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. 1 Abstract

> The identification of sex-linked scaffolds and the genetic sex of individuals, i.e. their sex karyotype, is
s a fundamental step in population genomic studies. If sex-linked scaffolds are known, single individuals
+ may be sexed based on read counts of next-generation sequencing data. If both sex-linked scaffolds as
s well as sex karyotypes are unknown, as is often the case for non-model organisms, they have to be jointly
s inferred. For both cases, current methods rely on arbitrary thresholds, which limits their power for low-
7 depth data. In addition, most current methods are limited to euploid sex karyotypes (XX and XY). Here
s we develop BeXY, a fully Bayesian method to jointly infer the posterior probabilities for each scaffold to
o be autosomal, X- or Y-linked and for each individual to be any of the sex karyotypes XX, XY, X0, XXX,
0w XXY, XYY and XXYY. If the sex-linked scaffolds are known, it estimates the sex karyotype posterior
u probabilities also for single individuals. As we show with downsampling experiments, BeXY has higher
12 power than all existing methods. It accurately infers the sex karyotype of ancient human samples with as
13 few as 20,000 reads and accurately infers sex-linked scaffolds from data sets of just a handful of samples
1 or with highly imbalanced sex ratios, also in the case of low-quality reference assemblies. We illustrate
15 the power of BeXY by applying it to both whole-genome shotgun and target enrichment sequencing data
16 of ancient humans as well as several non-model organisms.

v Keywords: molecular sexing, aneuploidy, sex chromosomes, low-depth sequencing, ancient DNA

s 2 Introduction

19 Many population genomic analyses rely on an accurate identification of the genetic sex of the individuals
2 as well as an identification of sex-linked scaffolds. The identification of genetic sex is used to reveal

a1 patterns of sex-specific ecology and evolution, for example concerning behaviour and social structure
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(e.g. Pecnerova et al., 2017; Gower et al., 2019), foraging ecology (e.g. Louis et al., 2021) or sex-biased
dispersal and philopatry (e.g. Bidon et al., 2014; Herrero et al., 2021). In the context of ancient humans
cultures, the identification of the genetic sex has been used to study social structure (e.g. Zegarac et al.,
2021; Hedenstierna-Jonson et al., 2017), religion (e.g. De La Cruz et al., 2008), sex-biased migration (e.g.
Veeramah et al., 2018) or to evidence women participating in prehistorical battles (e.g. Burger et al.,
2020). The identification of sex-linked scaffolds further allows to study sex-linked disease susceptibility
(Schurz et al., 2019), sex-biased gene expression (Grath and Parsch, 2016) or sex-linked gene-flow (Bidon
et al., 2014). In addition, sex-linked scaffolds often require special treatment in population genomic
analyses, for example for fair filtering on read depth and minor allele frequency, genotype calling and
Hardy-Weinberg checks, but also because they bias estimates of genetic diversity such as heterozygosity
(Ellegren, 2009), estimates of mutation rates (Ellegren, 2007), genome-wide association studies (Gao
et al., 2015) and assessments of population genetic structure (Benestan et al., 2017). If genetic sex
and/or sex-linked scaffolds are unknown, they need to be characterized using dedicated methods that can
be easily integrated in population genomic analyses.

The mechanisms of sex determination are remarkably variable (The Tree of Sex Consortium et al.,
2014), and genetic sex determination through sex chromosomes has evolved independently many times
throughout eukaryotes (Graves, 2008). However, two major systems can be outlined. In therian mammals,
beetles, many flies and some fish, males are heterogametic (XY) and females are homogametic (XX). In
contrast, in birds, snakes, butterflies and some other fish, females are heterogametic (ZW) and males are
homogametic (ZZ) (Graves, 2008; Bachtrog et al., 2014; Stock et al., 2021). Visual identification of the
sex based on morphology or behaviour can be challenging or even impossible (Fairbairn et al., 2007),
for example for species without sexual dimorphism (Kocijan et al., 2011), but also for juveniles (Kocijan
et al., 2011), ancient or historical samples (Buonasera et al., 2020), forensic samples (e.g. hair, Madel
et al., 2016), as well as samples of unknown origin, e.g. environmental samples or faeces (Peppin et al.,
2010; Sastre et al., 2009).

