

Simultaneous assessment of mechanical and electrical function in Langendorff-perfused ex-vivo mouse heart

1 **Julien Louradour^{1†}, Rahel Ottersberg^{2,3†}, Adrian Segiser^{2,3}, Agnieszka Olejnik^{2,4}, Berenice
2 Martínez-Salazar^{2,5}, Mark Siegrist^{2,5}, Manuel Egle^{2,3}, Miriam Barbieri¹, Saranda Nimani¹,
3 Nicolò Alerni¹, Yvonne Döring^{2,5,6,7}, Katja E. Odening^{1,8#}, Sarah Longnus^{2,3*#}**

4 ¹Translational Cardiology/Electrophysiology, Institute of Physiology, Department of Physiology,
5 University of Bern, Bern, Switzerland

6 ²Department for BioMedical Research, University of Bern, Bern, Switzerland

7 ³Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern,
8 Bern, Switzerland

9 ⁴Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory
10 Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland

11 ⁵Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital,
12 University of Bern, Bern, Switzerland

13 ⁶Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU),
14 Munich, Germany

15 ⁷German Center for Cardiovascular Research (DZHK), Partner Site Munich, Heart Alliance Munich,
16 Munich, Germany

17 ⁸Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, University
18 of Bern, Bern, Switzerland

19 [†]These authors contributed equally to this work and share first authorship

20 [#]These authors contributed equally to this work and share last authorship

21 *** Correspondence:**

22 Sarah Longnus

23 sarah.henninglongnus@insel.ch

24 **Keywords: electro-mechanical interaction, ex-vivo hearts, ECG, left ventricular pressure,
25 ischemia-reperfusion**

26

27

28

29

30 **Background:** The Langendorff-perfused *ex-vivo* isolated heart model has been extensively used to
31 study cardiac function for many years. However, electrical and mechanical function are often studied
32 separately - despite growing proof of a complex electro-mechanical interaction in cardiac physiology
33 and pathology. Therefore, we developed an isolated mouse heart perfusion system that allows
34 simultaneous recording of electrical and mechanical function.

35 **Methods:** Isolated mouse hearts were mounted on a Langendorff setup and electrical function was
36 assessed via a pseudo-ECG and an octapolar catheter inserted in the right atrium and ventricle.
37 Mechanical function was simultaneously assessed via a balloon inserted into the left ventricle coupled
38 with pressure determination. Hearts were then submitted to an ischemia-reperfusion protocol.

39 **Results:** At baseline, heart rate, PR and QT intervals, intra-atrial and intra-ventricular conduction
40 times, as well as ventricular effective refractory period, could be measured as parameters of cardiac
41 electrical function. Left ventricular developed pressure (DP), left ventricular work (DP-heart rate
42 product) and maximal velocities of contraction and relaxation were used to assess cardiac mechanical
43 function. Cardiac arrhythmias were observed with episodes of bigeminy during which DP was
44 significantly increased compared to that of sinus rhythm episodes. In addition, the extrasystole-
45 triggered contraction was only 50% of that of sinus rhythm, recapitulating the “pulse deficit”
46 phenomenon observed in bigeminy patients. After ischemia, the mechanical function significantly
47 decreased and slowly recovered during reperfusion while most of the electrical parameters remained
48 unchanged. Finally, the same electro-mechanical interaction during episodes of bigeminy at baseline
49 was observed during reperfusion.

50 **Conclusion:** Our modified Langendorff setup allows simultaneous recording of electrical and
51 mechanical function on a beat-to-beat scale and can be used to study electro-mechanical interaction in
52 isolated mouse hearts.

53

54 1 Introduction

55 Since its development in the 19th century, the Langendorff isolated heart model has made a
56 crucial contribution to our understanding of cardiac pathophysiology and remains to this day a valuable
57 tool for studying the mechanical, electrophysiological, metabolic, vascular and biochemical processes
58 of the heart in a variety of disease settings and animal models (1–3). With the isolated heart system, all
59 of these mechanisms can be investigated in the intact organ, preserving the multiple, interdependent
60 cell types and function, but without the potential confounding influence of systemic effects.
61 Furthermore, the experimental conditions can be tightly controlled which leads to highly reproducible
62 results (4). One frequent use for the isolated heart model is to investigate strategies for cardioprotection
63 in the context of ischemia-reperfusion injury (IR) (5). Indeed, coronary heart diseases are the leading
64 cause of death worldwide, significantly contribute to the global burden of disease (6–8), and are
65 associated with a variety of potentially fatal complications, a common one being IR-induced
66 arrhythmias (9).

