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Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large 
biomolecules in solution. However, preparing samples for these experiments is arduous and entails deuteration, limiting 
its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly 13C labelled, samples can be processed 
using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, 
potentially providing more information at a fraction of the cost. We validated the new methodology experimentally on three 
proteins with molecular weights in the range 42-360 kDa and further by analysing deep learning-processed NOESY spectra 
of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks were in good agreement with the 
available structure. The new method represents a substantial advance in the field of using deep learning to analyse complex 
magnetic resonance data and could have a major impact on the study of large biomolecules in the years to come. 
 

Introduction 
Nuclear Magnetic Resonance (NMR) spectroscopy is a ubiq-
uitous technique in material science, chemistry, structural 
biology, and in clinical diagnosis. In bioscience, NMR pro-
vides unprecedented insight into functional motions and on 
non-covalent interactions with atomic resolution. However, 
NMR is notoriously insensitive, so maximising resolution 
and sensitivity is a perpetual challenge within all areas of 
NMR spectroscopy. To this end, nuclear spin-relaxation, 
which is the process by which equilibrium magnetisation is 
restored and detectable NMR signal is lost, scales rapidly 
with molecular size, making it challenging to study large bi-
omolecular systems by solution-state NMR. This has meant 
that individual NMR experiments are traditionally each as-
sociated with size limits of the system under investigation, 
above which most signals are broadened beyond detection. 

Over many decades, a series of developments have raised 
the size-limits of detection in biomolecular applications, 
combining advances in hardware, sample preparation and 
pulse sequence development. The introduction of methyl-
TROSY methods1, wherein methyl-bearing side chains are 
used to probe biomolecular structure and dynamics, pro-
vided a step-change in molecular weight limitations for so-
lution-state biomolecular NMR. Using these techniques 
makes it possible to study systems up to the megadalton mo-
lecular weight range. A key requirement, however, for at-
taining high quality methyl-TROSY spectra is that the pro-
tein should be prepared with a very high level of deuteration. 
Consequently, in practice, for methyl-TROSY NMR studies, 
the proteins produced are completely deuterated with the 
exception of [1H, 13C] labelled methyl moieties in specific 
side chains, typically those in isoleucine, leucine, methio-
nine, and valine. The labels are introduced using specific 

pre-cursor compounds that are tuned to specific side chains 
and robust protocols exist2,3. However, uniform deuteration 
adds several disadvantages, such as a considerable extra cost 
to protein production, typically lower yields of expressed 
protein, and it is not even possible in many systems of con-
siderable biological interest, including proteins that can only 
be expressed in a mammalian system. As such, the ability to 
obtain high-quality 13C-1H correlations maps from uniformly 
13C labelled protonated proteins would be highly desirable. 
The uniform labelling is easier, cheaper, and gives access to 
peaks associated with all methyl-bearing side chains rather 
than just those where the appropriate precursor has been 
added during protein expression. Such a method would also 
avoid the need for deuteration and pave the way for charac-
terisations of large proteins that can only be expressed in 
mammalian systems. 

In this current era with burgeoning applications and de-
velopments of AI, from computational structural biology4,5 
to sophisticated large language models6, it is natural to look 
for solutions within the field of AI to the challenges encoun-
tered in characterising large proteins. In this context, it has 
over the last couple of years been shown by others and us 
that deep neural networks (DNNs) can indeed be trained to 
accurately transform7–9 and analyse10,11 complex NMR data. 
The most recent applications use supervised deep learning, 
where a DNN is supplied with an input and target training 
dataset and through a training process the DNN ‘learns’ the 
mapping between the two. Typically, this training requires 
very large amounts of training data, but importantly, as has 
been noted in several prior studies8,12,13, it is possible to sim-
ulate an arbitrary amount of realistic training data for mag-
netic resonance based supervised deep learning, avoiding a 
significant potential data bottleneck. Deep learning methods 
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have now been successfully applied to several tasks in mag-
netic resonance spectroscopy including the analysis of 
DEER data12, reconstruction of non-uniformly spectra7,9,13, 
peak-picking11,14, and virtual homonuclear decoupling8. 

Herein we demonstrate that deep neural networks 
(DNNs) can be used, in place of the traditional 1822 Fourier 
transform15, to deliver very high-quality 13C-1H correlation 
spectra from uniformly 13C protonated samples of even large 
proteins. In brief, the DNNs presented below are trained to 
map the broad 13C-1H spectra of uniformly labelled proto-
nated samples to spectra that are akin to classical methyl-
TROSY spectra. Specifically, the DNNs are applied to time 
domain NMR data, remove the effects of one bond 13C-13C 
scalar couplings in the 13C dimension, and increase the reso-
lution for both the 1H and 13C dimensions by effectively 
sharpening the observed cross-peaks. The net effect of these 
two processes is that following the application of these 
DNNs, the appearance of peaks associated with methyl bear-
ing side chains in protonated samples are approaching those 
attained from deuterated samples with specifically labelled 
side chains. A schematic illustration and summary of the ef-
fects of the DNNs is provided in Figure 1, where the charac-
terisation of the 81 kDa MSG is used as an example. 

We robustly cross-validate the trained DNNs on syn-
thetic data and show the applicability of the trained DNNs 
on experimental data, where we demonstrate the effective-
ness of this methodology on a range of increasingly large 
proteins: HDAC8 (42 kDa), Malate synthase G (MSG, 81 
kDa) and ³7³7 (360 kDa), demonstrating how the DNNs 
provide a highly effective route to studying large proteins by 
NMR. Finally, we apply the new method to obtain 3D Me-
thyl NOESY NMR spectra of MSG, which can aid in chemi-
cal shift assignments and/or structural characterisations. 