Molecular sexing through genetic data is an alternative to sexing from observations as it is accurate,
simple, cheap, time-efficient, applicable to any tissue and can often piggyback on other genetic analyses
(Buonasera et al., 2020). For example, molecular sexing from next-generation sequencing data exploits
the difference in sex chromosome ploidy between males and females: in XY-systems, roughly half as
many reads are expected to map to the X-chromosome in males than females, and no reads are expected
to map to the Y-chromosome in females (Palmer et al., 2019). The same logic applies to ZW-systems.
These unique mapping patterns can be used i) to deduce the genetic sex of individuals (sexing), ii) to
deduce the type (i.e. autosomal or sex-linked) of scaffolds or iii) to deduce both jointly in case both are

unknown. In the following, we describe these three major scenarios.
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Current methods to sex individuals assume a reference genome of which the scaffold types are known.
A typical case is the sexing of ancient human samples, for which two main methods are currently used:
R, and R,. R, (Skoglund et al., 2013) calculates the fraction of reads mapping to the Y-chromosome
relative to the total number of reads mapping to both sex chromosomes (X and Y). R, (Mittnik et al.,
2016) calculates the average of the fraction of reads mapping to the X chromosome relative to the number
of reads mapping to each autosome. Both methods then assign the sex based on thresholds determined
on small data sets (30 and 20 samples, respectively). Nonetheless, most current studies (e.g. Allentoft
et al., 2015; Scheib et al., 2018; Margaryan et al., 2020; Furtwéngler et al., 2020; Lipson et al., 2022; Liu
et al., 2022b; Reitsema et al., 2022) use the same thresholds for sexing without considering differences in
sequencing methods, sequencing depth or sample treatment.

The methods R, and R, are also both limited to the euploid karyotypes XY and XX, although sex
karyotypes aneuploidies in humans are relatively common with an estimated incidence of 1 in 440 births
(Breman and Stankiewicz, 2021). Several studies that used large cohorts detected aneuploid individuals,
but only by manually inspecting individuals with ambiguous mapping statistics (Rivollat et al., 2020;
Villalba-Mouco et al., 2021; Ebenesersdottir et al., 2018). To our knowledge, there exists currently only
a single method that can identify sex aneuploidy in humans (seGMM, Liu et al., 2022a), and it does so
based on the mean and standard deviation of normalized mapping counts to X and Y using predefined
cutoffs.

In the second scenario, the goal is to infer the scaffold types, assuming that the genetic sex of the
individuals is known. Scaffold types are often unknown for non-model organisms with low-quality and
fragmented draft genome assemblies due to high cost and challenges associated with complete genome
assembly (Ellegren, 2014). Approaches to identify sex-linked scaffolds include synteny-based alignments to
closely related species with a chromosomal-level genome assembly (Grabherr et al., 2010) or comparison
of the sequencing depth of each scaffold between males and females (Palmer et al., 2019). The tool
findZX (Sigeman et al., 2022) implements a pipeline to identify X/Z chromosomes through differences
in sequencing depth and heterozygosity. The method discoverY identifies Y-linked scaffolds through
differences in sequence similarity and sequencing depth between males and females (Rangavittal et al.,
2019).

In the third scenario, both the sex karyotypes of individuals as well as the scaffold types are unknown,
as is often case for non-model organisms. The method SATC (Nursyifa et al., 2022) infers both sex and
sex-linked scaffold in a two step procedure. It first conducts a principal component analysis (PCA) on
normalized depth and uses Gaussian mixture clustering to identify males and females. It then uses a
t-test to identify sex-linked scaffolds as those for which the normalized depth differs between the two sex

groups. However, SATC relies on hard thresholds and can not identify Y-linked scaffolds. The method
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SeXY (Cabrera et al., 2022) uses a synteny-based approach to identify sex-linked scaffolds and performs
sexing based on the X to autosome depth ratios. While SeXY can perform sexing with a single individual
at low depth and was tailored to also work with reference genomes of divergent taxa, its sexing is based
on arbitrary thresholds. Other methods (Robledo-Ruiz et al., 2023; Gautier, 2014) can also infer both
sex and sex-linked loci but are designed for SNP data sets (e.g. RAD sequencing) and classify each locus
individually. None of the tools allows for aneuploid sex karyotypes.

Here, we present a Bayesian method designed to work in all three scenarios described above. Our
method, which we call Bayesian estimation of X and Y, or BeXY for short, jointly infers the type of all
scaffolds as well as the sex karyotype for all individuals. In contrast to existing methods, BeXY i) does
not rely on hard thresholds but instead infers probabilities for scaffold types and sex karyotypes, ii) is
flexible in respect of incorporation of existing knowledge on sex-linked scaffolds and sex karyotypes in the
model, iii) can identify both X- and Y-linked scaffolds, iv) can detect aneuploid sex karyotypes and v)
retains high accuracy for low-depth and highly fragmented genome assemblies. To illustrate our method,
we applied it to whole-genome shotgun and target enrichment sequencing data of ancient humans as well
as to data from several non-model organisms. Using simulations, we show that our method outperforms

current methods in all scenarios.

3 Materials and Methods

3.1 The model

For readability, we will present the model using the XY notation, although the model applies equally well
to ZW-systems.

Consider a reference genome consisting of C' scaffolds. Let n,.. denote the number of sequencing reads
of sequencing run » = 1,..., R mapped to scaffold c¢. These mapping statistics can be obtained easily
from indexed BAM files either with the idxstats command in Samtools (Li et al., 2009) or with the
BAMDiagnostics command in ATLAS (Link et al., 2017). Each sequencing run » = (¢, m) corresponds to a
certain individual 1 = 1,.. ., I sequenced with a specific method m = 1,..., M such as, for instance, target
enrichment sequencing, whole-genome shotgun sequencing or restriction site associated DNA sequencing
(RAD). These methods likely differ in their mapping characteristics and are thus modeled with their
own set of parameters. Individuals may have been sequenced with multiple runs and potentially different
sequencing methods and the model described here allows to make use of all that data jointly.

