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Abstract

The effects of genetic variation on complex traits act mainly through changes in gene regulation.
Although many genetic variants have been linked to target genes in cis, the trans-regulatory cascade
mediating their effects remains largely uncharacterized. Mapping trans-regulators based on natural
genetic variation, including eQTL mapping, has been challenging due to small effects. Experimental
perturbation approaches offer a complementary and powerful approach to mapping trans-regulators.
We used CRISPR knockouts of 84 genes in primary CD4+ T cells to perturb an immune cell gene network,
targeting both inborn error of immunity (IEl) disease transcription factors (TFs) and background TFs
matched in constraint and expression level, but without a known immune disease association. We
developed a novel Bayesian structure learning method called Linear Latent Causal Bayes (LLCB) to
estimate the gene regulatory network from perturbation data and observed 211 directed edges among
the genes which could not be detected in existing CD4+ trans-eQTL data. We used LLCB to characterize
the differences between the IEI and background TFs, finding that the gene groups were highly
interconnected, but that IEI TFs were much more likely to regulate immune cell specific pathways and
immune GWAS genes. We further characterized nine coherent gene programs based on downstream
effects of the TFs and linked these modules to regulation of GWAS genes, finding that canonical JAK-
STAT family members are regulated by KMT2A, a global epigenetic regulator. These analyses reveal the
trans-regulatory cascade from upstream epigenetic regulator to intermediate TFs to downstream
effector cytokines and elucidate the logic linking immune GWAS genes to key signaling pathways.

Introduction

A primary mission of human genetics is to discover genetic variation that is associated with
disease. Genome-wide association studies (GWAS) have identified thousands of variant-disease pairs in
recent years, spanning disease, behavioral, and molecular phenotypes. Functional analyses of GWAS loci
have revealed that most GWAS SNPs are non-coding, demonstrating that the effects of genetic variation
on complex traits largely manifest through regulatory variation*2. However, the identification of the
molecular consequences of non-coding SNPs has proven challenging. Recent efforts have catalogued
expression quantitative trait loci (eQTLs) across diverse tissues and contexts®>®. These eQTL studies have
been very successful in identifying genetic variation that associates with expression variation in cis.
However, except for a small number of examples, the trans-regulatory cascade of these cis-acting
genetic variants remains largely unknown. Recent analyses of the genetic architecture of complex traits
have shown that the bulk (60-90%) of expression heritability is mediated through a constellation of trans
effects which typically have small effects individually but have a large contribution in aggregate’®. These
trans effects are difficult to discover with natural genetic variation because their effect sizes are small
and may only exist in contexts that are missed in bulk-tissue steady state models of gene expression®3,
Thus, alternative approaches are needed to map the trans-regulatory effects of cis-acting eQTLs.

We previously mapped the trans-regulators of three key autoimmune disease genes, IL2RA, IL2,
and CTLA4 in primary human CD4+ T-cells using CRISPR knock-outs (KOs)*. In contrast to natural
genetic variation, experimental perturbations are unconstrained by natural selection, which enables the
manipulation of gene expression in ways that are unlikely to be permitted by natural selection®>. We
therefore sought to apply this approach to inborn errors of immunity (IEl) genes, which are associated
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with monogenic immune disease spanning regulation and function®®. Although hundreds of these genes
have been reported, the transcriptional consequences of their loss of function remain largely
uncharacterized. We selected 30 IEl transcription factors (TFs) for CRISPR ablation in human CD4+ T cells
to both characterize their function and construct a regulatory network. CD4+ T cells have previously
been implicated as a causal cell type in the pathology of many autoimmune traits, including rheumatoid
arthritis, multiple sclerosis, type 1 diabetes, among others'”!8, To enable characterization of the
properties of the IEI TFs as a whole, we selected 30 background TFs that are matched to the IEl genes in
terms of pLI*® and expression level in CD4+ T-cells but have not been implicated in GWAS of immune
phenotypes. We also included 24 upstream regulators of I[L2RA which we had previously perturbed using
the same protocol®. In total, we perturbed 84 genes from three gene sets which we used to construct a
high-fidelity gene network relevant to immune disease.

Building on recent advances in the causal inference literature?>?, we developed a novel

statistical method for estimating causal GRNs from perturbation data. In contrast to differential
expression or correlation analyses, incorporation of causal inference approaches enables the estimation
of both direct and indirect regulatory effects, where edges are interpreted as direct effects. We
emphasize that in this work the term ‘direct effect’ is used to convey that the effect of one gene on
another is adjusted for confounding pathways among other perturbed genes, rather than a claim of
physical interaction. Direct effects are useful because they facilitate a coherent interpretation of gene
networks as directed probabilistic graphical models. Our approach differs from many other gene
networks in two key ways: 1) because our network is derived from experimental perturbations, the
edges are much more likely to be causal than the edges in a network estimated from observational co-
expression data, where the constituent variation is often of an unknown genesis; 2) our method enables
estimation of possibly cyclic graphs, rather than the common restriction to directed acyclic graphs
(DAGSs)?>?2"24 Human genetics has identified several examples of cyclic regulatory behavior?, so the
restriction of GRNs to DAGs represents an artificial constraint that we circumvent with appropriate
statistical technology.

We report the causal, cyclic GRN derived from applying our novel statistical method to the 84
CRISPR KOs. Because this method is a Bayesian modification of the Linear Latent Causal (LLC) algorithm,
we refer to our method as LLC Bayes (LLCB). Using our network, we systematically characterized the
properties of genes that distinguish background TFs from IEI TFs and the /IL2RA regulators. We show that
although IEI TFs and /L2RA regulators are much more likely to have outgoing connections than
background TFs, all the genes form a highly interconnected network, rather than distinct communities of
disease and background genes. Across the entire network, we found that IEl and /L2RA regulators are
more likely to disrupt immune specific signaling pathways than background TFs. We then identified nine
coherent gene programs among the 84 KOs and their downstream genes, which we characterized using
enrichment analyses to identify points of functional convergence in T cell biology. In addition to
downstream characterization, we used GWAS summary statistic heritability analyses to estimate the
contribution of gene program linked SNPs to immune trait heritability. This profiling highlighted the
importance of a module comprised of key JAK-STAT-IL2 signaling regulators and KMT2A, a global
epigenetic regulator that we observed to be upstream of classic IL2 signaling TFs and receptors,
including IRF4, STAT5B, and IL2RA.

In summary, we perturbed a diverse set of genes to characterize the immune regulatory
landscape and develop novel statistical methodology to characterize the CD4+ T cell network centered


https://doi.org/10.1101/2023.09.17.557749
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.557749; this version posted September 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

around immune disease genes. Our network reveals the entire trans-regulatory cascade of these gene
programs and elucidates the transcriptional logic of immune GWAS loci.

Figure 1 | Study overview. Schematic describing the three gene sets that were perturbed with CRISPR
knock outs and modeling of the gene network, network inference analyses and gene module
identification, and integration with immune GWAS data.
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Results

Perturbation of IEI TFs and matched background TFs

To construct a network enriched for genes relevant to immune disease in CD4+ T cells we
perturbed 30 TFs from the IEl genes implicated in Mendelian forms of immune disease?®. We also
included 30 background TFs that were not annotated for immune function but were matched on gene
constraint and expression to the IElI TFs in order to characterize the properties that distinguish IEI TFs.
Lastly, to expand the breadth of our network, we integrated data from 24 previously mapped IL2RA
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regulators®. (Methods, Figure 1). We used CRISPR Cas9 ribonucleoproteins (RNPs) to perform arrayed
perturbations in three donors as described in Freimer et al.* . We validated the efficiency of our CRISPR
editing by genotyping the 60 additional perturbed samples, which indicated a high editing efficiency
(Extended Data Figure 1A-B). Using bulk RNA-seq, we detected ~13,000 genes that were expressed
highly enough for analysis (Methods). As our data were generated in two batches, we performed
stringent quality control of the RNA-seq data. We performed alignment and gene count quantification
using one pipeline on the 84 samples and performed PCA analysis of the normalized expression data.
Pathway enrichment analysis revealed that the first four PCs were associated with very broad biological
phenomena including cell cycle regulation and ribosome activity. Because the PCs also captured batch
effects, we included the first four PCs as covariates in downstream analyses. Regressing out PCs has
previously been shown to improve inference of gene networks?®.