67 Isolated mouse heart models have been widely used to test the effect of gene mutations on
68 cardiac physiology due to the fast and easy manipulation of the mouse genome. However, in most of
69 the isolated mouse heart models used to investigate IR described in scientific literature, contractile and

70 electrical cardiac function are studied separately. Yet, there is a complex relationship between electrical
71 and mechanical function in cardiac physiology. Electrical excitation triggers the contractile activity of
72 the heart (through excitation-contraction coupling), but mechanical activity can also affect the
73 electrical activity (through mechano-electrical feedback) (10–12). Indeed, changes in cardiac pressure
74 and/or volume can affect cardiac depolarization or repolarization and may trigger arrhythmias
75 (10,13,14). Given this strong mutual influence of excitation-contraction coupling and mechano-
76 electrical feedback and their involvement in pathophysiology (10), there is a growing need for new
77 approaches to study this electro-mechanical interaction in general, but also in specific,
78 pathophysiological settings such as ischemia-reperfusion.

79 Therefore, we developed an isolated mouse heart perfusion system to simultaneously assess
80 cardiac electrical and mechanical function. We showed that our model can recapitulate
81 pathophysiological electro-mechanical interactions, and we tested this approach in a specific example
82 of a global ischemia-reperfusion protocol. We finally suggest that this approach might be useful to
83 better understand the complex mutual influence between electrical and mechanical cardiac function.

84

85 **2 Materials and equipment**

86 Equipment and reagents used in this study are listed in Tables 1 and 2.

87 **3 Methods**

88 **3.1 Animals**

89 All performed experiments were in accordance with EU legislation (directive 2010/63/EU) and
90 the Swiss animal welfare law and have been approved by the Swiss animal welfare authorities (Kanton
91 Bern, Amt für Veterinärwesen, approval number BE62-21).

92 Low-density lipoprotein receptor knock-out mice (LDLR^{-/-}) and transgenic K18-hACE2 mice
93 were purchased from the Jackson laboratory and cross bred to obtain K18-hACE2-Ldlr^{-/-}mice. Eight-
94 week-old female and male

95 Animals were housed in groups at 22 °C with a 12-h day/night cycle, food/water supply *ad*
96 *libitum* and 12 weeks of Western-type diet (WD) to induce a cardiovascular disease phenotype. One
97 week before the end of the WD feeding period, mice were also treated with 50 µg CpG
98 oligodeoxynucleotides + 100 µg Polyinosinic:polycytidyllic acid (Poly(I:C)) antigens every second day
99 and three times in total to induce an inflammatory setting. The animals were euthanized three days
100 after the last injection. These mice represent the control group of larger set of animals investigated
101 during a Covid-19 research project, which will be published separately. However, to establish and
102 validate the method of simultaneous mechanical and electrical function determination in Langendorff-
103 perfused mouse hearts, as well as to allow proper understanding and replication of our experimental
104 set up, we aimed to generate a separate paper to concentrate on technical aspects of the experimental
105 system.

106

107 **3.2 Langendorff setup**

108 As shown in Table 1 and Figure 1A, the Langendorff perfusion system consisted of two separate
109 circuits (one recirculating and one non-recirculating) converging at the aortic line. Both circuits were
110 driven by a peristaltic pump, which was controlled via pressure feedback using a pressure transducer
111 located in the aortic line near the cannula. All buffers were warmed to maintain the heart temperature
112 at 37°C using a circulating water bath. Buffer oxygenation was achieved with a typical reservoir and a
113 glass tube gas disperser in the non-recirculating circuit, while a purpose-built, low-volume membrane
114 oxygenator similar to a previously described one (15) was used in the recirculating circuit. Perfusion
115 buffer was oxygenated with 95% O₂ and 5% CO₂ during aerobic periods and immersion buffer was
116 gassed with 95% N₂ and 5% CO₂ during ischemia.

