

1 **NDH complex-mediated cyclic electron flow in bundle sheath cells enables C₄**
2 **photosynthesis**

3 Maria Ermakova^{1,2*}, Russell Woodford¹, Duncan Fitzpatrick¹, Soraya M. Zwahlen¹, Graham Farquhar¹, Susanne
4 von Caemmerer¹, Robert T. Furbank¹

5 ¹ Centre of Excellence for Translational Photosynthesis, Division of Plant Science, Research School of Biology,
6 Australian National University, Acton, ACT, Australia.

7 ²School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia.

8 *Correspondence to maria.ermakova@monash.edu.

9

10 Maria Ermakova, maria.ermakova@monash.edu, ORCID: 0000-0001-8466-4186

11 Russell Woodford, Russell.Woodford@anu.edu.au, ORCID: 0000-0002-6766-2274

12 Duncan Fitzpatrick, fitzpatrick.duncan@gmail.com

13 Soraya M. Zwahlen, u6355224@alumni.anu.edu.au, ORCID: 0000-0003-2130-3820

14 Graham Farquhar, graham.farquhar@anu.edu.au

15 Susanne von Caemmerer, Susanne.Caemmerer@anu.edu.au, ORCID: 0000-0002-8366-2071

16 Robert Furbank, robert.furbank@anu.edu.au, ORCID: 0000-0001-8700-6613

17

18 ME, RF and SvC designed the research; RF, SvC and GF obtained funding; ME generated gene-edited plants;
19 ME, RW, DF and SZ performed research; ME, RW and DF analysed data; ME, RW and RF wrote the paper; all
20 authors discussed the results and contributed to the final manuscript.

21

22 **Abstract**

23 The superior productivity of C₄ plants is achieved via a metabolic C₄ cycle which acts as a CO₂ pump across
24 mesophyll and bundle sheath (BS) cells and requires an additional input of energy in the form of ATP.
25 Chloroplast NADH dehydrogenase-like complex (NDH) increases ATP production in C₃ plants by operating cyclic
26 electron flow (CEF) around Photosystem I (PSI), and its importance for C₄ photosynthesis has been proposed
27 from evolutionary and reverse genetics studies. We used the gene-edited C₄ species *Setaria viridis* with null
28 *ndhO* alleles lacking NDH to study a contribution of the complex to the cell-level electron transport. Our results
29 indicate that NDH is the primary PSI electron acceptor mediating the majority of CEF in BS cells whilst the

30 contribution of the complex to CEF in mesophyll cells is minimal. Moreover, the reduced leaf CO₂ assimilation
31 rate and growth of plants lacking the complex cannot be rescued by supplying additional CO₂, indicating that
32 NDH is essential for generating ATP required for CO₂ fixation by the C₃ cycle. Hereby we resolve a cell-level
33 mechanism for the contribution of NDH to supporting high CO₂ assimilation rates in C₄ photosynthesis.

34 **Introduction**

35 C₄ plants typically exhibit superior radiation, water and nitrogen use efficiency allowing them to outperform
36 C₃ plants in warm climates^{1,2}. The C₄ cycle operates across mesophyll and bundle sheath (BS) cells as a
37 biochemical carbon concentrating mechanism (Fig. 1). This increases CO₂ partial pressure in BS cells where
38 Rubisco and other Calvin-Benson-Bassham cycle (hereafter, the C₃ cycle) enzymes reside³. The C₄ cycle begins
39 in the mesophyll cytosol with the conversion of CO₂ to HCO₃⁻ by carbonic anhydrase which is then fixed by PEP
40 carboxylase (PEPC) into the C₄ acid oxaloacetate. The latter can be reduced to malate or transaminated to
41 aspartate before diffusing to BS cells for decarboxylation. There are three major subtypes of C₄ photosynthesis,
42 categorised by the primary decarboxylating enzyme⁴. As the majority of agriculturally important C₄ species
43 such as maize, sugarcane, sorghum and millets, use NADP⁺-dependent malic enzyme (NADP-ME) to
44 decarboxylate malate in BS chloroplasts, this subtype is the major focus of C₄ photosynthesis research and of
45 this study. Decarboxylation of malate releases CO₂, reduces NADP⁺ to NADPH and produces pyruvate which
46 returns to mesophyll cells and is regenerated into PEP to complete the C₄ cycle. Engineering C₃ plants to carry
47 out C₄ photosynthesis is considered a promising route to increasing crop productivity, prompting attempts to
48 introduce the C₄ pathway into the C₃ plant rice^{5,6}. However, these projects are hampered by our incomplete
49 understanding of the molecular mechanisms of C₄ photosynthesis. Electron transport reactions crucial for
50 providing at least two extra ATP molecules for each CO₂ fixed – the additional energy cost of the carbon
51 concentrating mechanism — is one such mechanism we aim to address in this work.

52 In the C₄ system, the electron transport chains of mesophyll and BS cells are tailored for specific metabolic
53 needs⁷ (Fig. 1). The mesophyll electron transport chain closely resembles that of C₃ plants, where linear
54 electron flow (LEF) from Photosystem II (PSII) to Photosystem I (PSI) results in production of NADPH.
55 Cytochrome *b*₆*f* complex (Cyt*b*₆*f*) between the two photosystems couples electron transport with proton
56 translocation across the thylakoid membrane, which establishes a proton motive force (*pmf*) used by ATP
57 synthase to generate ATP. For the C₄ cycle, NADPH produced in mesophyll cells is primarily used for reducing
58 oxaloacetate to malate while the ATP produced here is used to regenerate PEP; both are also used for the
59 generation of triose phosphate within the C₃ cycle (see below). The ΔpH component of *pmf* is also a key signal
60 controlling electron transport rate by (i) slowing down Cyt*b*₆*f* activity to restrict electron flow to PSI, also known
61 as ‘photosynthetic control’⁸, and (ii) initiating a dissipation of absorbed light energy as heat through the rapidly-
62 formed and reversible form of non-photochemical quenching (NPQ)⁹. This form of NPQ is activated by
63 protonating lumen-exposed residues of the PsbS protein¹⁰ and through the conversion of violaxanthin to
64 zeaxanthin in the antennae¹¹.

65 LEF alone is often unable to satisfy the combined ATP/NADPH requirements of photosynthesis and other
66 metabolic processes¹². The C₃ cycle in BS cells needs 3 mols of ATP and 2 mols of NADPH to fix 1 mol of CO₂.
67 While malate decarboxylation provides at least half of the required NADPH, mesophyll electron transport also
68 supplies NADPH and ATP through the triose phosphate shuttle in which a part of the 3-PGA produced by
69 Rubisco diffuses to the mesophyll cells for conversion to triose phosphate, which then returns to the BS^{3,13} (Fig.
70 1). This results in a lower requirement to produce NADPH in BS cells in which abundance and activity of PSII
71 are diminished compared to the mesophyll¹⁴. It has long been proposed that to predominantly yield ATP, BS
72 cells maintain active cyclic electron flow (CEF) that returns electrons from the reducing side of PSI back to the
73 plastoquinone pool, allowing electrons to again pass through Cytb₆f and increase pmf^{15,16}. There are two major
74 proposed CEF pathways: via PROTON GRADIENT REGULATION5 (PGR5) and via the chloroplast NADH
75 dehydrogenase-like complex (NDH)¹⁷. Abundance of both PGR5 and NDH in leaves increased during the
76 evolutionary transition from C₃ to C₄ plants^{18,19} and NDH subunits preferentially accumulated in BS cells²⁰⁻²². In
77 C₃ plants, NDH comprises only 0.2% of total thylakoid protein content²³ and mutants lacking the complex retain
78 normal fitness under optimal growth conditions²⁴. In contrast, lowering NDH content in C₄ species maize and
79 *Flaveria bidentis* had severe effects on photosynthesis and growth²⁵⁻²⁷. While a direct mechanism for this effect
80 has not been resolved, these observations prompted suggestions that NDH is involved in ATP production via
81 CEF²⁶ required for concentrating CO₂ in BS cells²⁵. Here we use CRISPR/Cas9 in a model C₄ plant of NADP-ME
82 subtype *Setaria viridis* to create plants lacking NDH and provide the first functional demonstration of NDH
83 activity in C₄ BS cells.

84 Results

85 Creating *S. viridis* plants with null *ndhO* alleles

86 To create null *ndhO* alleles, known to result in the arrested assembly of NDH²⁵, we targeted Cas9 to the third
87 and the fifth exons of *S. viridis* *ndhO* (Fig. 2a). Two new *ndhO* alleles were obtained: *ndhO*-2 with a single
88 nucleotide insertion causing a frameshift mutation, resulting in an altered amino acid (aa) sequence starting
89 from S23 and a premature termination codon, and *ndhO*-6 with a single nucleotide deletion causing a
90 frameshift mutation, resulting in an altered aa sequence starting from G67 (Fig. S1). *S. viridis* plants with
91 homozygous *ndhO*-2 and *ndhO*-6 alleles (*ndh* hereafter) lacked NDH as confirmed by immunoblotting of leaf
92 extracts with antibodies against the NdhH subunit of the complex (Fig. 2b). In the absence of NDH, plants
93 showed severe reduction of the aboveground biomass to about 30% of wild type (WT, Fig. 2d), which could
94 not be rescued by supplementing air in the growth room with 2% CO₂, a treatment previously shown to
95 improve growth of *S. viridis* deficient in carbon concentrating mechanism^{28,29}. The CO₂ response of CO₂
96 assimilation rate in *S. viridis* *ndh* plants closely resembled the maize *ndhO* mutant²⁵, with assimilation reduced
97 to about 50% of WT-level at intercellular CO₂ partial pressures above 100 µbar (Fig. 2e). No differences
98 between *ndhO*-2 and *ndhO*-6 plants indicated that both edited alleles resulted in inactive NDH.

99 Content of chlorophyll and photosynthetic proteins

100 Leaf contents of metabolic enzymes, PEPC, the large subunit of Rubisco (RbcL) and sedoheptulose-
101 bisphosphatase (SBPase) of the C₃ cycle, were unaltered in *ndh* plants (Fig. 2b, Fig. S2a). Relative abundances
102 of some electron transport components, the D1 subunit of PSII, the AtpB subunit of ATP synthase and PsbS,
103 did not differ between the gene-edited and WT plants per leaf area. However, plants lacking NDH had
104 significantly less of the Rieske subunit of Cytb₆f, the PsaB subunit of PSI and PGR5 per leaf area, compared to
105 WT (Fig. S2b). The total leaf Chl content was about 30% lower in *ndh* plants (Table S1). Mesophyll Chl content
106 per leaf area was also significantly decreased in plants lacking NDH, whilst the BS Chl content was unaltered,
107 compared to WT (Table S1).