Results 
Attempting to measure high-quality 13C-1H correlations 
maps on large proteins using classical approaches, such as 
13C-1H HSQC spectra, run into several problems. Firstly, 
since the proteins are uniformly 13C labelled they will be sub-
ject to one-bond 13C-13C scalar couplings that will evolve dur-
ing indirect chemical shift evolution, splitting signals into 
multiplets and complicating interpretation of the spectrum. 
Of perhaps greater significance, is that the lack of deuter-
ation in the system which means that signals will be signifi-
cantly broadened in both the 13C and 1H dimensions as a re-
sult of significantly increased dipolar relaxation. Conse-
quently, peaks in the spectra will be very difficult to identify 
and difficult to assign to specific sites in the protein making 
the spectra challenging to interpret and limiting the utility 
of such a labelling scheme. Other tools such as constant-time 
13C-1H HSQC spectra16,17 also do not provide good spectra of 
large uniformly labelled proteins, since the constant-time 
substantially skew the intensities and even renders many of 
the signals invisible. However, due to the inherent sensitiv-
ity of methyl groups, 13C-1H correlations maps of protonated 
large proteins nonetheless contain a significant amount of 
information from many of the methyl groups present. The 
challenge is that these spectra are very hard to interpret, 

even by specialists, due to the poor resolution, see e.g. Fig-

ure 1b.  

Training and cross-validation on synthetic data 

In order to transform 13C-1H correlation maps from 
universally 13C labelled proteins into spectra that can easily 
be interpreted we train two DNNs, both of which are based 
on the FID-Net architecture. Full training details for the 
DNNs are provided in the supplementary information. 
Briefly, the first network is trained to transform time-
domain FIDs in the 13C dimension by removing a single 
cosine modulation corresponding to a 13C-13C coupling 
constant and reducing the decay rate of the peak such that it 
gives a sharper signal in frequency space.  The second DNN 
is trained to act on FIDs in the 1H dimension. In this case the 
network is trained only to reduce the decay rate of FIDs so 
that peaks are sharper in the frequency domain of this 

Figure 1: Overview of processing NMR spectra with FID-Net. (a) 
Overview of traditional tools used to characterise methyl groups in large 
proteins, which requires expression in bacterial cells such as E. coli, 
deuteration of the protein, and specific isotopic labelling. (b) Overview 
of our new method to characterise large, non-deuterated, uniformly la-
belled proteins enabled by processing with the deep neural network FID-
Net. Two FID-Net networks are trained, (i) one network trained to virtu-
ally decouple and enhance the in the 13C dimension of the initial 2D 13C-
1H correlation spectra (green-blue to red spectra), (ii) followed by a sec-
ond network trained to enhance the resolution in the 1H dimension (red 
to orange spectra). The example show is that of Malate Synthase G 
(MSG) an 80 kDa protein. As the protein is uniformly labelled it gives rise 
to peaks associated with all methyl groups in the protein, including me-
thionine, alanine and threonine residues as well as isoleucine ³2 methyl 
groups. The additional methyl probes offered by the uniform labelling 
scheme are highlighted on the structure of MSG (red). The estimated 
costs in a and b are calculated using listed prices from Sigma-Aldrich. 
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dimension. Both networks are trained independently solely 
on synthetic data (full parameters given in the 
supplementary information). 

For transforming a full 13C-1H 2D plane of a uniformly 
labelled protein the full workflow is as follows: the input 2D 
plane is first processed and Fourier transformed in the 1H 
dimension before being transposed. This half-processed 
spectrum is then passed to the first DNN where the signal 
modulation due to one-bond 13C-13C couplings is removed 
and the signals are sharpened. Subsequently the 13C 
dimension can be processed and Fourier transformed as 
normal. The spectra is then transposed back to the 1H 
dimension and inverse Fourier transformed and Hilbert 
transformed. The resulting time domain data is passed to the 
second DNN to sharpen signals in the 1H dimension. This 1H 
dimension is then reprocessed, and Fourier transformed to 
yield the final frequency-domain spectrum.  

In order to test and benchmark this approach it is first 
applied to synthetic data. Rather than using randomly 
generated data, as is done in the training of the networks we 
aim to benchmark performance on synthetic data that is 

nonetheless reminiscent of 
actual 13C-1H correlation maps 
of proteins. In order to do this, 
synthetic spectra are made 
using chemical shifts expected 
for real systems as sampled from 
the BMRB18. Using this 
approach, we generate one 
hundred synthetic spectra with 
a comparable number of peaks 
to the 42 kDa HDAC819 and one 
hundred synthetic spectra with 
a comparable number of peaks 
to MSG20. These spectra contain 
all expected 13C-13C couplings as 
well as broad peaks as expected 
for large, protonated proteins. 
Given that these spectra are 
synthetically generated we can 
also generate the ‘ideal’ target 
spectrum in which all 13C-13C 
scalar couplings are removed 
and the linewidths are 
narrowed and we know the 
positions of all peaks within this 
target spectrum. In order to test 
the performance of the DNNs 
we transform the original 
synthetic spectra using our two 
trained DNNs. We then pick 
peaks in the resulting 
transformed spectra and 
compare the results against the 
known peak positions looking at 
the rate of both true positives 
and false negatives. In order to 

avoid any influence of the accuracy of the peak-picking 
algorithm used, which can vary, only peaks that are isolated 
in the processed spectra (distance larger than processed 
linewidths) are considered. 

As shown in Figure 2, for synthetic spectra, the FID-Net 
processing appears to work successfully at significantly 
enhancing the resolution of spectra expected for uniformly 
13C-labelled proteins even when there are a number of large 
overlapping signals. Based on the high levels of true positive 
peaks and low levels of false positive peaks observed on 
synthetic data, we proceed to testing the FID-Net based 
processing to experimental data, where the proteins are 
uniformly 13C labelled. 

Application to experimental 2D 13C-1H correlation spectra 

To test the feasibility of our approach to transform 
experimental 13C-1H correlation spectra of uniformly 13C 
labelled proteins the method was applied to increasingly 
larger proteins, demonstrating the ability of the FID-Net 
approach to provide high quality correlation maps, similar 
in quality to methyl TROSY spectra.  In addition to being far 
less costly than deuterated analogues and typically giving 

Figure 2: Cross-validation on synthetic data. Exemplar synthetic data (a) and (b) without analysis with 
the FID-Net DNNs (left column) and with FID-Net based processing right hand column. (a) shows a synthetic 
spectrum where we have a similar number of signals to HDAC8 and with (b) the spectrum has a similar 
number of signals to MSG. In both cases one hundred distinct spectra with a similar number of signals to 
those shown in A or B are generated. They are then analysed using the FID-Net approach and the resulting 
spectra are peak picked. From FID-Net analysed spectra peaks are picked and compared to ground truth 
values. From picked peaks true positive and false negative rates of peaks are calculated (only considering 
isolated peaks) and plotted in (c) and (d). Full details are given in Supplementary Information. 
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higher yields during expression, a key advantage of the 
methodology here is that information is provided on all 
methyl-bearing side chains, including, alanine 13C³, 
isoleucine 13C´2 and 13Cµ1, leucine 13Cµ1,µ2, methionine 13C¶, 
threonine 13C´2, and valine 13C´1,´2 since the sample is 
uniformly 13C labelled. It should be mentioned that methods 

do exist for specific labelling of nearly all methyl groups21, 
however, these approaches typically lead to reduced yields 
and come with substantially larger costs. 