Next, we developed a statistical method to estimate the GRN among the 84 genes. We extended
the linear-latent-causal (LLC) method introduced by Hyttinen et al.?! by recasting the statistical estimand
in a Bayesian framework, which enabled the incorporation of prior knowledge about the properties of
biological networks. Briefly, LLC proceeds in three steps. First, the total effect ; ; of a given
perturbation of gene X; on another gene, X;, is estimated on all observed (non-perturbed) genes. These
total effects are estimated pairwise between all perturbed genes {X;:i € J} and all observed genes
{Xj:j € U}. Second, a system of equations that relates ¥ to the direct effects, B, using trek rules is
constructed. Third, this system of equations is solved to deconvolve 3 into B. The conditions that
permit identifiability of 8 for LLC include a collection of single gene perturbations among all nodes in the
graph, which corresponds to our experimental design, indicating that we have a sufficient number of
perturbations to identify 8. Because most of the 84 genes are TFs, the elements of 8 are likely to be
greatly enriched for physical binding interaction and other mechanisms of direct transcriptional
regulation. However, # may also capture post-transcriptional regulation mechanisms that manifest as
statistical direct effects on expression. In this experiment we are unable to account for the effects of
genes that were not perturbed, suggesting that some effects of unmeasured genes may be attributed to
direct effects among the 84 perturbed genes.

We extended the LLC framework in two ways (Methods). First, we regressed out the first four
expression PCs from the variance-stabilizing transform?’ normalized expression data. Second, we
estimated f in a Bayesian framework where we incorporated a graph prior, m(f8). We included a
penalty on the sum of the L1 norms of the columns of B, which penalizes the number of incoming
connections to a given gene. We included this penalty as it is known that the distribution of out-going
connections from a gene has more dispersion than the distribution of in-coming connections. Following
recent advances in differentiable DAG search??%2%, we also included a gaussian prior over the norm of
the spectral radius of 8, which enables indirect tuning of the degree to which f contains cycles. We
performed inference using pathfinder, a recently developed approach to inferring posteriors using
pseudo-Hessian optimizers applied to a variational inference objective’. We chose a variational
inference approach rather than MCMC as MCMC approaches have been shown to be computationally
very intensive when sampling over large discrete graph structures?*?#31:32_ We termed this statistical
method LLCB. We validated LLCB theoretically using simulations of cyclic GRNs (Methods).
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Network inference from LLCB reveals that the gene groups are highly interconnected

We then used LLCB to estimate the causal CD4+ GRN among the 84 genes (Figure 2A-B). We
identified 350, 211, and 151 total edges (out of 6,972 possible) when thresholding |El~j| at 0.020, 0.025,
and 0.030, respectively (Fig. 2A-C, Supplementary Table 1). We reported the network after thresholding
on B because filtering on local-false sign rate (Ifsr)* resulted in very dense networks (67% network
density at Ifsr < 5 x 1073), reflecting the challenges in estimation of uncertainty in graph structures.

To assess whether edges in this network estimate could be validated through orthogonal
approaches, we compared our network estimate to two other estimates of the same network
constructed from different sources. First, we constructed a GRN using ATAC-seq data that we previously
generated for the 24 IL2RA regulators, permitting validation of a subset of the network. We gathered all
possible enhancers of the 84 genes in CD4+ T cells using the predicted enhancer-gene pairs from the
Activity-By-Contact®*® model and cross-referenced the enhancer-gene pairs with differentially accessible
chromatin (DAC) that we previously identified. We defined the children of a gene i based on those genes
that had ABC enhancers that intersected with the DACs from the KO of gene i, and we refer to this
network as the ABC-GRN (Supplementary Table 2). We observed a striking enrichment (~4x) of edges in
the LLCB estimate for the same edges in ABC-GRN, and this enrichment was robust to different |Bl~j|
thresholds (Extended Data Figure 2). Second, we used an external estimate of the T-cell regulatory
network reported in Green et al.*>, which was estimated using curated pathway information and co-
expression data. We similarly observed an enrichment of our edges in this external network (Extended
Data Figure 3). Collectively, these two validations, derived from orthogonal data sources and modalities,
show that our network estimate is replicable and reflective of biological properties.

We then asked whether the topological properties of genes distinguished the three gene
groups. We computed the out-degree, in-degree, and total degree for each node, and we observed that
the IEI TFs and IL2RA regulators were strongly enriched for out-going connections, and the control TFs
were relatively depleted (Figure 2C). Consistent with the known properties of IL2RA as a receptor, as
opposed to a TF, we observed many more direct incoming connections than direct outgoing
connections. This result was likely facilitated by our inclusion of the downstream effectors of IL2RA
signaling within the graph, such that downstream effects were more likely to be attributed to these
genes, such as STAT5A/B and JAK3, rather than IL2RA itself. To identify the properties of genes that
associated with their centrality in the graph, we performed negative-binomial regressions for three
measures of node centrality, including gene group status, gene expression at baseline, and gene
constraint as covariates. We defined gene constraint using a recently developed empirical Bayes
estimator of Sy, called GeneBayes*®. S,,; is defined as the degree of selection acting against
heterozygous loss of function variants in a given gene and is more predictive of functional and clinical
importance than related measures including pLI and LOEUF. We observed that even after adjusting for
Shet and expression, IL2RA regulators and IEI TFs were strongly enriched for outgoing connections
relative to control TFs but were not enriched for incoming connections (Figure 2D). Taken together,
these data suggest that constraint is much more strongly associated with the number outgoing
connections from a gene than the number of incoming connections, and that IEIl regulators exhibit more
outgoing connections than control genes, despite being matched for constraint.
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Figure 2 | The gene network of the 84 perturbed genes. A Estimate of the directed network that
describes how the 84 perturbed genes interact. The radius of each point is proportional to the degree of
that gene. Arrows are used to indicate directionality of the edges, such that an arrow pointing into a
gene indicates that it is being regulated by another gene. Positive values in the color scale indicate that
the parent gene is a positive regulator of the child gene. B A sub-network centered around STAT1. CA
scatterplot of the indegree and outdegree of each of the 84 genes. D Association analyses between gene
properties and their in-degree, out-degree, and total degree.
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We asked whether edges were enriched between genes that were members of the same gene
group. To generate a null distribution, we permuted the edges of the network 2,000 times while
preserving the gene degree distributions (Methods). Of the edges in the unpermuted network, 37% had
the same parent and child node gene group. Of the permuted networks, 8% had more edges within
groups than in the original (unpermuted) network, indicating that the three gene groups do not cluster
distinctly in the unpermuted network (Extended Data Figure 4).