108 The overall composition of thylakoid membranes was largely unaffected in mesophyll and BS cells of *ndh*
109 plants, compared to WT (Fig. S2c), but cell-level changes in abundances of some electron transport
110 components were detected by immunoblotting (Fig. 3). NDH complex was predominantly found in BS cells of
111 WT plants. Relative contents of AtpB, PGR5 and PsbS per Chl were increased in BS cells of *ndh* plants (Fig. 3b)
112 whilst Rieske and PGR5 abundance was significantly decreased in mesophyll cells of *ndhO* plants, compared to
113 corresponding WT cells.

114 **Electron fluxes in bundle sheath cells**

115 Effects of the lack of NDH on BS electron transport were examined by membrane inlet O₂ mass spectrometry
116 and spectroscopy using isolated BS strands supplied with NaHCO₃ and triose phosphate to support
117 CO₂ assimilation³⁰. The rate of gross O₂ evolution by PSII in *ndh* BS cells was double that of the WT BS ($P =$
118 0.037, Fig. 4a). Next, electron flux through PSI was compared by monitoring the absorbance signal of P700⁺, a
119 cation of the reaction centre of PSI. The maximum oxidisable P700, P_M, was similar between *ndhO* and WT
120 plants ($P = 0.55$) indicating a similar amount of active PSI (Fig. 4b). These measured PSII and PSI activities were
121 in line with relative abundances of D1 and PsaB in BS cells (Fig. 3).

122 The P700⁺ signal was next monitored from BS cells adapted to actinic light of 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ upon the
123 application of strong far-red light and a saturating pulse allowing estimation of the photochemical yield of PSI
124 (ϕ_I) and the non-photochemical yields of the acceptor (ϕ_{NA}) and donor (ϕ_{ND}) sides of PSI (Fig. 4c). The traces
125 were normalised at the minimal level of P700⁺ after a dark relaxation, and the steady-state (P) and maximum
126 (P_M) levels of P700 oxidation under light were determined as shown in Fig. 4c. The addition of malate
127 drastically reduced ϕ_{NA} , *i.e.*, the loss of PSI activity due to a lack of acceptors, in WT BS cells ($P = 0.00003$),
128 compared to the value without malate (Fig. 4d). Concurrently, the addition of malate increased ϕ_I (by about
129 50%, $P = 0.001$) and ϕ_{ND} (*i.e.*, the loss of PSI activity due to a lack of electrons on the donor side, $P = 0.0003$) in
130 WT BS cells, compared to values without malate (Fig. 4e,f). BS cells of *ndh* plants showed 36% lower ϕ_I ($P =$
131 0.041) as well as higher ϕ_{NA} ($P = 0.001$) and lower ϕ_{ND} ($P = 0.003$) compared to WT BS cells already in the
132 absence of malate. The addition of malate did not result in any significant changes in PSI activity in *ndh* BS cells
133 ($P = 0.99$ for ϕ_I , 0.16 for ϕ_{NA} and 0.12 for ϕ_{ND}). Consequently, in the presence of malate, ϕ_I and ϕ_{ND} were about

134 50% lower than in WT BS cells ($P = 0.00003$ and $P = 0.0001$ respectively) while ϕ_{NA} was 4-fold higher ($P =$
135 0.000004) in *ndh* BS cells compared to WT.

136 The initial decay of P700⁺ signal upon the termination of actinic light provides an estimate of a relative rate of
137 P700 re-reduction from the intersystem electron transport chain (Fig. 4g,h). Despite a WT-like Cytb₆f content
138 (Fig. 3), *ndh* showed about 40% slower PSI reduction than WT plants in the absence of malate ($P = 0.0128$). The
139 addition of malate accelerated the reduction of PSI in WT BS cells ($P = 0.0158$) but not in *ndh* BS cells ($P = 0.92$),
140 compared to the rate without malate, resulting in about 50% lower reduction rate in the mutant compared to
141 WT ($P = 0.0003$). The addition of methyl viologen (MV, a strong electron acceptor competing for electrons from
142 PSI with CEF) together with malate allowed estimating the rate of P700 re-reduction by LEF only (Fig. 4g,h). In
143 the presence of MV, the PSI reduction rate in BS cells was drastically reduced to about 16% and 13% in WT and
144 *ndh*, respectively, compared to the rates observed with malate only.

145 **Leaf photosynthesis**

146 Absence of NDH had significant impact on leaf electron transport and gas-exchange properties. Although the
147 maximum photochemical efficiency of PSII (F_v/F_m) did not differ between the genotypes (Table S1), in *ndh*
148 plants up to 50% less light absorbed by PSII was used for photochemical reactions (ϕ_{II}) at all irradiances (Fig.
149 5a). The yield of regulated non-photochemical reactions (ϕ_{NPQ}) was increased up to 2-fold in *ndh* leaves below
150 1600 $\mu\text{mol m}^{-2} \text{s}^{-1}$, whilst the non-regulated non-photochemical yield (ϕ_{NO}) was mostly unaltered, compared to
151 WT (Fig. 5b and Fig. 5c). Due to the low PSII content in BS cells (Fig. 3), leaf chlorophyll a fluorescence originates
152 mostly from mesophyll cells, whereas leaf P700⁺ absorbance reports on PSI activity in both mesophyll and BS
153 cells. Plants lacking NDH had on average lower ϕ_{I} which was significantly reduced to about 50% of WT level at
154 irradiances above 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (Fig. 5d). The non-photochemical yields of PSI showed contrasting
155 responses depending on irradiance. Below 200 $\mu\text{mol m}^{-2} \text{s}^{-1}$, the loss of PSI photochemical efficiency in *ndh* was
156 due to a lack of electron supply on the donor side whilst above 400 $\mu\text{mol m}^{-2} \text{s}^{-1}$ it was due to the lack of
157 acceptors (Fig. 5e and Fig. 5f).

158 Plants lacking NDH exhibited about 50% lower CO₂ assimilation rates at all irradiances (Fig. 5g) and lower
159 quantum yield of CO₂ assimilation, compared to WT (Table S1). The ratio of intercellular to ambient CO₂ partial
160 pressures (C_i/C_a), was significantly higher in *ndh* plants at all irradiances (Fig. 5h), compared to WT, indicating
161 a higher CO₂ availability at the site of primary carboxylation (*i.e.*, in the cytosol of mesophyll cells). Calculated
162 relative electron flux through PSII was significantly lower at all irradiances (Fig. 5i) whilst the slope of the
163 relationship between NPQ and electron flux was drastically increased (Fig. S3) in plants lacking NDH in
164 comparison to WT.

165 **Proton fluxes in mesophyll cells**

166 Since no changes in electrochromic shift signal could be detected from the dark-adapted isolated BS cells in
167 response to a saturating flash (Fig. S4a), leaf electrochromic shift signal was reported on thylakoid membrane
168 energisation in mesophyll cells. Total *pmf*, which represents a balance between a build-up and dissipation of a

169 transmembrane proton gradient, was similar between *ndh* and WT plants below 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and
170 significantly decreased in the gene-edited plants at higher irradiances (Fig. 6a). Proton conductivity of the
171 thylakoid membrane (g_{H^+}), indicative of the flux through ATP synthase, was significantly decreased in *ndh*
172 leaves at 50 $\mu\text{mol m}^{-2} \text{s}^{-1}$ but similar to WT at irradiances above that (Fig. 6b). The relationship between the
173 light-driven proton flux through the thylakoid membrane (ν_{H^+}) and the relative electron flux through PSII ($i \times$
174 ϕ_{II}), indicative of the CEF/LEF ratio³¹, remained constant between *ndh* and WT plants (Fig. 6c). However, the
175 relationship between NPQ and *pmf* was markedly altered so that in *ndh* plants, for a given *pmf*, NPQ was
176 approximately 2-fold higher than in WT (Fig. 6d). This altered relationship was not caused by changes in
177 partitioning between ΔpH and $\Delta\psi$ (Fig. S4c and Fig. S4d). Moreover, a build-up of NPQ occurred at a similar
178 rate upon illumination and, at 1 min after the termination of illumination, NPQ relaxed to a similar level in *ndh*
179 and WT plants (Fig. S5).

180 Discussion

181 NDH is believed to have evolved from the cyanobacterial NDH-1 complex³² and is largely conserved in the
182 green lineages³³. Despite being non-essential in normal conditions, due to its ability to maximise *pmf* during
183 CEF³⁴, NDH abundance increases in C₃ plants in response to elevated ATP demand³⁵ to facilitate plant
184 acclimation to low or fluctuating light^{36,37}. During the evolutionary transition from C₃ to C₄ plants, NDH levels
185 increased concurrently with the emergence of C₄-like species coinciding with the appearance of the C₄ cycle as
186 a CO₂ pump³⁸. Supporting an essential role of NDH in C₄ photosynthesis, generated here *S. viridis* plants lacking
187 NDH could not efficiently use absorbed light and reached only low assimilation rates (Fig. 2e and Fig. 5g).
188 However, in contrast to mutants and transgenic plants with an impaired carbon concentrating mechanism^{28,29},
189 growth of *ndh* plants did not recover at high CO₂ (Fig. 2d). Therefore, NDH is not directly involved in the C₄
190 cycle or concentrating CO₂ in BS cells as previously proposed²⁵; instead, our results indicate that NDH is
191 essential for supporting CO₂ assimilation by the C₃ cycle.

192 Active CEF in BS cells has long been proposed to increase the ATP yield of C₄ plants and contribute to fulfilling
193 the energy demand of the carbon concentrating mechanism^{15,39}. The measured CEF to LEF ratio (CEF/LEF) of
194 C₄ leaves of about 1.7 greatly exceeded the C₃ leaf value of 0.9⁴⁰ but no experimental estimates of CEF in BS
195 cells were available. To study BS electron transport properties, here we isolated BS strands from leaves of *S. viridis*
196 and supplied all preparations with triose phosphate and NaHCO₃ to satisfy NADPH and (partially) CO₂
197 requirements of the C₃ cycle³⁰. Thus, the electron transport chain of BS cells only needed to produce ATP to
198 support C₃ cycle activity. A strong ϕ_{NA} in WT BS cells in the absence of malate and its drastic decrease
199 (combined with an increase of ϕ_{ND}) after the malate addition corroborated that, without malate, activity of the
200 C₃ cycle was limited by CO₂ availability and potentially also by NADPH. CO₂ and NADPH derived from malate
201 increased the demand of the C₃ cycle for ATP which doubled PSI activity in WT BS cells (Fig. 4e). In those
202 conditions, 86% of electrons reducing PSI belonged to CEF (Fig. 4h), producing a CEF/LEF ratio of >6 which
203 closely resembled the model predictions⁴¹. These results provided long forthcoming experimental evidence for
204 PSI driving active CEF in C₄ BS cells set to supply ATP for the C₃ cycle.

