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Abstract
Intro

The prevalence of abdominal aortic aneurysm (AAA) is constantly progressing with the aging of the
global population. AAA rupture has a devastating 80% mortality rate and there is no treatment to slow-
down AAA progression. Hydrogen sulfide (H,S) is a ubiquitous redox-modifying gasotransmitter
produced in the cardiovascular system via the reverse trans-sulfuration pathway by cystathionine y-
lyase (CSE). H.S has protective properties on the cardiovascular system, including anti-inflammatory and
antioxidant effects. Here, we hypothesized that sodium thiosulfate (STS), a clinically relevant source of

H,S, would limit AAA growth.
Methods

8-12 weeks old male WT or Cse” mice on a C57BL/6J genetic background were submitted to a model
of AAA by topical elastase application on the abdominal aorta and B-aminopropionitrile fumarate
treatment in the drinking water for 2 weeks post-op. Sodium thiosulfate (STS) was given via the
drinking water post-op until aorta collection. /n vitro experiments were conducted to assess the effect
of STS and pro-inflammatory cytokines interleukin-1  and 6 and tumor necrosis factor a on primary

human vascular smooth muscle cell (VSMC).
Results

Surprisingly, STS increased elastin degradation, AAA size and rupture, despite reducing infiltration of
macrophages, antigen-presenting cells and lymphocytes in WT mice. Conversely, Cse”" mice with
impaired H,S production developed smaller AAA than WT mice despite increased infiltration of
immune cells. STS reduced VSMC coverage, possibly lowered VSMC proliferation, and promoted VSMC
loss and extracellular matrix (ECM) breakdown. In vitro, STS aggravated pro-inflammatory cytokine-

induced VSMCs apoptosis.
Conclusion

STS has a paradoxical effect on AAA growth, reducing inflammation while simultaneously impeding
favorable vascular remodeling, resulting in bigger AAA in a model of periadventitial elastase. This study
identifies a negative effect of H,S on VSMC in this environment, highlighting the complex role of H,S in
AAA progression. The deleterious effect of STS on AAA progression is significant, especially given the

growing use of STS in clinical settings for various indications.
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Introduction
Abdominal aorta Aneurysm (AAA) is a degenerative disease of the aorta wall that affects 5% of males

aged 65 years™ 2. AAA is described as a local extension of the abdominal aorta wall that is greater than
50% larger than its usual diameter. AAA rupture has a devastating 80% death rate because most AAA
are asymptomatic®. The only treatment options are open surgical repair or minimally invasive
endovascular aortic repair (EVAR)*. Although the risk factors for AAA are widely documented
(smoking, age, male sex, hypertension, atherosclerosis, genetic predispositions), the cellular and
molecular mechanisms of AAA are not>. AAA's primary pathogenic features are i) infiltration of innate
and adaptive immune cells in the aorta wall; ii) loss of vascular smooth muscle cells (VSMCs); and iii)
proteolysis of the extracellular matrix (ECM). The lack of resolution in those processes results in
progressive AAA growth, culminating in AAA rupture. Overall, oxidative stress and inflammation are the
primary causes of AAA> 6. However, the precise sequence of events leading to rupture is unknown, and
novel approaches to prevent aneurysm growth or rupture are required.

Hydrogen sulfide (H.S), a byproduct of the metabolism of sulfur-containing amino acids, is now
commonly acknowledged as a gasotransmitter. H,S helps numerous organs and systems maintain
homeostasis. H,S protects against vascular diseases through a variety of mechanisms, including the
reduction of oxidative stress and inflammation, the improvement of EC function, NO production, and
vasodilation, and the preservation of mitochondrial function’ & H,S is produced in mammalian cells
through the reverse transulfuration pathway by two pyridoxal 5'-phosphate dependent enzymes,
cystathionine y-lyase (CSE) and cystathionine B-synthase®. Mice lacking Cse display may display age-
dependent hypertension and have been shown to be adversely affected in various models of
cardiovascular diseases’.

910and a few pre-clinical studies

Endogenous H;S level and CTH expression are lower in AAA patients
showed that H,S may provide benefits against aortic dissection® ' 12, Thus, NaHS attenuates
inflammation and aortic remodeling in a model of aortic dissection induced by B-aminopropionitrile
fumarate (BAPN) and angiotensin Il (Ang-11) in WT mice'?. Recently, aged Cse”" mice were shown to be
more sensitive to angiotensin ll-induced aortic elastolysis and medial degeneration, a phenotype
rescued by NaHS treatment®. However, no study evaluated the role of CSE in AAA.

Given this evidence and the fact that H,S has anti-inflammatory and antioxidant properties” 3, we
hypothesized that sodium thiosulfate (Na»S,0s; STS), a clinically relevant source of H,S***°, might reduce
inflammation and oxidative stress, thus limiting AAA progression. To test this hypothesis, we setup a
mouse model of AAA using topical application of elastase on the sub renal aorta in WT or Cse”" treated
with BAPN. The elastase AAA model is regarded as the best model for human AAA disease!® . Elastase

breaks down medial elastin, leading to the formation of AAA™®1°. BAPN is a lysyl oxidase inhibitor that

prevents cross-linking of elastin and collagen, leading to a chronic, growing AAA™ 2% In contrast to the

3
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86 results obtained with the Angll+BAPN model, no dissections are found in this model®. Surprisingly, STS
87  facilitated AAA growth and induced rupture, whereas Cse” mice were protected from AAA growth
88  despite increased incidence of aortic dissection.