We then estimated indirect effects between pairs of genes, defined as the difference between
the total effects and the direct effects A;; = 1;; — B;;. The indirect effects can be interpreted as the
sum of all effects of gene i on gene j that are not mediated through the direct effect f3;;, and thus may
include both proximal indirect effects comprised of short (< 3 genes involved) paths between the two
genes or potentially distal effects from long, possibly cyclic paths. These indirect effects may include
both instances of transcriptional regulation and post-transcriptional indirect effects. We observed that
the bulk of variation in total effects (R? = 99%) is explained by direct effects (Extended Data Figure 5),
suggesting that direct effects between two genes are much larger than indirect effects. This observation
is consistent with the intuition that indirect effects, which are defined as the product of several direct
coefficients, are likely to be small unless all of the direct effects along the path are very large. Indeed, if
all direct effects are less than 1.0 in magnitude, the product is guaranteed to be no larger than the
smallest direct effect included in the path. We observed that the largest indirect effects were mediated
by length-2 cycles with two large direct effects (Extended Data Figure 6). For example, we observed that
KLF2 and MYB regulate each-other in a length-2 negative feedback loop, which may help prevent
aberrant proliferation.

Trans-eQTL derived networks have limited overlap with the perturbation derived network

To compare our network estimate to one constructed from natural genetic variation, we first
obtained the unfiltered trans-eQTL summary statistics from Yazar et al®, which contains the largest
catalogue of CD4+ eQTLs mapped to date. We observed that only 24 of the 84 perturbed genes had at
least one cis-eQTL (FDR < 0.01). The 24 genes with cis-eQTLs were much less constrained than the 60
without (difference in mean Sy, =-0.07, 95% Cl: (-0.15, 0.01)), corroborating our prior observations
that eQTL discovery is biased towards genes tolerant to loss of function variation®®. None of the 84
genes had a trans-eQTL, even at liberal significance thresholds (FDR < 0.30), indicating that this eQTL
catalogue was incapable of recapitulating any of the edges in our GRN despite considering trans-eQTLs.
To evaluate whether the absence of trans-eQTLs among the 84 genes was the result of trans-eQTL
network sparsity, we tabulated the number of trans-eGenes in CD4 naive and effector cells at FDR <
0.30, resulting in 12,185 trans-eGenes out of 16,025 tested genes. This implies that the probability of
observing 84 randomly selected genes with no trans-eQTLs is 7 x 103, indicating that trans-eQTL
sparsity alone cannot explain this observation. Collectively, these observations indicate that these TFs
are strongly depleted of trans-eQTLs, potentially due to selective constraint, suggesting that mapping
trans-regulators of highly constrained TFs with natural genetic variation is very under-powered at
current sample sizes.

Immune GWAS genes are enriched for regulation from IEI TFs and IL2RA Regulators

Next, we expanded our network analyses to include all 12,803 other genes that were expressed
highly enough for analysis (Methods), which we refer to as non-perturbed genes. We estimated the
effects of the 84 perturbed genes on the non-perturbed genes using two methods. First, we used a
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traditional differential expression approach using DESeq2?’, where we regressed the normalized
expression of each gene against a design matrix that included an indicator for the perturbation status of
the sample, the donor identity, and the first four expression PCs. Next, we used mashr®’ to perform
statistical shrinkage of the differential expression estimates. We refer to these results as DEG-mashr
estimates. To model the effects of multiple upstream TFs at the same time, we developed a novel
statistical estimator of the bipartite graph (BG), which models the effects of the 84 perturbed genes on
the 12,803 non-perturbed genes jointly in a single linear model. In contrast to a differential expression
approach the BG model is less likely to detect redundant causal pathways. We term this approach the
BG model (Figure 3A, Methods).

Among the non-perturbed genes, 7,299 (57%) had an incoming edge from at least one KO.
Among the non-perturbed genes with at least one incoming edge, the median number of incoming
edges was 5. The median number of downstream effects from the BG model was 251.5, ranging from 52
(EGR3) to 2,634 (MED12). Estimates from both the DEG-mashr and BG approaches (Supplementary
Tables S3-5) revealed the striking enrichment of IL2RA regulators among the genes with the largest
number of downstream connections (Fig. 3B). We observed that MED12 and CBFB regulated more genes
than any canonical T-cell transcription factor. MED12 is a sub-unit of the mediator complex, which
transmits signals from enhancer bound TFs to RNA-polymerase Il bound at the promoter®®3°, Despite its
large effects, MED12 has never been reported in any autoimmune GWAS, nor does it have a known cis-
eQTL in CD4+ T-cells®, underscoring the value of perturbations for characterizing its function.

To our surprise, we also observed that three of the background TFs (DR1, YBX1, and BPTF)
regulated more genes than any of the IEI TFs. The widespread effects of these three background TFs
highlight the value of large-scale searches for upstream regulators, even in cell types with well
annotated signaling pathways. Consistent with their large effects, these three TFs were highly
constrained (Sy.; estimates of 0.38, 0.17, 0.30 for DR1, YBX1, BPTF). Although BPTF had no outgoing
connections to the other 83 KO’d genes, it had an incoming connection from STAT1, suggesting that it
may partially mediate the effect of STAT1 on downstream genes. Among the 7,299 downstream genes
with at least one incoming connection, there were 10 genes with at least 26 incoming connections (Fig.
3C), including genes involved in DNA damage response (ZMAT3), cell cycle regulation (CCND2),
granzymes (GZMA, GZMB), and a T-cell cell costimulatory receptor (CD2).

Next, we asked which properties of the 12,803 non-perturbed genes were associated with
regulation from the three gene groups. We performed a series of negative-binomial regressions of the
incoming connections to non-perturbed genes, including six gene annotations as covariates (Figure 3D).
We observed non-perturbed autoimmune GWAS genes were much more likely to be enriched for
regulation from IEI TFs (~20% enrichment) and IL2RA regulators (~¥30% enrichment). Sy, was negatively
associated with incoming connections in three of the four regressions, consistent with our prior
observation that gene constraint is more strongly associated with the number of outgoing connections
from a gene than the number of incoming connections to the gene. We also observed that eQTL trans-
eGenes were strongly enriched for incoming connections in each regression, suggesting that trans-
eGenes reside in the periphery of the network with many incoming connections. Using GTEx, we also
identified genes that were only expressed in whole blood and asked whether regulation of blood specific
genes varied by the three gene groups. We observed that blood-specific genes were much more likely to
be regulated by IEI TFs (~20% enrichment) and IL2RA regulators (~40% enrichment) than background
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TFs. Collectively, these observations highlight that although background TFs have similar graph centrality
to IEI TFs, they are much less likely to disrupt cell type-specific transcriptional pathways.

Figure 3 | The landscape of downstream effects. A The statistical model used to relate the 84 perturbed
genes to the expressed genes. B The distribution of the number of downstream effects for each of the 84
genes, stratified by gene group. Genes that are outliers with respect to their gene group distribution are
labeled. C The distribution of indegree for each of the non-perturbed genes. Outlier genes are labeled. D
Association between the properties of downstream genes and the gene-set of the upstream regulators.
Coefficients are estimated with negative binomial regressions of the gene-set specific indegree.
Downstream gene annotations are indicated on the y-axis and the facets are used to indicate the gene-

set of the upstream regulator.