205 Detailed electron transport analysis of BS cells from *ndh* plants showed that NDH mediated a large portion of
206 CEF and was the primary electron acceptor from PSI in BS cells. These conclusions were supported by a
207 decreased PSI reduction capacity (Fig. 4h) and a strong PSI acceptor side limitation observed in BS cells of *ndh*
208 plants (Fig. 4d). A 50% lower PSI activity in BS cells in the absence of NDH was proportional to the reduction of
209 leaf CO₂ assimilation rate (Fig. 2e and Fig. 5g) demonstrating the indispensable role of NDH-CEF in BS ATP
210 production. Interestingly, even in the absence of NDH, most of the electrons reducing PSI belonged to CEF (Fig.
211 4h). This residual CEF could be linked to PGR5, as suggested by the increased PGR5 content in BS cells of *ndh*
212 plants (Fig. 3a), and/or to other unknown CEF pathways. Molecular mechanisms of PGR5's action are, however,
213 still under debate⁴², and further investigation is required to determine whether it contributes to ATP
214 production in BS cells or is mainly involved in photoprotection^{27,43}. It is also worth mentioning that electron
215 transport limitations detected in BS cells of *ndh* plants were unlikely to be caused by photosynthetic control.
216 Since BS cells have low LEF (Fig. 4a,h), the C₃ cycle is not the primary PSI electron acceptor and does not
217 regulate PSI activity through NADPH consumption. Therefore, PSI (and hence CEF) activity in BS cells is likely
218 regulated via photosynthetic control that restricts electron transport at Cytb_{6f} to match the capacity of CO₂
219 assimilation reactions. In BS cells of *ndh* plants, electron transport was limited even in the presence of malate
220 despite an apparent easing up of photosynthetic control observed in WT BS cells upon malate addition (Fig. 4)
221 due to increased ATP demand upon providing CO₂ and NADPH.

222 Alternatively, a lack of PSI stimulation in response to malate in BS cells of *ndh* plants could also be explained
223 by inefficient malate decarboxylation *in vivo*. A supply of triose phosphate combined with an impaired ATP
224 generation capacity of BS cells in the absence of NDH likely resulted in an elevated NADPH/NADP⁺ ratio and
225 unavailability of NADP⁺ for malic enzyme. This could indicate a potential function of NDH in facilitating NADPH
226 oxidation and using electrons derived from it for poising CEF. In C₃ mesophyll chloroplasts, a respiration-like
227 non-photochemical reduction of the PQ pool from stromal reductants by NDH is a part of the chlororespiratory
228 pathway dissipating energy together with the plastidial terminal oxidase⁴⁴. In C₄ plants, electron donation from
229 stromal donors to CEF is supported by observations of malate-driven carbon reduction in sorghum BS cells
230 independent of PSII activity⁴⁵ and by the capacity for reduction of PSI following malate addition to maize BS
231 cells⁴⁶. Since BS cells are effectively constantly light-limited due to shading by mesophyll^{41,47}, driving CEF with
232 minimal PSII engagement would maximise the light received by PSI potentially contributing to the observation
233 that the highest quantum yields across all C₄ decarboxylation types are seen in plants utilizing the NADP-ME
234 photosynthetic mechanism⁴⁸. However, the reverse reaction of the plant chloroplast ferredoxin:NADP⁺
235 oxidoreductase (FNR, Fig. 1), also required for reduction of the PQ pool from stromal NADPH, although
236 theoretically possible and utilised *in vitro*⁴⁹, is yet to be shown *in vivo*.

237 The mesophyll CEF/LEF ratio was not affected in *ndh* plants (Fig. 6c), which was comparable to the low impact
238 of NDH deletion on CEF in C₃ plants in optimal conditions³⁵. Instead, lower mesophyll Chl content (Table S1),
239 lower electron flux through PSII and higher NPQ (Fig. 5, Fig. S3) in *ndh* plants resembled effects observed in
240 *Flaveria bidentis* with genetically reduced Rubisco abundance⁵⁰. This observation suggested that the absence

241 of NDH in the BS and inability of the C₃ cycle to efficiently assimilate CO₂ provided a negative feedback on the
242 C₄ cycle resulting in downregulation of mesophyll electron transport. Interestingly, since *pmf* in *ndh* plants was
243 significantly lower than in WT at irradiances above 500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (Fig. 6), there was an increased sensitivity
244 of NPQ to *pmf* (Fig. 6d). An altered relationship between NPQ and ΔpH (or *pmf*) has been previously reported
245 in some genetically modified plants, for instance, lacking or over-producing chloroplast NADPH-dependent
246 thioredoxin reductase, or with increased *Cytb₆f* abundance^{51,52}. These alterations are likely a result of
247 perturbed stromal redox regulation and are mediated through the chloroplast thioredoxin system which
248 directly targets multiple NPQ components^{52,53}. The increased sensitivity of NPQ in *ndh* plants was therefore
249 also in line with persistent mesophyll stroma overreduction due to accumulation of NADPH caused by a slow-
250 down of the C₄ cycle activity in response to C₃ cycle limitation.

251 Conclusion

252 In NADP-ME species, NADPH for the C₃ cycle can be supplied from mesophyll cells through the influx of malate
253 and triose phosphate whilst providing ATP for regeneration of ribulose 1,5-bisphosphate, the substrate of
254 Rubisco, is required in the BS (Fig. 1). The BS electron transport chain therefore becomes specialised to
255 primarily generate ATP by operating active CEF. Impaired CEF in the absence of NDH jeopardises the supply of
256 ATP to the C₃ cycle, thus, making NDH indispensable for C₄ photosynthesis. Engineering a fully operational
257 NADP-ME type C₄ photosynthesis into C₃ plants will require upregulating NDH abundance in BS cells to achieve
258 the desired increases in assimilation and radiation use efficiency.

259 Materials and Methods

260 Construct assembly, transformation and selection of edited plants

261 *S. viridis* plants with null *ndhO* alleles were created using CRISPR/Cas9 gene-editing. The genomic and coding
262 sequences of *S. viridis* *ndhO* (Sevir.5G467100) were obtained from Phytozome ([https://phytozome-](https://phytozome-next.jgi.doe.gov)
263 [next.jgi.doe.gov](https://phytozome-next.jgi.doe.gov)). Two 19 nt gRNAs fitting the search criteria 'A..19N..NGG' within an exon, where NGG is the
264 protospacer adjacent motif, were selected using CRISPOR⁵⁴ (Fig. 2a). The use of 'A' for the first base of gRNAs
265 was required to maximise the expression from *Oryza sativa* snoRNA *U3* (*OsU3*) promoter⁵⁵. The *cas9* gene and
266 *OsU3* promoter sequences were obtained from pRGEB32⁵⁶ (Addgene) and adapted for the Golden Gate cloning
267 system⁵⁷. To create a gene construct for *ndhO* editing (Fig. 2b), the first expression module in a plant binary
268 vector pAGM4723 was occupied by the hygromycin phosphotransferase gene (*hpt*) driven by the *O. sativa*
269 *Actin1* (*OsAct1*) promoter. The second expression module contained *cas9* under the control of *Z. mays*
270 *Ubiquitine1* (*ZmUbi1*) promoter. Both *hpt* and *cas9* were supplied with the bacterial nopaline synthase
271 terminator. The third expression module in pAGM4723 was occupied by the two selected gRNAs forming a
272 single synthetic polycistronic gene, assembled according to Xie, et al.⁵⁶, to be processed via the endogenous
273 tRNA-processing system, under the control of *OsU3* promoter. The resulting construct was transformed into
274 *S. viridis* cv. MEO V34-1 using the *Agrobacterium tumefaciens* strain AGL1⁵⁸. T₀ plants resistant to hygromycin
275 were transferred to soil and analysed for *hpt* copy number by digital PCR (iDNA Genetics, Norwich, UK).

276 To select T_0 plants with active Cas9, DNA was extracted from leaves with the DNeasy Plant kit (Qiagen, Venlo,
277 The Netherlands) and the region of *ndhO* spanning both gRNAs was amplified using the primers
278 CGCGTGGACAAGGAGAAGTA and CGTAGTCCAGCTTGTCCGAC. PCR products were sequenced and the edited
279 *ndhO* alleles identified using Geneious Prime (<https://www.geneious.com>). Selected T_0 plants were self-
280 pollinated and their progeny analysed by digital PCR to retain only the plants that segregated out the T-DNA.
281 Next, *ndhO* was sequenced to select the plants homozygous for *ndhO-2* and *ndhO-6* alleles (Fig. S1). The T_2
282 progenies of those homozygous plants were used in all subsequent experiments. Gene and protein sequences
283 were visualised in Geneious Prime, and protein structures were modelled using AlphaFold2⁵⁹ and Mol*⁶⁰.

284 **Plant growth conditions**

285 All plants were grown in a controlled environment room with a 16 h light/8 h dark photoperiod, 28°C day, 22°C
286 night, 60% humidity and ambient CO₂ (if not stated otherwise) at a light intensity of 300 $\mu\text{mol m}^{-2} \text{s}^{-1}$ supplied
287 by 1000 W red sunrise 3200K lamps (Sunmaster Growlamps, Solon, OH). For the high CO₂ growth experiment,
288 air in the growth room was supplied with 2% CO₂. For plants grown from seeds, seeds were surface-sterilised
289 in 10% bleach and germinated on a rooting medium (pH 5.7) containing 2.15 g L⁻¹ Murashige and Skoog salts,
290 10 ml L⁻¹ 100× Murashige and Skoog vitamins stock, 30 g L⁻¹ sucrose and 7 g L⁻¹ Phytoblend. Seedlings that
291 developed secondary roots were transferred to 0.6 L pots with garden soil mix layered on top with 2 cm of
292 seed raising mix (Debco, Tyabb, Australia) both containing 1 g L⁻¹ Osmocote (Scotts, Bella Vista, Australia).
293 Wild-type (WT) *S. viridis* plants were used as control in all experiments. Youngest fully expanded leaves of the
294 3–4-week-old plants, before flowering, were used for all analyses.

295 **Chl analysis**

296 Chl content in leaves, bundle sheath strands and protein samples was measured in 80% acetone buffered with
297 25 mM HEPES-KOH (pH 7.8) according to Porra, et al. ⁶¹. The portion of leaf Chl in BS cells (Chl_{BS} / Chl_{leaf}) was
298 calculated from the RbcL immunoblots as described in Ermakova, et al. ¹⁴. Chl contents of BS and mesophyll
299 cells per leaf area (Chl_{BS} and Chl_{MES}, Table S1) were calculated by multiplying leaf Chl content by the portion of
300 leaf Chl in BS cells or in mesophyll.