89

90 Materials and methods

91 Mice
92 WT mice C57BL/6JRj mice were purchased from Janvier Labs (Le Genest-Saint-Isle, France). Cse”" mice,

93 kindly provided by Prof. James R Mitchell (Harvard T.H Chan School of Public Health, Boston, MA, USA),
94  were bred and housed in our animal facility and genotyped as previously described®*. All mice were
95 housed at standard housing conditions (22°C, 12h light/dark cycle), with ad libitum access to water and
96 regular diet (SAFE°150 SP-25 vegetal diet, SAFE diets, Augy, France). Mice were randomly treated or not
97  with STS (Hanseler AG, Herisau, Switzerland) in the water bottle at 4g/L (0.5g/Kg/day), changed 3 times
98 a week. BAPN (3-aminopropionitrile fumarate salt; SIGMA, A3134-5G) was dissolved in drinking water

99 at 0.2% concentration and provided to the mice the day after the surgery until the end of the study.

100  Abdominal aorta aneurysm surgery was performed under isoflurane anesthesia (2.5% 2.5liter O,) as
101  previously described 2°. Analgesia was ensured by subcutaneous injection of buprenorphine (0.1
102 mg/kg Temgesic, Reckitt Benckiser AG, Switzerland) and local anesthesia via subcutaneous injection
103  with a mix of lidocaine (6mg/kg) and bupivacaine (2.5mg/kg) along the incision line. 15 minutes post-
104  injection and while deeply anesthetized, a midline incision was made, and the aorta separated from the
105  surrounding fascia below the kidneys. A Whatmann paper impregnated with 8 ulL of pancreas porcine
106  elastase solution (MERCK, E1250-100mg) was applied on the surface of the aorta and left in place for
107 10 minutes. Following Whatmann removal, the peritoneum cavity was rinsed with warm saline, the
108 abdomen closed with sutures and the skin closed with staples. Buprenorphine was provided before
109  surgery, as well as a post-operative analgesic every 8h for 36 hours. The animals were monitored twice
110 daily for signs of distress during recovery. Aortas were collected 14 days post-op by cervical dislocation
111  and exsanguination under isoflurane anesthesia followed by PBS and 4% buffered formaldehyde

112 perfusion., fixed in buffered formalin and included in paraffin for histology studies.

113  All animal experimentations confirmed to The National Research Council: Guide for the Care and Use of
114 Laboratory Animals?®. All animal care, surgery, and euthanasia procedures were approved by the CHUV

115 and the Cantonal Veterinary Office (SCAV-EXPANIM, authorization number 3703).

116  Histology
117 Abdominal aortas were fixed in 4% buffered formaldehyde for 24hours at 4°C, transferred to PBS

118 solution, and subsequently embedded in paraffin, cut into 5um sections, and stained using Van Gieson

119  Elastic Laminae (VGEL) staining as previously described?? 23,
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120  Polychrome Herovici staining was performed on paraffin sections as described 4. Young collagen is
121  stained blue, while mature collagen is pink. Cytoplasm is counterstained yellow. Hematoxylin is used to

122 counterstain nuclei blue to black.

123 Calponin, CD3, CD8, (D86, MPO, F4/80, Ki67, Caspase3, IL-6, MMP9, SMA and CD206
124  Immunohistochemistry was performed on paraffin sections. After rehydration and antigen retrieval
125 (TRIS-EDTA buffer, pH 9, 17 min in a microwave at 500 watts), immunostaining was performed on
126  abdominal aorta sections using the Rabbit specific HRP/DAB detection IHC detection kit (ab236469)

127  according to manufacturer’s instructions. Slides were further counterstained with hematoxylin.

128  Western blot
129 Mice aortas or human vein segments were flash-frozen in liquid nitrogen, grinded to power and

130 resuspended in SDS lysis buffer (62.5 mM TRIS pH6,8, 5% SDS, 10 mM EDTA). Protein concentration was
131  determined by DC protein assay. 10 to 20 ug of protein were loaded per well. Primary cells were washed
132 once with ice-cold PBS and directly lysed with Laemmli buffer as previously described? 2°. Lysates were
133 resolved by SDS-PAGE and transferred to a PVDF membrane Immobilon-P. Immunoblot analyses were
134  performed as previously described® using the antibodies described in supplementary table S1.
135 Membranes were revealed using Immobilon Western Chemiluminescent HRP Substate in an Azure
136 Biosystems 280 and analyzed using the Fiji (ImageJ 1.53t) software. Protein abundance was normalized

137  to total protein using Pierce™ Reversible Protein Stain Kit for PVDF Membranes.

138  Reverse transcription and quantitative polymerase chain reaction (RT-qPCR)
139 Frozen abdominal aortas were homogenized in TriPure™ Isolation Reagent (Roche, Switzerland), and

140  total RNA was extracted according to the manufacturer’s instructions. After RNA Reverse transcription
141 (Prime Script RT reagent, Takara), cDNA levels were measured by gPCR Powerup SYBR™ Green Master
142 Mix (Ref: A25742) in a QuantStudio 5 Real-Time PCR system (Applied Biosystems, Thermo Fischer
143 Scientific, AG, Switzerland). We looked at the expression of PGCla using 5'-
144  TGCTGTGTGTCAGAGTGGATT -3’ as forward primer and 5’- AGCAGCACACTCTATGTCACTC -3’ as reverse

145 primer.