A Joint modeling of the effects of the 84 perturbed genes

Covariates (donor indicator and PCs 1-4)

Matrix of 306 DESeq2 normalized expression
1es. KO'd
instances are recoded as O expression

Vector of 306 DESeq2 normalized

expression measurements for the  ecior of 24 coefficients for each

jth "downstream” gene of the KO'd genes on the jth
downstream gene

measurements for the 84 KO'd g

Distribution of incoming connections

Cc

5,000

4,000

w

Number of genes
o
o
o

n

o
o
o

1,000

B Distribution of the number of downstream
effects stratified by gene group
IL2RA Regulators
IRF4"  CBFB  MED12
IEI TFs
. Background TFs
DR1" YB);;\\BPTF
0 1000 2000 3000
Number of genes
D Inference of downstream gene properties that

associate with the type of upstream regulators

Constraint (Spe)

Is an IEl gene 1
Expression at baseline
Incoming connections |

from background TFs
Is an eQTLgen trans-eGene -

Is a GWAS gene 1

Is a whole blood specific gene 4

Constraint (Spg,) 1

CD2, LITAF,
POUZ2F2

CCND2, GZMA,
GZMB, S100A6,

Is an |IEl gene 4

Expression at baseline
Incoming connections |
from background TFs

Background IEl or ILZRA
——
L ] ®
®
- &
i
——
IEI TFs IL2RA Regulators
——
®
e
- E
—e— ——
—ge—— g

10 15 20
Number of incoming connections

SH3BP5 Is an eQTLgen trans—eGene 1
ZMAT3 Is a GWAS gene
Is a whale blood specific gene 4

" ELOVLE

-40%-20% 0% 20% 40%

"-40%-20% 0% 20% 40% G60%
Percentage increase in incoming connections (95% CI)

10


https://doi.org/10.1101/2023.09.17.557749
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.557749; this version posted September 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Gene modules link groups of genes to shared function

Next, we asked whether there were groups of the 84 perturbed genes with similar effects on
downstream pathways among the 12,803 non-perturbed genes. Hierarchical clustering of the DEG-
mashr results revealed the presence of nine gene modules (Figure 4), which we also grouped into a
coarser set of super-modules. We remark that although the perturbed genes within each of these
modules are mutually exclusive, the non-perturbed genes may overlap. To identify pathways that were
regulated by these gene modules, we performed systematic enrichment analyses using KEGG genetic,
signaling, and immune pathways* (Figure 5A, Extended Data Figures 7-9, Supplementary Table S6).

Figure 4 | The discovery of gene modules. Hierarchical clustering is used to identify clusters of shared
downstream effects. The upstream gene members within each module are labeled in the left-handed
margin of the plot, and the gene group of each gene is indicated by the text color. The total number of
genes in the module, including both upstream and downstream effects, is included under the list of
genes.
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The perturbed genes in module 1 included 14 IEI TFs, 19 background TFs, and two /L2RA
regulators (RELA and YY1). The perturbed genes in modules 1-2 were primarily IEl and background TFs,
and modules 3-4 were primarily IL2RA regulators. We observed that module 1A was enriched for
disruption of MAPK and p53 signaling. Module 1B included T-bet (TBX21), a transcription factor that is
required for interferon-gamma production and the Th1 phenotype*!, and three members of the Rel
family (NFAT5, RELB, and REL), sub-units of NF-kb, a transcription factor complex that plays a role in T-
cell activation*2. Surprisingly, this cluster also included four background TFs without any annotated
immune function (ZNF329, ZNF791, ZBTB14, and ZKSCAN1). ZBTB7B has been observed to be required
for CD4+ commitment, and interacts with NF-kB*?, but many other members of the ZBTB family,
including ZBTB14, remain relatively uncharacterized. The high proportion of shared effects between
ZBTB14, T-bet, and the Rel family proteins suggests that ZBTB14 may have similar function to ZBTB7B.

Genes in super-module 2 were enriched for effects on cell cycle regulation and apoptosis.
Modules 3-4 were much more strongly enriched for IL2RA regulators than clusters 1-2. Consistent with
their annotation, every gene in module 3-4 had downstream effects on the JAK-STAT and chemokine
signaling pathways. Surprisingly, KMT2A, a methylation writer clustered in the same module as JAK3,
STAT5A, STAT5B, IRF4, and IL2RA. Although translocations of KMT2A have been shown to cause
lymphoid malignancy®, it has no annotated function in non-mutated cells in the JAK-STAT pathway®.
We then examined the structure of module 4 (Figure 5B), observing that KMT2A is upstream of IRF4,
STAT5A, and IL2RA, and directly regulates several downstream effector cytokines through pathways not
mediated by the other perturbed genes.

Several modules were strongly enriched for cell cycle and proliferation pathways. To determine
if there was a uniform effect on in vitro expansion within any of the modules, we quantified the number
of live cells per KO compared to cells where the guide RNA targeted the safe harbor locus AAVS1 from
the respective donor. All members of module 2A, which was enriched for cell cycle effects, showed a
mean increase in cell counts across three donors as the result of the perturbation. Collectively, the
module had a 1.16-fold increase in live cells when KO’d compared to the controls, suggesting that genes
in 2A function as proliferation repressors (Figure 5C). Concordant with these observations, a recent
report described the proliferation promoting effects of disruption of a module 2A member, TET2, in
CAR-T cells®. Our analyses suggest that other members of 2A may have similar properties to TET2 and
thus may represent a group of genes that could be perturbed to alter engineered T-cell function. Several
upstream members of 2A upregulated three of four CDKN genes which inhibit cyclin dependent kinases
and potentially lead to reduced cycling (Extended Data Figure 10). Taken together, our inference of gene
modules recapitulates known regulators of immune signaling pathways and identifies novel members of
these modules.
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Figure 5 | Gene module characterization. A Enrichment analyses of KEGG genetic, immune, and
signaling pathways for each of the 84 perturbed genes, stratified by gene module. The JAK-STAT
pathway is highlighted with a dashed-red box. B The JAK-STAT sub-network, which is organized such that
cytokine genes are at the bottom and upstream regulators are at the top. C Effects of knock outs in the
gene modules on a proliferation assay. Each point represents an individual gene perturbation sample
plotted as the log2 fold change sample count as compared to AAVS1 KO control samples from the same
donor. (*: p-value < 0.05, **** p-value < 0.001; n=3 donors per KO, the number of KOs per cluster is
reflected in figure 4).
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Heritability analyses link gene modules to immune disease risk

We then asked whether SNPs that were linked to the nine gene modules were enriched for
heritability of autoimmune traits. We included GWAS summary statistics for 10 phenotypes from a
combination of Finngen and disease specific consortia*’**8. After linking SNPs to each of the nine
modules using the Activity-By-Contact method**, we used LD score regression** to estimate the
contribution of these SNPs to the heritability to eight autoimmune traits and two allergy traits
(Methods, Supplementary Table S7). As a reference point, we also included a group of SNPs linked to
genes that were not regulated by any of the 84 genes, which we term module 0. To adjust for
confounding genomic annotations, we included the LD-score baseline model. We observed that module
4 SNPs were potent contributors generally, as half of the traits analyzed were enriched (Figure 6A,
Extended Data Figure 11, Supplementary Table S8). Across the traits, there was substantial
heterogeneity in the effects of modules. For example, only 4A and 2B SNPs were associated with
psoriasis heritability, while 1A, 2B, 3A, 3B, and 4A all contributed to rheumatoid arthritis heritability.
Among the baseline module 0, only multiple sclerosis was enriched. Remarkably, module 1B contributed
little to heritability enrichment of any trait despite including TBX21.

We also observed that module 2A, which was strongly enriched for effects on cell cycle
regulation pathways, was enriched for regulation of atopic dermatitis GWAS genes. Next, we annotated
the fine-mapped signals from the dermatitis GWAS. Of the 44 credible sets, 34 were linked to genes. Of
these 34 hits, four were regulated by the module 2A TFs, including SATB1, IL22, LTK, and EZH1 (Figure
6B). Given the putative effects of module 2A on cell proliferation, we then cross-referenced these four
genes with cell proliferation annotation pathways. LTK is a receptor with tyrosine kinase activity and
may contribute to proliferation through activation of the PI3K signaling pathway>°. Similarly, /L22 has
also been reported to regulate PI3K signhaling®!. Taken together, these analyses highlight the value of
unbiased module discovery for identifying specific pathways that contribute to trait heritability. We
illustrate how module 2A TFs regulate a subset of dermatitis GWAS genes that have been implicated in
PI3K signaling, a common proliferation pathway.