301 **Blue-native PAGE, SDS-PAGE and immunoblotting**

302 Thylakoid isolation and Blue-native PAGE were performed as described in Ermakova, et al. ⁵¹. For protein
303 analysis, BS strands were isolated following the procedure of Ghannoum, et al. ⁶². Protein isolation from leaves
304 and BS strands, SDS-PAGE and immunoblotting were performed as described in Ermakova, et al. ¹⁴. Aliquots
305 were taken from protein samples for Chl analysis immediately after grinding. Samples were loaded either on
306 leaf area or Chl (a+b) basis. Membranes were probed with antibodies against photosynthetic proteins: NdhH
307 (1:3000, AS164065, Agrisera, Vännäs, Sweden), RbcL (1:10,000,⁶³), PEPC (1:10,000,⁶⁴), SBPase (1:3000,
308 AS152873, Agrisera), D1 (1:10,000, AS10704, Agrisera), Rieske (1:5000, AS08330, Agrisera), PsAB (1:5000, AS10
309 695, Agrisera), AtpB (1:10,000, Agrisera), PGR5 (1:3000, AS163985, Agrisera, verification of this antibody is
310 shown in Fig. S6), PsbS (1:3000, AS09533, Agrisera), Lhcb2 (1:10,000, AS01003, Agrisera). Quantification of

311 immunoblots was performed with Image Lab software (Bio-Rad, Hercules, CA, USA). Relative protein
312 abundances per unit of Chl in leaves (P_{leaf}) and BS cells (P_{BS}) were estimated from the immunoblots (Fig. 3).
313 Using Chl contents of leaves and cells per leaf area (Chl_{leaf} , Chl_{BS} and Chl_{MES} in Table S1), relative protein
314 abundances per unit of Chl in mesophyll cells (P_{MES}) were calculated as described in Ermakova, et al.¹⁴ assuming
315 that: $P_{leaf} \times Chl_{leaf} = P_{BS} \times Chl_{BS} + P_{MES} \times Chl_{MES}$.

316 **O₂ evolution of BS strands**

317 For activity assays, BS strands were isolated following the procedure of Furbank and Badger³⁰, resuspended in
318 activity buffer (10 mM HEPES-KOH, pH 7.4, 2 mM MgCl₂, 2 mM KH₂PO₄, 10 mM KCl, 0.3 M sorbitol) to a Chl
319 ($a + b$) concentration of 25 μ g mL⁻¹, purged with N₂ gas and kept on ice. Membrane inlet mass spectrometry
320 (MIMS) was used to measure the steady-state gross O₂ evolution rates through the production of ¹⁶O₂ from
321 suspensions of BS cells at a saturating irradiance (1000 μ mol m⁻² s⁻¹). The system consisted of a magnetically
322 stirred, thermally controlled at 25 °C sample cuvette separated from the high vacuum line of a Thermo Delta
323 V ion ratio mass spectrometer (Thermo Electron Corp, Bremen, Germany) via a Teflon membrane (Hansatech
324 Instruments, Norfolk, UK). The top lid of the cuvette had a quartz window through which halogen light was
325 supplied through a fibre optic and a septum. BS suspensions were loaded into the cuvette, purged with N₂ and
326 then supplied with 1 mM HCO₃⁻, 1 mg mL⁻¹ carbonic anhydrase and 5 mM dihydroxyacetone phosphate to
327 support CO₂ assimilation³⁰. Samples were left in darkness for 5 mins to reach equilibrium, followed by initiation
328 of data acquisition for 2.5 min in the dark and 5 min at 1000 μ mol m⁻² s⁻¹. Rates and calibrations were conducted
329 as described in Beckmann, et al.⁶⁵.

330 **P700 spectroscopy on BS strands**

331 For P700 measurements, 1 mL aliquot of BS suspension was incubated for five minutes at room temperature
332 with 100 mM NaHCO₃ and 5 mM dihydroxyacetone phosphate to support CO₂ assimilation³⁰ and with 10 mM
333 malate and 200 μ M methyl viologen when required. The suspension was then filtered via gentle vacuum onto
334 a glass fiber disc (Whatman, Buckinghamshire, UK). The disc was saturated with activity buffer and metabolites
335 and loaded into the measurement cuvette set at 25 °C. Redox changes of P700 were measured using the
336 method and a set-up of Kou, et al.⁶⁶. A dual wavelength (820/870 nm) unit ED-P700DW (Heinz Walz, Effeltrich,
337 Germany) was attached to a pulse amplitude modulation fluorometer PAM-101 (Heinz Walz) in the reflectance
338 mode. The signal was zeroed in darkness before measurements were made. To determine P_M , the maximal
339 P700⁺ signal, samples without added malate were illuminated with weak far-red light of 30 μ mol m⁻² s⁻¹ to
340 preferentially drive PSI photochemistry, over which a saturating pulse (10 μ s at 9000 μ mol m⁻² s⁻¹) was
341 triggered.

342 Next, samples were illuminated for three minutes with white actinic light of 1000 μ mol m⁻² s⁻¹ to reach a steady-
343 state. The same actinic light was then maintained for 9.016 s, using an electronic shutter controlled by one
344 terminal of a pulse/delay generator (Model 555, Berkeley Nucleonics, San Rafael, CA, USA). During the 9.016-
345 s illumination cycle, data acquisition (using software written by the late AB Hope) was started by a second

346 terminal of the pulse/delay generator yielding P, a steady-state P700⁺ level. At 8.85 s, a strong far-red light
347 (2000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) from an LED (741 nm \pm 13 nm, LED735–66–60, Roithner LaserTechnik, Vienna, Austria) was
348 triggered on for 100 ms using a third terminal of the pulse/delay generator to help oxidise P700⁵⁰. While the
349 far-red light was on, at 8.90 s, a saturating light pulse (9000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) was applied for 20 ms from a fourth
350 terminal of the pulse/delay generator, yielding P_{M'}, the maximal oxidised level of P700 under light. Finally, the
351 white actinic light was turned off by the electronic shutter at 9.016 s whilst the data acquisition continued for
352 85 ms. Immediately after a completion of one cycle of illumination and data acquisition, another 9.016-s cycle
353 restarted, and sixteen traces were averaged automatically to improve the signal-to-noise ratio. The
354 photochemical yield of PSI, ϕ_i , was calculated as $(P_{M'} - P)/P_{M'}$; the non-photochemical yield of the PSI acceptor
355 side, ϕ_{NA} , was calculated as $(P_{M'} - P)/P_{M'}$; the non-photochemical yield of PSI due to the donor side limitation,
356 ϕ_{ND} , was calculated as $P/P_{M'}$. The rate of P700 re-reduction was obtained from the initial slope of P700⁺ decline
357 in the dark.

358 **Leaf spectroscopic and fluorescence analyses**

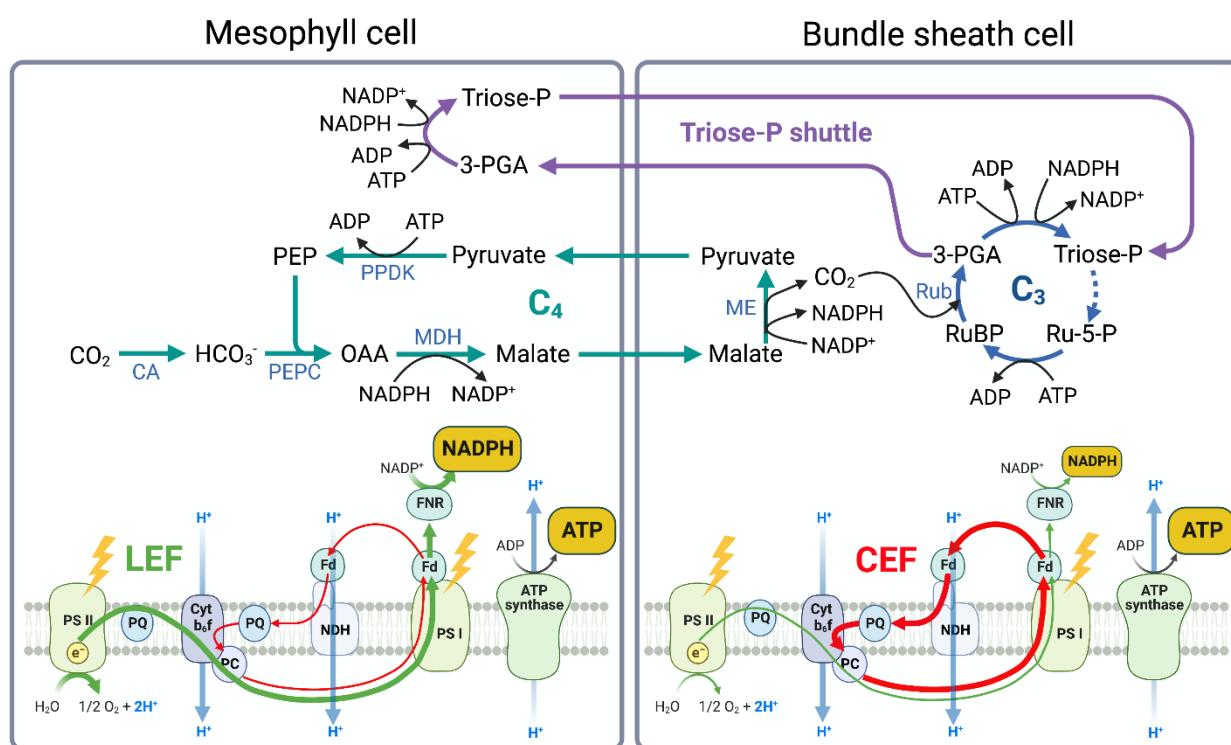
359 Leaf PSII and PSI yields were measured with the Dual PAM-100 (Heinz Walz) under the red actinic light (635
360 nm). PSII activity was assessed with the pulse amplitude modulated fluorescence method using 620 nm
361 measuring light of 9 $\mu\text{mol m}^{-2} \text{s}^{-1}$. The redox state of P700 was assessed by detecting absorbance changes of
362 the cation at 830 nm with a dual wavelength unit (830/875 nm). Saturating pulses of red light (635 nm) at
363 12,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ were used. Leaves were first dark adapted for 30 min and then the maximum (F_M) and the
364 minimum (F₀) levels of fluorescence in the dark were recorded upon the application of a saturating pulse. The
365 maximum quantum yield of PSII (F_v/F_M) was calculated from those values as $(F_M - F_0)/F_M$. Then, the maximal
366 P700⁺ signal (P_M) was recorded upon the application of a saturating pulse at the end of the far-red light (720
367 nm) illumination, and the minimal P700⁺ signal (P₀) was recorded after the saturating pulse. After that, leaves
368 were illuminated for 10 min with actinic light of 400 $\mu\text{mol m}^{-2} \text{s}^{-1}$ followed by 2 min of darkness, during which
369 saturating pulses were applied every 40 s to probe for a build-up and relaxation of NPQ. NPQ was calculated
370 after Bilger and Björkman ⁶⁷ as $(F_M - F_{M'})/F_M$ where F_{M'} is the maximum level of fluorescence under light
371 recorded upon the application of a saturating pulse.