146  Proteomics analysis
147  Sample preparation: Flash frozen abdominal aortas were pulverized in liquid nitrogen, resuspended in

148 lysis buffer, sonicated, and boiled. Samples were diluted 1:1 with triethylammonium bicarbonate buffer,
149  digested by adding 0.1ug of modified trypsin (Promega) and incubated overnight at 37°C, followed by
150  a second digestion for 2h with the same amount of enzyme. The supernatant was collected, diluted
151  twice with 0.1% formic acid and desalted on strong cation-exchange micro-tips (StageTips, Thermo

152 Fisher Scientific) as described previously60. Peptides were eluted with 1.0M ammonium acetate
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153 (100pl). Dried samples were resuspended in 25ul of 0.1% formic acid, 2% acetonitrile prior being

154  subjected to nano liquid chromatography tandem mass spectrometry (LC—MS/MS).
155 LC—MS/MS analysis

156  Tryptic peptide mixtures (5ul) were injected on a Dionex RSLC 3000 nanoHPLC system interfaced via a
157 nanospray source to a high-resolution QExactive Plus mass spectrometer (Thermo Fisher Scientific).
158 Peptides were separated on an Easy Spray C18 PepMap nanocolumn (25 or 50cmx75 pum ID, 2 um, 1004,
159 Dionex) using a 35min gradient from 4 to 76% acetonitrile in 0.1% formic acid for peptide separation
160  (total time: 65min). Full mass spectrometry (MS) survey scans were performed at 70,000 resolutions.
161 In data-dependent acquisition controlled by Xcaliburv.4.0.27.19 software (Thermo Fisher Scientific), the
162  ten most intense multiply charged precursor ions detected in the full MS survey scan were selected for
163 higher energy collision-induced dissociation (normalized collision energy=27%) and analysis in the
164  orbitrap at 17,500 resolution. The window for precursor isolation was of 1.6m/z units around the
165 precursor and selected fragments were excluded for 60s from further analysis. Sample quality control
166  was performed by label-free test on short gradients and analyzed using the MaxQuant software (version
167 1.5.3.3). Then, 6-plex TMT labelling was performed and samples were injected separately. MS data were
168 analyzed using Mascot v.2.5 (Matrix Science) set up to search the UniProt (www.uniprot.org) protein
169 sequence database restricted to mus. musculus. Trypsin (cleavage at K,R) was used as the enzyme
170 definition, allowing two missed cleavages. Mascot was searched with a parent ion tolerance of 10 ppm
171  andafragmention mass tolerance of 0.02 Da (QExactive Plus). lodoacetamide derivative of cysteine was
172  specified in Mascot as a fixed modification. N-terminal acetylation of protein, oxidation of methionine

173  and phosphorylation of Ser, Thr, Tyr and His were specified as variable modifications.
174  Computational analysis

175  Annotated raw counts were further filtered to keep proteins detected in at least 6 out of 8 samples and
176  to remove duplicates. The raw counts were converted into counts per million (CPM) and protein
177  expression was log 2 normalized. T-distributed stochastic neighbor embedding (t-SNE) was computed
178  using the top 1000 most varying proteins, then reduced to 50 PCA dimensions before computing the t-
179  SNE embedding. The perplexity heuristically set to 25% of the sample size or 30 at maximum, and 2 at

180  minimum. Calculation was performed using the Rtsne R package.

181 For identification of differentially expressed proteins, multi-method statistical testing was employed 25
182 % using two independent statistical methods: DESeq2 (Wald test) 28 and edgeR (LRT test) %°. Proteins
183 with a Log FC superior to 0.2 and FDR below 0.2 were considered significant. The maximum g-value of
184  the two methods was taken as aggregate g-value, which corresponds to taking the intersection of

185 significant proteins from the two tests.
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186  Statistical testing of differential enrichment of protein sets was performed using an aggregation of
187 multiple statistical methods: fGSEA, GSVA/limma, and ssGSEA. The maximum g-value of the selected
188 methods was taken as aggregate meta.q value, which corresponds to taking the intersection of
189  significant proteins from all tests. The enrichment score of a GO term was defined as the sum of g-
190  weighted average fold-changes, (1-q)*logFC, of the GO term and all its higher order terms along the
191  shortest path to the root in the GO graph. The fold-change of a protein set was defined as the average
192  of the fold-change values of its members. This graph-weighted enrichment score thus reflects the
193 enrichment of a GO term with evidence that is corroborated by its parents in the GO graph and therefore
194 provides a more robust estimate of enrichment. Data preprocessing was performed using bespoke
195  scripts using R (R Core Team 2013)*° and packages from Bioconductor3!. Statistical computation and

196  visualization have been performed using the Omics Playground version v3.2.25-master230905%.

197  Primary human VSMC culture
198  Human VSMCs were prepared from human saphenous vein segments as previously described 2% 2. Vein

199 explants were plated on the dry surface of a cell culture plate coated with 1% Gelatine type B (Sigma-
200  Aldrich). Explants were maintained in RPMI, 10% FBS medium in a cell culture incubator at 37°C, 5%

201 CO,, 5% 0, environment. 9 different veins/patients were used in this study to generate VSMC.

202  RNA interference
203 CSE knockdown was performed using human siRNA targeting CTH (Ambion-Life Technologies, ID: s3710

204  and s3712). The control siRNA (siCtrl) was the AllStars Negative Control siRNA (Qiagen, SI03650318).
205 VSMC grown at 70% confluence were transfected overnight with 30 nM siRNA using lipofectamin
206 RNAiMax (Invitrogen, 13778-075). After washing, cells were maintained in full media for 48h prior to

207 assessment.