Following cross-validations on synthetic data, the 
trained FID-Net networks were applied to the 42 kDa 
protein HDAC819. While a protein of this size is relatively 
small for methyl-TROSY studies, as shown in the 13C-1H 
correlation spectrum in Figure 3a (blue-green) of a non-
deuterated, uniformly 13C labelled sample, signals in the 
methyl region of the spectrum are nonetheless broad and 
overlapped, making it difficult to discern many of the 

signals. This also holds for a 
constant-time 13C-1H HSQC 
spectrum, where the constant-
time (27 ms or 54 ms) 
substantially skew the 
intensities and renders many of 
the signals invisible, see Figure 

S1. Conversely, following 
application of the FID-Net 
Networks (orange spectrum), 
Figure 3b, the signals are 
virtually decoupled in the 13C 
dimension and sharpened in 
both the 13C and 1H dimensions. 
This makes peak identification 
within these spectra much more 
straightforward. By overlaying 
the FID-Net transformed 
spectrum with the classical 
methyl-TROSY ILVM spectrum 
(blue) of a deuterated sample of 
HDAC8, Figure 3c, where only 
the side chains of these amino 
acids are labelled, an excellent 
correspondence is seen between 
isoleucine, leucine and valine 
methyl peaks with the FID-Net 
processed spectrum. The 
linewidths of the peaks in both 
of these spectra are highly 
comparable and all expected 
peaks from the spectrum are 
recovered in the FID-Net 
processed spectrum. Additional 
peaks are also visible in the FID-
Net processed spectrum, due to 
the presence of additional 
labelled methyl groups in the 
sample, such as, threonine and 
isoleucine 13C´2. Small peak-
shifts are mainly due to the 

isotope shifts originating from deuteration22. Full overlay of 
the FID-Net processed spectrum of HDAC8 and the methyl-
TROSY spectrum is shown in Figure S2. 

To test the robustness of the FID-Net processing 
approach on larger systems, with substantially more cross-
peaks and signal overlap, we next applied the FID-Net DNNs 
to study the methyl region of the protein MSG. This 723-

residue protein has been studied extensively by NMR20,23, 
but all of these studies have relied on having a deuterated 
samples to minimise the broadening of signals due to 
extensive relaxation. However, as shown in Figure 3e, by 
coupling the intrinsic sensitivity of methyl groups with FID-
Net processing it is possible to get high quality methyl-
TROSY like spectra for this system at a fraction of the cost 
and with the added bonus of simultaneously giving access to 
signals associated with all methyl bearing side chains. As 

Figure 3: FID-Net processed methyl HSQC spectra of uniformly 13C labelled non-deuterated proteins. 

(a) A 13C-1H HSQC NMR spectra of uniformly 13C labelled, non-deuterated, HDAC8 (42 kDa) processed with 
a standard discrete Fourier transform. (b) The spectrum in a processed with the FID-Net DNNs. (c) Com-
parison of FID-Net processed HSQC spectrum in b (orange) with a methyl-TROSY HMQC spectrum of an 
ILV specifically labelled and deuterated HDAC8 (blue). (d) A 13C-1H HSQC NMR spectra of uniformly 13C 
labelled MSG (80 kDa) processed with a standard discrete Fourier transform. (e) The spectrum in d pro-
cessed with the FID-Net DNNs. (f) Comparison of FID-Net processed HSQC spectrum in d (orange) with a 
methyl-TROSY HMQC spectrum of an ILV specifically labelled and deuterated MSG (blue) for two selected 
regions. Many methyl groups are not visible in the ILV labelled sample, such as, Isoleucine 13C³2 (labelled). 
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with the HDAC8 example above, clear agreements between 
the expected peaks in the ILV spectrum and FID-Net 
processed spectrum is attained and the linewidths in these 
two spectra are also similar. Full overlay of the FID-Net 
processed spectrum of MSG and the methyl-TROSY 
spectrum is shown in Figure S3.  

Thirdly, to push the limits of the proposed method we 
tested its performance on the 360 kDa ³7³7 ‘half-
proteasome’ from T. acidophilum. This protein complex has 
an effective rotational correlation time of approximately 120 
ns at 50 °C ref24, though the high degree of symmetry in the 
complex (it is composed of 14 monomeric units that form 
two heptameric rings) mean that there are relatively few 
peaks in its spectra compared to its size, see Figure 4. 

In the case of the 360 kDa ³7³7 complex, it is clear that a 
number of peaks present in the deuterated, ILV labelled 
sample are fairly weak in the the FID-Net decoupled 
spectrum (marked with an asterisk in Figure 4), this is 
particularly evident in the isoleucine ·1 region of the 
spectrum, and we therefore judge that currently systems 
such as the ³7³7 complex is at the limit of our approach. 
Additional peaks in the spectrum are also clearly visible due 
to the presence of alanine, threonine, methionine and 
isoleucine 13C´2 methyl resonances.  

While for the proteins shown above the isoleucine 13Cµ1, 
leucine 13Cµ1,µ2 and valine 13C´1,´2 methyl group resonances 
can be readily compared to those obtained in ILV specifically 
labelled samples using traditional methyl-TROSY samples, 
peaks associated with alanine, threonine, methionine and 
isoleucine 13C´2 methyl groups are less readily available. To 
verify the reliability of these additional peaks observed in 
uniformly 13C labelled samples and demonstrate the 
extension of the methodology to 3D spectra we recorded 13C-
13C-1H NOESY spectra of the 80 kDa MSG and as 
demonstrated below use this methodology to provide 
assignments for threonine, methionine and isoleucine side 
chains. 