372 PSI and PSII parameters were then tested at 2-min intervals of increasing irradiance (0 to 1890 $\mu\text{mol m}^{-2} \text{s}^{-1}$) by
373 applying a saturating pulse at the end of each period. Recording F_{M'} and F (the fluorescence level briefly before
374 the application of a saturating pulse) allowed tracking of the partitioning of absorbed excitation energy within
375 PSII between the photochemical (ϕ_{II}) and non-photochemical reactions, including the regulated (ϕ_{NPQ}) and
376 non-regulated (ϕ_{NO}) fractions⁶⁸. Using the steady-state P700⁺ signal (P) and the maximal P700⁺ signal under
377 light (P_{M'}) recorded just before and upon the pulse application, respectively, we calculated the photochemical
378 yield of PSI (ϕ_i) and the non-photochemical yields of PSI due the acceptor (ϕ_{NA}) or donor (ϕ_{ND}) side limitations⁶⁹.

379 **Gas-exchange analysis**

380 Concomitant gas exchange and fluorescence analyses were performed at different irradiances and intercellular
381 CO₂ partial pressures using a LI-6800 (LI-COR Biosciences, Lincoln, NE, USA) equipped with a fluorometer head
382 6800-01A (LI-COR Biosciences). 90% red/10% blue actinic light was used for all measurements. First, leaves
383 were equilibrated at 381 μbar CO₂ in the reference side, leaf temperature 25°C, 60% humidity, and a flow rate
384 of 500 $\mu\text{mol s}^{-1}$. Then, either CO₂ partial pressures from 0 to 1200 μbar were imposed at 3-min intervals at a
385 constant irradiance of 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (CO₂ response curve) or a stepwise increase of irradiance from 0 to
386 2000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at 2-min intervals was imposed at a constant 381 μbar of CO₂ in the reference side (light
387 response curve). A relative electron flux through PSII ($i \times \phi_{\text{II}}$) was estimated upon the application of multiphase
388 saturating pulses (8000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) as irradiance multiplied by the photochemical yield of PSII⁷⁰.

389 **Thylakoid membrane energisation**


390 Electrochromic shift signal (ECS) was monitored as absorbance changes between 550 and 515 nm with the
391 Dual PAM-100 equipped with the P515/535 emitter-detector module (Heinz Walz) and normalised for the
392 amplitude of ECS response to a saturating pulse (20 ms, 14,000 $\mu\text{mol m}^{-2} \text{s}^{-1}$) measured from the dark-adapted
393 leaves. Measurements were conducted on dark-adapted for 40 min leaves during 3-min light and 3-min dark
394 intervals of increasing irradiance. Proton motive force (pmf) and ΔpH were estimated upon the shift from light
395 to dark (Fig. S4)⁷¹. Proton conductivity of the thylakoid membrane ($g_{\text{H}+}$) was calculated as an inverse time
396 constant of the first order exponential ECS decay⁷⁰ fitted in OriginPro 2018b (OriginLab, Northampton, MA,
397 USA), and the light-driven proton flux ($\nu_{\text{H}+}$) was calculated as the initial rate of change in the ECS signal upon
398 light termination⁷².

399 **Statistical analysis**

400 ANOVA and two-tailed heteroscedastic Student's *t*-test were performed in OriginPro 2018b. Details of
401 replication, *post-hoc* tests and *P* values are provided in the main text and in figure legends.

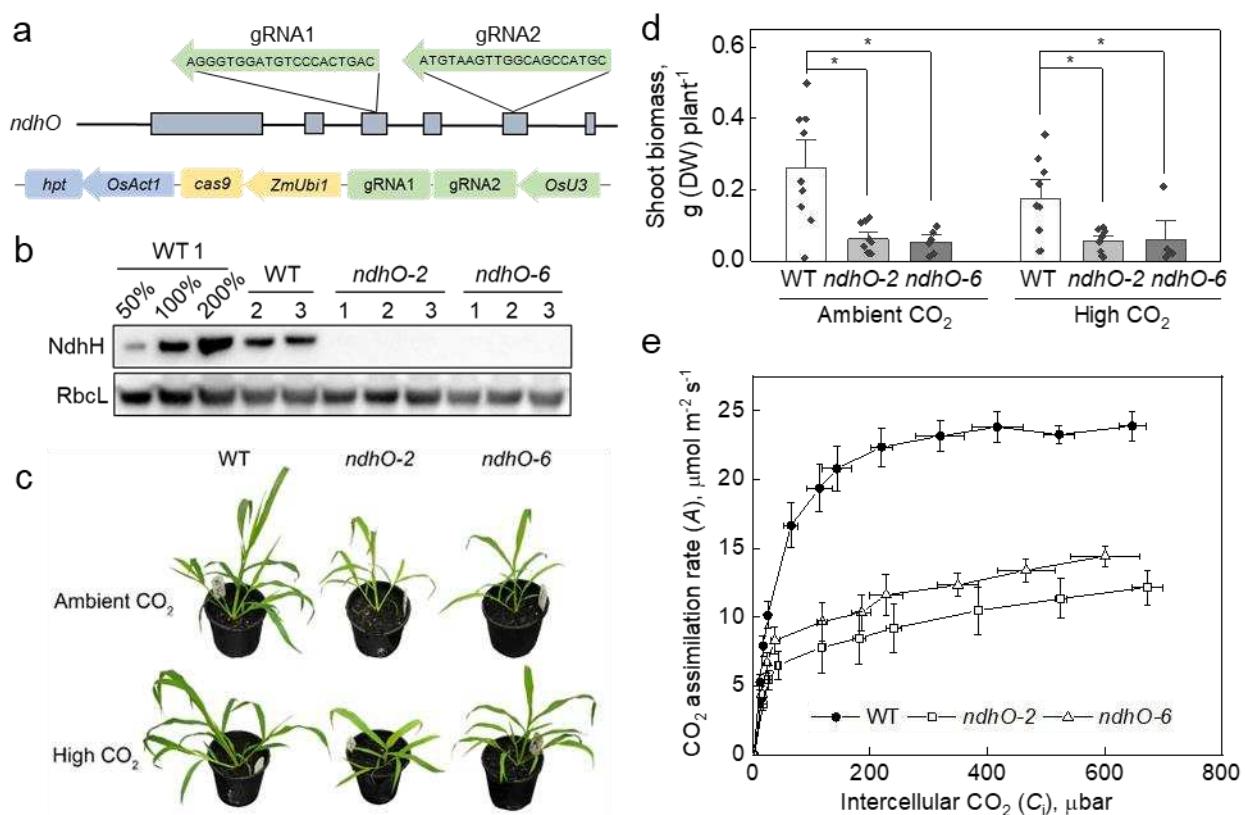
402 **Acknowledgements**

403 We thank Brendon Conlan and Spencer Whitney for a gift of vectors and antibodies, Fred Chow for equipment
404 and assistance with P700 measurements, Xueqin Wang for *Setaria* transformation, and Emily Watson, Samuel
405 James Nix and Zac Taylor for technical assistance. This work was supported by the Australian Research Council
406 Centre of Excellence for Translational Photosynthesis (CE140100015).

407

408 **Fig. 1.** Schematic representation of metabolic (top part) and light (bottom part) reactions of C₄ photosynthesis.

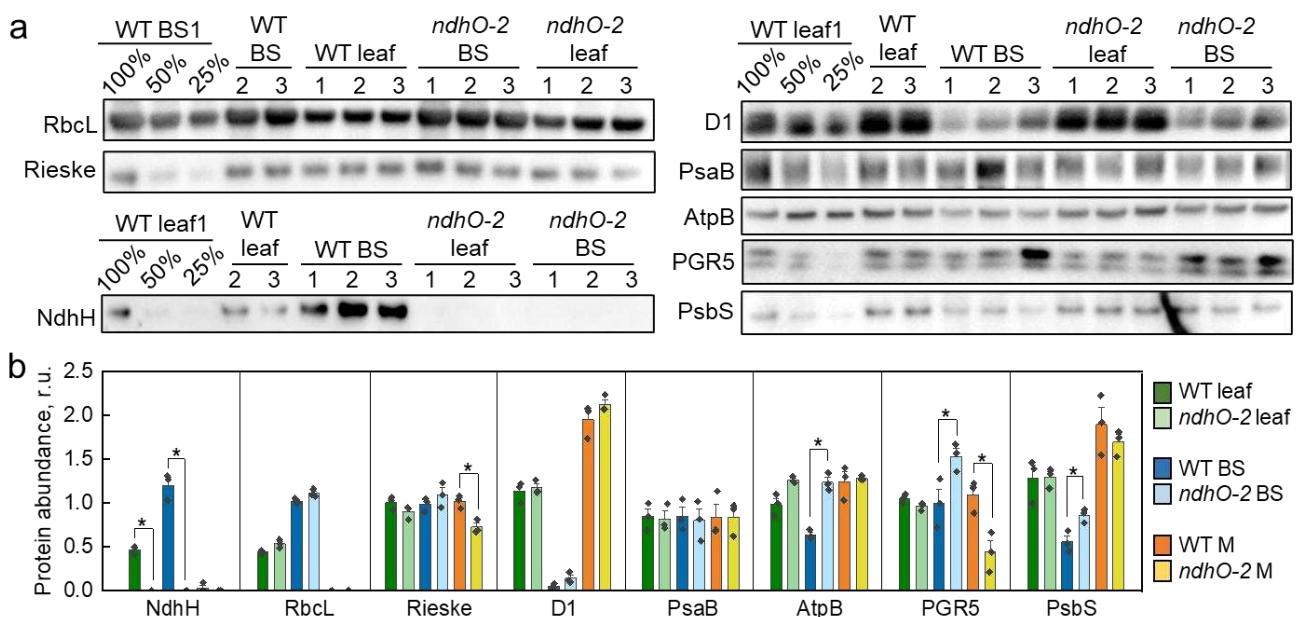
409 CA, carbonic anhydrase; PEP, phosphoenolpyruvate; PEPC, phosphoenolpyruvate carboxylase; PPDK, pyruvate