We model the vector of counts n,. = (n,1,...,n,c) of sequencing run r using a Dirichlet-Multinomial

(DM) distribution (Johnson et al., 1997) as
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n,. ~ DM (N, (r)).

Here, N, = ) _nrc is the total number of mapped reads of run r and the parameter vector a (1) =
(a1 (1), ...,ac (r)) models both the expected number and the variance of reads mapping to each scaffold.
We model n,. of run r = (i, m) using two major components: the ploidy p;. of scaffold ¢ in individual
i, and some method- and scaffold-specific mapping attractor -,,.. These mapping attractors may differ
among scaffolds due to, for instance, scaffold length or mappability as more reads are expected to map

to longer scaffolds or to scaffolds with fewer repetitive regions. We model a.(r) as

ac(r = (va)) = O_L'Ymc(pw + Ei)~

m
Here, ¢; is an individual-specific parameter that allows for noise due to erroneously mapped reads and
Om is a positive scaling parameter that models the variance of the Dirichlet-Multinomial distribution. To

avoid non-identifiability issues with o,,, we impose the constraint that 25:1 Yme = 1.

Ploidy The ploidy p;. depends on two factors: the sex karyotype s; of individual ¢ and the scaffold
type, i.e. whether a scaffold is autosomal, X or Y-linked. We distinguish seven sex karyotypes, which
correspond to the most frequent sex karyotypes observed in humans: the heterogametic sex (s; = XY),
the homogametic sex (s; = XX), the monosomy s; = X0 as well as the three trisomies s; = XXY,
s; = XYY and s; = XXX and the tetrasomy s; = XXYY.

In theory, the ploidy is given by the number of copies of each scaffold, for example p;,. = 2 for all
autosomal scaffolds or p;. = 1 for both X and Y-linked scaffolds of an individual with sex karyotype XY.
However, in low-quality reference genomes, the ploidy ratio between the sex karyotypes often differs from
the canonical cases due to noise (Nursyifa et al., 2022). We here model the ploidy using a continuous,
scaffold-specific parameter p. € [0, 1] such that p. = 0 corresponds to a canonical Y, p. = % to a canonical
autosome, and p. = 1 to a canonical X. Intermediate values of p. then signify ploidies that are different
from these cases. The resulting ploidies p;. for all considered sex karyotypes are given in Table 1 and
illustrated in Figure 1.

BeXY classifies each scaffold into one of four categories: autosomal (t, = A), X-linked (t. = X), Y-
linked (t. =Y) or “different” (¢, = D) for ploidies that differ from the canonical cases. We achieve this
by modeling p. through a mixture of four Beta distributions. For autosomes, we use a symmetrical Beta
distribution p.|t. = A ~ Beta(y, st), which has an expected value E(p.) = 1. For X-linked scaffolds, we
use a left-skewed distribution p.|t. = X ~ Beta(a, 1) with o < 1, which has an expected value close to

one. For Y-linked scaffolds, analogously, we use a right-skewed distribution p.|t. =Y ~ Beta(1, 8) with
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Table 1: Ploidies p;. as a function of ploidy parameter p. for all sex karyotypes.
Sex karyotype s; 0<p. <05 05<p.<1

XY 14+ 2p 3 —2p.
XX 4p. 2
X0 4p. 3 —2p,
XXY 14 2p, 2
XYY 2 3 —2p.
XXX 4p. 14+ 2p,
XXYY 2 2

u [ < 1, which has an expected value close to zero. Finally, for non-canonical scaffolds of type t. = D we
150 use an uninformative Beta distribution p.|t. = D ~ Beta(1,1) (see the Supplementary Materials for a

151 more detailed description of the parametrization).

12 Distribution of karyotypes We assume that the distribution of sex karyotypes s; in a sample are
153 described well by two parameters, the frequency a of aneuploids and the frequency f of XX to XY

14 karyotypes among euploids, such that

1-a)1—f) ifs=XY

P(sila, f) =4 (1 —a)f if 5; = XX
% if s; = X0 or XXY or XYY or XXX or XXYY.
155 See the Supplementary Material for a description of all prior distributions used.

s 3.2 Bayesian inference

157 We use a Markov chain Monte Carlo (MCMC) scheme to generate samples from the posterior P(s, p,~, €,5|N),
158 where IN denotes the R x C matrix of read counts with entries [N],. = n,.. We update t. using Gibbs
150 sampling and all other parameter using standard Metropolis-Hastings updates (see Supplementary Ma-

160 terial).

e 3.3 Implementation

12 BeXY is a command-line tool implemented in C++ making use of the MCMC framework of the statistical
163 library stattools (bitbucket.org/wegmannlab/stattools). It implements two tasks, infer and sex. The
1« task infer is used to infer sex karyotypes and scaffold types jointly, while the task sex is used to only
15 infer sex karyotypes, i.e. only the individual-specific parameters s; and ¢; while using estimates of p,
166 Y, and o,, previously learned from a larger data set. Currently, BeXY provides such estimates for the

17 human reference genome for both whole-genome shotgun sequencing and 1240K target enrichment capture
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protocols. The output of BeXY can be loaded into an R-package that visualizes the results and provides
an easy interface to classify individuals based on custom thresholds on the posterior probabilities of the

sex karyotypes.