208  Mitochondrial network analyzes.
209  The mitochondrial network was observed by live cell imaging using the Mitotracker Red CM-H2XRos

210  fluorescent probe (Thermofischer, M7513). The probe was dissolved in anhydrous DMF at 1 mM and
211 used at 1 uM in serum-free RPMI. Live-cell image acquisition was performed using a Nikon Ti2 spinning
212 disk confocal microscope. Images were analyzed automatically using the MiNA (Mitochondrial Network

213 Analysis) toolset®® in the Fiji (ImageJ 1.53t) software.

214  Apoptosis and caspase 3/7 activity
215  VSMC were grown on a 96 well plate. The percentage of apoptotic cells was determined using the DNA-

216 binding dyes propidium iodide (PI, 5pg/ml) and Hoechst 33342 (HO, 5ug/ml, Sigma-Aldrich) as
217 previously described. The cells were examined by inverted fluorescence microscopy (Leica). A minimum
218  of 500 cells was counted in each experimental condition by two independent observers, one of them

219 unaware of sample identity. caspase 3/7 activity was measured using Apo-ONE® Homogenous Caspase
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220  3/7 Assay (Promega). VSMC were grown on a 96 well plate and 50 pl of the reagent was added to 50 pl
221  of medium in each well. Blank are composed of the reagent and medium. After one hour, fluorescence
222  with an excitation’s wavelength of 485 + 20 nm and an emission’s wavelength of 530+20 nm is detected

223 in a multimode plate reader (Synergy H1, Biotek AG).

224  Statistical analyzes
225  All experiments adhered to the ARRIVE guidelines and followed strict randomization. All experiments

226  and data analysis were conducted in a blind manner using coded tags rather than actual group name. A
227 power analysis was performed prior to the study to estimate sample-size. Based on previous experience,
228 using a detectable difference of 40% in aorta diameter by histomorphometry, a standard deviation of
229  20%, a desired power (1-B) of 0.8, and p value of 0.05 (alpha =0.05), it was determined that a total of
230 10-12 animals in each group is necessary to reach statistically meaningful conclusions. All experiments
231 were analyzed using GraphPad Prism 9. Normal distribution of the data was assessed using Kolmogorov-
232 Smirnov tests. All data with normal distribution were analyzed by unpaired bilateral Student’s t-tests or
233 Mixed-effects model (REML) followed by post-hoc t-tests with the appropriate correction for multiple
234 comparisons. For non-normal distributed data, Kruskal-Wallis non-parametric ranking tests were
235 performed, followed by Dunn's multiple comparisons test to calculate adjusted p values. Unless
236 otherwise specified, p-values are reported according to the APA 7" edition statistical guidelines. *p<.05,

237 **p<.01, ***p<0.001.

238
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239  Results
240  STS promotes aneurysm growth in WT mice in the model of elastase-induced AAA.
241 We first assessed whether STS treatment protected against AAA growth and rupture following

242 surgery mouse surgery. Surprisingly, STS treatment (4g/L) increased elastolysis in WT mice (Fig. 1A, B)
243 and reduced survival (Fig. 1C). STS also increased AAA size (Fig. 1A), as quantified as the area under the
244  curve of the aortic lumen area over 2mm (Fig. 1D) and max lumen area diameter (Fig. 1E). CSE is the
245 main enzyme responsible for endogenous H,S production in the vascular system and Cse” mice have
246 impaired H,S production capacity . Interestingly, Cse” mice developed smaller AAA than their WT
247 littermates (Cse**) (Fig. 1F-J) with comparable survival rates (Fig. 1H), despite increased incidence of

248 elastin breaks (Fig. S1).

249  STS reduces inflammation in the aortic wall in the model of elastase-induced AAA.
250 Inflammatory cells play a major role in the expansion of AAA °. To study the impact of STS on

251 inflammation, we measured immune cells infiltration in the AAA wall by histology. STS limited the
252 infiltration of F4/80" and CD206" macrophages and CD86* antigen-presenting cells (Fig. 2A, Fig. S2A) but
253 not MPO* neutrophils (Fig. S2B). STS also reduced the infiltration of CD3*, CD8" and CD4* lymphocytes
254  (Fig. 2B). Similar investigation on Cse”" mice revealed an opposite impact on inflammation, with an
255 increased infiltration of F4/80*macrophages, CD86* antigen-presenting cells, and CD3* and CD8*
256 lymphocytes (Fig. 2C-D), but not CD4"* cells and MPO* neutrophils (Fig. S2C).

257  STSincreases mitochondrial biogenesis but negatively impact matrix remodeling.
258 To determine the mechanism whereby STS impacted AAA growth despite anti-inflammatory

259  effects, an untargeted approach was employed. Proteomic analysis of native aorta from WT mice
260  treated or not with 4g/L STS for 1 week (n=4 per group) identified 2245 proteins (supplementary table
261  S2), among which 119 up-regulated (LogFC=0.5, q=0.1; supplementary table S3), and only 4 down-
262 regulated (LogFC =0.5, g=0.1; Fig. 3A-B, supplementary table S4). Pathway analysis revealed that STS
263 selectively up-regulated processes linked to the mitochondria, including the electron transport chain,
264  TCA cycle, and fatty acid beta-oxidation (Fig. 3C and table S5). Pathway analysis of down-regulated
265 proteins revealed an enrichment of pathways associated with ECM remodeling (GO:0030198:
266  extracellular matrix organization; FDR=.001) (Fig. 3C and table S5).