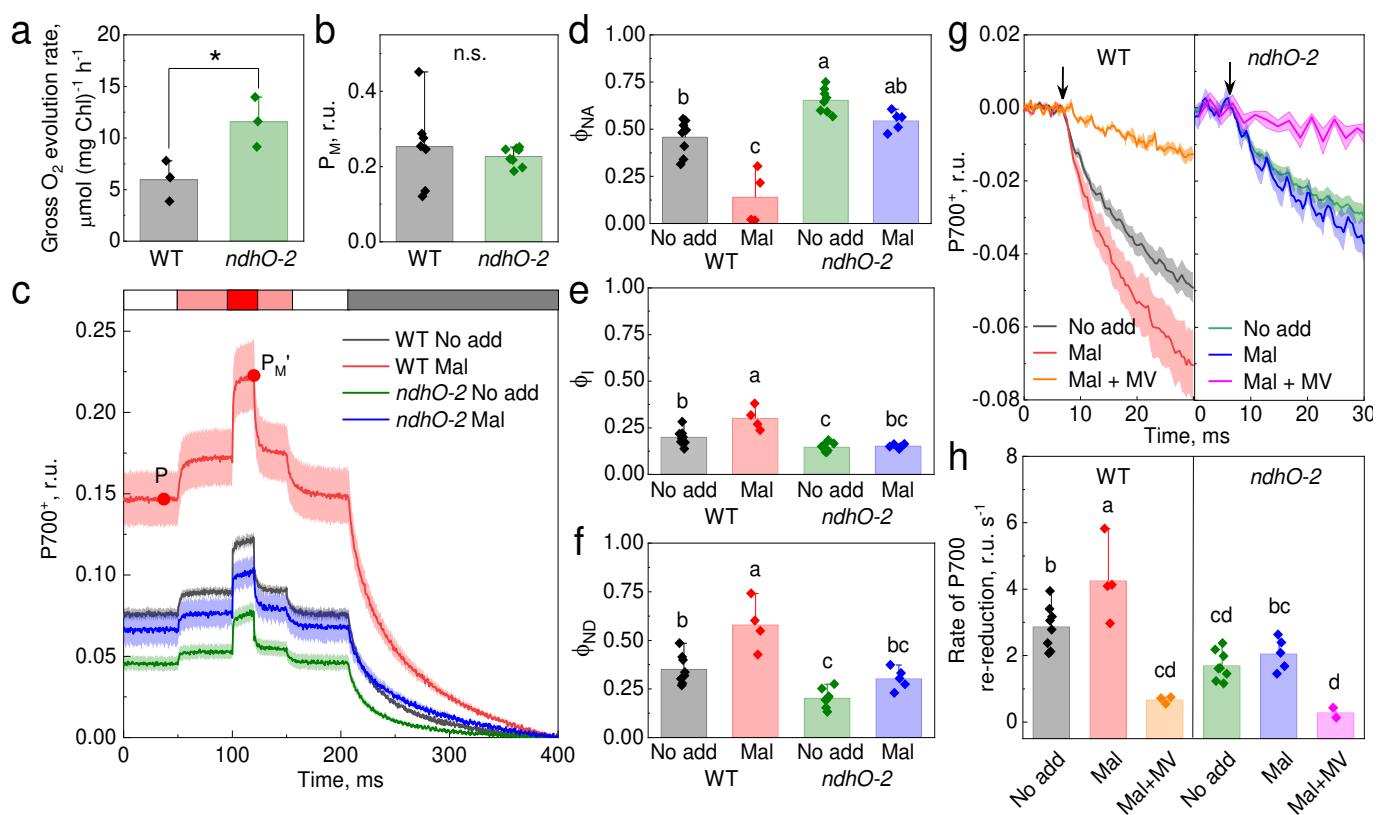

410 phosphate dikinase; OAA, oxaloacetate; MDH, malate dehydrogenase; ME, NADP⁺-dependent malic enzyme;

411 RubBP, ribulose-5-bisphosphate; Rub, Rubisco; 3-PGA, 3-phospho-glyceraldehyde; Triose-P, triose phosphate;

412 Ru-5-P, ribulose-5-phosphate; LEF, linear electron flow; CEF, cyclic electron flow; PSII, Photosystem II; PQ,

413 plastoquinone; Cytb₆f, Cytochrome b₆f complex; PC, plastocyanin; NDH, chloroplast NADH dehydrogenase-like

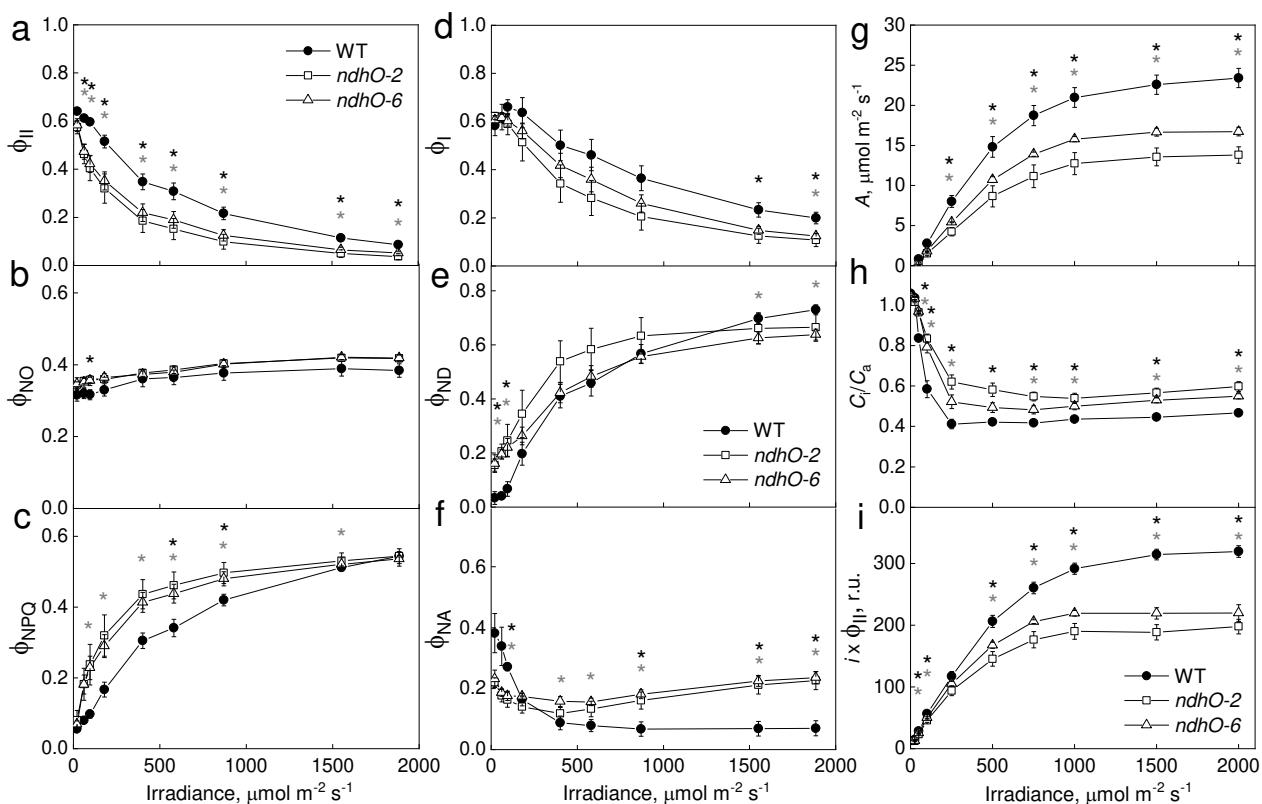

414 complex; Fd, ferredoxin; PSI, Photosystem I; FNR, ferredoxin:NADP⁺ oxidoreductase.



415

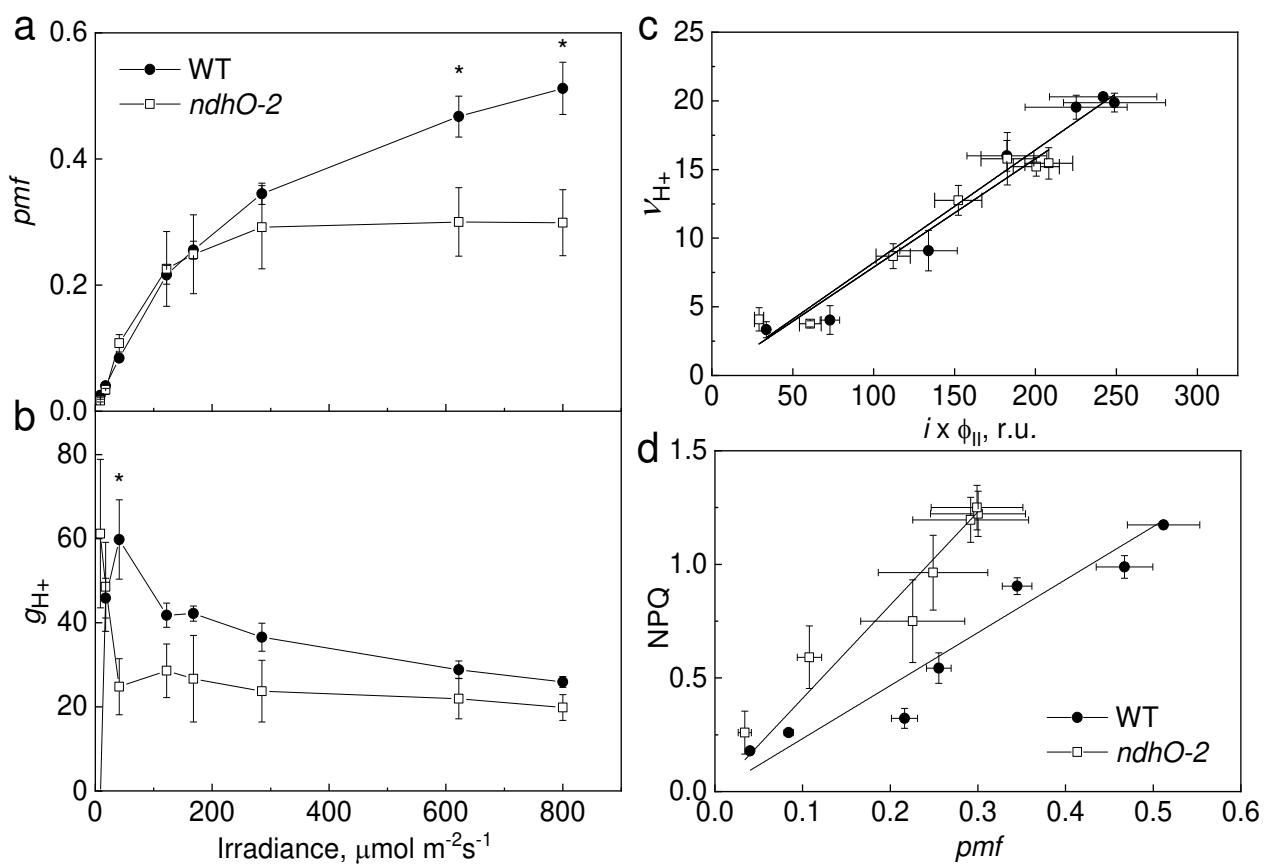
416 **Fig. 2.** Creating *S. viridis* plants lacking NDH complex. **a.** Positions of guide RNAs (gRNAs) within the third and
417 fifth exons of the *ndhO* genomic sequence and schematics of the gene construct assembled for transformation
418 (see details in Materials and Methods). **b.** Immunodetection of the NdhH subunit of NDH and the large subunit
419 of Rubisco (RbcL) in leaf protein extracts from wild-type (WT) and *ndhO-2* and *ndhO-6* plants with homozygous
420 null *ndhO* alleles loaded on leaf area basis. Relative quantification of the blots is shown in Fig. S2. **(c, d)**
421 Phenotype and biomass of plants grown for two weeks in air (Ambient CO₂) or in air with 2% CO₂ (High CO₂).
422 **d.** Mean \pm SE, points are biological replicates. Asterisks indicate significant differences between edited and WT
423 plants ($P = 0.00003$ for *ndhO-2*, $P = 0.0002$ for *ndhO-6*), no differences were found between *ndhO-2* and *ndhO-6*
424 plants ($P = 0.99$) or between the CO₂ treatments ($P = 0.24$) using two-way ANOVA and Tukey's *post-hoc* test
425 at $\alpha = 0.05$. **e.** Response of CO₂ assimilation rate (A) to intercellular CO₂ partial pressures (C_i) measured at 1500
426 $\mu\text{mol photons m}^{-2} \text{s}^{-1}$ from plants grown at ambient CO₂. Mean \pm SE, $n = 5$ biological replicates. A was
427 significantly decreased in both *ndhO-2* and *ndhO-6* plants compared to WT at C_i above 100 μbar (one-way
428 ANOVA and Tukey's *post-hoc* test at $\alpha = 0.05$).

