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Abstract

Our study investigated the effectiveness of Oxford Nanopore Technology for accurate
outbreak tracing by resequencing a three-year-long Klebsiella pneumoniae outbreak with
lllumina short-read sequencing data as the point of reference. We detected considerable
base errors through cgMLST and phylogenetic analysis of genomes sequenced with
Nanopore compared to the lllumina data, leading to the false exclusion of some
outbreak-related strains from the outbreak cluster. Nearby methylation sites cause these
errors and can also be found in other species besides K. pneumoniae. Based on this data,
we explored PCR-based sequencing and a masking strategy, which both successfully
addressed these inaccuracies and ensured accurate outbreak tracing. Additionally, we offer
a bioinformatic workflow to identify and mask problematic genome positions in a

reference-free manner. Without further technological developments, our study recommends
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PCR-based sequencing for outbreak tracing to avoid spurious base calls from Nanopore

data.

Background/Introduction

Whole genome sequencing is essential for analysing outbreaks, pandemics, or phylogenetic
relationships [1], [2]. The recent SARS-CoV-2 pandemic has thus led to a leap in the
integration and expansion of sequencing capacities in many laboratories and hospitals,
predominantly using lllumina for short-read sequencing or Oxford Nanopore Technologies for
long-read sequencing (approx. 78% and 18%, respectively) [3]. Beyond viral pandemic
tracking, bacterial pathogen outbreaks, particularly those linked to antibiotic resistance,
continue to impose a significant global public health burden. Gram-negative bacteria, in
particular, rapidly acquire antibiotic resistance via horizontal gene transfer from other species
[4]-[6]. This mechanism complicates tracking outbreaks or identifying their origin, as a single
specific plasmid or mobile element can be responsible for a persistent outbreak or multiple
outbreaks across unrelated species [5], [7]-[9].

Effectively tracking these complex molecular mechanisms requires careful strategic
monitoring and sequencing-based investigation. Consequently, the accuracy and continuity
of the genome data is paramount. lllumina, a short-read sequencing method with an error
rate of less than 0.8% in raw data, is frequently used as its complementary genome
reconstruction precision exceeds 99.997% [10]. However, repetitive elements, such as
transposons, present a substantial challenge for short reads when reconstructing closed
bacterial genomes and their accompanying plasmids. Long-read sequencing technologies
like Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT) can resolve such
elements, e.g. plasmids, as they achieve longer read lengths averaging around 10-20 kb and
even up to 3.85 Mb in the case of ONT [11]-[14].

Real-time sequencing allows data collection and analysis, while sequencing positions Oxford

Nanopore Technologies as an appealing choice for hospital surveillance and outbreak
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control [15]. Owing to their recently launched Flowcells (R10.4.1) and Chemistry
(SQK-NBD114.24), they have achieved raw read accuracy that now exceeds 99.1% [16].
Several studies have shared their findings and reported accuracy levels similar to those from
short-read data [17], [18]. However, significant discrepancies between Illumina and
Nanopore genomes were also observed for some organisms [19].

When investigating outbreaks, these contradictions can lead to inaccurate conclusions. In
addition, genomes are usually stored in open public databases such as NCBI or ENA, which
other scientists use as references for their work. Therefore, we used ONT to reevaluate a
well-documented, three-year-long outbreak initially analysed with lllumina data to address
these contradictory statements [20]. K. pneumonia is an ideal microorganism for this topic,
as it is a common pathogen linked to hospital-wide outbreaks carrying plasmids with
multidrug resistance genes [21]. When using ONT-only data, we identified a few critical
issues leading to false basecalls for K. pneumonia. We noticed similar problems and clear
patterns in other organisms, which need to be considered during outbreak identification,

even though we could resolve them.