3.4 Application to empirical data sets

Ancient humans We downloaded publicly available data of ancient humans sequenced with two
different methods. We first downloaded 954 individuals sequenced with Illumina whole-genome shot-
gun (WGS) sequencing (Antonio et al., 2019; Damgaard et al., 2018; Ebenesersdottir et al., 2018;
Lazaridis et al., 2014; Scheib et al., 2018; Hofmanova et al., 2016; Broushaki et al., 2016; Gamba
et al., 2014; Gilinther et al., 2018; Margaryan et al., 2020; De Barros Damgaard et al., 2018; Marchi
et al., 2022; Jones et al., 2017, 2015) in fastq-format and processed these with the Gaia part of the
ATLAS-pipeline (bitbucket.org/wegmannlab/atlas-pipeline). Specifically, we trimmed the reads using
Trim Galore (github.com/FelixKrueger/TrimGalore) with no quality filter and a length filter of 30.
Reads were subsequently aligned to the GRCh38 human reference genome (NCBI RefSeq assembly
GCF _000001405.26) using BWA-MEM (Li, 2013). Reads with a mapping quality below 30 were filtered
out with Samtools (Li et al., 2009). Unmapped and, in the case of paired-end sequencing data, unpaired
reads were removed with Samtools. Samples consisting of multiple libraries were merged using Samtools.
Duplicate reads were marked using picard-tools MarkDuplicates (broadinstitute.github.io/picard). We
further downloaded 2,359 individuals sequenced with 1240k target enrichment capture sequencing (Fer-
nandes et al., 2020; Fowler et al., 2022; Fu et al., 2016; Harney et al., 2021, 2022; Kennett et al., 2022;
Lazaridis et al., 2022, 2016, 2017; Lipson et al., 2017, 2022; Liu et al., 2022b; Mathieson et al., 2015, 2018;
Narasimhan et al., 2019; Novak et al., 2021; Olalde et al., 2018, 2019; Patterson et al., 2022; Prendergast
et al., 2019; Reitsema et al., 2022; Rivollat et al., 2020; Sirak et al., 2021; Tiesler et al., 2022; Villalba-
Mouco et al., 2021) directly in BAM-format. For both data sets, we used the task BAMDiagnostics
in ATLAS (Link et al., 2017) to count the number of reads that aligned to each chromosome, ignoring

duplicates and reads with a mapping quality below 30. The resulting files were used as an input for BeXY.

Non-model organisms We ran BeXY on the six WGS data sets of varying assembly quality provided
by Nursyifa et al. (2022): impala (Aepyceros melampus), muskox (Ouvibos moschatus), waterbuck (Kobus
ellipsiprymnus), grey whale (Eschrichtius robustus), leopard (Panthera pardus) and the Darwin’s finches
species complex encompassing 15 species. We used the idxstats files provided by (Nursyifa et al., 2022)
and ran BeXY and SATC on these data sets. We used the default filters of SATC for both BeXY and SATC,

i.e. we removed scaffolds with < 100kb length and a normalized depth outside the range (0.3,2).
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w 3.5 Downsampling experiments

20 The performance of BeXY likely depends on the sequencing depth of the individuals and, in case scaffold
20 types are inferred, also on the sample size, the sex ratio among the samples, and the quality of the
22 reference genome assembly. We tested the limits of BeXY and competing methods with respect to each
203 of these challenging factors using dedicated downsampling experiments based on a subset of the ancient
20 WGS data set consisting of all individuals with a depth > 2x (n = 116) that were also all identified as
25 euploid on the full data sets.

206 To evaluate the robustness of sexing individuals with respect to low-depth data of euploid individuals,
207 we downsampled (with replacement) the read counts of all individuals in the subset to various depth
28 ranging from 200,000 to 100 reads per individual. We ran BeXY with the task sex on 100 replicates of
20 downsampled counts, and set the prior parameters on s to the values expected for a human data set,

1 _ 1
210 f—ianda—m

(Breman and Stankiewicz, 2021). We considered all classifications with state posterior
au  probabilities P(s;|n,.) > 0.9 as confident. We then compared the sex inferred from the downsampled data
22 set with that inferred from the full data set. We also ran the two competing sexing methods R, (Mittnik
xs et al., 2016) and R, (Skoglund et al., 2013) on the same data set using default parameters and counted
2. the classifications “Sex assignment: The sample could not be assigned” (for R, ) as well as “Not Assigned”
xs  (Ry) as uncertain and all others as confident.