429



440

441 **Fig. 4.** Photosynthetic properties of bundle sheath (BS) strands isolated from leaves of wild-type (WT) *S. viridis*
442 and *ndhO-2* plants lacking NDH complex. All BS preparations were normalised to 25 $\mu\text{g Chl mL}^{-1}$ and
443 supplemented with NaHCO_3 and triose phosphate. **a**. Gross O_2 evolution rates of BS strands illuminated with
444 white actinic light of 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (*t*-test at $P < 0.05$). **b**. The maximum photo-oxidisable $P700$ (PSI reaction
445 centre), P_M (n.s., not significant; *t*-test at $P < 0.05$). **c**. Fast kinetics of $P700^+$ signal recorded from BS strands
446 with or without 10 mM malate. BS were illuminated with white actinic light of 1000 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (white bar on
447 top of the graph), actinic light with added far-red light (pink bar) or combined actinic, far-red light and a
448 saturating pulse (red bar). Points on the WT trace with malate demonstrate how the P (the steady-state $P700$
449 oxidation level) and P_M' (the maximum level of $P700$ oxidation under light) values were obtained. **d**. The non-
450 photochemical yield of PSI due to the acceptor side limitation (ϕ_{NA}) calculated as $(P_M - P_M')/P_M$. **e**. The effective
451 quantum yield of PSI (ϕ_I) calculated as $(P_M' - P)/P_M$. **f**. The non-photochemical yield of PSI due to the donor side
452 limitation (ϕ_{ND}) calculated as P/P_M . **g**. Fast kinetics of $P700^+$ signal upon the light-dark shift normalised for the
453 steady-state $P700^+$ level for comparison of the kinetics. Arrows indicate the end of illumination. 200 μM of
454 methyl viologen (MV) was added in addition to 10 mM of malate when indicated. **f**. The relative rate of $P700$
455 re-reduction estimated from initial slopes of the dark relaxation kinetics shown in (g). All bar graphs show
456 Mean \pm SD. (**c, g**) Traces are average of 2-5 biological replicates. Mean \pm SE. (**d, e, f, h**) Letters indicate significant
457 differences between the groups (one-way ANOVA and Tukey's *post-hoc* test at $\alpha > 0.05$).


458

459

460

461 **Fig. 5.** Leaf photosynthesis in wild-type *S. viridis* (WT) and gene-edited plants lacking NDH (*ndhO-2* and *ndhO-6*). (a, b, c) The photochemical yield of PSII (ϕ_{II}), the yield of non-regulated energy dissipation (ϕ_{NO}) and the yield of non-photochemical quenching (ϕ_{NPQ}) in PSII. (d, e, f) The photochemical yield of PSI (ϕ_{I}) and the non-photochemical yields of PSI donor (ϕ_{ND}) and acceptor (ϕ_{NA}) sides. PSI and PSII quantum yields were analysed concomitantly at different irradiance with Dual-PAM-100. (g, h, i) CO_2 assimilation rate (A), the ratio of intercellular to ambient CO_2 partial pressures (C_i/C_a) and a relative electron flux through PSII ($i \times \phi_{\text{II}}$) measured concomitantly at different irradiance using Licor-6800. Mean \pm SE, $n = 4$ biological replicates. Asterisks indicate statistically significant differences between the edited and WT plants (one-way ANOVA and Dunnett's *post-hoc* test, $\alpha = 0.05$): black asterisks for *ndhO-2*, grey asterisks for *ndhO-6*.

470

471 **Fig. 6.** Thylakoid membrane energisation in wild-type (WT) *S. viridis* and gene-edited plants lacking NDH (*ndhO-2*). **(a, b)** Proton motive force (pmf) and proton conductivity of the thylakoid membrane (g_{H^+}) after 3-min illumination at different irradiance. **c.** The relationship between the light-driven proton flux (v_{H^+}) and the relative electron flux through PSII. The slope of linear regression of v_{H^+} versus $i \times \phi_{II}$ is 0.088 ± 0.017 for WT and 0.080 ± 0.012 for *ndhO-2* ($P = 0.71$). **d.** The relationship between the energy-dependent non-photochemical quenching (NPQ) and pmf . The slope of linear regression of NPQ versus pmf is 2.25 ± 0.6 for WT and 4.14 ± 0.33 for *ndhO-2* ($P = 0.03$). Mean \pm SE, $n = 4$ biological replicates. Asterisks indicate statistically significant differences between the edited and WT plants at $P < 0.05$. The relationship between mean values of edited and WT plants was tested by the Student's *t*-test.

480

481

References

482 1 Sage, R. F. & Zhu, X.-G. Exploiting the engine of C₄ photosynthesis. *Journal of Experimental Botany* **62**,
483 2989-3000 (2011).

484 2 Long, S. P. Environmental responses. *C₄ plant biology*, 215-249 (1999).

485 3 Hatch, M. D. C₄ photosynthesis - a unique blend of modified biochemistry, anatomy and ultrastructure. *Biochimica Et Biophysica Acta* **895**, 81-106 (1987).

486 4 Furbank, R. T. Evolution of the C₄ photosynthetic mechanism: are there really three C₄ acid
488 decarboxylation types? *Journal of Experimental Botany* **62**, 3103-3108 (2011).
<https://doi.org:10.1093/jxb/err080>

489 5 Ermakova, M. *et al.* Installation of C₄ photosynthetic pathway enzymes in rice using a single construct. *Plant Biotechnology Journal* **19**, 575-588 (2021).

490 6 Ermakova, M., Danila, F. R., Furbank, R. T. & von Caemmerer, S. On the road to C₄ rice: advances and
493 perspectives. *The Plant Journal* **101**, 940-950 (2020).

494 7 Munekage, Y. Light harvesting and chloroplast electron transport in NADP-malic enzyme type C₄ plants. *Current Opinion in Plant Biology* **31**, 9-15 (2016).

495 8 Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N. & Johnson, M. P. Cytochrome b6f –
497 orchestrator of photosynthetic electron transfer. *Biochimica et Biophysica Acta (BBA) - Bioenergetics*
498 **1862**, 148380 (2021). <https://doi.org:https://doi.org/10.1016/j.bbabi.2021.148380>

499 9 Müller, P., Li, X.-P. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. *Plant physiology* **125**, 1558-1566 (2001).

500 10 Li, X.-P. *et al.* Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing
502 by the PsbS protein. *Journal of Biological Chemistry* **279**, 22866-22874 (2004).

503 11 Demmig-Adams, B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1020**, 1-24 (1990).

504 12 Kramer, D. M. & Evans, J. R. The importance of energy balance in improving photosynthetic
506 productivity. *Plant Physiology* **155**, 70-78 (2011).

505 13 von Caemmerer, S. & Furbank, R. T. Strategies for improving C₄ photosynthesis. *Current Opinion in
508 Plant Biology* **31**, 125-134 (2016).

509 14 Ermakova, M. *et al.* Upregulation of bundle sheath electron transport capacity under limiting light in
510 C₄ *Setaria viridis*. *The Plant Journal* **106**, 1443-1454 (2021).

511 15 Furbank, R., Jenkins, C. & Hatch, M. C₄ photosynthesis: quantum requirement, C₄ and overcycling and
512 Q-cycle involvement. *Functional Plant Biology* **17**, 1-7 (1990).

513 16 Woo, K. C., Gerbaud, A. & Furbank, R. T. Evidence for endogenous cyclic photophosphorylation in intact
514 chloroplasts: ¹⁴CO₂ fixation with dihydroxyacetone phosphate. *Plant Physiology* **72**, 321-325 (1983).

515 17 Shikanai, T. Cyclic Electron Transport Around Photosystem I: Genetic Approaches. *Annual Review of
516 Plant Biology* **58**, 199-217 (2007). <https://doi.org:10.1146/annurev.arplant.58.091406.110525>

517 18 Munekage, Y. *et al.* Elevated expression of PGR5 and NDH-H in bundle sheath chloroplasts in C₄ *Flaveria*
518 species. *Plant and Cell Physiology* **51**, 664-668 (2010).

519 19 Munekage, Y. & Taniguchi, Y. Y. Promotion of cyclic electron transport around Photosystem I with the
520 development of C₄ photosynthesis. *Plant and Cell Physiology* **57**, 897-903 (2016).

521 20 Majeran, W. *et al.* Consequences of C₄ differentiation for chloroplast membrane proteomes in maize
522 mesophyll and bundle sheath cells. *Molecular & Cellular Proteomics* **7**, 1609-1638 (2008).

523 21 Kubicki, A., Funk, E., Westhoff, P. & Steinmüller, K. Differential expression of plastome-encoded *ndh*
524 genes in mesophyll and bundle-sheath chloroplasts of the C₄ plant *Sorghum bicolor* indicates that the
525 complex I-homologous NAD(P)H-plastoquinone oxidoreductase is involved in cyclic electron transport.
Planta **199**, 276-281 (1996).

526 22 Takabayashi, A., Kishine, M., Asada, K., Endo, T. & Sato, F. Differential use of two cyclic electron flows
528 around photosystem I for driving CO₂-concentration mechanism in C₄ photosynthesis. *Proceedings of
529 the National Academy of Sciences of the United States of America* **102**, 16898-16903 (2005).

530 23 Sazanov, L. A., Burrows, P. & Nixon, P. J. Detection and characterization of a complex I-like NADH-
531 specific dehydrogenase from pea thylakoids. *Biochemical Society Transactions* **24**, 739-743 (1996).

532 24 Shikanai, T. *et al.* Directed disruption of the tobacco *ndhB* gene impairs cyclic electron flow around
533 photosystem I. *Proceedings of the National Academy of Sciences* **95**, 9705-9709 (1998).

534 25 Peterson, R. B., Schultes, N. P., McHale, N. A. & Zelitch, I. Evidence for a role for NAD(P)H
535 dehydrogenase in concentration of CO₂ in the bundle sheath cell of *Zea mays*. *Plant Physiology* **171**,
536 125 (2016).

537 26 Ishikawa, N. *et al.* NDH-mediated cyclic electron flow around Photosystem I is crucial for C₄
538 photosynthesis. *Plant and Cell Physiology* **57**, 2020-2028 (2016).

