, within the same study, Lak et al. [14] also recorded during a two-armed bandit task in
530 which one familiar cue and one novel cue (and actions associated with each) were present. The recorded
se0 dopaminergic neurons showed response to the number of times the novel action was selected that is highly
s similar to the cue novelty response in the conditioning task, therefore suggesting that the recorded VTA

s22 dopaminergic neurons could also encode action novelty during learning.

s 3.2 Alternative theories of exploration modulation in the brain

s« The model we propose in this work suggests that the basal ganglia are responsible for both learning
sss  the associations of high-level actions with resulting rewards and using this information to select actions
s following near-optimal strategies. A related model from Humphries et al. [20] also highlights the role of
sev  the basal ganglia in decision making while describing the relevant circuit dynamics in more detail. These
ss  authors made experimental predictions about the effect of tonic dopamine level on the level of random
ss9  exploration, which suggest that an increase in dopamine level should generally lead to more exploitative
sso  behaviour. This qualitatively differs from what our model would suggest, and is supported by some but
51 not all related experimental evidence as discussed in the previous section. Jaskir and Frank [21] proposed
s> another model of exploration modulation in the basal ganglia, which includes a description of the trial-
53 by-trial variation of dopamine level at action selection. Instead of a simple novelty signal, these authors
ssa  proposed a “meta-critic” mechanism that learns the overall reward level of the entire environment and
ss5 controls the dopamine level at action selection accordingly. This results in more exploratory behaviour in
ss6  overall “richer” environments. This meta-critic also operates on a longer timescale compared to the type
ss7 of dopaminergic dynamics in the model we propose in this study. The authors also compared in silico
s performance comparison which put their model ahead of classic UCB strategies. However, this model
sso  is only defined for Bernoulli bandit tasks that produced binary reward outcomes in experiments and
so  simulations. The mean reward and reward standard deviation following a Bernoulli reward distribution
ss1  are always correlated, and it is not trivial what effect this feature had on the conclusion reached by the
s2 authors. A continuous reward distribution is a more realistic representation of real-world scenarios, and
53 we have shown in this work that the exploration strategy based on our basal ganglia model can effectively
s« modulate exploration and exploitation in a bandit task with continuous (Gaussian) reward distribution.

565 Our analysis of the novelty response of dopaminergic neurons suggests that the way novelty is encoded
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in dopamine level could be the source of a hybrid strategy of directed and random exploration. Given
that this type of strategy is prominent in behaviours, there have also been prior studies looking for
the underlying mechanism in the brain. Some of these studies found significant correlations between
exploratory behaviour and activities in certain cortical regions, and specifically found cortical regions
that are linked with only one of directed or random exploration but not the other |40} |41]. These theories
on the role of the cortex in exploration are mostly beyond the field of view of this study, but it is of course

entirely plausible that the basal ganglia are not the sole source of control over exploration modulation.

3.3 Experimental predictions and future directions

From a higher level perspective, the ideal follow-up to this work would involve an integrated experimental
design with suitable cognitive task and capability to manipulate and monitor dopamine level or activity
level of dopaminergic neurons in the relevant brain areas. To begin with, purely regarding the task
design, the setup of Gershman [12] is not the most suitable for a study comparing the fitting of different
strategies. Longer trial blocks with more challenging tasks would be better for distinguishing the learning
rules, and having different reward variances both for different options in the same block and from block to
block would provide more informative data and also prevent the subjects forming a prior on the variances
over multiple blocks. A task design with both the mean rewards and reward variances for each option
randomly chosen for each block of trials would theoretically be the best at revealing the learning dynamics
at the algorithmic level.

At the implementation level, the most interesting next step would be to directly verify the role of
transient variations in dopamine level in exploration modulation. This would need to involve manipulation
of the activity of dopaminergic neurons with high temporal precision relative to option presentation
during a multi-armed bandit task. Specifically, manually inducing a short temporal period of high
dopamine release in the striatum right after presentation of options (within 0.2 s) should lead to higher
tendency of exploration (risk seeking) in the action selection that immediately follows. Since this action
selection occurs before any belief update can happen, any such effect can only be the result of exploration
modulation but not learning. Conversely, inhibition of dopaminergic signals within the same temporal
window should lead to stronger exploitative tendency in the following action selection. The strength of
the effect of this manipulation should also vary with the spread of the reward distribution, since this is
combined with the novelty signal to produce the posterior uncertainty according to our model.

