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Summary
High-throughput image-based profiling platforms are powerful technologies capable of collecting
data from billions of cells exposed to thousands perturbations in a time- and cost-effective
manner. Therefore, image-based profiling data has been increasingly used for diverse biological
applications, such as predicting drug mechanism of action or gene function. However, batch
effects pose severe limitations to community-wide efforts to integrate and interpret image-based
profiling data collected across different laboratories and equipment. To address this problem, we
evaluated seven top-ranked batch correction strategies for mRNA profiles in the context of a
newly released Cell Painting dataset, the largest publicly accessible image-based dataset. We
focused on five different use scenarios with varying complexity, and found that Harmony, a
nonlinear method, consistently outperformed the other tested methods. Furthermore, we provide
a framework, benchmark, and metrics for the future assessment of new batch correction
methods. Overall, this work paves the way for improvements that allow the community to make
best use of public Cell Painting data for scientific discovery.

Keywords
Batch correction; machine learning; image-based profiling; morphological profiling; Cell Painting;
high-throughput phenotypic screening; Sphering; Harmony; Bulk analysis

Introduction
Image analysis has become a cornerstone of biological and biomedical research. The use of
fluorescence labeling combined with advanced optical microscopy now enables visualizing
biological morphology, structures and processes at unprecedented spatial and temporal
resolution. Furthermore, high-throughput microscopy can now extract precise information about
morphological changes caused by thousands of specific genetic or chemical perturbations.
Analysis of the resulting image-based profiles can be used to deduce gene functions and
disease mechanisms, as well as characterize mechanism and toxicity of potential therapeutics1.
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The most commonly used multiplex image-based profiling assay is Cell Painting2,3. Cell Painting
uses six dyes that label eight cellular components (nucleus, nucleolus, endoplasmic reticulum
(ER), Golgi, mitochondria, plasma membrane, cytoplasm, and cytoskeleton) that are imaged in
five channels. Thus, each image-based profile captures rich morphological features that are
extracted using automatic image processing and analysis pipelines. The approach offers
single-cell resolution, captures valuable population heterogeneity and provides information
distinct from mRNA profiling 4–9 and protein profiling 10 at a cost lower than even the least
expensive high-throughput bulk mRNA technique 11. Importantly, Cell Painting image-based
profiles of cells exposed to different genetic or chemical perturbations have been successfully
combined with machine learning strategies to generate predictive models that support key steps
in drug discovery and development 1.

The broad applicability and the predictive power of Cell Painting data depends on having access
to a large number of image-based profiles that can be used to either generate mechanistic
hypotheses or build predictive models. Individual companies have begun to create proprietary
datasets, but a large public Cell Painting dataset has been lacking, leaving the field unable to
benefit from shared data as has been so crucial in other fields of biology such as genomics.

Thus, to enable construction of such a database, we recently partnered with colleagues from
pharmaceutical companies, technology providers, and non-profit organizations to form the Joint
Undertaking for Morphological Profiling (JUMP) Cell Painting Consortium12. These efforts
resulted in the 2023 release of the first large-scale public dataset of image-based Cell Painting
profiles, capturing data from more than 140,000 chemical and genetic perturbations
(https://github.com/broadinstitute/cellpainting-gallery). A large, public dataset is most useful if it
can be successfully queried using new profiles generated by individual laboratories in the future.
This requires the community to have developed methods for aligning data generated with
technical variation. With this in mind, the Consortium went to great effort to exchange
compounds and generate images across twelve different laboratories with various equipment,
enabling the development and evaluation of batch correction methods that could then be used
by future data generators.

In general, batch effects arise from technical, non-biological factors that are commonly
encountered during large-scale data collection efforts involving multiple sites. In the context of
JUMP Cell Painting Consortium, technical factors (such as variations in the microscope used,
microscope filters and settings, and cell growth conditions) all have effects on the image-based
profiles we collected. Moreover, some batch effects occur even across batches from a single
site, such as unintentional changes in lamp intensity, staining concentration, and cell seeding or
growth rate. Additionally, the hierarchical structure of Cell Painting experiments, with each
readout originating from a region in a well from a multi-well plate, which in turn comes from an
experimental batch at a particular laboratory, further complicates the nature of the technical
noise.
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Only a handful of batch correction methods have been developed and tested for image-based
profiling. No systematic and comprehensive comparison and evaluation of such methods has
been performed, making it unclear whether the available methods offer a reliable approach for
dealing with batch effects in image-based profiling. Such evaluations for single-cell RNA-seq
(scRNA-seq) batch correction methods have revealed that no current method appears to
outperform the others 13,14, and suggest that most of these methods should not be used without
the guidance of an expert 15,16. Therefore, it remains unknown whether any of the scRNA-seq
batch correction methods can be reliably applied to image-based profiles.