Results

Erroneous basecalls occur in some strains but not others and
vary by basecaller and sequencing kits

We resequenced the genomes of 33 randomly selected K. pneumonia samples (from a total
of 114 outbreak-related isolates) using R10.4 and R10.4.1 flowcells, along with the
corresponding library preparation kits (henceforth “Kit 12”: SQK-NBD112.24 (early access)
and “Kit 14”: SQK-NBD114.24 (successor)), to examine if the previously documented
conflicting statements could be replicated [17]-[19]. We used cgMLST analysis to compare

the sequenced genomes against lllumina data. The comparison revealed 11 outliers,
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showing high deviations to lllumina genomes and not matching the outbreak cluster out of 33
samples in the Nanopore data (Supplementary Figure 1). While the remaining samples
closely matched the lllumina genomes, the outliers fit the inconsistencies between ONT and
Illumina, as reported in some literature. To assess whether either the basecaller or their
models might be responsible, we re-basecalled and compared an outlier sample (UR2602)
in detail to three samples, where we assume error-free genomes since matching Illumina
genomes in cgMLST typing. To investigate the influence of Kit 14 and Kit 12, their associated
flowcells, different basecallers (Guppy and Dorado) and model combinations on the
basecalling error(Figure 1; see method section “Basecalling and Assembly” for further

details).
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Figure 1: CgMLST typing reveals allelic differences between genomes utilising
different Basecaller and Sequencing Kits. The Minimum spanning tree pictures four K.
pneumonia samples based on 2365 loci to compare the allelic variations. Nodes (samples)
are connected by lines depicting the distance by numbers of allelic differences. Loci are
considered different if one or more bases change between the samples. Loci without allelic
differences are described as being the same. All isolates were prepared with Kit 14 and Kit
12 and basecalled with each respective Guppy “super accurate” basecalling model (see
methods “Basecalling and Assembly”). We basecalled all Kit 14 - prepared samples with
Dorado using the default and a modification-aware model (see methods “Basecalling and

Assembly”).
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Based on 2359 loci for the cgMLST, no allelic differences, regardless of kit, basecaller or
basecaller model, were identified for the isolates UR144350, VA13324 and TP3419. In
contrast, the outlier sample (UR2602) revealed allelic variations to lllumina for each kit and
basecaller. Despite both basecaller using the same raw signal data, 35 allelic differences by

Guppy and 44 by Dorado without accordances were detected.

By cgMLST typing, the outlier sample prepared with Kit 14 would not be included as an
outbreak isolate due to its 35 or 44 allelic differences, even though it is part of the outbreak.
Conversely, when prepared with early access Kit 12, the same isolate would be considered
as only four loci could be observed (adhering to the recommended allelic difference cutoff of
15). Since the basecalling models disagreed on the allelic differences, we suspected more
issues within the raw data (reads and raw signals) and conducted a comprehensive analysis

of all possible affected positions.

Ambiguities in purine or pyrimidine discrimination for a subset

of genome positions can cause erroneous basecalls

The first visual inspection of mapped reads to the assembly revealed ambiguous positions
with varying base ratios. For further characterisation of these positions, we examine our data
on the sequence, nucleotide and raw signal level (Figure 2). For each ambiguous position on
the chromosomal DNA for 33 K. pneumoniae outbreak samples, we determined the ratio
between the two bases by counting their occurrences within the read data at that position
(Figure 2 A). Searching for characteristic “indicator” sequence motifs, we explored the
surrounding base for each detected ambiguous position and plotted the observed pattern as
a sequence logo (Figure 2 B and Supplementary Table 1). Additionally, we compared the

methylated and unmethylated raw signals around these ambiguous positions (Figure 2 C).
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Figure 2: Overall investigation for ambiguous positions. A: Violin chart showing the ratio
between two bases within the read data for 6,556 ambiguous positions in 33 K. pneumonia
samples. Every ambiguous position is distinguished by which two bases appear and labelled
by their respective degenerative base (IUPAC nucleotide code). For example, "R" stands for
a combination where either A or G is found at that position. Each dot represents a base
occurrence within the respective base combination at the ambiguous position. B: Sequence
logo of observed sequence pattern around the ambiguous bases R and Y on the
chromosomal contig of K. pneumonia for one sample. C: Raw signal level (fast5/pod5) of
ambiguous positions (yellow) for Kit 14 (above) with methylated bases and SQK-RPB114.24
without modifications (below). Less clear signals are observable in ambiguous positions
(yellow) for Kit 14. Signal plots were generated with remora (v.2.1.3;

github.com/nanoporetech/remora).
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As highlighted in Figure 2 A, in some positions, the basecaller can not determine between
either of two bases, expressed by specific base ratios varying per position and resulting in
erroneous assemblies. We could not observe ambiguous positions containing three different
bases. For clarity, we assign the IPUAC nucleotide code for degenerate bases (K, M, R, S,
W, Y) to each ambiguous position varying between two bases. Accordingly, we will refer, e.g.

to "R" when the positions contain A or G in the read data.