Applications to three-dimen-
sional NOESY spectra 

Following the successful 
implication of deep neural 
networks for the production of 
methyl spectra of similar quality 
to typical deuterated methyl-
TROSY spectra just from 
uniformly 13C labelled samples 
in a protonated background, we 
have applied the deep neural 
networks to a 3D 13C-HSQC-
NOESY-HSQC experiment 
acquired on a uniformly 13C 
labelled sample of MSG made in 
1H2O. Despite high molecular 
weight of MSG, we have 
observed NOE cross-peaks 
among the inter methyl protons 
that were within a distance of 

3.0 Å to 5.0 Å from each other, Figure 5a-5d and Figure S5.  
In total, approximately 312 NOE cross-peaks were 

observed among 170 methyl bearing residues from different 
regions of the protein. Simultaneously, like conventional 
NOESY spectra, we observe a correlation between NOE 
cross-peaks volume (V) and the distance between the proton 
pair (r), i.e. V ?1/r6, Figure 5f.  Using this experiment, we 
can easily connect two methyls, for example, 13Cµ1 and 13C´2 
of isoleucines as shown in Figure S5a. Similarly, two 
geminal methyl resonances of leucine and valine can be 
linked using this spectrum, which is mostly present with a 
maximum intensity in the spectrum, Figure 5d. However, a 
combination of 3D 13C-HSQC-NOESY-HSQC with 3D 
HMBC-HMQC would be the most appropriate method to 
link the geminal methyl resonances of leucine and valine 
without any ambiguity25. Additionally, using this approach 
NOEs can be observed between methyl protons of all methyl 
bearing residues (isoleucine, leucine, valine, methionine, 
alanine, threonine) using one sample, which is not possible 
in the conventional method due to metabolic scrambling of 
the amino acid in selective 13C labelling26. Therefore, the 
deep neural network can be utilized to produce 3D 13C-
HSQC-NOESY-HSQC experiment acquired on uniformly 
13C labelled sample without deuteration, which results in a 
spectrum equivalent to 3D 13C-HMQC-NOESY-HMQC 
experiment acquired on methyl labelled sample. This 
approach will help the study of large proteins and complexes 
without deuteration. 

Discussions 
Being able to characterise the regulation, interactions, and 
dynamics of large proteins in solution is paramount to 
understand molecular functions. Methyl-TROSY 
methodologies have been one of the most important 
developments in biomolecular NMR over the last decades 
and these methods have truly paved the way for NMR 
becoming a complementary technique, to e.g. cryo-electron 
microscopy, to provide key insight on larger biomolecular 

Figure 4: Application to a 360 kDa complex. (a) A 13C-1H HSQC NMR spectra of uniformly 13C labelled, 
non-deuterated, ³7³7 (360 kDa) processed with a standard discrete Fourier transform. (b) The spectrum in 
a processed with the FID-Net DNNs. (c) Comparison of FID-Net processed HSQC spectrum in b (orange) 
with a methyl-TROSY HMQC spectrum of an ILV specifically labelled and deuterated ³7³7 (blue). 
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complexes27. However, the labelling requirements for these 
experiments are arduous, ideally requiring perdeuteration 
and the use of specific precursors to introduce [1H,13C]-
labelled methyl moieties in specific locations. While the 
resulting spectrum are of outstanding quality, the cost of 
such labelling is high, typically leads to lower protein yields 
and is inconsistent with protein production methods for 
many systems of interest such as eukaryotic and membrane 
proteins. Above, we presented an alternative method to 
classical methyl-TROSY NMR to characterise large proteins 
in solutions, which is based on uniformly protonated 

samples and processing with FID-Net neural networks, with 
which one can characterise proteins up to about 350 kDa. 

The main disadvantage of the FID-Net method is that the 
process of peak-sharpening inevitably leads to the intrinsic 
peak intensity being lost. Accurately measuring peak 
intensities is critical in a number of NMR experiments, 
including diffusion and relaxation, so it is not advised to 
record these experiments in conjunction with FID-Net 
processing. However, for a large body of NMR experiments 
the main parameter of importance is the chemical shift as 
well as a reasonable estimate of the peak intensity, and in 
these cases we believe that FID-Net processing will prove 
extremely useful. Some of the uses we envisage include 
interaction studies, titrations, and facile chemical shift 
assignment of methyl peaks by either NOESY spectra (as 
demonstrated here for MSG) or by point mutations, which 
often requires several samples.  

A number of approaches have previously been suggested 
to overcome the limitations of methyl-TROSY highlighted 
above, particularly when making perdeuterated samples is 
not possible. Recent examples include the use of delayed 
decoupling, as has also been used for very large complexes 
with molecular weights in the MDa range28, and optimised 
NMR pulse sequences to probe methionine residues in 
proteins with molecular weights up to 240 kDa26 as well as 
the use of local deuteration of leucine residues to probe their 
methyl groups in membrane and insect cell derived 
proteins29. While very powerful, these methods are limited 
in that they only consider a single residue type, thus 
restricting the number of available probes in the system. 
Conversely, the methodology developed here and based on 
processing with deep neural networks offers simultaneous 
access to all methyl bearing side chains in a protein, offering 
many more probes of biomolecular behaviour. By 
decoupling signals in the 13C dimension and sharpening 
them in both the 1H and 13C dimensions the resulting spectra 
resemble those given by perdeuterated samples with specific 
methyl labelling.  

Conclusion 

We believe that our new methodology will significantly 
lower the barrier to entry for NMR of large systems. Indeed, 
even for well-studied systems such as MSG, while 
methodologies exist for obtaining methionine and threonine 
assignments, the processing with the FID-Net DNNs 
provides a straightforward method. Finally, we envisage that 
the idea of using DNNs for peak sharpening and 
simultaneous homonuclear virtual decoupling within NMR 
could be applied in other cases to improve spectra and that 
processing NMR data with DNNs, as opposed to a standard 
1822 Fourier transform, will allow for many new ventures 
within NMR. As such we see the presented method as 
merely representing a “firing of the starting gun” that will 
pave the way for a plethora of ways to generally analysing 
and transforming NMR spectra with deep neural networks. 
 