For the basal ganglia to facilitate a hybrid exploration strategy, the variability of the transient novelty
response of dopaminergic neurons as well as the mean response needs to be modulated (Equation .
The source of this variability is currently ambiguous. The mechanism most consistent with the model
would involve a large number of dopaminergic neurons projecting to each striatal neuron, and only one

or a few taking effect on any given trial. This does not seem very realistic, and yet another unlikely
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requirement of this setup is that somehow the relevant D1 and D2 striatal neurons encoding for the
same option need to read out from the same dopaminergic neurons on each trial. A somewhat more
likely assumption is that the trial-by-trial variability of the same dopaminergic neurons projecting to each
striatal neuron facilitates the sampling. This also does not require the unrealistic assumption that related
D1 and D2 neurons always selectively receive from the same dopaminergic neurons, but still requires the
dopaminergic neurons projecting to them to have the same upstream source, which is nevertheless much
more reasonable. Given the large differences in functions fitted to individual neurons even when using
normalised firing rates (Figure [3(b)(c)), it is tricky to build a completely rigorous model based on this
assumption since additional scaling would be required, but the key properties of the model should remain
the same. Available experimental data from Lak et al. [14] does not particularly support any one of these
assumptions over the other, since neurons were recorded one at a time and each neuron was recorded
only over one block of trials. Simultaneous recording from multiple dopaminergic neurons that respond
to the same cue would be the most effective method. Any correlation between the deviations of activity
from their respective fitted functions would be strong evidence for the second assumption above.

All analyses in this study are based on two fundamental constraints. Firstly, the reward distributions
of all options always remain constant within each block, and the agent always has perfect knowledge of
when the contingency changes occur at block crossovers. When the task is generalised to a non-stationary
multi-armed bandit, the monotonic novelty representation by dopaminergic neurons is clearly no longer
optimal. An abrupt contingency change leads to a transient increase in the estimated reward variability
according to the learning rules of our model, and from a normative perspective, this is certainly as a marker
that could be used to trigger a reset or adjustment of the novelty representation. On the other hand, a
continuous graduate shift in the reward distribution would be more difficult to optimise for. The learning
rule with scaled reward prediction error proposed by Moller et al. [23] is beneficial when the spread of
the reward distribution (“noisiness” of the reward) is variable, but not when drastic changes in the mean
reward occur. It would be interesting to further investigate the learning dynamics and the resulting effect
on exploration modulation in these scenarios with this alternative learning rule, potentially also combined
with the dynamic learning rate we used in this study. Other models with variable learning rate such as
the adaptive learning rate models in Nassar et al. [42] and Diederen and Schultz [43] show significant
advantage in their adaptability in changing environments, which is an important complimenting feature
to our model.

Secondly, given the first constraint is satisfied, the agent should employ a stationary strategy in
respect of the trial number within a block. This could be violated when a situation with a known and
very limited number of trials are left before a contingency change, and there are still high uncertainty
levels associated with some of the actions. In such scenarios, exploratory behaviour could give way to

risk aversion. This is a possible but unlikely occurrence in the Gershman |12] experiments due to the
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relatively small reward variability. Wilson et al. |3] investigated this phenomenon, but a mechanistic
model is yet to be developed. Since this mechanism would involve dynamics on a longer timescale, we
could potentially look for a shift in the tonic dopamine level as a contributor once the model is expanded
to account for its effect.

In conclusion, the model we propose in this work provides novel insights on how effective exploration
strategies could be achieved in the brain, specifically the basal ganglia, and generates interesting experi-
mental predictions. We expect future work to verify the new predictions and to further refine the model

for greater levels of detail and better generality.

4 Methods

4.1 Function fitting to neural recording data

The neural recording data used for function fitting is in the form of normalised and baseline-subtracted
average firing rate over the fixed-length temporal window after cue onset. Normalisation is performed by
dividing the raw firing rate during the measurement period by a reference firing rate taken immediately
before cue onset.