Out of our 33 K. pneumonia outbreak isolates analysis, we have discovered 6,556 positions
that exhibit ambiguity (Figure 2A). The ambiguity mainly resolved around 3,311 positions for
R and 3,111 for Y. In 5442 of 6455 R and Y positions (84,31%), the basecalled reads lean
towards the stronger base (C or G). We detected other ambiguous positions in K (44), M
(34), S (51) and W (5), but with comparable lower occurences. It is essential to acknowledge
that not all identified ambiguous positions result in errors in the final genome, which explains
the varying error profile of the same sample. Errors in these ambiguous positions mainly

arise when deciding between purine bases (A or G) or pyrimidine bases (T or C).

In the error-prone genomes of the K. pneumoniae outbreak, we detected preserved patterns
around the ambiguous positions R and Y (Figure 2B). These sequence motifs are
reverse-complement patterns (RACG/CGTY), pointing to a singular issue. Compared to
other isolates of K. pneumonia, we also observed additional patterns. These motifs are likely

specific to particular strains.

Furthermore, we examined and collected additional genomes that utilised the Kit 14 library
preparation for sequencing (264 isolates across 32 species) to investigate whether the
ambiguous positions are K. pneumoniae exclusive (Table 1). We determine the fewest
ambiguous positions (0 to 1) in B. pertussis compared to all other species samples. In
contrast, all 10 Enterococcus faecalis isolates had over 200 ambiguous positions. If we look
at all isolates, over 40% of 264 screened samples have more than 50 ambiguous positions.

Across all species, the most minor shared sequence motif was at least RA/TY. Certain
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species, such as Acinetobacter junii, Acinetobacter radioresistens, Chryseobacterium gleum,
Enterobacter cloacae, Micrococcus luteus and Stenotrophomonas maltophilia, exhibited a
considerable number of ambiguous positions. This suggests that many species may be

impacted, but not necessarily within all strains.

As methylated bases are probably liable for ambiguous positions, we compared sequencing
data with methylations (Kit 14) (Figure 2 C above) and without (SQK-RPB114.24) (Figure 2
C below) on the raw signal level from fast5/pod5 files before basecalling occurs. For native
sequencing, less clear signals at these positions are observable, which might cause these
ambiguous basecalls. These noisy signals could explain the frequencies of bases we
detected (Figure 2A) and, thus, the basecaller’s difficulty in deciding on a specific base for

that position.

We found no coherent methylation motifs in the literature that would fit the observed pattern.
Nevertheless, it has been reported that methylated bases can affect the raw signal in the
surrounding region [22]. Thus, we can not determine whether multiple methylation motifs are
the cause or if an unknown motif is present. Accordingly, to these findings, we evaluated
whether PCR-based sequencing or a bioinformatic masking strategy for ambiguous positions

can reliably remove these errors for outbreak analysis.
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Table 1: Overview of R (A-G) and Y (T-C) base ambiguity for 264 isolates from 32 various species, sequenced with Oxford Nanopore

Technologies using Kit 14. Only chromosomal contigs were analysed, and only super accurate basecalling models were used. Genomes were

coverage masked by N if below a read depth of 10x. N positions were not considered for the table to avoid overestimating one base ambiguity.

s | W amon oY 10110602 | e | s
Achromobacter xylosoxidans 1 0 (0%) 6 4 NA *)
Acinetobacter baumannii 15 5 (33,33%) 22,53 (0/109) 19,87 (0/83) NA "
Acinetobacter junii 1 1(100%) 279 203 el ")
Acinetobacter mesopotamicus 1 1 (100%) 53 28 NA *)
Acinetobacter radioresistens 1 1(100%) 175 150 $¢ )
Acinetobacter soli 1 0 (0%) 12 11 NA )
Bordetella pertussis 40 0 (0%) 0,1 (0/1) 0,2 (0/1) NA [17]
Chryseobacterium arthrosphaerae 1 0 (0%) 13 7 NA )
Chryseobacterium gleum 1 1(100%) 218 217 gg%?g %)
Citrobacter freundi 3 3 (100%) 145,67 (49/329) 137,67 (39/319) CRATGTC "