Here, we carried out a comprehensive analysis of seven batch correction methods. We used
qualitative visualizations along with five metrics that capture reduction in batch effects, and eight
metrics that capture preservation of biological signals. We used the newly released public
database created by the JUMP Cell Painting Consortium 12 to test the performance in the
context of five common use cases: multiple batches from a single laboratory, multiple
laboratories using the same microscope with few and many compounds, and multiple
laboratories using different microscopes with few and many compounds. Given the
computational constraints of working with large image-based profiling datasets, we focused our
evaluation on population-averaged well-level profiles rather than single-cell level profiles. We
analyzed correction methods in the context of the replicate retrieval task (finding the replicate
sample of a given compound across batches/laboratories), and we found that existing methods
are effective in reducing batch effects in image-based profiles. Among the methods tested,
Harmony, a non-linear method developed for processing scRNA-seq data, offered the best
balance of batch removal and conservation of biological variance metrics. More broadly, the
benchmark dataset, evaluation framework, and metrics we describe here will enable future
assessment of novel batch correction methods as they emerge. This paves the way for
improvements that allow the community to make best use of public Cell Painting data for
scientific discovery.

Results

Selection of batch correction methods and evaluation strategies
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Figure 1: Evaluation pipeline. We evaluated five image-based profiling scenarios with different
image acquisition equipment (high-throughput microscopes), laboratory, number of compounds
and number of replicates. We preprocessed the readouts using state-of-the-art preprocessing
pipeline for image analysis. We compared seven batch correction methods, and compared their
performance using qualitative and quantitative metrics.

A major part of our work was to comprehensively survey methods for batch correction, as well
as strategies for their evaluation. Given the rapid advancements in the field of scRNA-Seq,
particularly in the development of methods to address batch correction, we focused our
attention on this area. We decided to test a subset of the better-performing methods identified in
a recent analysis of scRNA-seq batch correction methods 13,17. These methods were available in
Python and did not require additional preprocessing or metadata. Additionally, the chosen
methods were representative of different approaches and included linear methods (Combat 18

and Sphering 19), neural-network based methods (scVI 20 and DESC 21), neighbor-based
methods (Scanorama 22 and MNN 23), and a mixture-model based method (Harmony 24).

We will briefly summarize the main characteristics of these methods, to enable the reader to
place our results in the appropriate context. Combat 18 models batch effects as multiplicative
and additive noise to the biological signal and uses a Bayesian framework to fit linear models
that factor such noise out of the readouts. Sphering19 computes a whitening transformation
matrix 25 based on negative controls and applies this transformation to the entire dataset. It
requires every batch to include negative control samples for which variations are expected to be
solely technical. scVI 20 is a foundational model for representation learning in scRNA-seq data
based on variational autoencoders. DESC 21 trains an autoencoder along with an iterative
clustering algorithm to remove batch effects and preserve biological variation, and requires the
knowledge of the biological variable of interest as input, which may be unknown at the batch
correction stage. MNN 23 aligns representations between two batches by finding pairs of
samples that are mutually nearest neighbors. Scanorama 22 computes mutual nearest neighbors
across all of the batches and uses such neighbors as anchors to align the datasets. Harmony 24

is an iterative algorithm based on expectation-maximization that alternates between finding
clusters with high diversity of batches, and computing mixture-based corrections within such
clusters. All tested batch correction methods except Sphering require batch labels, Sphering
alone requires negative control samples, and only DESC additionally requires biological labels.
MNN, Scanorama, and Harmony necessitate recomputing batch correction across the entire
dataset whenever new profiles are incorporated. While Sphering, Combat, scVI, and DESC
don't require recomputation, they don't guarantee perfect corrections for new profiles from an
unseen source.

Although these methods were developed for scRNA-seq data, scRNAseq produces single-cell
mRNA profiles that are similar in structure to single-cell morphological profiles from the Cell
Painting assay. Although the two profile types have inherent biological and statistical
differences, most of the foundational assumptions, such as metrics in the vector space revealing
similarities between them, are reasonable for the image-based profiling domain. However, we
note a crucial difference in the manner we have applied these methods. Given the sheer volume
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of data in large image-based profiling datasets, which may contain billions of single cells
compared to the millions typically found in scRNA-seq, it is computationally impractical to apply
these methods at the single-cell level. Importantly three out of the seven methods require
computing batch correction across the entire dataset. This means that subsampling, a strategy
often used to manage large datasets, is not a viable option for those. Thus, we evaluated these
methods based on their ability to correct batch effects in population-averaged well-level (or
“pseudo-bulk”) profiles, rather than single-cell level profiles. This shift does alter the distribution
of the features, but we believe this is an acceptable trade-off given the computational
constraints and the overall goal of correcting batch effects at a broader level. Particularly for
scVI, it's worth noting that while the method assumes a negative binomial distribution for each
feature—an assumption not met in image-based profiling datasets—we still included it in our
evaluation. This decision was driven by scVI's demonstrated high performance in scRNA-Seq17,
and our interest in assessing its robustness when distributional assumptions are not fulfilled.

Beyond batch correction methods for scRNA-seq, we also reviewed those specifically designed
for image-based profiling data analysis. A small handful of past research in this domain
incorporated a step for batch correction. Such approaches can be split broadly into two
categories: those based on (a) pre-computed feature transformation and (b) representation
learning.