216 To investigate the power of the task sex to detect aneuploid individuals at various depths, we simulated
a7 aneuploid individuals based on the samples in the subset. We used individuals with karyotype XY to
28 simulate samples with karyotypes XXY, XYY and XXYY and individuals with karyotype XX to simulate
20 samples with karyotypes X0 and XXX as follows: Let f, and f, denote the the relative change in
20 ploidies between the karyotype to simulate and the karyotype of the individual serving as template (e.g.
a1 fx =2, fy = 2 to simulate the karyotype XXYY from an XY individual, or fx = 0.5, fy = 1 to simulate

2 a karyotype X from an XX individual). We then sampled reads (with replacement) from the vector n,

23 according to the probabilities

Npe 1fC€{17722}
_ 1 .
Pre N’“ + (f:c - l)nmc + (fy — 1)nry f1n71 fe=X
fmnry ife=Y.
224 Using this procedure, we simulated samples for various depth ranging from 200,000 down to 100 reads

»s  per sample. We ran BeXY with the task sex on 100 replicates of downsampled counts and identified
26 confident classifications as described above, both on a per-karyotype basis as well as for euploid and

27 aneuploid karyotype classes, ensuring that all karyotype were equally frequent within a class. Since the
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prior on the number of aneuploid samples, a, has a large impact on the classification accuracy of euploid

and aneuploid individuals, we ran BeXY with both a = ﬁ and a = % We ran the competing sexing
method seGMM (Liu et al., 2022a) on the same data set. Since the available implementation of seGMM
requires a VCF file to perform the clustering of the samples for subsequent sexing, we re-implemented
their approach and calculated the relevant statistics needed for sexing (the mean and standard deviation
of normalized read counts for the X and Y chromosome for XX and XY samples) based on the full
counts. While re-implementing, we also fixed an obvious bug in their code that led to a misclassification
of XXX individuals (XXX karyotypes are expected to have 1.5 times the number of reads mapping to
the X-chromosome than XX karyotypes, not twice as many). We counted all classifications that could
not be assigned as uncertain and all others as confident.

We also investigated the power to infer sex karyotypes scaffold types jointly, using the same down-
sampled counts as for the first downsampling experiment described above (only euploids). We ran BeXY
with the task infer and identified confident classifications as described above. We ran the competing
method SATC (Nursyifa et al., 2022) on the same data set. For comparability with BeXY, we turned off
the normalized depth range filter by setting it to (0,100) in SATC. SATC does not provide an estimate of
classification uncertainty and we assumed all classifications as confident. But we note that SATC throws
an error if no good candidates for sex scaffolds were found through clustering or when one of the inferred
sex groups only had one member. We counted these cases as uncertain.

To evaluate the robustness of our method to small data sets or those with large sex ratio imbalances
when jointly inferring sex karyotypes and scaffold types, we first downsampled all individuals in the
subset to 20K reads and then randomly compiled data sets with various XY:XX proportions differing in
size and imbalance. We ran BeXY and SATC as describes above.

To evaluate the robustness of our method with respect to low-quality reference genome assemblies,
we simulated a low-quality reference genome based on the human reference genome GRCh38. To match
the roughly exponential distribution of empirical low-quality reference genomes (e.g. waterbuck from
Nursyifa et al., 2022), we defined length categories of 106, 5-10°, 2-10°, 10°, 5-10%, 2-10* and 10* and
split the chromosomes into scaffolds of these lengths. To limit mapping issues, we excluded the telomeres
(15kb at each end of each chromosome), the pseudo-autosomal regions (PAR) on the X and Y chromo-
some as well as the centromeres of all chromosomes (all downloaded from ncbi.nlm.nih.gov/gre/human),
with an additional buffer of 100kb around each of these regions. After splitting, we further excluded
all resulting scaffolds that overlapped by more than 90% with gap regions consisting of N (hgdown-
load.soe.ucsc.edu/goldenPath /hg38/database/gap.txt.gz, Nassar et al., 2023) as well as all scaffolds that
overlapped by more than 90% with regions listed in the ENCODE Blacklist (Amemiya et al., 2019). We

then re-mapped the sequencing data of all samples against this artificially created low-quality reference
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genome. To reduce computational time, we downsampled each fastq file to 10 millions reads using
the sample option in seqtk v1.4 (github.com/lh3/seqtk) prior to mapping. We then downsampled read
counts to 1,000,000 reads per sample with replacement for 50 replicates and ran BeXY with the task
infer and SATC. The performance of SATC turned out to be rather poor when no depth filter was used,
we ran it only on scaffolds that had a normalized depth in the interval (0.3, 2), which corresponds to their
default filter. For BeXY, we only excluded scaffolds that had zero counts for all samples, as these are not
identifiable. We considered all scaffold type classifications by BeXY as confident if their state posterior
probabilities P(¢.|n,.) > 0.9. SATC does not provide an estimate of uncertainty in classifying scaffold
types and we assumed all classifications as confident. But as above, we considered all classifications as
uncertain if SATC threw an error. We counted all scaffolds that were removed by the filter as a uncertain

classification.