GACATYG
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RA

Citrobacter portucalensis 2 2 (100%) 29 (26/32) 29 (28/30) TY *)
Enterobacter cloacae 1 1 (100%) 153 162 NA *)
Enterobacter hormaechei 5 1 (20%) 15,60 (4/45) 15,60 (6/42) NA *)
. o TRAG
Enterococcus faecalis 10 10 (100%) 250,40 (223/275) 249,00 (210/270) CTYA +)
, 0 RACC
Enterococcus faecium 19 2 (10,53%) 15,74 (0/27) 14,63 (0/28) GGTY #)
Escherichia coli 8 3 (37,50%) 31,38 (2/118) 29,31 (4/111) NA *)
. . o RAT N
Escherichia flexneri 10 9 (90%) 49,10 (19/88) 44,70 (18/88) ATY )
Klebsiella aerogenes 1 0 (0%) 22 17 NA *)
Klebsiella michiganensis 1 1 (100%) 56 42 NA *)
Klebsiella pneumonia 70 38 (54,29%) 97,04 (3/835) 92,47 (3/847) 'ég% ,[)22])
Klebsiella oxytoca 1 0 (0%) 5 9 NA )
Listeria monocytogenes 17 3 (17,65%) 37,94 (0/514) 40,82 (0/557) NA #)
, CRAC N
Micrococcus luteus 1 1 (100%) 172 220 GTYG )

10
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CRAC

Proteus mirabilis 1 1 (100%) 45 43 GTYG )

Pseudomonas aeruginosa 19 6 (33,33%) 389,17 (0/2251) 387,56 (0/2290) g'gRTﬁchT; ")
L o CCRA "

Pseudomonas asiatica 2 1 (50%) 145 (0/290) 144,50 (0/289) TYGG )

Pseudomonas stutzeri 1 0 (0%) 14 16 NA *)

Salmonella enterica 2 1 (50%) 41,5 (7/76) 42,5 (7/78) NA *)
Stenotrophomonas maltophilia 1 1(100%) 229 171 gf‘r%g’f‘ri ")
. o CCRA N
Serratia marcescens 4 4 (100%) 107,75 (68/178) 99,5 (67/171) TYGG )
Shewanella algae 2 2 (100%) 71,5 (37/106) 50 (32/68) NA *)

o RACC
Staphylococcus aureus 20 8 (40%) 23,35 (0/99) 23,35 (0/97) GGTY #)

) Sequenced strains received from Leibniz-Institute of Photonic Technology, Optisch-Molekulare Diagnostik und Systemtechnologie

# Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz

*Own samples from the Jena University Hospital
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Strategies to mitigate methylation-induced basecalling errors

To solve methylation-induced basecalling errors in ambiguous base positions, we evaluated
two strategies: 1) We resequenced eight K. pneumoniae outbreak samples using the
Nanopore Rapid PCR Barcoding Kit (SQK-RPB114.24) to remove methylated bases prior to
sequencing and analysed the genomes using cgMLST typing and phylogenetic analysis
(Figure 3 A and B). 2) We masked ambiguous positions for Kit 14 prepared genomes with
our bioinformatic workflow (see method section “Workflow for detecting and masking of
ambiguous positions”). It is important to mention that these masked assemblies cannot be
used for cgMLST analysis because allelic differences cannot be accurately determined for
genes with masked bases. Therefore, the masked genomes were only used for phylogenetic

analysis (Figure 3 B).
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Figure 3: PCR-based sequencing or masking of ambiguous positions reduces allelic
or phylogenetic distances between lllumina and nanopore genomes. A: Minimum
spanning trees of each of eight K. pneumoniae outbreak samples based on 2365 loci to
compare the allelic variations between lllumina genomes to Nanopore SQK-NBD114.24
(kit14; left) and SQK-RPB114.24 (pcr; right) showing a reduction in allelic differences. Nodes
(samples) are connected by lines depicting the distance by numbers of allelic differences.
Loci are considered different whether one or more bases change between the samples. Loci
without allelic differences are described as being the same. B: Phylogenetic tree to figure

the genetic distances between eight K. pneumoniae outbreak samples (coloured nodes),
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prepared with lllumina (ill), Nanopore SQK-NBD114.24 (kit14) and SQK-RPB114.24 (pcr)

compared to the masked Kit 14 assemblies (masked).