Pre-computed feature transformation approaches learn a transformation of features that have
been extracted from images. In such workflows, common preprocessing/normalization steps
have been described by Bray and Carpenter 26 to deal with interplate and intraplate
normalization - these aim to reduce local variances, but they are limited when technical
variations are strong. Sphering 19 is the most used batch correction method for
feature-transformation-based profiles widely applied in Cell Painting pipelines 27,28 and was
included in our testing.

Representation learning methods process the raw pixels from the fluorescent channel images,
usually using neural-network-based approaches 26-27,28. Qian et al. 29 trained a generative
adversarial network (GAN) to capture the batch effects from one batch using the style transfer
framework. The GAN is then used to align the data by transferring the learned style to every
image in the other batches. Despite their success, GANs face challenges during training related
to convergence, mode collapsing and stability 30. More importantly, this approach requires
selecting a reference batch, which may not be a trivial decision. Lin and Lu 31 addressed the
batch effect problem differently, instead of proposing a separate method to correct the data they
adapted the BatchNorm 32 strategy to learn a representation that accounts for batch information
jointly with the downstream task. Because BatchNorm32 only works with differentiable neural
networks, its scope is limited to gradient-based methods, and it requires integrating the
downstream task into the loss function, which may differ depending on the question at hand,
precluding correcting the data once for all possible applications of the data. In a similar spirit,
Haslum et al. 33 proposed a modification for the teacher-student framework using
self-supervised learning models such as DINO 34 and BYOL 35 that accounts for batch effects,
reporting the kBET metric and qualitative visualizations to compare performance. Note that such
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models require data augmentation, which is not always feasible, especially for tabular
information. Sypetkowski et al. 36 designed a neural network architecture including
learning-based normalization and gradient reversal layers to solve the compound classification
as a pretext task to correct for batch effects. Sypetkowski’s approach requires the training of a
machine learning model to evaluate the performance, which limits the comparison with other
methods. Overall, representation-learning methods for batch correction that require additional
annotations as a way of supervision (e.g.37) are not applicable to all datasets, nor do they create
a dataset useful for all applications. We therefore did not evaluate these methods in our study.

Next, we considered which dataset to use as a benchmark in our evaluation. RxRx1 36 and
RxRx3 38 datasets are resources for image-based profiling, with millions of images associated
with thousands of compounds, but derive from a single, highly-quality-controlled laboratory so
cannot be used to assess methods aiming to correct more dramatic batch effects. We therefore
chose to use the JUMP Cell Painting Consortium data as the only large public dataset that
originated from a wide range of laboratories and from a range of instruments, thus capturing
diverse batch effects.

Finally, we surveyed various evaluation strategies and considered them for the context of
image-based profiling batch correction. In contrast to the RNA-seq domain where multiple
benchmark studies exist 13,17, image-based profiling lacks a comprehensive comparison of batch
effect correction methods, and there are no agreed evaluation criteria.

Evaluation techniques are typically split into qualitative and quantitative categories. Qualitative
evaluations based on dimensionality reduction methods such as PCA, UMAP 39, t-SNE 40, or
MDE 41 can expose clusters of biological labels, however it strongly compresses high
dimensional data in a 2D space. This can be sensitive to hyper parameters and prone to
subjectivity.

Quantitative evaluation of batch correction methods broadly take two forms: using bespoke
metrics to directly quantify batch effect removal and conservation of biological variance, or
indirectly examining the expressivity of corrected image-based profiles through subsequent
analysis tasks. An indirect approach is to utilize downstream tasks such as image classification
42 and perturbation replicate retrieval across batches 43 as a measure of the expressivity of the
image-based profiles after correction. Used in isolation, this indirect approach may fail to detect
the presence of batch effects in situations where the experimental covariates (e.g. plate ID)
correlate with the labels of the downstream task (e.g. samples’ replicates).

Sypetkowski et al. 36 propose a direct approach with their batch generalization and batch
classification accuracy metrics. Batch generalization utilizes a perturbation classifier to compute
the performance ratio between batches used for training the classifier and a held-out set of
batches. A high ratio indicates a corrected representation that's not heavily influenced by the
batch. Batch accuracy trains a classifier to predict the batch ID based on the corrected
representation; batch accuracy is low if batch correction has performed well. However, this
approach also requires the tuning of additional classification pipelines during evaluation, making
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the comparison of batch correction methods somewhat less straightforward. Lastly, Kim et al.'s
44 evaluation provides another direct approach, using silhouette score, graph connectivity, and
local inverse Simpson's index (LISI) to quantify batch effects across different representation
learning methods. Their evaluation is similar to our Scenarios 1 and 2, described below.

Our evaluation strategy differs from prior evaluations in image-based profiling literature in the
following: 1) We evaluated 13 metrics, including those measuring conservation of biological
variance and batch effect removal 17. 2) We evaluate more diverse scenarios (multiple
microscopes, multiple laboratories, few/multiple perturbations, few/multiple replicates).

Having selected seven methods and 13 evaluation metrics in five scenarios, we then proceeded
to our analysis.