Figure 6 | Contribution of SNPs linked to the gene modules to heritability of autoimmune and allergy
phenotypes. A. Estimated T coefficients from LD score regression are plotted for each gene module and
phenotype. Module 0 is defined as genes that were not included in any module but are still expressed in
CD4+ T cells. B. Exemplar analysis annotating the fine-mapped genes from a Finngen dermatitis GWAS
based on their presence in module 2A.
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A Gene module contributions to the heritability of autoimmune and allergy phenotypes

0 1A 1B 1C 2A

Ulcerative Colitis
Type 1 Diabetes A
Rheumatoid Arthritis
Psoriasis

Multiple Sclerosis 1
Lupus 1
Dermatitis Eczema -

t

Crohn's Disease 1
Asthma 1
All Autoimmune A

2B 2C 3A

Ulcerative Colitis
Type 1 Diabetes A
Rheumatoid Arthritis
Psoriasis

Multiple Sclerosis 1
Lupus 1

Dermatitis Eczema 4
Crohn's Disease A
Asthma 1

All Autoimmune A

¢ +++ 5

——

0e+00  2e-07
Tau (95% Cl)

B Module 2A TFs are upstream of four of the lead genes in dermatitis GWAS

_._
0e+00  2e-07

_._
0e+00  2e-07

0e+00 2607 0e+00 2607

. L
16 =
. ]
_—~ °
% ' | . IL22 . .
< SATB1 . . : } . !
g T & s (T ) L EZH1 !
Fy| Fphs A b T
: g 3 '
o. ]i' ' 5 !.e' . ‘2' : I: ". :
| 3 ° [ o ° ':i" .
', . i ], ¢

15 16 17 18 19 20 2122

1 2 3 4 5 6 7 8 9 10 1 12 13 14

The transcriptional logic linking the JAK-STAT module to immune GWAS genes

Given the substantial contribution of module 4 to autoimmune and allergy phenotype
heritability and its large effects on T cell differentiation, we integrated multiple functional assays to
elucidate the fine-grained structure of module 4. We observed that KMT2A was a positive regulator of
IL17F and IL21 expression, two Th17 secreted factors (Figure 7A). We also observed concordant
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decreases in chromatin accessibility near (5.7 kb and 40 kb upstream of TSS) IL17F and IL21 upon KO of
KMT2A. Notably, IL17F had a striking decrease in expression (-5.9 log2 fold change) in the KMT2A KO.
We then intersected the differentially accessible chromatin regions from the KMT2A KO condition with
each of the KOs within module 4 and observed that STAT5B shared several differentially expressed sites,
including regions upstream of IL17F (Extended Data Figure 12). An additional Th17 secreted factor, 1L22,
also had a shared region between the two conditions, although the transcript was only differentially
expressed in the STAT5B KO. The STAT5B KO also abrogated chromatin accessibility 5.7 Kb upstream the
IL17F promoter. Concordant with these observations, ChIP-seq data generated in IL-2 stimulated CD4+ T
cells confirmed direct binding of STAT5B (Figure 7B). Because KMT2A is a methyltransferase that
deposits activating methylation marks on H3K4, we then asked whether H3K4me3 was present in these
same peaks in Th17s stimulated with IL-2, finding that H3K4me3 marks were indeed present in the
differentially accessible peaks (Figure 7B). These observations led to us suggest the following mechanism
for the regulatory logic of module 4: KMT2A, a global epigenetic regulator of transcription, collaborates
with downstream factors, including STAT5B, to positively regulate IL17F through modulation of
activating histone marks and chromatin remodeling of a regulatory element that is likely an IL17F
specific enhancer in Th17 cells.

These observations suggest that cis-regulatory elements near KMT2A may harbor autoimmune
risk variants. To assess this hypothesis, we examined recent biobank GWAS in UKB>2°3, Finngen*, and
Biobank Japan®* (BBJ) for variants associated with autoimmune phenotypes near KMT2A. The A-allele of
rs45480496, a common variant (MAF of 21% in TOPMed®*) 36Kb from the TSS of KMT2A, is suggestively
associated with autoimmune disease (“diseases marked as autoimmune origin”, OR = 1.04, pvalue = 2 x
107) in Finngen and was also reported as suggestive hit in a BBJ-UKB meta-analysis>® (“autoimmune
multi-trait”, OR = 1.08, pvalue = 2 x 10°®). A meta-analysis of these two signals results in genome-wide
significance (pvalue = 2 x 10?2, Extended Data Figure 13) for this variant. We then looked for functional
evidence linking rs45480496 to KMT2A. Although rs45480496 has not yet been reported as an eQTL for
KMT2A, lookup of the SNP in a promoter Hi-C capture in immune cells®’ revealed that it resides in a
regulatory element that interacts with the promoter of KMT2A in megakaryocytes, naive CD4s and CDS8s,
and effector CD4s and CD8s. Concordant with these observations, lookup of rs45480496 in
regulomedb®® indicated that it is in an active enhancer in Th17 cells. The haplotype that rs45480496 tags
also intersects with a predicted KMT2A enhancer in CD4+ T-cells from the ABC model?*. Although the
variant to gene predictions from OpenTargets>® suggest that other causal genes are possible in this
locus, we remark that these predictions are made without knowledge of the causal cell type for a given
phenotype. Collectively, these data report a novel risk locus for autoimmune traits upstream of KMT2A
which likely contains a KMT2A enhancer.
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Figure 7 | The transcriptional logic linking module 4 to GWAS loci. A, The sub-network of module 4 and
Th17 cytokines. B, locus plot including tracks describing the functional characteristics of the region. Each
track is constructed from publicly available ChlPseq data (methods) or ATAC-seq data from Freimer et al.
Grey boxes indicate significantly different regions between the respective KO and AAVS1 control KO ATAC
data (padj < 0.05, n = 3 donors per KO). The Y-axis displays normalized counts.
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Discussion

Human genetics has been remarkably productive in discovering complex-trait associated SNPs.
There are now several resources to map the effects of these SNPs to molecular phenotypes in cis,
however, the development of maps of the regulatory cascades of these SNPs has progressed much more
slowly. Enabled by recent innovations in large-scale perturbation technologies, we are now able to
systematically perturb large numbers of genes in primary human cell contexts. These perturbations
complement natural genetic variation approaches to mapping trans-regulators as they facilitate the
examination of biological variance that is unlikely to be observed in healthy cells. After network
inference with LLCB, we observed 211 trans-regulatory causal connections in our upstream GRN, none
of which were reported in the largest catalogue of CD4+ eQTLs performed to date®.

We developed LLCB to infer the gene network which builds upon recent advances in the
structure learning literature to estimate a graph with edge weights that are interpretable as direct
effects. This stands in contrast to the majority of effect estimates reported in the functional genomics
literature, which primarily report estimates from differential expression analyses performed separately
in each perturbed gene. These estimates confer results that are difficult to interpret because they do
not attempt to adjust for confounding pathways in the GRN, which are known to be highly abundant in
biological networks. We use LLCB to estimate the topology and effect size of these confounding
pathways. We found that direct effects were generally much larger than indirect effects in magnitude,
and that the largest indirect effects were mediated by local feedback cycles.

Using experimental perturbations, we investigated the properties of IEI TFs which are
infrequently mutated in natural genetic variation. We performed a series of systematic analyses that
delineate the commonalities and differences among the IEI TFs, background TFs, and /L2RA regulators.
Consistent with our previous report!*, we found that the /L2RA regulators were potent regulators of
downstream effects. Both the IEI TFs and IL2RA regulators were enriched for being upstream and were
much more likely than background TFs to disrupt autoimmune GWAS loci and whole blood specific
genes even after adjustment for gene constraint. We also observed that the topology of the regulatory
network is strongly associated with selective constraint. Sy, was among the best predictors of the
topological properties of the perturbed genes: S;.; was strongly associated with the number of outgoing
connections of a gene, but not the number of incoming connections. This is reflected in the dense
downstream network identified for the IL2RA regulators with overall high levels of constraint, compared
to the other TF groups. Overall, the difference in enrichment based on Sj,,.; suggests that the centrality
of genes is best expressed as a multi-dimensional construct. This further highlights the value of
estimating GRNs with directed edges, as opposed to estimating undirected graphs from observational
co-expression data, as the richer graphical structure enables much more granular topological analyses.