When comparing the Native Barcoding with the PCR-based Kit, the genome assemblies
significantly reduced ambiguous positions from 2,316 to just 14 for R & Y across the eight
resequenced K. pneumoniae samples (Supplementary Table 2). Both the minimal spanning
trees and the phylogenetic tree also show this significant improvement in genome quality for
Nanopore (Figure 3). According to the cgMLST typing, the outlier samples UR2602 and
BK12739 now closely match the lllumina genome, down to only one allele difference from
35/33 (Figure 3 A). When comparing phylogenetic distances within the phylogenetic tree, an
increased convergence with the llumina genomes, particularly for the outlier samples, was
observed, too (Figure 3 B). Additionally, masked and PCR-based assemblies have almost no

phylogenetic divergence.

Further, we analysed the phylogenetic tree containing native Kit 14, masked native Kit 14,
and lllumina genomes for all 33 K. pneumoniae samples (Supplementary Figure 2). These
include 11 Kit 14 outliers (average of 492 ambiguous positions) and 22 Kit 14 genomes with
an average of less than 52 ambiguous positions. We observed two types of phylogenic
distances between Nanopore Kit 14 and lllumina: The expected considerable distances
between the outlier and Illlumina genomes are due to ambiguity and, in some cases, a

phylogenetic distance for which ambiguity is not the causation.

By masking ambiguous bases, we observed that 8 of 11 outlier genomes now closely align
with their respective lllumina genome. The remaining three outlier samples changed their
tree positions after masking, now closely aligning with other lllumina genomes but still
diverged from their corresponding Illumina genome due to other non-ambiguity-related
differences. For the other 22 masked Kit 14 genomes with less ambiguity than the outliers,
we did not observe any substantial changes in their tree positions, as fewer positions were

masked.
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In summary, 22 out of 33 masked Nanopore genomes align with their respective lllumina
genomes, and the remaining 11 do not. In these cases, the remaining distances do not result
from ambiguous positions within the Nanopore assemblies. For instance, the lllumina and
Nanopore genomes of TP3870 matched perfectly in the minimal spanning tree, but they
exhibited some distance from each other in the phylogenetic tree (Supplementary Figure 2).
We identified reconstruction issues in these short-read assemblies, primarily manifesting in
non-coding regions. Since cgMLST typing is performed comparing coding sequences only,
these errors do not affect the result analysis. Therefore, we recommend using only one

technology when performing whole genome comparison for outbreak analysis.

Discussion

Over the past few years, Oxford Nanopore Technologies has been effectively used to
monitor and track the SARS-CoV-2 pandemic and its viral lineages. Despite this,
contradictory reports have emerged regarding the consistency of Nanopore-sequenced
bacterial genomes compared to lllumina-based. Our research examined whether Oxford

Nanopore Technology could accurately analyse bacterial outbreaks.

For our investigation, we resequenced a well-documented 3-year K. pneumoniae outbreak
using the Nanopore Native Barcoding Kit 14 for Library preparation. Our analyses
demonstrated that the raw signals were impacted by methylated bases, creating ambiguous
positions through basecalling and leading to erroneous exclusions of certain
outbreak-associated strains. Despite focusing on K. pneumoniae initially, other prokaryotic

organisms are also impacted.