Figure 5: NOESY spectra of non-deuterated 80 kDa MSG. (a)-to-(d)  
2D planes of the 3D 13C-13C-1H NOESY spectra for methyl planes of (a) 
I5-13C´1 and A14-13C³. (b) I327-13C´1 and A321-13C³. (c) A63-13C³ and 
L88-13C´1. (d) M415-13C· and L375-13C´1. (e) Methyl groups of Ile, Leu, 
Val, Met, Ala, and Thr showing NOE cross-peaks in 3D 13C-13C-1H  
NOESY spectra are highlighted as cyan sphere on cartoon presentation 
of Malate Synthase G (MSG) structure [PDB ID:1D8C]. (f) Normalized 
NOE cross-peak volumes versus interproton distances. Gray circles in 
the plot represent the individual data points obtained for each cross-
peak. Blue circles represent the average normalized NOE cross-peaks 
volume over interproton-distance intervals of 0.2 Å. The blue line repre-
sents the fitted curve of NOE cross-peaks volume (V) and interproton 
distance (r) using equation V = C/r6, where C is a constant. 
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Materials and Methods 
Initial considerations about the neural networks 

In the present study our aim was to develop DNNs to map 13C-1H methyl 

correlation spectra of large uniformly 13C-labelled proteins into spectra that 

are similar to methyl-TROSY spectra of highly deuterated proteins. Two ob-

jectives must be fulfilled to achieve this aim: (i) the one-bond 13C-13C homo-

nuclear scalar couplings associated with methyl groups must be decoupled 

and (ii) the peaks must be sharpened, making them more easily resolvable, 

equivalent to slowing down the exponential decay of magnetisation in the 

time domain. It should be noted that these changes do not increase the in-

formation content in the spectrum, but they do make the information con-

tained within the original spectra interpretable by spectroscopists. 

We employ the FID-Net architecture that we have previously shown to 

successfully perform a number transformations on time domain NMR data, 

including reconstructing of non-uniformly sampled spectra7,9,13 and homo-

nuclear virtual decoupling8. The FID-Net architecture currently only trans-

forms a set of 1D spectra, and two separate FID-Net DNNs were therefore 

trained: one was optimised for spectral parameters typically encountered in 

the 13C dimension and it was trained to both decouple and sharpen signals, 

whereas the second FID-Net DNN was optimised for spectral parameters in 

the 1H dimension alone and was trained to only sharpen signals. A sche-

matic illustration and summary of the effects of the neural networks is pro-

vided in Figure 1b. In both cases the networks are trained and validated 

exclusively on synthetic data and then tested on experimentally acquired 

data. 

Care must be taken when determining how and to what extent signals 

should be sharpened using DNNs. Effectively, signals from flexible regions 

of proteins that already give rise to sharp could result in the presence of 

truncation artefacts in the spectrum. On the other hand, broad signals re-

quire significant attenuation of their relaxation to be clearly resolvable in 

the frequency domain. The broader the signal, the more attenuation of re-

laxation that is therefore desirable. To satisfy these requirements the follow-

ing function is used for input �!
"# and target �!

$%& transverse relaxation rates 

in the training data: 

        !2tar = max (!2max tanh ( '2
in

'2
max

) ,!2max(1 − tanh ( '2
in

'2
max

) ))                [1] 

The effect of this is to make the linewidths in the target spectrum relatively 

uniform similar to methyl-TROSY spectra, where for the DNN relaxation 

rates above �!
'%( are scaled down towards it, while those below �!

'%( are 

scaled up towards it. A value of  �!
'%(

= 25	s
)* was chosen so that target 

spectra have linewidths similar to those observed in relatively structured 

residues in an ILV sample of a medium-to-large deuterated protein. Further 

details of the neural network architecture, training data parameters and 

training procedures are provided in the supplementary information. 

Once trained the neural networks can easily be applied as part of pro-

cessing scripts, examples of which are provided in the supplementary infor-

mation. The DNNs are trained on a diverse range of NMR parameters (Ta-

ble S1 and S2) and so can be used without need for further retraining and 

the approach can be used with standard 1H-13C HSQC or HMQC pulse se-

quences (vide infra).  

The network architecture and training 

Two networks were trained for the study: one for removing 13C-13C cou-

plings and sharpening spectra in the 13C dimension and the second purely 

for sharpening spectra in the 1H dimension (as described above). Both net-

works use the previously described FID-Net architecture. The input size for 

the 13C network is 1024×4 and for the 1H network is 512×4. As is the case 

with previous FID-Net architectures, the networks consist of a series of 

stacked residual units, wherein each residual unit consists of dilated convo-

lutional layers with kernel size 8×4. The filters are activated by either sig-

moidal (50%) or tangent (50%) functions. The results of the activations are 

then multiplied and passed through another convolutional layer with ker-

nel size 8×4. As described previously, the output from each layer is com-

bined to give the final output and also added to the input for the residual 

unit to form the input for the next layer. For the 13C network, the dilations 

employed are cycled through the values: 

1,2,4,6,8,10,12,14,16,20,24,28,32,40,48,56,64, and there are 128 filters for 

each convolutional layer. For the 1H network the dilations employed are 

1,2,4,6,8,10,12,14,16,20,24,28,32, and there are 64 filters per convolutional 

layer.  

For each network 500,000 test planes were created for training and 

50,000 for cross-validation using the parameters given in Tables S1 and S2. 

The models were developed and trained using the Tensorflow library30 with 

the Keras-front end31. The cost function used to train the networks is the 

mean squared error in the frequency domain between the spectrum pro-

duced by the DNN and the target spectrum wherein the linewidth of peaks 

are set according to the R2 scaling described above and for the 13C network 

the scalar coupling is removed. The RMSprop optimizer32 is used in train-

ing. For both networks the learning rate was initially set to 10-4 until the 

validation loss value plateaus and is then reduced to 10-5 until it plateaus 

again where training is then ended.  