Scenario 1: Single microscope type, single laboratory, multiple
batches, few compounds, multiple replicates
In this scenario we analyzed 306 “landmark” compounds present on the Target2 plates (see
Dataset description), one of which is present in each of the 13 experimental runs/batches
produced by a single laboratory (source_6), a subset of the JUMP Cell Painting Consortium
dataset. There were a median of 21 replicates per compound. Given that profiles were
generated in the same laboratory, with many replicates and relatively low technical variance, this
simplified scenario helped us establish a baseline for the best possible results while also guiding
the preprocessing pipeline that could be applied across all more complex scenarios.

Image-based profiling requires carefully designing feature extraction and preprocessing
pipelines to accurately represent the biological content of images. In particular, normalization is
essential to cope with variability across features, in terms of their natural scales and
covariances. Thus, we first examined the influence of normalization on the batch effects. We
applied a sequence of two commonly used normalization steps (1) median absolute
deviation (MAD) normalization 45, which rescales individual features; and (2) Sphering 19, which
rescales all features in a multivariate manner. We applied MAD normalization per plate, and
Sphering across the whole experiment. In both steps, the data was normalized against the
negative controls which serve as the reference. In 2D projection of the raw profiles, i.e. profiles
not transformed in any way, we saw that profiles are heavily influenced by the batch variation
(Figure 2.A). Similarly, profiles subject to Sphering normalization alone also showed strong
batch effects. By contrast, MAD normalization helped to mix the batches better, with or without
Sphering, and appeared to retain information about areas of space filled with samples with
distinctive phenotypes. Although informative, these qualitative visualizations were not sufficient
to establish whether applying both transformations performed better than just MAD
normalization alone. Thus, we performed a more quantitative comparison.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558001doi: bioRxiv preprint 

https://paperpile.com/c/X1Rmzi/6TPC8
https://paperpile.com/c/X1Rmzi/zEgNw
https://paperpile.com/c/X1Rmzi/7k7I
https://paperpile.com/c/X1Rmzi/mdOa9
https://doi.org/10.1101/2023.09.15.558001
http://creativecommons.org/licenses/by/4.0/


Figure 2: Preprocessing pipeline evaluation. (A) Qualitative comparison of normalization
preprocessing options. Each color represents an experimental batch/run. Raw: Original
morphological features. MAD: features normalized with MAD. Sphering: features normalized
with Sphering. MAD+Sphering: Features after MAD and Sphering transformation, in that order.
(B) Quantitative evaluation of the preprocessing steps on single-source data across 13 batches
in Scenario 1. Columns represent each version of the data, with top rows for batch removal
metrics and bottom rows for bio-metrics. The final row computes average scores. The
PCR_batch metric compares the variance explained by the batch variable before and after
correction, thus it can not be computed for raw representation as it is the original data. (C)
Visualization of quantitative results post preprocessing in Scenario 1. The X-axis presents
bio-metrics, the Y-axis displays batch removal metrics, and each cross represents a method's
performance, with intersections marking the average of the corresponding axis. Metrics with a
low coefficient of variation (<0.01) across methods are omitted from this plot.

To quantify batch correction methods, we examined two kinds of metrics 13,17: (1) batch removal
metrics that capture how well a method removes confounding variation from data; and (2)
conservation of biological variance, termed here as bio-metrics for short, that capture the ability
to preserve the variation related to a known biological variable (e.g. chemical compound in our
case).

There is a trade-off between bio-metrics and batch removal metrics. A method could remove all
of the confounding batch variation but simultaneously destroy the biological signal in the data.
Also notice that some of these metrics are sensitive to the number of samples per concept of
interest (e.g. compound), others focus on a notion of local neighborhood, and others consider
more global arrangement. Because different metrics capture different aspects of the correction
procedure, and no individual metric captures both effects, we took them all into consideration
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when making comparisons between multiple batch correction methods. The average of such
metric scores has been shown to be a reasonable ranking criterion 13,17. To make interpretation
easier, every metric here was normalized between 0 and 1, with 0 being the worst possible
performance and 1 the perfect performance. These quantitative metrics (Figure 2.B)
demonstrate that MAD+Sphering achieves the best performance in 4 out of 5 metrics measuring
the effectiveness of batch removal, and 4 out of 8 bio-metrics measuring how well it preserves
biological information. Overall, these results indicate that there is an advantage of applying
these two preprocessing steps.

We also compared the methods by displaying the metrics in a cartesian plane (Figure 2.C).
Again, we observed that applying both preprocessing steps was preferable according to most
metrics. We therefore selected MAD + Sphering as our Baseline approach, in agreement with
established protocols in the field 44,45. All remaining results in this paper apply this two-step
preprocessing.