Based on our in-depth investigation, we recommend using the Nanopore Rapid PCR
Barcoding Kit for sequencing to eliminate these ambiguities in the final genome assemblies.
However, this method decreases the read length to roughly 3,500 bp, posing difficulties in

achieving closed plasmids and genomes, similar to other short-read approaches but to a
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way lesser extent. To obtain error-free and closed genomes, we suggest utilising both
sequencing kits for library preparation and pooling their libraries in approximately 30/70 ratio
(native to PCR-based) prior to flowcell loading. This should offset the imbalances in
ambiguous positions while maintaining reasonable cost-effectiveness. For samples already
sequenced without any involvement of PCR, we propose using the provided MPOA workflow

(https://github.com/replikation/MPOA) to assess the quality of each genome. This workflow

offers information about the frequency of ambiguous positions and masks them without
needing another reference. Though these masked assemblies cannot be used for cgMLST,

they remain suitable for constructing phylogenetic trees for outbreak tracking.

Given the notable strides made in direct methylation calling techniques, Oxford Nanopore
Technology might overcome the issues with ambiguous positions. If available in high enough
quantities, Duplex reads (connecting and sequencing both strands) might provide better raw
signal data for accurate basecalling. Nevertheless, we encourage careful testing and
reevaluation of sequencing chemistry and basecalling algorithms with more prokaryotic

samples to avoid erroneous conclusions based on these ambiguous positions.
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Conclusions

Our research highlights the drawback of using Oxford Nanopore Technologies for
sequencing prokaryotic organisms, particularly in the context of outbreak investigation. We
have outlined how uncertainties induced by methylated bases in genome positions can
falsely exclude strains related to outbreaks. To remove these errors, we have proposed
solutions, such as using PCR-based sequencing kits and our bioinformatics workflow.
Additionally, advancements in direct methylation calling and the possible use of duplex reads
might enhance the precision of Nanopore-based genome sequencing. However, these
advancements will necessitate thorough validation and comprehensive testing across varied
prokaryotic samples to ensure their reliability. Therefore, using Oxford Nanopore sequencing
for tracing infectious disease outbreaks in the future requires a thorough comprehension of

this current drawback and a continuous commitment to validate the associated methodology.
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Methods

Isolates and Genomic Data

Nanopore sequencing data from three institutes have been collected and analysed. The
sequencing data includes 264 isolates from 32 species, provided by the Leibniz-Institute of
Photonic Technology Jena, Medical University of Graz and University Hospital Jena.
Additionally, a set of 80 samples containing K. pneumonia, Enterococcus faeces, Listeria
monocytogenes, and Staphylococcus aureus from a ring trail were used for analysis.
University Hospital Leipzig provided 33 K. pneumonia outbreak isolates and lllumina

sequencing data.

Genomic DNA Isolation

Isolates from 10% glycerin cryo culture streaked out on Columbia Agar with 5% Sheep Blood
(Becton Dickinson). After overnight incubation, a single colony was selected and cultured
overnight in liquid MH-Broth. Genomic DNA was isolated via ZymoBIOMICS DNA Microprep
Kit (D4301 & D4305) from ZymoResearch with modifications to enhance the output yield.
Qubit dsDNA BR Assay-Kit (Thermo Fisher Scientific) was employed to quantify DNA
concentrations obtained from each isolate accurately. This kit uses fluorescent dyes to

measure double-stranded DNA to ensure reliable results.

Whole Genome Sequencing

To prepare the library for sequencing using Oxford Nanopore Technologies' Gridlon system,
we used the Native Barcoding Kit 24 V12 (SQK-NBD112.24, Oxford Nanopore Technologies)
and Native Barcoding Kit 24 V14 (SQK-NBD114.24, Oxford Nanopore Technologies) with
R10.4 and R10.4.1 flowcells, respectively. Both sequencing protocols were optimised

regarding prolonged incubation times. Additionally, one library was prepared with Rapid PCR
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Barcoding Kit 24 (SQK-RPB114.24, Oxford Nanopore Technologies) for sequencing on
R10.4.1 flowcell. Sequencing of libraries prepared with SQK-NBD112.24 and
SQK-NBD114.24 was conducted with 4Hz and 260bp/s instead of 5Hz and 400bp/s for
SQK-RPB114.24. The DNA fragments minimum length for all sequencing runs was set to

200bp in MinKNOW (v22.12.5) software.