Cross-validations using synthetic data  

Once trained, to cross validate the performance of the two networks we use 
synthetically generated spectra. Rather than using arbitrary spectra as was 
done for training the networks, we attempt to generate realistic 

13
C-

1
H 

correlation maps for uniformly labelled 
13

C proteins using chemical shift 
statistics from the BMRB

18
. In addition to containing terminal 

13
C moieties 

that give rise to doublets in the spectra as a result of a single 
13

C-
13

C scalar 
coupling these spectra also contain multiplets due to moieties that have 
multiple 

13
C-

13
C scalar couplings (though these are usually at higher 

1
H 

frequencies as is observed in real spectra). 
We generate two hundred synthetic spectra in total: the first hundred 

spectra are chosen to have features similar to a 
13

C-
1
H spectra of a protein 

with a similar size to HDAC whilst the second hundred are chosen to have 
features for a protein with a similar size to MSG. Example spectra are shown 
in Figure 2A and 2B. The following parameters are used to generate the 
synthetic spectra for cross-validation: 
 

Parameter HDAC-like spectra MSG-like spectra 

Number of signals 275 600 

Larmor Frequency 
(MHz) 

∈ (600,700,800,950) ∈ (600,700,800,950) 

1
H SW (Hz) 2000 - 5000 2000 - 5000 
13

C SW (Hz) 2000 - 5000 2000 - 5000 
1JCC (Hz) 34 (2) 34 (2) 

!2(1) (s
-1
) (

1
H dim) 50 (10) 60 (15) 

!2(2)(s
-1
) (

13
C dim) 50 (10) 60 (10) 

 
Where values are given as a range, for each spectrum the true value is taken 
as a random value from a uniform distribution of the range. Where values 
are given as a number followed by a bracketed number, for each signal the 
value used is randomly chosen from a normal distribution centred on the 
first number and with a standard deviation given by the bracketed value. 
For all synthetic spectra, half of the peaks are chosen as resulting from a 
methyl moiety, while the other half come from non-methyl 

13
C-

1
H moieties, 

i.e., leading to triplets in the 
13

C dimension. 
Once the synthetic spectra are made they are processed using the deep 

neural network pipeline. Visual inspection of the transformed spectra 
suggests that the method is effective at decoupling and sharpening spectra, 
such that they can be interpreted more easily. We also note that where 
multiple 

13
C-

13
C couplings are present the network will remove just one of 

the couplings such that triplets become doublets. To evaluate the 
performance of the pipeline quantitatively, the transformed spectra are 
peak picked using the built-in peak picker in NMRPIPE. The results are 
compared to the known ground-truth values for peak positions (assuming 
no couplings were present in the spectra).  

We focus on two key parameters in this evaluation: the number of true 
positive picked peaks and the number of false positive picked peaks. Given 
the difficulty in picking peaks from crowded regions automatically, and our 
aim here to evaluate the performance of our alternative pipeline for 
analysing spectra we focus attention on isolated peaks where the 
performance of the peak picker is robust. Here, we define an isolated peak 
as any ground truth peak where the minimum distance from any other 
ground truth peak is greater than or equal to 0.06 

1
H ppm (0.24 

13
C ppm). 

Furthermore, we ignore peaks that are part of doublets and that are more 
than 0.25 

1
H ppm from a target peak originating from a methyl moiety. Once 

peaks in the FID-Net processed spectrum have been picked they are 
matched with the closest peak in the target peak list. Each peak can only be 
matched with a single target peak and we match in descending order of 
distance between picked peaks and target peaks until there are no picked 
peaks within the minimum distance to a target peak (set at 0.05 

1
H ppm) or 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.557823doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.557823
http://creativecommons.org/licenses/by/4.0/


NMR Spectroscopy of Large Non-Deuterated Proteins 

Karunanithy et al. 2023 (preprint)   9 

there are no picked or target peaks left. This process is then repeated for all 
synthetic spectra.  

The true positive rate is defined as the percentage of peaks where we 
see a clear correspondence between a picked and target peak. The false 
positive rate is defined as the rate at which a peak identified in the FID-Net 
processed spectrum does not correspond with any peaks in the actual 
spectrum. Given the limitations of peak pickers, the true and false positive 
rates here likely represent a lower bound on the performance of the FID-
Net processing pipeline. 

Sample preparations 
General isotopic labelling 

In this study, two different types of labelled protein samples were used for 

acquisition of the NMR data. (1) uniformly 13C,15N labelled sample made in 
1H2O. (2) methyl Ile-13C·1,1H·1, Leu-13C·1 ,1H·1/13C·2,1H·2, and Val-
13C³1,1H³1/13C³2,1H³2 labelled sample made in deuterated background. To 

express uniformly 13C,15N labelled  proteins, we used M9 media that was 

made with 1H2O and supplemented with 1 g/L [1H,15N]-ammonium 

chloride and 3 g/L of [1H,13C]-glucose as the sole nitrogen and carbon 

sources. While for expression of methyl Ile-13C·1,1H·1, Leu-13C·1 

,1H·1/13C·2,1H·2, and Val-13C³1,1H³1/13C³2,1H³2  labelled proteins, we used 
2H2O M9 media supplemented with 1 g/L [1H,15N]-ammonium chloride and 

3 g/L of [2H,12C]-glucose as the sole nitrogen and carbon sources. Methyl 

labelling was achieved by the addition of 60 mg/L alpha-ketobutyric acid 

[U-12C/2H, methyl-13CH3] for labelling of isoleucines, and 90 mg/L ³-

ketoisovaleric acid [U-12C/2H, methyl-(13CH3,12CD3)] for labelling of valine 

and of leucine methyl groups. These precursors were added one hour prior 

to induction. 