117 As illustrated in Figure 1B, a 1.1F intracardiac octapolar catheter (EPR-800, Millar
118 Instruments, Houston, Texas) and two silver electrodes were used to measure (intracardiac and
119 extracardiac) electrical signals. The intracardiac octapolar catheter was inserted into the right ventricle
120 (allowing to record intraventricular and intraatrial electrical signals) and the two thin silver electrodes
121 were placed at the root of the aorta and at the apex of the heart. For mechanical heart function, a custom-
122 made balloon of ALPA-Sil 32 silicone (40-2383A/B, Silitec AG, Gümligen, Switzerland) was inserted
123 into the left ventricle and coupled to either a 1.4F Millar catheter (SPR-671NR, Millar Inc., Houston,
124 USA) or a pressure transducer (MLT0670, AD Instruments Ltd, Oxford, United Kingdom) to measure
125 left ventricular pressure. Coronary flow was measured using two inline flowmeters (ME3PXN,
126 Transonic Systems Inc., Ithaca NY, United States).

127 **3.3 Study design and perfusion protocol**

128 To measure the electrical and mechanical function simultaneously, isolated hearts from both
129 male and female mice were investigated using a modified Langendorff perfusion system. All hearts
130 were subjected to the same protocol: 20' aerobic (baseline) perfusion, followed by 25' normothermic,
131 global ischemia, and 60' aerobic reperfusion (Figure 1C).

132 **3.3.1 Heart procurement and cannulation**

133 Mice were administered 100µg/g bodyweight ketamine (Ketalar 50mg/ml, Pfizer, Zürich,
134 Switzerland) and 8µg/g bodyweight xylazine (Xylazin 20mg/ml, Streuli, Uznach, Switzerland) by
135 intraperitoneal injection. The pedal pain withdrawal reflex was used to ensure sufficient depth of
136 anesthesia. Mice were brought into a supine position and the thoracic cavity was accessed via midline
137 skin incision and bilateral thoracotomy. The heart was then carefully explanted and transferred to a
138 petri dish containing 50mL ice-cold 0.9% NaCl and 0.5mL of heparin (Liquemin 25000 UI/5ml,
139 Drossopharm AG, Basel, Switzerland). While fully submerged in the solution, the aorta was cannulated
140 with a blunt 22G needle using a stereomicroscope (ST, s/n 220017, Optech, Munich, Germany). The
141 cannulated heart was then quickly connected to the perfusion system. The 1.1F intracardiac octapolar
142 catheter was inserted into the right ventricle through a small incision in the right atrium and two silver
143 wires were put in place at the root of the aorta and base of the heart. Proper positioning of the electrodes
144 was visualized by an overlay of the intracardiac electrocardiogram signals with the P wave and QRS
145 complex of the extracardiac electrocardiogram. Representative traces are shown in Figure 2A. After
146 that, the left atrial appendage was removed, and a silicone balloon was inserted into the left ventricle
147 via the mitral valve. The balloon was filled with water using a 50 µL Hamilton syringe to reach a left
148 ventricular end-diastolic pressure (LVEDP) of ~7-9 mmHg.

149 **3.3.2 Perfusion protocol**

150 Once connected to the system, the heart was perfused via a retrograde perfusion of the aorta
151 with modified Krebs-Henseleit buffer (in [mM]: NaCl 116.5, KCl 4.7, KH₂PO₄ 1.2, CaCl₂ 1.5, MgSO₄
152 1.2, (D+) Glucose 11.1, NaHCO₃ 25, Pyruvate 2) using the non-recirculating Langendorff circuit at a
153 constant pressure of 60 mmHg. The system was then switched to the recirculating Langendorff circuit
154 for all aerobic periods and perfused with the same modified Krebs-Henseleit buffer supplemented with
155 1.2mM palmitate and 3% albumin at a constant pressure of 60 mmHg. During ischemia, hearts were
156 immersed in a warm (37°C) ischemic bath with energy-substrate-free modified Krebs-Henseleit buffer
157 (in [mM]: NaCl 116.5, KCl 4.7, KH₂PO₄ 1.2, CaCl₂ 1.5, MgSO₄ 1.2, NaHCO₃ 25) (Table 2).

158 A PowerLab data acquisition system (AD Instruments Ltd, Oxford, United Kingdom) was used
159 to monitor and record temperature, electrical signals, left ventricular pressure, and flow data throughout
160 the entire perfusion protocol. Two-minute time windows were then analyzed after 20 minutes of
161 baseline and 10, 20, 30, 40, and 60 minutes of reperfusion using LabChart Pro v8 (AD Instruments
162 Ltd, Oxford, United Kingdom) as shown in Figure 1C.