Following the preprocessing, we applied the following batch correction methods that have
previously been identified as top-performing methods when applied to scRNAseq data: scVI 20,
DESC 21, MNN 23, Scanorama 22, Combat 18, and Harmony 24. We reiterate that we used
pseudo-bulk profiles and did not attempt batch correction at the single-cell level due to the
computational time required to process up to billions of cells included in a typical image-based
profiling experiment. Qualitatively, the 2D projection of the profiles after applying six different
methods, in addition to our Baseline, shows no clusters associated with any particular batch
(Figure 3.A), except for an outlier plate from Batch 2 that we identified during the course of this
study (see Dataset description). This suggests that all the methods were successfully mixing the
profiles from different batches as compared to the raw profiles (Figure 2.A). However, when
visualizing the embeddings (i.e. 2D projections of corrected profiles), we noticed that Harmony
and Combat were better at grouping the data points associated with the same compound than
others. This suggests that such methods are more effective at preserving biological information
(Figure 3.B). Here, positive control compounds exhibited better clustering (see Data
Description), which was expected as these compounds were chosen based on the strong
phenotype in previous Cell Painting experiments 46.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.558001doi: bioRxiv preprint 

https://paperpile.com/c/X1Rmzi/zEgNw+igq9p
https://paperpile.com/c/X1Rmzi/7k7I+6TPC8
https://paperpile.com/c/X1Rmzi/rbn84
https://paperpile.com/c/X1Rmzi/9VnfE
https://paperpile.com/c/X1Rmzi/ob4Qi
https://paperpile.com/c/X1Rmzi/8LeFf
https://paperpile.com/c/X1Rmzi/38yXF
https://paperpile.com/c/X1Rmzi/byobq
https://paperpile.com/c/X1Rmzi/Bjr8R
https://doi.org/10.1101/2023.09.15.558001
http://creativecommons.org/licenses/by/4.0/


Figure 3: Evaluation Scenario 1. (A) Visualization of integrated data from multiple labs using
seven batch correction methods. The experimental batch is represented by color, with the
left-to-right, top-to-bottom layout reflecting the methods' descending order of performance. (B)
Same as (A) but showing a subset of image-based profiles, colored by compound. We selected
18 out of 306 compounds with replicates in different well positions to account for position effects
that may cause profiles to look similar. Alphanumeric IDs denote positive controls. (C)
Quantitative comparison of batch correction methods. Each column represents a method. The
layout of the table mirrors Figure 2.B (D) Visualization of quantitative results after batch
correction, mirroring Figure 2.C.

Based on the quantitative metrics (Figure 3.C), Combat, MNN and Harmony improved the
performance with respect to the Baseline (MAD+Sphering) for both batch removal and
bio-metrics criteria, with Combat slightly outperforming the other two. Surprisingly, Scanorama,
DESC and scVI performed worse than the Baseline. The gap between the performance of
different methods was also seen in the cartesian plot (Figure 3.D), where Harmony, MNN,
Combat, and the Baseline achieve similar performance, while the remaining three methods are
underperforming.

In summary, Scenario 1 helped us optimize our evaluation pipeline, showing that MAD +
Sphering preprocessing produced higher quality data for subsequent batch effect correction.
Among the seven batch correction methods tested, Combat, MNN, and Harmony performed
best, while neural network-based methods (DESC and scVI) underperformed, perhaps due to
fewer samples compared to typical scRNAseq datasets where millions of single cells are used
to train the neural network. Further, scVI’s underperformance might be also attributed to its
assumptions about data distribution, specifically the negative binomial distribution for each
feature, which are not met in these data.
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Scenario 2: Single microscope type, multiple laboratories, few
compounds, multiple replicates
In this scenario we analyzed the Target2 306 compounds from 43 experimental run/batches
produced by three laboratories using the same model of microscope. We considered laboratory
ID (identifier) as the variable of interest to be factored out because it is the most dominant
confounding source (Figure 4.A). The Baseline approach was not able to integrate data from
multiple laboratories, and batch effects were notable in the embedding, with clusters dominated
by the confounding variable.

Figure 4. Evaluation Scenario 2. (A) Qualitative visualization of data from multiple laboratories
integrated using seven batch correction methods. Each color represents the laboratory source.
Left-to-right, top-to-bottom layout is given by methods’ quantitative performance in descending
order. (B) Qualitative visualization of data from multiple laboratories integrated with seven batch
correction methods. Compounds, colors, and layout order are as in Figure 3.B. (C) Performance
of batch correction methods using batch removal metrics (Top) and conservation of biological
variance metrics (Bottom). Methods order from left to right according to the mean score. (D)
Performance comparison along batch removal and conservation of biological variance criteria.

None of the methods completely eliminated the confounding variable effect as effectively as
they did in Scenario 1 (Figure 4.A). However, we observed differences in their effectiveness,
with Harmony and Scanorama clustering samples from multiple laboratories more effectively
than other methods. On the other hand, the scVI's embeddings resulted in the largest loss of
information during the correction procedure. MNN and Combat did not differ significantly from
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the Baseline representation, while DESC groups paired sources into large blobs, reducing the
structure of the embedding. When observing the embeddings labeled by compound (Figure
4.B), Harmony and Scanorama were able to group samples from the same compound. On the
other hand, Combat and MNN showed clusters with Laboratory ID as the major separation
criteria (see Figure 4.A), creating one cluster per laboratory–compound pair.