267 The proteomic analysis uncovered uniform overexpression of mitochondrial proteins (Fig. 3C). H.S
268 has also been proposed to rewire metabolism®** and promote mitochondrial biogenesis®>. A one-week
269  STS treatment increased the mRNA expression of the peroxisome proliferator-activated receptor
270  gamma coactivator 1-alpha (PGC-1a), a master regulator of mitochondrial biogenesis**and nuclear
271 respiratory factor-1 (NRF-1), as well as adaptive stress response transcription factors ATF4 and 6 in the
272  abdominal aorta (Fig. 3D). It also increased the protein expression of complex I, Il and V of the

273 mitochondrial chain (Fig. 3E).
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274 Among the mildly but significantly down-regulated proteins were Elastin (EIn), the main component
275 of elastic laminae in the aorta, several collagen isoforms (Col4a6, Col5al), and periostin (Postn),
276  thrombospondin (Thbs1), and Filamin C (FInc), proteins involved in ECM remodeling (Fig. 4A). In
277 addition, STS treatment increased matrix metalloproteinase 9 (MMP9) in the AAA wall, a protease that
278  degrade type IV and V collagens involved AAA%" 38 (Fig. 4B). Conversely, the MMP9 staining was reduced
279  in Cse” compared to Cse*/* (Fig. 4C).

280  STSincreases cytokine-induced mitochondrial dysfunction and VSMC apoptosis.
281 Surprisingly, when assessing de novo collagen deposition using polychrome Herovici staining, we

282  observed increased collagen deposition in STS-treated mice (Fig. 5A) despite reduced collagen
283  expression (Fig. 4A-B). This could suggest fewer cells, which could be linked to reduced inflammation
284 (Fig. 2) or reduced compensatory VSMC expansion, which occurs during AAA formation®’. Of note, we
285 previously showed that STS inhibits VSMC proliferation in the context of intimal hyperplasia®**. However,
286 cell proliferation, as assessed by Ki67 staining, did not reveal any effect of STS on proliferation (Fig. 5B).
287 We further evaluated the VSMC phenotype in AAA using the marker of contractile VSMC Calponin. STS
288 decreased the number of Calponin® cells (Fig. 5C), although it did not impact VSMC phenotype (calponin,
289 SMA and SM22a expression) in native aortas (Fig. S3A). There was no difference in Calponin® cells in
290 Cse” mice (Fig. 5D). VSMC apoptosis is a known feature of AAA progression and rupture 3. We could
291 not evaluate the impact of STS on apoptosis in vivo due to very low numbers of cleaved caspase 3* cells
292 in AAA samples (Fig. S3B). To mimic the pro-inflammatory environment of AAA, we treated primary
293 human VSMC with a cocktail of pro-inflammatory cytokines composed of IL-18, IL-6, and TNFa, which
294  are prominentin AAA3¥ 4% STS alone did not induce apoptosis but promoted cytokine-induced apoptosis
295 (Fig. 6A) and cleaved caspase 3/7 activity (Fig. 6A). In contrast, siRNA-mediated CTH knock-down (Fig
296  S4) protected against cytokine-induced VSMC apoptosis (Fig. 6B). STS also aggravated the impact of
297 cytokines on the Bax/Bcl2 ratio (Fig. 6C) in VSMC and worsen cytokine-induced mitochondrial
298 dysfunction as assessed by live Mitotracker staining and determination of the mitochondrial network

299  (Fig. 6D).
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300 Discussion

301 Given the anti-inflammatory and antioxidant properties of H,S” 3, we hypothesized that STS, a clinically
302 relevant source of H,S™ *° would protect against aneurysm growth in a mouse model of elastase-
303 induced AAA. Surprisingly, STS promoted AAA growth and rupture, whereas Cse”" mice were protected.
304  AAA's primary pathogenic features are i) infiltration of innate and adaptive immune cells in the aorta
305  wall; ii) proteolysis of the extracellular matrix (ECM), and iii) loss of VSMC> 373840 Here, we show that
306  STS inhibits the infiltration of innate and adaptive immune cells, but facilitates VSMC apoptosis and

307 proteolysis of the ECM, overall leading to increased AAA growth and rupture.

%, involving the infiltration of immune cells like

308 Inflammation is a key hallmark of AAA pathology® *
309 neutrophils, macrophages, and CD86" antigen-presenting cells (APC) involved in regulating immune
310 responses via promotion of T cell activation and cytokine production. As expected for a H,S donor, STS
311 reduces immune cell infiltration, including macrophages, CD86* APC and lymphocytes. Conversely, loss
312  of CSE increased infiltration of macrophages, CD86* APC and lymphocytes. Neutrophil recruitment was
313 not impacted by STS or Cse, but 14 days post-op might be too late to accurately measure neutrophil in
314  that model®. This data suggest that CSE/H,S impact the innate immune response, which extend to

315 reduced adaptive immune response as well. Despite this anti-inflammatory effect, H,S has a negative

316 impact on AAA growth is our model. This can be explained in many ways.