Three different functions were fitted to the novelty response of dopaminergic neurons. The inverse

square root function with two free parameters:

() = m + % (39)
The power function with three free parameters:

f(n) =m+kn™. (40)
The exponential function with three free parameters:

f(n) =m+ ke™. (41)

Two different techniques were used for model fitting. First, the average activity of all recorded neurons
at each given trial number was computed, and maximum likelihood fitting of three generative models
was done on the average activity using MATLAB function fminsearch. Bayesian information criterion
(BIC) statistics were then computed manually using the resulting maximum likelihood values. Second,
hierarchical mixed-effects models were fitted to individual neurons’ recording data using MATLAB’s
nlmefit function. BIC values were returned directly by the function. The population distribution of

model parameters were modelled both as a fully joint distribution and independent distributions of each
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of the free parameters.

4.2 Model fitting to behavioural data

Eight different reinforcement learning strategies were fitted to behaviour of human participants. These
differ in two dimensions: learning rule and exploration type. Two learning rules and four exploration
types were tested, giving the total of eight models. One learning rule is derived from the basal ganglia
model and the other is the Kalman filtering as described in Gershman [12]. A full list of relevant equations
that define the strategies and the free parameters that were fitted to behaviour are listed in Table[l] Note
that the value utility function for random exploration (Thompson sampling) strategies with basal ganglia
model-derived learning rules is not nested within Equation (since these strategies are not realistic
according to the results of our neural data analysis — they are included for completeness only). The value

utility for them is given by

L] = Qilt] + A (((a + bm) Z2)Si[t] + bk Z&, 1)) (42)

The Kalman filter-based strategies used as a baseline and the methods used for fitting were described
in detail in Gershman [12]. Trial-by-trial model fitting of the strategies derived from the basal ganglia
model was done using MATLAB’s fmincon function. Each individual participant were independently
fitted with a unique set of optimal parameters. Maximum likelihood fitting was used, with the choice
likelihood computed using the value utility function at each trial, and the sum-log-likelihood for each
individual participant maximised. The optimiser function was run repeatedly with 50 different initial
guesses, and the best results out of the repeated runs were taken. Initialisation of latent parameters

followed the same protocols of those used in Gershman [12].

4.3 Models used in simulation

We compared the performance of several different directed exploration (UCB) strategies in simulation
using more challenging bandit tasks. Specifically, we used a series of efficient deterministic strategies
detailed in Auer et al. [6] as well as the Kalman filter-based strategy [12] and neural-inspired strategies.
Here, the Kalman filter strategy and neural strategies were always initialised with mean reward and
standard deviation estimators all at 0.5 (which differs from the initialisation used in Gershman [12]
which assumes more knowledge about the task). Otherwise, the Kalman filter strategy follow the same
description given previously in Table [1} but with e = 0 to make the action selections deterministic (since
we are comparing here against other deterministic strategies). The free parameter 6 was optimised for

each task. The neural strategies inspired by the basal ganglia model also largely follow the descriptions
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Learning Exploration Fixed parameters Fitted Equations
rule type parameters
Hybrid y, 0 7
Directed N/A 0,e 1
Kalman filter
Random 14 4
Value 6=0 e 1
a =1.380, b = 0.306,
Hybrid m = 0.677, k = 4.486, ag, s, A e
T =-0.791
a=0,b=0,
Directed | m = 0.677, k = 4.486, aq, ag, 4, e | 15,16,17, 18, 19, 36
Basal ganglia n=-0791
(fixed LR) a=0b=0
Value m=0,k=0, ag, e
=0, a;=

a = 1380, b = 0.306,
Random | m = 0.677, k = 4.486, aq, as, A | 15,16, 17,18, 19, 42
m=-0791,e=0

Table 1. Full description of strategies fitted to behavioural data. The fixed parameters are determined
either by model constraints or neural recording data. The fitted parameters are the free parameters
fitted to the behaviour of individual participants. Equations are the numbers of equations in previous
text that describe the models. Note that for the Kalman filter models, the equations cited only describe
the action selection but not learning through Kalman filtering. To see a full description of these models
see Gershman [12].

sa given in Table except all with fixed parameters ¢« = b = m = 0. k then becomes a redundant
ss parameter and is fixed to 1. Noise level e is also set to 0, same as for the Kalman filter strategy. 7 is
06 set to either —0.5 (the value giving optimal reward posterior estimates) or —0.791 (the value obtained
o7 from experimental data). The remaining free model parameters aq, os and A were optimised for each
s Of the tasks with a crude global minimisation search. In addition, we also fitted variations of the neural
s0 strategies with dynamically adjusted learning rates as described in Equations [37] and in which cases

70 the initial learning rate parameters ag 4 and g, were optimised instead of o, and as.
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