4 Results

4.1 Downsampling experiments

Sexing for low-depth data We first investigated the robustness of BeXY to low-depth sequencing data
of euploid individuals and compared its performance to that of R, and R,. As shown in Figure 2A, BeXY
correctly assigned the sex karyotype with high confidence to > 97% of all samples even at only 1,000
reads per sample and to 24% at 100 reads per sample, with a low false discovery rate (FDR) of around
3% at very low depth. The second most powerful methods was R,, which confidently classified a similar
fraction of all samples correctly, albeit with a much elevated rate of misclassifications, which results in
a FDR of up to 26% at 100 reads per sample. In contrast, R, confidently classified much fewer samples
correctly at an even much higher FDR of up to 55%.

We then evaluated the power of BeXY to detect aneuploid sex karyotypes at low-depth data, and
compared it to the competing method seGMM. We first evaluated the power of BeXY using a relaxed prior
on the number of aneuploid individuals of a = % As shown in Figure 2B, BeXY correctly assigned both
euploid and aneuploid sex karyotypes with high confidence to > 90% of all samples at 20,000 reads. We
note that the classification accuracy of the euploid karyotypes XY and XX is lower than in Figure 2A,
because the prior does not favour euploid karyotypes anymore at noisy counts. seGMM correctly assigned
> 80% of euploid samples and only 47% of aneuploid samples at 20,000 reads. For lower read counts,
seGMM has a higher power, but also a much elevated FDR of up to 80% for euploid samples and 50% for
aneuploid samples.

In Figures 2C and D we show the performance for each karyotype individually. As shown in Figure

2C, the karyotypes that contain a Y chromosome (XY, XXY, XYY and XXYY) require around 20,000
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reads to be classified with an accuracy of > 80% by BeXY, while the karyotypes that contain only X
chromosomes (X0, XX and XXX) require only 2,000 reads to obtain the same accuracy. This is explained
by the short length of the Y chromosome, which results in small and rather noisy counts. As shown
in Figure 2D, classification accuracy of seGMM was very variable across karyotypes, with the euploid
karyotypes and XXY having a classification accuracy similar to that of BeXY and the karyotypes XO,
XXX and XYY having low classification accuracy regardless of depth. At low depth, many karyotypes
suffered from high misclassification rates, likely because the hard thresholds become unreliable.

When sexing individuals at low depth, the choice of the prior probability on an individual to be
aneuploid may have a considerable impact on the performance of BeXY. To investigate this we repeated

the above inference also with a stringent prior of a = ﬁ, which is strongly favoring euploid genotypes.
As a consequence, and as also seen in Figure 2A, euploid karyotypes required fewer reads (about 1,000)
to be classified correctly, while aneuploid karyotypes were wrongly classified as euploids (X0 and XXX

as XX and XXY, XYY and XXYY as XY) at low depth (Supplementary Figure 1).

Joint inference for low-depth data We next compared the performance of BeXY to SATC in inferring
sex karyotypes jointly with scaffold types. We first investigated the impact of sequencing depth using
the full subset of 116 samples. If samples had > 1,000 reads, both methods performed well and correctly
assigned the sex karyotype with high confidence to > 99% and > 95% of all samples respectively (Figure
3A). With lower depth, both methods lose power, but differed in that BeXY rarely confidently misclassified
individuals while median misclassification rate for SATC was up to almost 40%.

We next investigated the impact of small sample sizes, imbalanced sex ratios, or both. In 97% and
68% of all simulations conducted, all samples were correctly classified by BeXY and SATC, respectively. In
27% and 87% of all cases with misclassifications, BeXY and SATC misclassified all samples to the opposite
sex karyotype, suggesting that the challenge at low sample number or with imbalance sex ratios lies in
correctly identifying sex-linked scaffolds. As shown in Figure 3B, the fraction of replicates in which all
individuals were correctly classified was generally higher for BeXY than SATC, especially for data set with
imbalanced sex ratios. If a sex karyotype was represented by only two individuals, for instance, SATC
classified all samples correctly in less than 20% of the replicates. In comparison, BeXY still classified all
samples correctly in 99% of the replicates under these conditions. Notably, BeXY also classified all samples
correctly in more than 84% of the replicates if a sex karyotype was represented by a single individual - a

case in which SATC does not attempt any classification.