317 First, the anti-inflammatory effect of STS could be detrimental. Indeed, all immune cell populations have
318 been described in AAA, with different types promoting or limiting AAA growth> “°. Here, STS had a
319  general anti-inflammatory effect, reducing the infiltration of all macrophages, including CD206* M2
320  macrophages, which have been shown to promote vascular repair %% #!. Other immune cells with
321 beneficial effects such as CD4* regulatory T cells might be similarly impacted, leading to AAA growth.
322 Our findings contradict studies that demonstrate H,S can enhance M2 macrophage polarization®?, but
323 they do support other research that show exogenous H,S (NaHS) suppresses both M1 and M2
324  macrophage invasion®® **. Further studies are required to decipher the exact effect of H2S on sub-

325 populations of immunes cells in the context of AAA.

326 Second, STS may facilitate ECM degradation. The pathogenesis of AAA is characterized by a breakdown
327  of elastic and collagen fibers due to increased proteolytic activity, mainly by MMP-1, -2, and -937 3,
328  According to our proteomics data, STS lowers the protein levels of elastin and a few collagen proteins.
329 In our model, STS/CSE also increases MMP9, which may accelerate ECM degradation. In this elastase-
330 induced AAA model, H,S likely enhances ECM proteolysis. Although STS has a minor effect on ECM
331 proteins, this could contribute to AAA expansion, especially since Elastin appears to be among the

332 primary targets of STS.
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333 Third, STS inhibits VSMC proliferation. The VSMC maintain and renew the ECM and ensure the structural
334  integrity of the aortic wall. VSMC dedifferentiation in synthetic cells secreting a large quantity of matrix
335 remodeling proteins contributes to the progression of AAA%” 38 Phenotypic modulation takes place early
336  in aneurysm development in both human aneurysm samples and mouse models, and results in VSMC
337  clonal expansion to compensate loss of structural integrity {Clement, 2019 #1552}. Despite pre-clinical
338  studies using various mouse models showing that anti-inflammatory medications prevent AAA
339  formation and/or dissection, anti-inflammatory medications in humans promote AAA growth. This
340 adverse outcome is most likely caused by the cytostatic effect of immunosuppressive medications on
341  VSMC* “¢, showing that VSMC expansion can hinder AAA growth. These synthetic VSMC lack the
342  expression of specific VSMC markers such as Calponin®” 3. In our experiment, STS reduced Calponin*
343 cell coverage but does not appear to affect the phenotypic of VSMC, implying that the reduced staining
344 result of a reduced number of VSMC. Previously, we and others demonstrated that CSE and other H,S
345  donors, including STS, suppress VSMC proliferation® 24749 According to the Ki67 staining, STS in this
346  case did not inhibit cell proliferation in the aortic wall. However, the Ki67 staining did not make it
347 possible to differentiate between the proliferation of VSMC and other cells, especially immune cells. In
348  addition, STS may impact VSMC proliferation at an earlier time point in the model of elastase-induced
349  AAA. We believe that the effect of STS on VSMC proliferation plays a significant role in AAA growth by
350 preventing VSMC expansion to stabilize the weakened aortic wall in the early phase of AAA formation

351 post-surgery*'. Further studies are required to test this hypothesis.

352 Last, STS increases cytokine-induced loss of VSMC. VSMC apoptosis is a hallmark aortic aneurysms
353 progression and rupture®®. Our analysis of cleaved caspase 3 in the aortic wall did not allow us to
354  evaluate apoptosis in vivo. This is probably due to the rapid phagocytosis of dying cells by macrophages
355  in vivo. In vitro findings revealed that STS alone is not cytotoxic, as previously demonstrated®*, but
356 facilitates cytokine-induced VSMC apoptosis. This is not surprising, as elevated levels of exogenous H,S
357  may cause cell cycle arrest and apoptotic cell death3> 3%52. Similarly to our findings, H.S has been
358  previously showed to promote ROS-induced mitochondrial apoptosis via the Bax/Bcl23*> 3. STS-induced
359 cell cycle arrest probably tips the balance between pro and antiapoptotic signals toward apoptosis even
360 though STS may induce cytoprotective mechanism. Indeed, we observed that STS promotes
361 mitochondrial biogenesis, which is associated with improved function, stress resistance and cell
362  survival® 55 STS stimulates the expression of the master regulator of mitochondrial biogenesis PGC-
363 1la and downstream transcription factor NRF1. This is most likely owing to a minor inhibitory effect on
364 mitochondrial respiration and ATP production®®. This, in turn, increases AMPK activity, Sirtuins, and
365 increased PCG-la expression, leading to increased mitochondrial components as observed in our

366 proteomic analysis. Supporting this hypothesis, glycolysis and fatty acid oxidation were also up in our
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367 proteome analysis, probably because of reduced oxidative phosphorylation. This was observed in native
368 aorta, and it is unlikely that STS stimulates mitochondrial biogenesis in the pro-inflammatory

369 environment of the AAA.

370 Overall, we propose that STS has both beneficial and deleterious effects in the context of AAA. Thus,
371  STS has anti-inflammatory properties and promotes mitochondrial biogenesis. However, STS also
372 reduces VSMC proliferation, facilitates ECM degradation and VSMC apoptosis in a pro-inflammatory