Expression and purification of Histone de-acetylase 8 (HDAC8) 

The Human HDAC8 construct described by Vannini et al. with a C-terminal 

6X-histidine tag in ampicillin-resistant pET21b expression vector was 

transformed in BL21(»DE3) E. coli cells for protein expression19,33. A single 

colony from the transformed plate was inoculated in 10 ml of LB media 

supplemented with ampicillin (100 µg/ml) at 37°C. Once the LB culture 

reached an OD600 between 0.8 and 1.0, it was used to inoculate a 50 ml M9 

minimal media pre-culture. This M9 pre-culture was used to inoculate 1 L 

of M9 media and grown at 37°C to OD600 j 0.8. HDAC8 expression was 

induced for >16 hour with 0.5mM IPTG and 200 µM of ZnCl2 at 21°C. The 

cell pellet, collected by centrifugation, was re-suspended in lysis buffer 

containing 50 mM Tris2HCl pH 8.0, 3mM MgCl2, 500 mM KCl, 10 mM 

imidazole, 5% glycerol, and 10 mM ³-mercaptoethanol. Later, sonication 

was performed to lyse the cells after addition of small amounts of DNAse, 

lysozyme, protease inhibitors tablets (1 tablet per 50 ml, Roche), and 0.25 % 

IGEPAL. The supernatant fraction of lysate after centrifugation at 18000 

rpm for one hour was purified by Ni-NTA affinity chromatography using a 

linear imidazole gradient (102250 mM) in lysis buffer. Further, a size-

exclusion chromatography on Superdex-75 column (GE Healthcare) was 

carried out in buffer containing 50 mM Tris2HCl pH 8.0, 150 mM KCl, 1 

mM TCEP, and 5% glycerol. Fractions containing purified HDAC8 was 

pooled together and concentrated by 10 kDa cut off Amicon (Millipore) 

ultra-filtration membranes. The concentrated sample was buffer exchanged 

into NMR-buffer (50 mM K2HPO4 pH 8.0, 30 mM KCl, 4 mM DTT, and 1 

mM NaN3) for NMR data acquisition. 

Expression and purification of Malate synthase G (MSG)  

A small adjustment was made to the methods previously described for 

producing isotopically labelled MSG23,25,34. Briefly, to produce the MSG 

protein, BL21 (DE3) E. coli cells were transformed with a kanamycin-

resistant pET28a vector containing MSG gene with a C-terminal 6X-

histidine tag. The protein expression protocol for MSG is same as HDAC8 

up to induction. MSG expression was induced for >16 hour with 1mM IPTG 

at 21°C. The cell pellet was collected by centrifugation and re-suspended in 

lysis buffer containing 20 mM Tris2HCl pH 7.8, 300 mM NaCl, 10 mM 

imidazole, and 10 mM ³-mercaptoethanol. Like HDAC8, the protein 

purification protocol for MSG is same up to Ni-NTA affinity 

chromatography. The fractions containing MSG from Ni-NTA affinity 

chromatography were further purified by size exclusion chromatography 

using a Superdex-200 column (GE Healthcare) in buffer containing 20 mM 

Sodium phosphate pH 7.1, 5mM dithiothreitol. After gel filtration, the 

fractions containing pure protein were pooled, concentrated, and buffer 

exchanged into NMR-buffer (20 mM Sodium phosphate buffer pH 7.1, 5 

mM DTT, 20 mM MgCl2, 1 mM NaN3) for NMR data acquisition using 30 

kDa cut off Amicon (Millipore) ultra-filtration membranes. 

Expression and purification of ³-subunit complex (³7³7) of proteasome 
from T. acidophilum 

In order to express the ³-subunit complex (³7³7) proteasome from T. 

acidophilum, the ³WT clone with N-terminal Histidine tag and a TEV 

protease site was transformed into BL21 (»DE3) E. coli cells25,35. The protein 

expression protocol for this ³-subunit complex is same as MSG up to 

induction. The ³-subunit complex culture was induced at OD600 j 0.9 with 

1mM IPTG at 37°C for 5 hours. Afterward, we lysed the cells with sonication 

in a lysis buffer (50 mM NaH2PO4 pH 8.0, 0.2 M NaCl, 10 mM imidazole) 

and purified them using Ni-NTA chromatography as described above in 

purification sections of HDAC8 and MSG. After Ni-NTA affinity 

chromatography, TEV protease was introduced to cleave the 6X-histidine 

tag before dialyzing the protein against 2 L of dialysis buffer (50 mM Tris-

HCl pH 8.0, 1 mM EDTA, 5 mM ³-mercaptoethanol) overnight at 4°C. The 

TEV cleavage of the protein was followed by another Ni-NTA affinity 

chromatography to eliminate the histidine tag and un-cleaved protein. 

Afterward, a size exclusion chromatography was performed using a 

Superdex 200 column (GE Healthcare) in a buffer containing 50 mM 

NaH2PO4 pH 7.5, and 100 mM NaCl. The fractions containing pure protein 

was concentrated and buffer exchanged in NMR buffer (20 mM potassium 

phosphate pH 6.8, 50 mM NaCl, 1 mM EDTA, 2 mM DTT, 0.03% NaN3) for 

NMR data acquisition using 30 kDa cut off Amicon (Millipore) ultra-

filtration membranes. 

NMR acquisitions 
Three-dimensional NOESY spectra 

The 3D HSQC-NOESY-HSQC NMR experiment on MSG was performed on 

a ~400 µM MSG sample on a Bruker 950 MHz Avance HD spectrometer 

equipped with Z-gradient triple-resonance TCI cryoprobe. The data was 

acquired with 1024, 142, and 124 complex points in 1H, 13CHSQC, and 13CNOESY 

dimensions, respectively, with spectral widths of 15243.9 Hz (1H), 6666.7 Hz 

(13C), and 6666.7 Hz (13C). Eight scans were collected per increment with a 

recycle delay of 1 s and the mixing time was 60 ms. 

Two-dimensional 13C-1H correlation spectra 

The 2D HSQC spectrum of HDAC8 used as input for FID-Net was recorded 

on a uniformly [13C,15N]-labelled sample using a standard pulse programme 

with presaturation on a Bruker 700 MHz Avance III spectrometer equipped 

with Z-gradient triple-resonance TCI cryoprobe. The data was acquired 

with 1024 and 256 complex points in the 1H and 13C dimensions, 

respectively, with spectral widths of 10000 Hz and 5000 Hz. 16 scans were 

obtained per individual FID. 2D Methyl-TROSY spectrum of HDAC8 used 

for cross-validation was recorded on an ILVM specifically labelled sample 

using a standard pulse programme on a Bruker 800 MHz Avance III 

spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. 

The data was acquired with 1024 and 256 complex points in the 1H and 13C 

dimensions, respectively, with spectral widths of 12500 Hz and 4500 Hz. 4 

scans were obtained per individual FID. 