Low-quality reference genome assemblies We investigated the power of BeXY to identify scaffold

types in the case of low-quality reference genome assemblies. The simulated reference genome consisted of
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10,574 scaffolds ranging from 106 to 10* bases in length. As shown in Figure 3C, the median classification
accuracy of BeXY was > 99% for all larger scaffolds, but dropped slightly to about 95% and 89% for the
smallest X-linked and Y-linked scaffolds simulated, respectively. SATC had similar power to identify
autosomes (median of > 98% for all scaffold lengths), although it interestingly misclassified a few long
scaffolds as abnormally sex-linked in some replicates. While SATC does not classify Y-linked scaffolds, the
median classification accuracy for X-linked scaffolds was around 85% for long scaffolds and dropped to

24% for short scaffolds of 10kb, albeit high variability between replicates.

4.2 Application to human data set

We analyzed 954 ancient human samples sequenced with whole-genome shotgun sequencing and 2,359
ancient human samples sequenced with the 1240k capture target enrichment technique. In the whole-
genome data set, visualized in Figure 4AC, all individuals were classified with high confidence as XY
(n = 608) or XX (n = 345) except YGS-B2, which was classified as XXY with 100% posterior probability,
in line with earlier reports (Ebenesersdottir et al., 2018). In the 1240k capture data set, visualized in
Figure 4BD, we identified 1,101 samples as XX and 1,249 samples as XY with high confidence (posterior
probability for the given karyotype larger than 90%). We confirmed the karyotype of all three samples
that were previously classified as aneuploid: ALM062.A0101.TF1.1 (XXX, Villalba-Mouco et al., 2021),
CLLO011.A0101.TF1.1 (XXY, Villalba-Mouco et al., 2021) and HBS006 (XXY, Rivollat et al., 2020) with
very high confidence (100% posterior probability for the given karyotype). In addition, we identified six
novel aneuploid samples with high confidence: 112935 (XYY, 100%), 118427 (XXY, 100%), 120769 (XXY,
99.8%), 119361 (XXY, 99.9%), 119480 (XXY, 96.9%), and 118426 (XXX, 86.7%). For two samples, the
karyotype remains unclear: 112437 had a posterior probability of 34.1% to be XYY and 65.9% to be XY
and 120754 had a posterior probability of 60% to be XX and 40% to be XY. This last sample had the
lowest read count of all samples (6,983 reads) and was previously reported as being likely contaminated

(Harney et al., 2021), which may explain its uncertain sex karyotype assignment.

4.3 Application to data sets from non-model organisms

We ran BeXY on the six mammal and bird WGS data sets provided by (Nursyifa et al., 2022) and
compared the sex and scaffold-type assignment to that obtained with SATC. For all data sets, the two
methods did not differ in the sex karyotype classifications. Both methods also mostly agreed in their
scaffold-type assignments and classified on average 94.9% of all scaffold identically across data sets. The
most common difference in scaffold-type was that SATC classified a scaffold as “abnormally sex-linked*

while BeXY classified it as autosomal or X-linked. Notably, and while SATC cannot detect Y /W-linked
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scaffolds, BeXY found clear evidence of Y/W-linked scaffolds in muskox, waterbuck and finches, which SATC
labelled as “abnormally sex linked“. Specifically, BeXY classified the scaffolds 213 and 46825 in muskox,
the scaffolds 1604, 2519, 3205, 3507, 3814, 4043, 4087, 4219, 4352 and 4785 in waterbuck as well as the
scaffolds NW _005054701.1, NW _005054702.1, NW _005054736.1, NW _005054753.1, NW _005054754.1
in finches with a 100% posterior probability as being Y/W-linked.

5 Discussion

With the rapid growth of population genomics studies for non-model organisms and ancient samples,
there is a need for accurate sex karyotype and scaffold type assignment for low-depth samples. We here
present BeXY, a Bayesian method that jointly infers sex karyotypes and identifies sex-linked scaffolds from
mapping statistics. Our method is flexible with respect to existing knowledge (e.g. scaffold types), retains
high accuracy for low-depth samples, is robust to small data sets or those with highly imbalanced sex
ratios, and outperforms all existing methods in the field.

One use case of BeXY are non-model organisms, for which both the genetic sex of individuals as well as
scaffold types are unknown. BeXY only requires mapping statistics, namely the number of reads mapping
to each scaffold as well as scaffold lengths, and does not require any prior knowledge on sex karyotypes or
sex-linked scaffolds. Importantly, BeXY introduces a continuous parametrization of the expected ploidy.
This allows for the accommodation of noisy scaffolds showing aberrant ploidy ratios due to mapping
issues or mistakes in the assembly, which was previously shown to complicate the identification of sex-
linked scaffolds (Nursyifa et al., 2022). Using simulations, we showed that BeXY has much higher power
to accurately infer scaffold types than the competing methods SATC (Nursyifa et al., 2022), particularly
for data sets with only few individuals or highly imbalanced sex ratios, also for low-depth samples (1,000
reads per sample). In contrast to SATC, BeXY also accurately identifies Y-linked scaffolds, which SATC
puts in the same class as those with aberrant ploidy ratios.