Consistent with these qualitative observations, Harmony was also the top performer in the
quantitative metrics (Figure 4.C) for both batch removal and conservation of biological variance
criteria. This result is consistent with Scenario 1 where Harmony achieved competitive
performance. Taken together, we observed that by introducing stronger technical variations, i.e.,
analyzing data from multiple laboratories, the performance of batch effect correction methods
decreased; however, methods’ rankings remained relatively consistent (Figure 4.D), with
Harmony showing superior performance.

Scenario 3: Single microscope type, multiple laboratories, multiple
compounds, few replicates
In this scenario we analyzed 82,278 compounds from 43 experimental batches produced by
three laboratories using the same model of microscope. We again factored out laboratory ID as
the batch-related variable of interest because it is the most dominant confounding source
(Figure 5.A). This scenario posed an additional challenge due to the reduced number of
replicates for most of the compounds; around 16,000 compounds had only one replicate, and
~77,000 had 3 or fewer replicates. Importantly, the eight positive controls had around 2,500
replicates each.

We again began with our qualitative evaluation, which in this scenario was limited due to the
large number of compounds to display. In general, several batch correction methods partially
aligned the data, obtaining better clusters for compounds with many replicates, as expected
(Figure 5.B). Quantitatively, Harmony and Scanorama again obtained better results than the
Baseline, while Combat, MNN, scVI, and DESC underperformed in both bio-metrics and batch
metrics (Fig Scenario3.C). As in Scenario 1, we attribute the low performance of scVI and DESC
to the few available replicates per compound and unmet assumptions about data distribution.
Overall, the increased complexity of the dataset resulted in a decreased gap across the
methods (Figure 5.D). In other words, all methods struggled to remove the batch effects, as they
remained notable after attempts at correction. Compared to Scenario 2, the methods were
generally less effective when dealing with more compounds and fewer replicates.
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Figure 5. Evaluation Scenario 3. All panels mirror Figure 4, except (B) where the compounds
were selected based on two criteria: we selected all eight positive controls and the top 16
compounds with the smallest dispersion amongst their replicates (measured by the median
pairwise Euclidean distance among replicates).

Scenario 4: Multiple microscope types, multiple laboratories, few
compounds, multiple replicates
In this scenario we analyzed the Target2 306 compounds from 46 experimental run/batches
produced by five laboratories using three different high-throughput imaging systems. Three
sources used the CellVoyager CV8000 system, one source used the ImageXpress Micro
Confocal system, and one source used the Opera Phenix system. This Scenario was similar to
Scenario 2 given the same number of unique compounds; however, in Scenario 4 the batch
effects are mainly influenced by the differences in imaging technologies (Figure. 6.E) We again
considered laboratory ID as the technical variable of interest to be factored out to stay
consistent with Scenarios 2 and 3.

We observed that Harmony and Scanorama were qualitatively better (Figure 6.A, 6.B), with
Harmony generating the best quantitative results (Figure 6.C, 6.D). For MNN and Combat, their
assumptions of orthogonality between biological signal and batch variation (MNN), and the
additivity and linearity of batch effects (Combat), might not have been sufficient or did not hold
true for this complex scenario, resulting in suboptimal performance. DESC also underperformed
with respect to the Baseline, while scVI was slightly better. Compared to Scenario 2, the
performance consistently decreased across all of the methods in most of the metrics, and the
batch metrics exhibited the highest drop, indicating that differences in instrumentation had a
strong impact on ability to align data.
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Figure 6. Evaluation Scenario 4. All panels mirror Figure 4, except (E) which is identical to (A)
with the colors indicating microscope.

Scenario 5: Multiple microscope types, multiple laboratories,
multiple compounds, few replicates
In the final, most complex scenario we analyzed 82,414 compounds from 60 experimental
run/batches produced by five laboratories using different microscope systems as described in
Scenario 4. Again, we found that the differences between microscopes was the strongest
confounding factor (Figure 7.E). The 2D embeddings for DESC, Combat, MNN and Sphering
form many clusters; however those are still dominated by the source (Figure 7.A). Qualitative
comparison helped us to differentiate methods that failed to integrate data from different sources
and/or laboratories, but was less useful to check whether they preserved the biological
information (Figure 7.B). We attributed this not only to overplotting, but also to aggressive
dimensionality reduction. For example, for the data corrected with Harmony, the first 10 principal
components explained only 70% of the variance.

Harmony performed the best in terms of batch metrics and bio-metrics, and Scanorama was
closely competitive. Although DESC scored best for several bio-metrics, it performed poorly in
some of the batch metrics. This might be linked to the clustering observed in the 2D
embeddings (Figure 7), where the local neighborhood was dominated by source; thus, even
though the representation puts replicates of the same compound nearby, they are still separated
by source.
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Figure 7. Evaluation Scenario 5. All panels mirror Figure 5, except (E) which is identical to (A)
with the colors indicating microscope.