Utilizing the novel connections in the GRN, we report several observations that improve
annotation of canonical immune pathways. We observed that three of the background TFs (DR1, BPTF,
and YBX1) regulated more downstream genes than any of the 30 IEI TFs, including TBX21, a master
regulator of Th1 differentiation. After identifying gene modules and their downstream pathways, we
observed multiple novel members of canonical gene modules, including KMT2A in the JAK-STAT
pathway. We observed that KMT2A, a methyltransferase that deposits activating methylation marks,
modulated the expression of canonical IL-2 signaling TFs. KMT2A collaborated with these TFs to
upregulate IL17F, a pro-inflammatory cytokine that is secreted by Th17 cells, indicating that KMT2A is an
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under-appreciated regulator of the IL2-JAK-STAT axis and Th17 activation. Meta-analysis of biobank
autoimmune GWAS revealed a novel risk locus in a Th17 enhancer upstream of KMT2A. Collectively,
these observations suggest that KMT2A inhibitors may be a productive therapeutic avenue for
autoimmune disease.

Although we have demonstrated that our regulatory network is useful for discovery of novel
immune pathway biology and that it is validated by orthogonal data modalities, our study is not without
limitations. The perturbation of additional genes in more donors, cell types, and cell contexts would
undoubtedly result in increased discovery. The restriction to transcriptional regulation also inhibits the
interrogation of post-translational regulation, which makes the interpretation of edges from genes
where post-translational regulation important challenging. This suggests that the STAT proteins, which
are known to be sensitive to phosphorylation, may regulate more genes than is estimated in our
transcriptional network. The use of a bulk expression read-out, although more sensitive to genes with
low expression than single cell assays, also precludes the analysis of more granular cell types and
contexts.

In conclusion, we describe the gene regulatory network of key CD4+ T cell regulators. This
network enabled both the broad characterization of the properties of immune disease genes and the
discovery of novel regulatory connections between TFs and signaling pathways that modulate immune
disease genes. We anticipate that our approach can be applied in other cell types and contexts to
generate maps of the molecular consequences of regulatory variation of disease genes.
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Methods

Cell Isolation and expansion

Primary CD25-CD4+ effector T cells were isolated from fresh Human Peripheral Blood Leukopaks
(STEMCELL Technologies, #70500) from healthy donors, after institutional review board—approved
informed written consent (STEMCELL Technologies). Peripheral blood mononuclear cells (PBMCs) were
washed twice with a 1X volume of EasySep buffer (DPBS, 2% fetal Bovine Serum (FBS), 1mM pH 8.0
EDTA). The washed PBMCs were resuspended at 200E6 cells/mL in EasySep buffer and isolated with the
EasySep™ Human CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (STEMCELL Technologies,
#18063), according to the manufacturer’s protocol. Cells were seeded at 1x10°cells/mL in complete
RPMI-1640 supplemented with 10% FCS, 2 mM L-Glutamine (Fisher Scientific #25030081), 10 mM HEPES
(Sigma, #H0887-100ML), 1X MEM Non-essential Amino Acids (Fisher, #11140050), 1 mM Sodium
Pyruvate (Fisher Scientific #11360070), 100 U/mL Penicillin-Streptomycin (Sigma, #P4333-100ML), and
50 U/mL IL-2 (Amerisource Bergen, #10101641) and stimulated with 6.25 uL/mL ImmunoCult™ Human
CD3/CD28/CD2 T Cell Activator (STEMCELL Technologies, #10990). Following activation and
electroporation, cells were split 1:2 every other day to maintain an approximate density of 1x10°
cells/mL.

Cas9 RNP preparation and delivery

Custom crRNAs (Dharmacon) and Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA
(Dharmacon, #U-002005-20) were resuspended in Nuclease Free Duplex Buffer (IDT, #11-01-03-01) at
160uM stock concentration. In a 96 well plate, each crRNA was combined with tracrRNA at a 1:1 molar
ratio and incubated at 37°C for 30 minutes. Single-stranded donor oligonucleotides (ssODN; sequence:
TTAGCTCTGTTTACGTCCCAGCGGGCATGAGAGTAACAAGAGGGTGTGGTAATATTACGGTACCGAGCACTATCG
ATACAATATGTGTCATACGGACACG, 100uM stock) was added to the complex at a 1:1 molar ratio and
incubated at 37°C for 5 minutes. Finally, Cas9 protein (MacrolLab, Berkeley, 40 uM stock) was added at a
1:2 molar ratio and incubated at 37°C for 15 minutes. The resulting RNPs were frozen at -80°C until the
day of electroporation. 48 hours following effector T cell activation, the cells were pelleted at 100x g for
10 minutes and resuspended in room temperature Lonza P3 buffer (Lonza, catalog no. V4XP-3032) at
1.5x10°cells per 20 ul P3. The cells were combined with 5 ul aliquots of the thawed RNPs, transferred to
a 96-well electroporation cuvette plate (Lonza, #VVPA-1002) and nucleofected with pulse code EH-115.
Immediately following electroporation, the cells were gently resuspended in 90 ul warmed complete
RPMI with IL-2 and incubated at 37 C for 15 minutes. After recovery, the cells were cultured in 96 well
plates at 1x10° cells/mL for the duration of the experiment. To prevent edge effects, the guides were
randomly distributed across each plate and the first and last column of each plate was excluded, being
filled instead with PBS to prevent evaporation.

RNA isolation and library preparation:

8 days after T cell isolation and activation, the cells were pelleted and resuspended at 1x10° cells
per 300 ul of RNA lysis buffer (Zymo, #R1060-1-100). Cells were pipette mixed and frozen at -80 until
RNA isolation was performed. RNA was isolated using the Zymo-Quick RNA micro prep kit (#R1051)
according to the manufacturer’s protocol with the following modifications: After thawing the samples,
each tube was vortexed vigorously to ensure complete lysis prior to loading into the extraction columns.
In lieu of the kit provided DNAse, RNA was eluted from the isolation column after the recommended
washes and digested with Turbo-DNAse (Fisher Scientific, AM2238) at 37 C for 20 minutes. Following
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digestion, RNA was purified using the RNA Clean & Concentrator-5 kit (Zymo, #R1016) according to the
manufacturer’s protocol. The resulting purified RNA was submitted to the UC Davis DNA Technologies
and Expression Analysis Core to generate 3’ Tag-seq libraries with unique molecular indices (UMls).
Barcoded sequencing libraries were prepared using the QuantSeq FWD kit (Lexogen) for multiplexed
sequencing on an Hiseq 4000 (lllumina).

Cell proliferation quantification

One replica plate of cells from each donor was run on the Attune NxT Flow Cytometer (Thermo
Fisher) within 24 hours of cell lysis for RNA extraction. Cell density per knock-out condition was
quantified by the Attune using an equi-volume amount of sample. Counts were normalized to the mean
AAVS1 density for the respective donor.

RNA-seq alignment and gene count quantification

Adapters were trimmed from fastq files with cutadapt®. Low-quality bases from reads were
trimmed using the Phred algorithm implemented in seqtk®!. Reads were then aligned with STAR®? and
mapped to GRCh38. Gene counts from deduplicated reads were quantified using featureCounts®.
Sample quality control reports were generated with Fastqc®, rseqc®, and Multigc®®.