Basecalling and Assembly

Basecalling and barcode demultiplexing were performed on the Gridion deploying Guppy
(v6.4.6) using super accurate mode models associated with the different used sequencing
kits (dna_r10.4_e8.1_sup.cfg, dna_r10.4.1_e8.2 260bps_sup.cfg,
dna_r10.4.1_e8.2_5khz_400bps_sup.cfg). For further analysis, Dorado (v0.3.0)

was used (dna_r10.4.1_e8.2_260bps_sup.cfg and
dna_r10.4.1_e8.2_260bps_modbases_5mc_cg_sup.cfg)

De novo assembly was conducted using Flye (v2.9) [23]. The assembly was polished by
minimap2 [24] (v2.18), racon' (v1.4.20) and medaka? (v1.5.0) using following models:
r104_e81_sup_g5015, dna_r10.4.1_e8.2_260bps_sup@v3.5.2,

r1041_e82 260bps_sup g632.

Core genome multilocus sequence typing of K.penumonia

Core genome multilocus sequence typing (cgMLST) by Ridom SeqSphere* [25] was utilised
to compare lllumina and Nanopore genomes. Analysis was performed in a set of 2365 core
loci that were present in all genomes, ensuring that only conserved genomic regions were

included in the analysis.

' github.com/Ibcb-sci/racon
2 github.com/nanoporetech/medaka

19


https://doi.org/10.1101/2023.09.15.556300
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.556300; this version posted September 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Phylogenetic tree

The phylogenetic tree visualises the evolutionary relationship among K. pneumonia outbreak
strains and is constructed based on variant calling using snippy®. The tree illustrates how
closely or distantly related these strains are, providing insights into the patterns of
divergence or clustering. The phylogenetic tree was built using FastTree* and toytree [26]

and visualised with microreact [27].

Workflow for detection and masking of ambiguous positions

We developed a standardised nextflow workflow for de novo quality validation of all species,
which is publicly available at https://github.com/replikation/MPOA, licenced under GNU
General Public License v3.0. The workflow only needs the genome file (FASTA) and the
associated reads (FASTQ) (Figure 4). The workflow provides reproducible quality control by
counting and summarising ambiguous bases for the user, masking low coverage regions
(0-10x depth) with BEDTools [28] (v2.31.0), and providing an assembly with these positions
masked by the IUPAC nucleotide code for subsequent analysis. The workflow utilises docker
and is compatible with Google Cloud. Identification and masking of ambiguous positions
were conducted using samtools consensus [29] (v1.17) and minimap2 [24] (v.2.26).
PlasFlow [30] (v1.1.0) extracts chromosome contigs for consideration without plasmid
sequences. R was utilised to plot the sequence motif with ggseqglogo [31] and a violin chart

comparing base frequencies with ggplot [28].

% https://github.com/tseemann/snippy
* http://www.microbesonline.org/fasttree
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Figure 4: MPOA workflow to mask ambiguous and low coverage positions in genome files.

(https://github.com/replikation/MPOA).
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2365 loci of each 33 K. pneumoniae outbreak samples sequenced with Nanopore Kit 14.
Outlier samples not in the outbreak cluster and showing significant differences from the
lllumina data are shown in white.

C: Minimum spanning trees of each 33 K. pneumoniae outbreak samples based on 2365 loci
to compare the allelic variations between lllumina genomes to Nanopore SQK-NBD114.24
(kit14) and SQK-NBD114.24 (kit12). Nodes (samples) are connected by lines depicting the
distance by numbers of allelic differences. Loci are considered different if one or more bases
change between the samples. Loci without allelic differences are described as being the

same.
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Supplementary Table 1: Sequence logos of observed sequence pattern around the

ambiguous bases R and Y on the chromosomal contig for different species based on one

sample.
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Supplementary Table 2: Ambiguous Position within the chromosome prepared with

SQK-NBD114.24 compared to SQK-RPB114.24.

without PCR (SQK-NBD114.24) with PCR (SQK-RPB114.24)

R(AorG) Y (TorQC) R(AorG) Y (TorQC)
UR2602 260 241 0 0
VA13414 257 234 1 0
BK12739 244 243 0 0
VA18342 247 230 0 0
VA23130 111 99 3 3
BK13728 53 55 0 1
UR14350 14 5 0 0
D411554 11 12 3 3
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