Discussion
High-throughput image-based assays represent powerful strategies for making biological
discoveries and facilitating development of new therapeutics. These assays, such as Cell
Painting, capture large amounts of data that can be used to connect genetic or pharmacological
perturbations to specific changes in cellular morphology and/or phenotype. Over the last
decade, the amount of image-based data has grown exponentially. However, the data
benchmarking, processing, management, comparison and evaluation of image-based profiles
remains challenging. One of the current challenges for the field has been the lack of robust
batch correction methods, making it difficult to compare image-based profile data from different
instruments, laboratories or even between different batches from the same laboratory. Without
such solutions, public databases will be useless. Here, we address this problem by creating a
framework for evaluation and systematic comparison of batch correction methods for
image-based profiling. We applied our strategy to comparing seven different batch correction
methods that have been originally developed for use with scRNAseq data. Similar to scRNAseq
data, we found that no single metric is a complete indicator of performance and that surveying
multiple metrics and qualitative visualizations improves our ability to compare the methods.

Overall, across five relevant scenarios of increasing complexity that we tested (batches within a
lab, across laboratories and across imaging instrumentation, all with more or fewer compounds),
we found that Harmony (and to a lesser extent, Scanorama), consistently outperforms the other
tested methods. We consider Harmony to be a good trade-off: as a non-linear based approach it
lacks the high complexity of the tested neural-network-based approaches, for which the
available data in high-throughput experiments is often insufficient. In less complex scenarios,
simpler methods may suffice; for example, for data generated in the same laboratory with many
replicates of the compounds, the Baseline was sufficient to correct most of the batch effects,
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even though Harmony and Combat performed slightly better. However, we observed that as
technical and biological variance increases, linear models such as Combat or Sphering fall short
in aligning the data.

Although Harmony outperformed other methods tested, it’s important to point out a possible
limitation for extensibility: it requires processing of all the data to re-align new batches against
an existing dataset. This has a major impact on the ability of users to align their data with a
large public dataset as it requires reprocessing and modifying existing representations.
Therefore, further strategies, such as domain adaptation techniques 47,48 and self-supervised
methods tailored for tabular data, 49 may represent promising alternatives. These methods,
grounded in machine learning principles, are inherently flexible, allowing for incremental
learning and the integration of new data without altering the previously established
representations. While still in the exploratory stages for our context, these approaches have
demonstrated potential in similar high-dimensionality scenarios and may provide an effective
solution to batch alignment challenges that arise when incrementally expanding large datasets
50,51.

Importantly, we discovered that in the most difficult-to-align scenarios, none of the methods are
able to adequately remove the batch effects. In fact, the best methods provide the greatest
improvement in the least difficult-to-align scenarios. This raises a call for advancements from
the field. Our study focused on bulk (population-averaged) profiles. It is possible that applying
batch correction at the level of single cell profiles (likely subsampled), or even at a lower level
using raw pixels, may yield better results. Among the methods we tested, Sphering, Combat,
DESC, and scVI are suited for training on subsampled data at the single-cell level. Although
neural networks have been explored, implementation and evaluation of these methods at the
JUMP-dataset scale with billions of cells still represents a challenge.

Experimental procedures

Dataset description

The JUMP Cell Painting dataset 12 is a collection of several datasets that were either generated
or reprocessed by the JUMP Cell Painting Consortium. The primary dataset (referred to as
cpg0016) was generated during the data production phase of the JUMP-CP project. It
comprises a compound dataset (116,753 perturbations), an Open Reading Frame gene
overexpression dataset (15,142 perturbation) and a CRISPR gene knockout dataset (7,977
perturbations).

The compound dataset in cpg0016 was generated across 11 data producing sites (or “sources”).
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Each source, apart from source_7, exchanged their nominated compounds with either two or
four other sources where they were assayed using different instruments and microscopes
(details are provided in the Methods section of 12). To simplify logistics, the sites were split into
two groups; each site exchanged compounds only within their respective groups. In this paper,
we use only a subset of the compound dataset, comprising all the 82,414 chemical
perturbations from one of the two groups.

A positive control plate of 306 diverse compounds – named JUMP-Target-2-Compound – was
run with every batch of data generation. These plates not only allow alignment of data within the
JUMP dataset, but also with future datasets generated outside the consortium and can thus be
considered as control plates. In this paper, JUMP-Target-2-Compound plates are referred to as
Target2 plates for brevity; the remaining plates – comprising the 116,753 chemical perturbations
– are referred to as Production plates.

All Production plates have negative controls and several positive controls to identify and/or
correct for different experimental artifacts.

● Dimethyl Sulfoxide (DMSO) -treated wells serve as negative controls. They are used for
detecting and correcting plate to plate variations. They can also be used as a baseline
for identifying perturbations with a detectable morphological signal.

● Using a pilot dataset (CPJUMP1 46) generated by the JUMP Cell Painting Consortium,
we identified a set of eight compounds with the most distinct signatures from each other
and from DMSO; these are used as positive controls. The identity of each compound is
provided in Supplementary Table 1 of 12.