Gene filtering and PCA analysis

Genes were first filtered to those with at least 10 counts in at least five samples. PCA was then
performed on the variance stabilizing transformed?’ (vst) counts of the 500 most variable genes. Three
outlier samples were excluded and then the above process was repeated. The PCs were then assessed
for association with batch effects and very broad cellular pathways. PCs 1-2 associated with batch
effects, and PCs 3-4 were associated with cell cycle state, suggesting that PCs 1-4 should be included as
covariates or otherwise adjusted for in downstream analysis.

Differential expression analysis

Differential expression analysis was performed using DESeq2?’, including donor identity, PCs 1-4,
and the KO as predictors of the response. Donor identity and PCs 1-4 were included as covariates to
mitigate their confounding effects on gene expression. We emphasize that the statistical estimand in
this analysis the total effect of the perturbation of a given gene on the readout gene. This effect may
include several indirect paths between the perturbed gene and the readout gene.

LLCB

We formulate the GRN as a graph G = (X, B), where the P nodes X, ..., Xp are each a vector of
the vst normalized gene expression values. We restrict this analysis to the 84 KO’d genes reflecting the
importance of satisfying the identifiability condition described in Hyttinen et al. 8 is the adjacency
matrix describing the direct linear effects between genes, where the rows encode the parent genes and
the columns encode the children genes. We then construct a covariate matrix W where the columns
W, ...W/ indicate [ covariates to regress out. We then orthogonalize X based on W with the
transformation X =X + X * (I — (W'W)™'W), where X = 1y,p © (X3, ... X,). We add back in the
column means X to roughly preserve the original scale of X. In W, we include the donor identity and
first four PCs as covariates.

We define K 0; as the indices indicating the samples in which X; was intervened upon and we
set 0; = {1,..,N} — KO;. We define C as the indices in which safe-harbor AAVS1 control samples were
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used. Forall j = 1, ..., P we recode )~(l-j = O forall i € KO;. This reflects our belief that the CRISPR KOs
were effectively forcing the normalized functional transcript abundance to 0, i.e., we assume perfect
interventions.

We then estimate B in two steps: 1. Estimate the total effects 1);; between every pair of genes
(i,j) € P x P; 2. Estimate 8 from v using a modification of the LLC algorithm?". To estimate 1);;, we first
center and scale )7]- based on its mean and standard deviation in the control samples C. Then, we use
OLS to estimate the total effect of X; on X’l-, limiting the samples used to {K0;, C}, such that we exclude
all instances in which the child node )~(]- has been KO’d. This analysis results in the matrix of estimated
total effects, 1’[\) We emphasize that these coefficients are on a correlation scale because of the
standardization procedure.

We assume asymptotic stability?! over the true 8, which is equivalent to assuming that the
largest eigenvalue is less than 1. Because we know f3 is asymptotically stable, the following
decomposition of true effects into direct effects is coherent:

Yij = Z 1_[ Bim

PEP(xi—xj) (X;=>Xm)EDP

This relationship indicates that total effect of a gene i on gene j is the sum of all possible paths between
them, where the value of an individual path is defined by the product of direct effects along that path.

To estimate 8 from ), we use the LLC procedure Algorithm 1:

for j€{1,..P} do
Extract the total effect of the jth gene on the other P —1 genes

{0 w €{1,.... P} = {j}}
forue{l,..,P}—-{j} do
Construct a row vector T, of length P — 1 with a 1.0 in the wth coordinate
forle{l....,P}—{u,j} do

Insert L?,’jg into the {th coordinate of T},

end
Insert T}, into the uth row of matrix Tj

Insert 4/, into the uth coordinate of the column vector Y;

end
end

Algorithm 1

This procedure results in P matrices T of size (P — 1) x (P — 1) and P column vectors ¥;. We then
concatenate {Y]-}j_1 b vertically into a column vector Y of length P x (P — 1) and we form the block
T, - 0

0 - T,

matrix T =

We then define the likelihood as the probability of ¥ conditional on T and parameters g and g,,. T and Y
represent a system of linear equations relating the total effects ¥ to the direct effects B. For a given
gene | we define the set of rows in T corresponding to experimental observations where we perturb a
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putative parent of [ and record the effect on [ as L. For each row of T and Y where the lth gene is the
child node, we specific the likelihood as:

YTy, B, 0,~Ny_1(Ty, *vec(B),o,l)

Including a child node specific dispersion parameter g; allows for heterogeneity in the residual variance
across the genes.

Because we have prior knowledge of what realistic gene networks look like, we specify the prior
in three parts as follows:

vec(B)~Np.(p—1)(0,2)
P(B)~N(0,1;)

where p(B) is defined as the spectral radius of f3, i.e., the maximum eigenvalue of B. We estimate the
maximum eigenvalue of f using power iteration. We incorporate a prior on the spectral radius because
it is an upper bound over the NOTEARS DAG penalty?®, which is a differentiable penalty that enables
DAG search in a continuous optimization framework. Importantly, we encode this prior as a “soft-
constraint” with the Gaussian density to weakly penalize the divergence of § from the space of DAGs
while still allowing for cyclic elements.

Over the columns of B, i.e., B.; we place a sparsity inducing L1 prior:

|B*]|1 ~ N(Orﬂ-3)
je{1,..P}

The purpose of this term in the prior is to reflect our belief that the indegree of a gene should be
relatively small; we know that genes are not directly regulated by hundreds of TFs. In contrast, a given
TF may regulate hundreds of downstream genes, so we do not penalize the rows of 8. Overall — this
prior encodes the following three prior beliefs: 1. The effects should be somewhat small on a partial
correlation scale; 2. The maximum eigenvalue should not be very large to penalize graphs with many
cycles; 3. The indegree for each gene should be relatively small, while the outdegree should not be
penalized.

On the dispersion terms, o,,, we place a LogNormal(—3, 5) prior. We estimate P total dispersion terms
because there may heterogeneity in the residual variance of the total effects across the KO’d genes.

Causal network posterior inference

We use pathfinder®® to estimate the posterior. Briefly, pathfinder is a variational inference
algorithm that optimizes the joint log probability of the model using L-BFGS, i.e., the maximum a
posteriori objective. Along this optimization trajectory, it constructs a surrogate posterior at each point
using the estimate of the hessian from L-BFGS as the precision of the surrogate posterior. Then, at each
point, the evidence lower bound (ELBO) is evaluated. The variational approximation resulting in the
largest ELBO is then returned as the posterior estimate. We compute seven runs of this optimization
procedure in parallel, and then use importance resampling to combine the fits. We initialize 8 based on
the component-wise sum of the MLE estimate of 8 and a vector of gaussian noise i.e. ;pir = 0.1 *
Buie +0.1%2z,z~N(0,1).
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Causal network posterior uncertainty quantification

We compute a pseudo-posterior inclusion probability (PIP) we defined as PIP(BL-]-) =
P(|[3L-j| > E). We set € = 0.05. We also computed local-false sign rates (LFSR) estimates: LFSR(EU-) =
min(P(ﬁi]- > 0),P(ﬁi]-) < 0). We note that these summary statistics, although likely proportional to
the ‘true’ values, are likely somewhat uncalibrated given that a) we do not model the underling discrete
graph structure G separately from the parameters 8 and b) calibrated inference in a network setting has
been shown empirically to be extremely challenging.

Simulation of a cyclic network in a steady state

We start by simulating a given expression vector of P genes as Xo~LogNormal(1.00,0.10).
Then, for a given adjacency matrix B we model the effect of a perturbation on the kth gene as setting
B.x = 0, i.e., we remove the incoming edges to this node. We denote this perturbed adjacency matrix

~ ~\—1
as f. We then sample the “steady-state” limit as tlim X, = XO(I - [3) . We assessed the performance
— o

of our algorithm on a B corresponding to a cyclic network.