373  environment, leading to AAA growth.
374 Limitations

375  The main limitation of our study is the dose of STS (4g/L; 0.5g/Kg/day) used in our experiments. The
376 dosage of STS used in this study is comparable to previous experimental studies using oral
377  administration at 0.5 to 2 g/Kg/day>®®?, and we recently showed that this dose of oral STS is not toxic in
378 mice*. However, we also observed in another study that 2g/L of STS was more potent in stimulating
379 revascularization than 4g/L, suggesting a very narrow therapeutic range for STS®. It is well known that
380 H,S may exhibit cytotoxic effects®? and our study indicates that STS may facilitate cytokine-induced
381  apoptosis and AAA growth. Lower dose of STS should be tested as it may alleviate the negative effect of
382  STS on VSMC. However, it might also lessen the anti-inflammatory effect of STS. Of note, our findings
383 also document that CSE, hence endogenous H,S production, is also deleterious in the model of elastase-
384  induced AAA. Therefore, the negative impact of STS on AAA growth is not due solely to the dose of STS
385 used in our study. Cse”” mice might develop smaller AAA due to reduced MMP9 and matrix remodelling.
386  Although we did not observe an increased VSMC coverage in Cse” mice, loss of Cse might also facilitate

387  positive wall remodelling as CSE inhibits VSMC proliferation and migration* 23474,

388  Our results are in contradiction with several studies reporting beneficial effects of Cse and H,S donors
389  against the formation of aortic aneurysm and dissection® 1 12, Of note, these previous studies all
390 employed various models of angiotensin Il-induced aortic dissection. In these models, vasoreactivity
391 plays a major role to counterbalance angiotensin ll-induced vasoconstriction and hypertension. H,S is a
392 commonly known vasodilator®®, and H,S donors, including STS, have been reported to lower blood
393  pressure in various models of hypertension® ®, including angiotensin ll-induced hypertension®® . The
394  vasoactive property of Cse/H,S likely provided additional protection against aortic dissection is these
395 models. Thus, Zhu et al. demonstrated that Cse” mice are more sensitive to angiotensin Il-induced
396 aortic elastolysis and medial degeneration and are rescued by NaHS treatment®. It should be noted that
397  these Cse” mice, developed by Prof. Rui Wang, are hypertensive®”, and that the NaHS treatment
398 normalizes blood pressure in this study, event when treated with angiotensin 11°. Our Cse”" mice,

399 developed in collaboration with late Prof. James R. Mitchell, are normotensive', like the Cse”" mice
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400 developed by Prof Isao Ishii®®. That said, in line with previous studies, we also observed increased elastin
401 breaks in Cse” mice, leading to aortic dissection although our model of periadventitial elastase is not
402 reported to induce aortic dissection?. This aortic wall dissection did not lead to aortic rupture, but may
403 indicate increased aortic stiffness related to impaired vasoreactivity. Conversely, the vasorelaxant

404  property of STS may facilitate AAA growth in the elastase-induced AAA model.

405 In recent years, the angiotensin || model has been used extensively for aneurysm research. However,
406  the major mechanism of Angiotensin Il-induced AAA in ApoE” mice is subsequent to aortic dissection,
407  which is distinct from human AAA. Combination of BAPN with Ang Il increased the incidence of
408  aneurysm in WT mice. However, dissections and ruptures in those models all occur within the first week
409  during the acute phase of aneurysm induction. Aortic aneurysms in the Angiotensin Il model also
410  develop in the suprarenal aortic segment, whereas 70% of human aneurysm occur in the infrarenal
411  section. The elastase-induced AAA model is regarded as the best model for human AAA disease® 7. A
412 recent single-cell RNA analysis comparing various aneurysm models revealed that the elastase model
413 shows the closest signature to human AAA®. Therefore, our data provided much needed perspective
414 into the impact of CSE and H,S on the aortic wall in normotensive conditions. Given the inherent bias of
415 working with a vasodilating agent, we believe models of Angiotensin Il-induced aortic dissection should
416  be avoided. Further research employing different AAA models, such as the CaCl, model*® 7, might be

417 beneficial in better understanding the role of H,S in AAA formation.
418 Conclusion

419 In summary, in our experimental conditions, STS, a clinically authorized substance, decreases
420 inflammation but has a detrimental impact on vascular remodelling and AAA formation. The significance
421 of the adverse impact of STS on the advancement of AAA is of importance considering the increasing
422 utilization of STS in clinical settings for a variety of indications. STS is already used for the treatment of
423 acute calciphylaxis, a rare vascular complication of patients with end-stage renal disease’ 7%, STS is also
424  testedin aseveral clinical trials for the treatment of ectopic calcification (NCT03639779; NCT04251832;
425 NCT02538939), or to reduce myocardial infarct size in ST-segment elevation myocardial infarction
426  (STEMI) patients with percutaneous coronary intervention (NCT02899364). Our finding calls for
427 randomized controlled trials testing long-term administration of STS to further explore the safety and

428 effects of STS administration on the vascular wall.

429 Our findings revealed that H.,S effectively attenuates inflammation but does not impede the
430 development of AAA. This study provides evidence of HsS inefficacy in mitigating AAA growth and
431 identifies a deleterious influence of H,S on VSMC in this context, highlighting the complex role of H.S in
432 AAA progression.
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Figure 1. STS increases AAA size in a mouse model of topical application of elastase

Representative VGEL staining (A), elastin degradation grade (B), survival (C) quantitative assessment of
aorta lumen area AUC over 2mm (D) and max lumen area (E) in sub-renal mouse aorta in WT mice
with topical elastase application, treated or not (Ctrl) with 4g/L STS (STS). Representative VGEL
staining (F), elastin degradation grade (G), survival (H), and quantitative assessment of aorta lumen
area AUC over 1.5 mm (I) and max lumen area (J) in sub-renal mouse aorta in Cse** or Cse” with

topical elastase application. (A, F) Scale bars = 100 um. Lower Insets are 5-fold magnifications of main
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682 images. Data are mean+SEM of 15 to 18 animals per group. *p<0.05, **p<0.01 as determined by
683 bilateral unpaired t-test.
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685 Figure 2. H.S reduces immune cells infiltration in the AAA wall.