The second major use case of BeXY is the genetic sexing of (single) individuals, for example for ancient
humans. For this scenario, BeXY requires mapping statistics of the individual, along with estimates of
parameters p, 7, and o, that have been inferred on a larger data set. It is important that these
parameters were inferred not only from a data set of the same species, but also from data produced
with the same sequencing method, as different methods may differ in their per-scaffold expected read
counts. In the case of ancient human samples, for instance, whole-genome shotgun and target enrichment
capture data differs considerably in their distribution of reads across chromosomes, as the former is mainly
influenced by the length of each chromosome, and the latter mainly by the number of sites targeted per

chromosome. While BeXY already provides suitable parameter estimates for humans for both of these
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sequencing methods, they would have to be re-estimated for a different species or a new capture technique,
for instance.

Genetically sexing individuals with BeXY has several advantages over existing methods such as R,,
Ry, SATC and seGMM. First, BeXY is a Bayesian method that calculates the posterior probabilities for each
sex karyotype, whereas all existing methods that do sex assignment from read count data are based on
hard thresholds. As we showed with simulations, the use of hard thresholds is problematic in the case
low-depth samples, which were often un- or misclassified. Second, BeXY accurately identifies aneuploid
sex karyotypes, which are expected to be found in most large data sets. There exists currently only
a single method, seGMM, that identifies aneuploid karyotypes from read counts, and as we showed with
simulations, BeXY has considerably higher power to accurately infer such karyotypes, only requiring about
20,000 reads per individual in the case of ancient human samples.

Since BeXY is a Bayesian method, the choice of the prior may have a big influence if data is limited.
That is particularly true for a, the expected fraction of aneuploids in the sample. Our simulations
suggest that if a small value of a was used, such as the known distribution of aneuploids in the human
population a = ﬁ, euploid individuals should be accurately sexed with as few as 1,000 reads, but
aneuploid individuals with that little data would often be confidently misclassified as euploids as the

1

data can not overcome the prior. If a larger value of a = 5 was used, our simulations indicate that both

euploids as well as aneuploids individuals should hardly ever be misclassified, but that about 20,000 reads
per sample are required for confident classification. We therefore suggest to use a large value of a = %
for samples with more than 20,000 reads, but to restrict the analysis to euploid karyotypes with a more

stringent prior if fewer reads are available. In the ancient human data sets analyzed in this paper, only

1.4% of all individuals had less than 20,000 reads, therefore a = %

5 is expected to result in an accurate

classification of sex karyotype for the majority of individuals.
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Figure 1: Ploidy as a function of p. for all sex karyotypes, obtained by following the line from the number
of Y copies to the number of X copies of that karyotype. The red line exemplifies the ploidy function for
the karyotype XXY.
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Figure 2: Power to sex individuals. Shown are the median (line with symbols) and 98% confidence interval
(shaded area) of the fraction of individuals classified as confidently correct (solid line) and confidently
incorrect (dashed line) across 100 downsampling replicates. (A) The performance of BeXY compared to
R, and R, on euploid karyotypes. (B) The power of BeXY compared to seGMM to classify both euploid
and aneuploid karyotypes using a relaxed prior of a = 1. (C) The same results of BeXY as in B, but

2
plotted by karyotype. (D) The same results of seGMM as in B, but plotted by karyotype.
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Figure 3: Power to infer sex karyotypes of individuals and scaffold types jointly. (A) The the median
(line with symbols) and 98% confidence interval (shaded area) of the fraction of individuals classified as
confidently correct (solid line) and confidently incorrect (dashed line) as a function of sequencing depth
across 100 downsampling replicates for both BeXY and SATC. (B) The fraction of replicates where the
sex karyotype of all individuals was correctly assigned for small (left) and imbalanced (middle and right)
data sets. Note that SATC requires at least two individuals per karyotype and could not be evaluated for
the data sets marked with an asterisk. (C) The power of BeXY and SATC to classify scaffold types for
low-quality reference genomes. Shown are the median (line with symbols) and 98% confidence interval
(shaded area) of the fraction of scaffolds classified as confidently correct as a function of scaffold length
across 50 replicates for each scaffold type. Note that SATC does not classify Y-linked scaffolds.
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Figure 4: Sex karyotype classification of ancient samples. (A,B) Ternary plot showing the posterior
probabilities for each sample to have an XY, XX or aneuploid sex karyotype for the ancient WGS (A)
and 1240k target enrichment capture (B) data sets. The color of the points refers to the posterior mode of
the sex karyotype. The per karyotype posteriors of all samples identified as aneuploid or with uncertain
sex karyotypes are shown using shaded within a 7-cell matrix of the x-axis corresponds to having one,
two or three copies of the X-chromosome and the y-axis corresponds to having zero, one or two copies
of the Y-chromosome. The samples CLL011.A0101.TF1.1 and ALM062.A0101.TF1.1 were abbreviated
to CLLO11 and ALMO062, respectively. (C,D) Scatter plot for the ancient WGS (C) and 1240k target
enrichment capture (D) data sets showing the percentage of reads mapped to Y against the percentage
of reads mapped to X, with the same individuals highlighted as in A and B.
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