163 **3.3.3 LV and electrical function measurements**

164 Left ventricular systolic pressure (LVSP) as well as left ventricular diastolic pressure (LVEDP)
165 were measured (as shown in Figure 2). From these parameters, developed pressure (DP), left
166 ventricular work (LV work = developed pressure * heart rate) as well as the maximal velocity of
167 contraction (dP/dt max) and relaxation (dP/dt min) were calculated using LabChart Pro v8 (AD
168 Instruments Ltd, Oxford, United Kingdom).

169 One-lead pseudo-ECG was recorded using the thin silver electrodes and later analyzed using
170 LabChart Pro v8 (AD Instruments Ltd, Oxford, United Kingdom) to measure heart rate, PR and QT
171 intervals. Intra-cardiac EP signals and intra-atrial and intra-ventricular conduction times were
172 determined using the 1.1F octapolar intracardiac catheter as shown in the representative traces in Figure
173 2A. Intra-atrial and intra-ventricular conduction times were obtained by measuring the time delay
174 between the first derivative negative peak from different electrodes. Intra-atrial and intra-ventricular
175 conduction times were measured between channels 4 and 5, and 1 and 2, respectively. Finally,
176 ventricular effective refractory period (VERP) was assessed by pacing the ventricles with a Myopacer
177 field stimulator (IonOptix, Westwood, Massachusetts) at 10 minutes baseline and 30 minutes
178 reperfusion (Figure 1C). S1-S2 stimulation protocol was applied with a train of 7 S1 stimulations (1ms
179 square pulses, 5V) at a constant cycle length of 100ms, followed by one S2 stimulation with a
180 decreasing S1-S2 interval of 1ms, starting from 100ms to 10ms. VERP was determined as the first S1-
181 S2 interval, at which no electrical response could be triggered.

182 **3.4 Data analyses**

183 Statistical analyses were performed using Prism 9.5.1 (GraphPad Software). Data are expressed
184 as mean \pm the standard error of the mean (SEM) unless stated otherwise (Figure 2: mean \pm standard
185 deviation (SD)). Normality of the variables was assessed with Shapiro-Wilk test and parametric or non-
186 parametric tests were used accordingly. P < 0.05 was considered statistically significant and tests used
187 in each experiment are specified in the figure legends.

188

189

190 **4 Results**

191 **4.1 Combined measurements of mechanical and electrophysiological function of**
192 **Langendorff-perfused hearts.**

193 Our experimental setup allows a simultaneous recording of both electrophysiological and
194 mechanical function in spontaneously beating, *ex-vivo* perfused mouse hearts. From the octapolar
195 catheter inserted in the right atrium and ventricle (Figure 1B, 2C), the propagation of the electrical
196 signal throughout the heart can be measured. The regularly interspaced electrodes of the EP catheter
197 record the voltage changes over time, leading to atrial (A wave, channels 4-6) and ventricular (V
198 wave, channels 1-3) waves (Figure 2A). By measuring the time delay between waves in consecutive
199 electrodes in the right atrium and in the right ventricle, we can determine the atrial and ventricular
200 conduction times, respectively (see material and method) (Figure 2A). In addition, two silver
201 electrodes, positioned at the root of the aorta and at the apex (Figure 1B, 2C), record a pseudo-
202 ECG, from which heart rate (HR), PR and QT intervals can be measured (Figure 2A). It is worth
203 mentioning here that the A and V waves of the octapolar catheter signals perfectly aligned with the
204 P wave and QRS complex of the ECG, confirming correct positioning of the electrodes in the right
205 atrium (channels 4 to 6) and ventricle (channels 1 to 3). Finally, the ventricular effective refractory
206 period (VERP) can be measured by pacing the ventricles with a S1-S2 stimulation protocol (Figure
207 1B, 2A, 2C). Combined, these recordings allow a thorough assessment of the electrophysiological
208 function of the *ex-vivo* perfused mouse heart.

209 Simultaneous with the electrical recordings, mechanical function can be assessed in the same
210 mouse heart with either a pressure transducer or Millar catheter linked to a silicone balloon inserted
211 into the left ventricle (Figure 1B, 2C). From the left ventricular pressure curve recordings, the
212 following mechanical function parameters can be derived: developed pressure (DP: left ventricular
213 maximal pressure – minimal pressure), left ventricular (LV) work (HR*DP), and maximal velocity
214 of contraction (dP/dt max) and relaxation (dP/dt min) (Figure 2B).