539 27 Ogawa, T. *et al.* Two cyclic electron flows around photosystem I differentially participate in C₄
540 photosynthesis. *Plant Physiology* (2023). <https://doi.org/10.1093/plphys/kiad032>

541 28 Alonso-Cantabrana, H. *et al.* Diffusion of CO₂ across the mesophyll-bundle sheath cell interface in a C₄
542 plant with genetically reduced PEP carboxylase activity. *Plant Physiology* **178**, 72-81 (2018).

543 29 Danila, F. R. *et al.* Bundle sheath suberisation is required for C₄ photosynthesis in a *Setaria viridis*
544 mutant. *Communications Biology* **4**, 254 (2021).

545 30 Furbank, R. T. & Badger, M. R. Photorespiratory characteristics of isolated bundle sheath strands of C₄
546 monocotyledons. *Functional Plant Biology* **10**, 451-458 (1983).

547 31 Baker, N. R., Harbinson, J. & Kramer, D. M. Determining the limitations and regulation of
548 photosynthetic energy transduction in leaves. *Plant, Cell & Environment* **30**, 1107-1125 (2007).
<https://doi.org/doi:10.1111/j.1365-3040.2007.01680.x>

549 32 Laughlin, T. G., Savage, D. F. & Davies, K. M. Recent advances on the structure and function of NDH-1:
550 The complex I of oxygenic photosynthesis. *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1861**,
551 148254 (2020).

552 33 Ruhlman, T. A. *et al.* NDH expression marks major transitions in plant evolution and reveals coordinate
553 intracellular gene loss. *BMC Plant Biology* **15**, 100 (2015).

554 34 Strand, D. D., Fisher, N. & Kramer, D. M. The higher plant plastid NAD(P)H dehydrogenase-like complex
555 (NDH) is a high efficiency proton pump that increases ATP production by cyclic electron flow. *Journal
556 of Biological Chemistry* **292**, 11850-11860 (2017).

557 35 Livingston, A. K., Cruz, J. A., Kohzuma, K., Dhingra, A. & Kramer, D. M. An *Arabidopsis* mutant with high
558 cyclic electron flow around Photosystem I (*hcef*) Involving the NADPH dehydrogenase complex *The
559 Plant Cell* **22**, 221-233 (2010).

560 36 Yamori, W., Makino, A. & Shikanai, T. A physiological role of cyclic electron transport around
561 photosystem I in sustaining photosynthesis under fluctuating light in rice. *Scientific Reports* **6** (2016).
<https://doi.org/10.1038/srep20147>

562 37 Nakano, H., Yamamoto, H. & Shikanai, T. Contribution of NDH-dependent cyclic electron transport
563 around photosystem I to the generation of proton motive force in the weak mutant allele of *pgr5*.
Biochimica et Biophysica Acta (BBA) - Bioenergetics **1860**, 369-374 (2019).
<https://doi.org/https://doi.org/10.1016/j.bbabiobio.2019.03.003>

564 38 Lyu, M.-J. A. *et al.* The coordination of major events in C₄ photosynthesis evolution in the genus
565 *Flaveria*. *Scientific Reports* **11**, 15618 (2021).

566 39 von Caemmerer, S. Updating the steady state model of C₄ photosynthesis. *Journal of Experimental
567 Botany* **72**, 6003-6017 (2021). <https://doi.org/10.1101/2021.03.13.435281>

568 40 Sagun, J. V., Badger, M. R., Chow, W. S. & Ghannoum, O. Cyclic electron flow and light partitioning
569 between the two photosystems in leaves of plants with different functional types. *Photosynthesis
570 Research* **142**, 321-334 (2019). <https://doi.org/10.1007/s11120-019-00666-1>

571 41 Bellasio, C. & Ermakova, M. Reduction of bundle sheath size boosts cyclic electron flow in C₄ *Setaria*
572 *viridis* acclimated to low light. *The Plant Journal* **111**, 1223-1237 (2022).

573 42 Kanazawa, A. *et al.* Chloroplast ATP synthase modulation of the thylakoid proton motive force:
574 implications for Photosystem I and Photosystem II photoprotection. *Frontiers in Plant Science* **8** (2017).
<https://doi.org/10.3389/fpls.2017.00719>

575 43 Tazoe, Y. *et al.* Overproduction of PGR5 enhances the electron sink downstream of Photosystem I in a
576 C₄ plant, *Flaveria bidentis*. *The Plant Journal* **103**, 814-823 (2020).

577 44 Peltier, G., Aro, E.-M. & Shikanai, T. NDH-1 and NDH-2 plastoquinone reductases in oxygenic
578 photosynthesis. *Annual Review of Plant Biology* **67**, 55-80 (2016). [https://doi.org/10.1146/annurev-arplant-043014-114752](https://doi.org/10.1146/annurev-
579 arplant-043014-114752)

580 45 Osmond, B. Carbon reduction and photosystem II deficiency in leaves of C₄ plants. *Aust J Plant Physiol*,
581 41-50 (1974).

587 46 Ivanov, B., Asada, K., Kramer, D. M. & Edwards, G. Characterization of photosynthetic electron
588 transport in bundle sheath cells of maize. I. Ascorbate effectively stimulates cyclic electron flow around
589 PSI. *Planta* **220**, 572-581 (2005).

590 47 Bellasio, C. & Lundgren, M. R. Anatomical constraints to C₄ evolution: light harvesting capacity in the
591 bundle sheath. *New Phytologist* **212**, 485-496 (2016).

592 48 Ehleringer, J. & Pearcy, R. W. Variation in Quantum Yield for CO₂ Uptake among C₃ and C₄ Plants.
593 *Plant Physiology* **73**, 555-559 (1983). <https://doi.org/10.1104/PP.73.3.555>

594 49 Munekage, Y. *et al.* PGR5 is involved in cyclic electron flow around Photosystem I and is essential for
595 photoprotection in *Arabidopsis*. *Cell* **110**, 361-371 (2002).

596 50 Siebke, K., von Caemmerer, S., Badger, M. & Furbank, R. T. Expressing an *rbcS* antisense gene in
597 transgenic *Flaveria bidentis* leads to an increased quantum requirement for CO₂ fixed in Photosystems
598 I and II. *Plant Physiology* **115**, 1163-1174 (1997).

599 51 Ermakova, M., Lopez-Calcagno, P. E., Raines, C. A., Furbank, R. T. & von Caemmerer, S. Overexpression
600 of the Rieske FeS protein of the Cytochrome b₆f complex increases C₄ photosynthesis in *Setaria viridis*.
601 *Communications Biology* **2** (2019).

602 52 Nikkanen, L., Guinea Diaz, M., Toivola, J., Tiwari, A. & Rintamäki, E. Multilevel regulation of non-
603 photochemical quenching and state transitions by chloroplast NADPH-dependent thioredoxin
604 reductase. *Physiologia Plantarum* **166**, 211-225 (2019).
<https://doi.org/https://doi.org/10.1111/ppl.12914>

606 53 Da, Q. *et al.* M-type thioredoxins are involved in the xanthophyll cycle and proton motive force to alter
607 NPQ under low-light conditions in *Arabidopsis*. *Plant Cell Reports* **37**, 279-291 (2018).
<https://doi.org/10.1007/s00299-017-2229-6>

609 54 Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing
610 experiments and screens. *Nucleic Acids Research* **46**, 242-245 (2018).

611 55 Hassan, M. M. *et al.* Construct design for CRISPR/Cas-based genome editing in plants. *Trends in Plant
612 Science* **26**, 1133-1152 (2021).

613 56 Xie, K., Minkenberg, B. & Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the
614 endogenous tRNA-processing system. *Proceedings of the National Academy of Sciences* **112**, 3570-
615 3575 (2015).

616 57 Engler, C. *et al.* A Golden Gate modular cloning toolbox for plants. *ACS Synthetic Biology* **3**, 839-843
617 (2014).

618 58 Osborn, H. L. *et al.* Effects of reduced carbonic anhydrase activity on CO₂ assimilation rates in *Setaria
619 viridis*: a transgenic analysis. *Journal of Experimental Botany* **68**, 299-310 (2016).

620 59 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583-589
621 (2021).

622 60 Sehnal, D. *et al.* Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular
623 structures. *Nucleic Acids Research* **49**, 431-437 (2021).

624 61 Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients
625 and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents:
626 verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.
627 *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **975**, 384-394 (1989).

628 62 Ghannoum, O. *et al.* Faster rubisco is the key to superior nitrogen-use efficiency in NADP-malic enzyme
629 relative to NAD-malic enzyme C₄ grasses. *Plant Physiology* **137**, 638-650 (2005).

630 63 Martin-Avila, E. *et al.* Modifying plant photosynthesis and growth via simultaneous chloroplast
631 transformation of Rubisco large and small subunits. *The Plant Cell* **32**, 2898-2916 (2020).

632 64 Karki, S. *et al.* A role for neutral variation in the evolution of C₄ photosynthesis. *bioRxiv* (2020).
<https://doi.org/10.1101/2020.05.19.104299>

634 65 Beckmann, K., Messinger, J., Badger, M. R., Wydrzynski, T. & Hillier, W. On-line mass spectrometry:
635 membrane inlet sampling. *Photosynthesis research* **102**, 511-522 (2009).

636 66 Kou, J. *et al.* Estimation of the steady-state cyclic electron flux around PSI in spinach leaf discs in white
637 light, CO₂-enriched air and other varied conditions. *Functional Plant Biology* **40**, 1018-1028 (2013).

638 67 Bilger, W. & Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by
639 measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of
640 *Hedera canariensis*. *Photosynthesis Research* **25**, 173-185 (1990).

641 68 Kramer, D., Johnson, G., Kuirats, O. & Edwards, G. New fluorescence parameters for the determination
642 of QA redox state and excitation energy fluxes. *Photosynthesis Research* **79**, 209-218 (2004).

643 69 Klughammer, C. & Schreiber, U. Saturation pulse method for assessment of energy conversion in PS I.
644 *PAM Application notes* **1**, 3 (2008).

645 70 Sacksteder, C. A., Kanazawa, A., Jacoby, M. E. & Kramer, D. M. The proton to electron stoichiometry of
646 steady-state photosynthesis in living plants: a proton-pumping Q cycle is continuously engaged.
647 *Proceedings of the National Academy of Sciences* **97**, 14283-14288 (2000).

648 71 Takizawa, K., Cruz, J. A., Kanazawa, A. & Kramer, D. M. The thylakoid proton motive force in vivo.
649 Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf.
650 *Biochimica et Biophysica Acta (BBA) - Bioenergetics* **1767**, 1233-1244 (2007).

651 72 Takizawa, K., Kanazawa, A. & Kramer, D. M. Depletion of stromal Pi induces high 'energy-dependent'
652 antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. *Plant,
653 Cell & Environment* **31**, 235-243 (2008).

654