The 2D HSQC spectrum of MSG used as input for FID-Net was 

recorded on a uniformly [13C,15N]-labelled sample using a standard pulse 

programme with presaturation on a Bruker 800 MHz Avance III 

spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. 

The data was acquired with 1024 and 256 complex points in the 1H and 13C 

dimensions, respectively, with spectral widths of 12500 Hz and 5000 Hz. 16 

scans were obtained per individual FID. 2D Methyl-TROSY spectrum of 

MSG used for cross-validation was recorded on an ILV specifically labelled 

sample using a standard pulse programme on a Bruker 800 MHz Avance III 

spectrometer equipped with Z-gradient triple-resonance TCI cryoprobe. 

The data was acquired with 1024 and 192 complex points in the 1H and 13C 

dimensions, respectively, with spectral widths of 10500 Hz and 5000 Hz. 16 

scans were obtained per individual FID. 

The 2D HSQC spectrum of ³7³7 used as input for FID-Net was recorded 

on a uniformly [13C,15N]-labelled sample using a standard pulse programme 

with presaturation on a Bruker 950 MHz Avance HD spectrometer 

equipped with Z-gradient triple-resonance TCI cryoprobe. The data was 

acquired with 1024 and 256 complex points in the 1H and 13C dimensions, 

respectively, with spectral widths of 15200 Hz and 5263 Hz. 80 scans were 

obtained per individual FID. 2D Methyl-TROSY spectrum of MSG used for 

cross-validation was recorded on an ILV specifically labelled sample using 

a standard pulse programme on a Bruker 800 MHz Avance III spectrometer 

equipped with Z-gradient triple-resonance TCI cryoprobe. The data was 

acquired with 768 and 132 complex points in the 1H and 13C dimensions, 
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respectively, with spectral widths of 12000 Hz and 4100 Hz. 16 scans were 

obtained per individual FID. 

Data processing 

All experimental NMR spectra were processed with NMRPIPE36 or using the 

python libraries NMRGLUE37 and NUMPY. 

Code Availability 

Code (python) for using the networks described here (including pretrained 

networks and examples) is available on GitHub: 

https://github.com/gogulan-k/FID-Net  
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Table S1: Parameter ranges used to train the 13C decoupling and sharpening network. 

Number of signals 10 – 150 
Amplitude* 0 – 2.0  
1H dimension complex points  128 – 256 
13C dimension complex points 200 – 512 
1H dimension SW (Hz) 1500 – 5400 
13C dimension SW (Hz) 2500 – 8000 
1JCC (Hz) 28 – 40** 

�!

(#) (s-1) (1H dimension) 5 – 150 

�!

(!) (s-1) (13C dimension) 5 – 150 

*Normal distribution with mean 1.0 and standard deviation of 0.5 that is truncated to between 0.0 - 2.0 
**During training 5.0% of the 1JCC couplings are on average set to 0 Hz to mimic singlets. 
 
Table S2 | Parameter ranges used to train the 1H sharpening network. 

Number of signals 10 – 200 
Amplitude* 0 – 2.0  
1H dimension complex points  100 – 256 
13C dimension complex points 200 – 512 
1H dimension SW (Hz) 1500 – 5000 
13C dimension SW (Hz) 2500 – 8000 
1J (Hz) 0.0 

�!

(#) (s-1) (1H dimension) 5 – 150 

�!

(!) (s-1) (13C dimension) 3 – 30 

*Normal distribution with mean 1.0 and standard deviation of 0.5 that is truncated to between 0.0-2.0 
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Figure S1: Comparison of 13C HSQC and 13C-Constant Time (CT)-HSQC spectra of uniformly 13C labelled, non-deuterated HDAC8, MSG, 

and ³-proteasome. (a), (d), and (g) are the 13C-HSQC spectra of HDAC8, MSG, and ³7³7-proteasome, respectively. (b), (e), and (h) are the 13C-
constant-time (CT) HSQC spectra, acquired with constant-time period of 27 ms, of HDAC8, MSG, and ³-proteasome, respectively. (c), (f), and (i) 
are the 13C-CT-HSQC spectra, acquired with constant-time of 54 ms, of HDAC8, MSG, and ³7³7-proteasome, respectively. 
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Figure S2: Comparison of FID-Net processed HSQC spectrum in (orange) of the 42 kDa HDAC8 (Figure 3b) with a methyl-TROSY HMQC spectrum 
of an ILVM specifically labelled and deuterated HDAC8 (blue). Small shifts are due to two-bond (13C) and three-bond (1H) deuterium isotope shifts 
that are different for Isoleucine (2 gamma protons), Leucine (1 gamma proton), Valine (1 beta proton), and Methionine (0 delta protons). 
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Figure S3: Comparison of FID-Net processed HSQC spectrum in (orange) of the 80 kDa MSG (Figure 3e) with a methyl-TROSY HMQC spectrum 
of an ILV specifically labelled and deuterated MSG (blue). Small shifts are due to two-bond (13C) and three-bond (1H) deuterium isotope shifts that 
are different for Isoleucine (2 gamma protons) and Leucine (1 gamma proton) and Valine (1 beta proton). 
 
 
 
  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.09.15.557823doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.557823
http://creativecommons.org/licenses/by/4.0/


NMR Spectroscopy of Large Non-Deuterated Proteins 

Karunanithy et al. 2023 (preprint)   15 

 
Figure S4: Comparison of FID-Net processed HSQC spectrum in (orange) of the 360 kDa ³7³7 (Figure 4b) with a methyl-TROSY HMQC spectrum 
of an ILV specifically labelled and deuterated ³7³7 (blue). Small shifts are due to two-bond (13C) and three-bond (1H) deuterium isotope shifts that 
are different for Isoleucine (2 gamma protons) and Leucine (1 gamma proton) and Valine (1 beta proton). 
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Figure S5: NOESY spectra of uniformly 13C labelled, non-deuterated 80 kDa MSG. (a)-to-(d) 2D planes of the 3D 13C-13C-1H NOESY spectra for 
methyl planes of (a) I238-13C´1 and I238-13Cg2. (b) I388-13C´1 and L420-13C´1. (c) V20-13Cg2 and M366-13C·. (d) L471-13C´1 and A582-13C³. 
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