686 Representative F4/80, CD86 (A), CD3 and CD8 (B) immunostaining in sub-renal mouse aorta in WT
687 mice with topical elastase application, treated or not (Ctrl) with 4g/L STS (STS). Representative F4/80,
688 CD86 (C), CD3 and CD8 (D) immunostaining in sub-renal mouse aorta in Cse*/* or in Cse”" mice with
689  topical elastase application. Scale bars=100 um. Right Insets are 5-fold magnifications of left images.
690 Data are mean+SEM of 12 to 18 animals per group. *p<0.05, **p<0.01 as determined by bilateral
691 unpaired t-test.
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Figure 3. STS promotes mitochondrial biogenesis in the native aorta treated 1 week with STS
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A) Principal component analysis of proteomics analysis from native aorta of WT mice treated or not

(Ctrl) with STS (4g/L) for 1 week (4 animals per condition). B) Volcano plot showing differential protein

expression (upregulated in red; down-regulated in blue) in Ctrl versus STS-treated aorta. C) Significantly

down-regulated (blue) or up-regulated (yellow) gene ontology terms from pathway analysis expressed

as Log fold change (FC). Numbers next to bars refer to enrichment score. D) gPCR analysis of mRNA

expression in native aorta of WT mice treated or not (Ctrl) with STS (4g/L) for 1 week. Data are
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701 mean+SEM of 4 animals per group. *p<0.05 as determined by bilateral unpaired t-test. E)
702 Representative Western blot of mitochondrial chain complex over total protein in native aorta of WT
703 mice treated or not (Ctrl) with STS (4g/L) for 1 week. Data are mean+SEM of 5 animals per group.
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705 Figure 4. STS decreases extracellular matrix protein expression and promotes matrix degradation
706  A) Selected proteomics data (Log2 count per million (CPM) expression of individual proteins) in native
707 aorta from WT mice treated ot not for 1 week with STS. *g<0.05 from proteomic analysis.
708 Representative MMP9 immunostaining in sub-renal mouse aorta in WT mice treated or not (Ctrl) with
709  STS(STS) (B), or in CSE*/* or CSE”" mice (C). Lower insets are 5-fold magnifications of main images. Data
710  are mean+SEM of 10 to 18 animals per group. Scale bar 100 um. *p<0.05 as determined by bilateral
711 unpaired t-test.
712
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Figure 5. STS reduces VSMC coverage in AAA
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Representative Herovici staining (A), and Ki67 (B) and Calponin (C) immunostaining in AAA section from

WT mice treated or not (Ctrl) with STS. D) Representative Calponin immunostaining in sub-renal AAA in

Cse*/* and Cse” mice. Data are mean+SEM of 10 to 18 animals per group. Scale bar 100 pm. Right insets

are 5-fold magnification of main image. **p<0.01 as determined by bilateral unpaired t-test.

24


https://doi.org/10.1101/2023.09.15.557949
http://creativecommons.org/licenses/by-nc-nd/4.0/

719

720
721
722
723
724
725
726
727
728
729

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557949; this version posted September 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

24h 48h 24h
A 20 - cm 77— Ctd 40 - siCHl
@ > §TS'® = 87~ ss® @« 1
7 15 ok o : 5. — i*i ‘@ 50 === BiCTH
o — —/ & -] o 2
- 4 - SiICTH
§1o / g s A A §20
»
:5 5 !:Z/; é 221 .. % .f fz 10
) 4 )
l,/f‘ é < 4 -
—
8] 'i’a T T 0 T T
& & R
¥ & N
W A4
C Ctri STS
o
c3§ C)sr C?S Q& 48kDa|
SkDa
Bax 21kDa %k
_a--ae

25kDa .

BCl2| g @ 8 s | 2602

17kDa|

Ctrl  Cyt

5 e 20 =
EE wn 5

“’54 i 5515
%gai' _ BE

T 210
8§52 **% g5
=

3 ESZ 5
14 = ¢ e;")_

Ctrl Cyt Ctrl Cyt
8

*%

[+2]

ok ok
— &

i

Ctrl Cyt

network
branches mean
N s

o

Figure 6. STS increases cytokine-induced mitochondrial dysfunction and VSMC apoptosis.

A) Apoptosis or cleaved caspase 3 activity (Apo One) in VSMC treated or not (UT) for 24 h or 48h with
cytokines or 15mM STS, as indicated. B) Apoptosis in VSMC knocked down for CTH using 2 distinct
siRNAs (siCTH ! and 2), and treated or not with cytokines as indicated. C) Representative western blot
and quantitative assessment of Bax over Bcl2 protein levels in VSMCs treated or not with a mix of
cytokines IL-1B+TNFa+IL-6 (Cyt) and/or 15mM STS for 24h. A-C) Data are meanzSEM of 4 to 6
independent experiments. *p<0.05, **p<0.01, ***p<0.001 as determined by Mixed-effects model
(REML) with Sidak's multiple comparisons tests. D) Representative images and quantitative assessment
of live Mitotracker staining in VSMC treated with IL-1B+TNFa+IL-6 (Cyt) and/or 15mM STS. Data are
mean+SEM of 5 independent experiments. *p<0.05, **p<0.01, ***p<0.001 as determined by Kruskal-

Wallis tests corrected by Dunn’s.
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