ABC-GRN

We extracted the CD4+ enhancer to gene predictions from the ABC model3* and we intersected
them with the differential ATAC peaks from Freimer et al., which were generated on samples where the
24 IL2RA regulators were KO’d. For the ith gene we included i — j as an edge in this graph if one its
differential ATAC peaks intersected with an ABC enhancer for gene j, suggesting that perturbation of
gene i was perturbing a cis regulatory element for gene j. We then calculated the enrichment of these
edges among those detected in the IL2RA regulator sub-network of causal network estimate.

HBase validation network

We downloaded the HumanBase®” predicted “T-Lymphocyte” network from
https://hb.flatironinstitute.org/download . We downloaded the version of the network with only the top
edges included. We then estimated enrichment in the same manner as with the ABC-GRN network.

Bipartite graph model of downstream gene expression

We refer to a “downstream” gene as those that were measured among the 12,803 genes that
were highly expressed but not among the perturbed genes. We form a matrix ¥ with 12,803 columns
containing the vst normalized gene expression data. We define a matrix X with the expression values of
the 84 perturbed genes. We applied the same normalization data procedure as in our causal network
estimation such that both X and Y are vst transformed data that is orthogonal to covariates (donor
identity, PCs 1-4). We specified the following likelihood for the ith measurement of the jth downstream
gene:

Yij~N(XiBj, 0})
Over the B; we place the following prior B;~N, (0, a * Xg), where Zg is defined as the asymptotic

steady state covariance implied by our point estimate from the causal network model, i.e., £g =

-1 —~

(I — ﬁ) Ze(l — B). This prior encodes the belief that similar effects among the 84 genes in the causal
network will increase the likelihood of similar downstream effects. Because we used a conjugate prior
the posterior has an analytic form:
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Bj|X,Y;~Ny(t; * A"1X'Y;, 07 diag (A1)

N[ =

where A = (Zg + 7 * X' X) and 7; = .

g

-

We set @ = 0.10 in practice, although in principle empirical Bayesian approaches or other criteria could
be used to set this hyperparameter. We estimate the residual variance parameter 01-2 using maximum
likelihood and we use Ifsr as our variable selection criteria.

Pathway analysis

Downstream enriched pathways were identified for each perturbation using pathfindR
(v1.6.4)%”. For each upstream gene perturbed, outgoing edges within the BG model were used as input
for pathfinder, with a significance threshold of LFSR < 5 x 103, Gene sets were limited to KEGG*,
Reactome®, and GO-BP*® and the minimum gene set size and enrichment threshold were set to 10 and
0.05 respectively. Pathways were prioritized for visualization based on the number of genes within the
module with enrichment for the pathway, median fold enrichment across all members of the module,
and relevance to T cell biology.

LD score regression analyses

We first defined gene sets corresponding to each of the nine modules (1A-C, 2A-C, 3A-B, 4) and
module 0, which we defined as the set of genes that were expressed highly enough for analysis but were
not associated with any of the KO’d genes (at a LFSR threshold of 5 x 103). For each of these 10 gene
sets, we then linked SNPs to these genes (S2G) using seven possible methods following Dey at al,
including approaches that link SNPs based purely on physical distance to the nearest gene, fine-mapped
eQTLs, promoter Hi-C capture, the ABC model, among others.

For each of the 10 phenotypes analyzed (Supplementary Table S7) we obtained the GWAS
summary statistics and performed LD score regression analysis. We included the LD score baseline
model v2.1 in the regression. We used the publicly available European ancestry LD score estimates for
the HapMap SNPs available from:

gs://broad-alkesgroup-public/LDSCORE/Dey_Enhancer_MasterReg/processed_data.

ATAC and ChlPseq data visualization

Bigwigs for each of the tracks were downloaded from ChIP-Atlas. ATAC bigwigs and differentially
expressed regions were procured from Freimer et al. and a representative donor was used for
visualization of each perturbation effect at the IL17F locus. Visualization was performed with rtracklayer
(v1.52.1) and ggplot2 (v3.4.1). APRIS gene structure was used for gene annotation with gggenes
(v0.5.0).

We included data from the following SRA sources:

STAT5B KO ATAC- SRX10558086, KMT2A KO ATAC- SRX10558079, AAVS1 KO ATAC- SRX10558063,
H3K4me3 ChIP- activated Th17 ChIP- SRX16500373 (GSM6376841), STATSB ChIP- SRX041293
(GSM671402)
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Extended Data Figures

Extended Data Figure 1 | CRISPR editing efficiency by gene group. A Percent of reads with indels,
stratified by individual gene. B Percent of reads with indels, aggregating by gene group.

A
100
A, oA A &
™ Donor
e D1
g s+ D2
E - = 03
g group
* . Control
18 & Target
0
« (3\ D *\ Q« N A B .\ ok et
R SRR SN R S S SR \3@3&‘\3‘”’% SRR
Gene
B
1004
804
<
S
et group
9‘:—, . . Control
8 : B8 El Target
=
® .
.
'
.
40+ :
.
[ ]
Corlnroi IEI T;lrget

Gene

26


https://doi.org/10.1101/2023.09.17.557749
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.17.557749; this version posted September 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Extended Data Figure 2 | Enrichment of LLCB posterior mean edges in the ABC-GRN validation

network
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Extended Data Figure 3 | Enrichment of LLCB posterior mean edges in the HBase T-cell network
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Extended Data Figure 4 | Permutation test of the number of edges between genes that share the
same gene group. A set of 2,000 null permutations of the network were generated by using the rewiring
algorithm to preserve the node degree. Within each permutation, the number of edges with the same
gene group were counted. The observed value is denoted by the red vertical line, and the empirical 2.5%
and 97.5% quantiles from the permuted data are denoted by vertical dashed lines.
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Extended Data Figure 5 | Comparison of direct to total effects among the 84 KO’d genes. The x-axis is
defined as the posterior mean estimates of the adjacency matrix estimated by LLCB. Units are in terms
of standard deviations of normalized gene expression. The y-axis is estimated through the processing
procedure described in Methods.
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Extended Data Figure 6 | The largest indirect effects are mediated by cycles of short length
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Extended Data Figure 7 | Enrichment of module effects on KEGG signhaling pathways. Enrichment
analyses were performed with pathfindR.
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Extended Data Figure 8 | Enrichment of module effects on KEGG signaling pathways. Enrichment
analyses were performed with pathfindR.
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Extended Data Figure 9 | Enrichment of module effects on KEGG immune pathways. Enrichment
analyses were performed with pathfindR.
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Extended Data Figure 10 | Network plot demonstrates the effect of the cluster 2A upstream
regulators on cell-cycle genes. The network using edges estimated from the BG model are plotted.
Colors indicate the effect size and arrows indicate the direction of effect. The genes on the left-hand
side are among the 84 KO’d genes, and the genes on the right are genes that are listed among the KEGG
cell cycle pathway genes.
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Extended Data Figure 11 | Marginal heritability estimates from LD score regression. LD score
regression was used to estimate the heritability enrichment of SNPs linked to genes in each module for
each phenotype. SNPs were linked to genes using the ABC predictions in T cells.
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Extended Data Figure 12 | KMT2A and STAT5B jointly regulate chromatin accessibility at the IL17F

locus (A) and IL21 locus (B).
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Extended Data Figure 13 | Meta-analysis of autoimmune GWAS from Shirai et al. and Finngen v8. The
KMT2A locus plot is displayed with a chromHMM® track from Th17 cells. The predicted enhancers of
KMT2A from the ABC model in CD4+ T cells are shown in red arcs at the bottom.
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