Images in the study were processed using CellProfiler bioimage analysis software to measure
cellular features such as intensity, granularity, texture, and shape. The image-based profiling
involved processing the CellProfiler features using pycytominer 52 to normalize each feature and
filter out redundant and invariant features. The available data includes images, single-cell
profiles, and different levels of well-level profiles. Please refer to 12 for detailed information about
the image and data processing and data availability.

As noted in Results, we observed an outlier plate during the course of our analysis: Images from
plate 110000293093 in Batch 2 of source_6 had been reprocessed because it failed in the initial
run. This plate likely contains a stronger technical deviation than the others due to the separate
reprocessing event. We didn't delve into investigating this anomaly further, as our focus
remained on broader patterns of batch correction across the dataset.

Metrics
We computed five metrics for batch removal efficiency and eight metrics to measure how well
the correction preserves biological information, previously reported in single-cell RNA-Seq
benchmarks 13,17. They are implemented in the scib package1. To make interpretation easier,
every metric is normalized between 0 and 1 with 0 being the worst possible performance and 1

1 https://github.com/theislab/scib
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the perfect performance. A short description of each method is provided below. More details are
provided in Luecken et al. 17.

● ASW-based: The average silhouette width (ASW) is a measure of how well a sample is
assigned to its cluster. ASW_label metric considers the compound as the cluster ID;
while ASW_label/batch metric considers the confounding variable as the cluster ID.

● PCR_batch: Computes the between each principal component and the confounding𝑅2

variable before and after correction. The difference between the sum of such values
before and after correction determines the batch removal efficiency. We reported
PCR_batch in Scenario 1 using the Raw as representation before correction. We do not
report PCR_batch in Scenario 2 onwards because the Raw representation does not
provide an insightful comparison in more complex scenarios.

● Graph_conn: Uses the k-NN graph to measure the connectivity of each sample and
those that belong to the same compound. This metric assumes If the batch effects were
effectively removed, then the elements of the same biological concept should be close
together.

● LISI-based: LISI is a metric based on the Simpson's diversity Index to measure the
diversity of a sample's local neighborhood in the data. iLISI uses the confounding
variable to measure such diversity; while cLISI uses the compound annotations to
measure such diversity.

● kBET: Compares the global distribution and the local distribution of the confounding
variable for each sample in the dataset. If the confounding variable is effectively
removed, then such distributions should be similar.

● ARI_cluster and NMI_cluster: Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI) measure the agreement between two clustering assignments.
ARI_cluster and NMI_cluster metrics computes agreement between the clustering
assignments of the Louvain algorithm applied over the corrected data and the compound
annotations.

● Isolated_label metrics: Isolated_label_F1 and isolated_label_silhouette metrics aim to
capture the effectiveness of the correction methods in compounds not present in all of
the batches by computing F1 and ASW scores within each cluster generated by the
Louvain algorithm on the compounds present in the least number of batches.

We additionally report mean average precision as a bio-metric (how distinguishable are
samples of the same compound from other compounds – i.e., are they retrieved towards the top
of a list of samples ranked by similarity to the query compound?). We measure similarity
between samples using cosine similarity.

Following the information retrieval convention, each sample in the dataset is considered a
query; K other samples sharing the same compound are considered positive elements to be
retrieved; and N samples belonging to the same query’s plate with different compound
annotations are considered negative elements. The rank list is computed using the cosine
similarity between the corrected profiles. Once computed, we estimate a p-value for each query
by computing 10000 shuffled ranked lists mimicking the size K+P (random baseline), where K is
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the number of positive matches and P is the number of reference samples. Finally, we average
the AP, termed mean_average_precision, of each compound and combine their p-values using
the Fisher's method. We computed a q-value for each compound by applying the Benjamini &
Hochberg procedure to control for the false discovery rate. The fraction_positive_q metric is
the ratio of compounds for which its q-value is lower than 0.05.

Implementation
● MAD scales profile vectors feature-wise using mean absolute deviation (

) at the plate level. We added an epsilon value to the denominator to𝑥 =  𝑥 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)
𝑚𝑎𝑑(𝑥)+ϵ ϵ

avoid zero-division errors. and Sphering regularizationϵ~10 𝑈(−4, 1) λ~10 𝑈(−6, 1)

hyperparameters were randomly explored and the best combination out of 25 runs was
chosen according to the performance in the Target2 data.

● For scVI, we shifted the data to the feasible space. (i.e. transform each feature

)𝑥
𝑖

^
 =  𝑥

𝑖
− 𝑚𝑖𝑛(𝑥) + 1

● Metrics computed with the scib package are reported only for compounds with at least 5
replicates.

● The nature of the image-based profiles data involving low number of replicates and high
number of compounds limits metrics such as kBET that rely on a higher (>15) number of
samples per biological concept.

● mean_average_precision is the only metric able to capture the performance of the
models when there are as few as only two replicates of a compound.

● We use Minimal Distortion Embedding (MDE) 41 for embedding visualization with default
parameters from the scib package. MDE is a framework that generalizes PCA and
UMAP dimensionality reduction methods. Scib implementation scales to large datasets
and allows the usage of GPU for faster computation.
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