215 We tested these simultaneous measurements of electrical and mechanical activities on *ex-vivo*
216 perfused hearts from 15 mice (7 males and 8 females) (Table 3). At baseline, hearts showed high
217 variability and wide distribution in almost all measured parameters, as visualized with the high
218 standard deviation (SD) bars (Figure 2). On average, hearts had a frequency of 267 ± 67 bpm, a PR
219 interval of 47.1 ± 10.1 ms, a QT interval of 91.9 ± 17.5 ms, an intra-atrial and intra-ventricular
220 conduction times of 2.78 ± 1.3 and 1.07 ± 0.3 ms, and a VERP of 38 ± 13 ms, expressed as mean
221 \pm SD. As for the mechanical function, DP was 37.7 ± 15.4 mmHg, LV work was 9851 ± 4548
222 mmHg*bpm, and dP/dt max and min were, respectively, 1509.8 ± 531.0 and -1005.5 ± 393.0
223 mmHg.s⁻¹, expressed as mean \pm SD. We then examined whether electrical and mechanical
224 parameters correlated with the heart rate (Supplementary Figure 1). As expected, QT interval was
225 negatively correlated to heart rate (Spearman coefficient $r = -0.7464$, p -value = 0.002,
226 Supplementary Figure 1A), e.g., shorter at higher heart rates, and coronary flow was positively
227 correlated to heart rate ($r = 0.6143$ p -value = 0.017, Supplementary Figure 1B). However, there
228 was no significant correlation between developed pressure and heart rate (Supplementary Figure
229 1C) or between dP/dt min and QT interval (Supplementary Figure 1D).

230 **4.2 Decreased mechanical function during spontaneous episodes of bigeminy.**

231 The advantage of simultaneous assessment of electrical and mechanical function is that it
232 allows a better understanding of the electro-mechanical interaction, i.e., how electrical activity
233 impacts on contraction, and vice versa. We, therefore, looked at spontaneous arrhythmia occurrence

234 in *ex-vivo* perfused hearts to see how the mechanical function reacts to a change in the electrical
235 activity.

236 The combined use of the intracardiac octapolar catheter with the ECG allowed us to better
237 define arrhythmia, such as extrasystole, and whether the ectopic signal originates from the atria
238 (premature atrial contraction, PAC) or the ventricles (premature ventricular contraction, PVC)
239 (Supplementary Figure 2A-B). At baseline, hearts were either presenting with normal sinus rhythm,
240 AV block or intermittent bigeminy (premature beat every two beats) (Figure 3A-C). Of the 15
241 hearts, 8 were in sinus rhythm (SR), 2 showed sustained 1st degree and 2nd degree AV blocks, while
242 5 had short episodes of bigeminy (Figure 3D, E). Notably, isolated premature beats were also
243 observed in 3 of the 8 sinus rhythm hearts, accounting for less than 10% of the total number of
244 beats (Supplementary Figure 2C).

245 To see how electrical dysfunction might impact the mechanical function, we compared the
246 contractility of the left ventricle during episodes of bigeminy in hearts presenting with this
247 arrhythmia at baseline to that of sinus rhythm hearts. Though not significant, there were increases
248 in average DP and dP/dt max, as well as decreases in LV work and dP/dt min when comparing
249 hearts with bigeminy versus sinus rhythm (Figure 4A-D). Since the bigeminy episodes were
250 intermittent and accounted for less than 20% of the total time period (Figure 3E), we could compare
251 the left ventricular pressure during episodes of bigeminy and episodes of sinus rhythm within the
252 same hearts. This intracardiac comparison showed a significant increase in DP (SR: 31.9 ± 3.3 ;
253 bigeminy: 46.0 ± 7.9 mmHg) and dP/dt max (SR: 1375.6 ± 216.8 ; bigeminy: 1948.2 ± 298.7
254 mmHg.s⁻¹), and a significant decrease in LV work (SR: 8834.4 ± 1214.0 ; bigeminy: 7291.0 ± 1068 .)
255 and dP/dt min (SR: -936.0 ± 177.8 ; bigeminy: -1462.3 ± 245 mmHg.s⁻¹) (Figure 4E-I).
256 Interestingly, premature extrasystole during bigeminy led to premature contractions that, on
257 average, have a DP of only 50% of that of SR (Figure 4J).

258 4.3 Global ischemia-reperfusion decreased mechanical function, while electrical function 259 remained mainly unchanged.

260 This combined electromechanical assessment approach in *ex-vivo* Langendorff perfused hearts
261 can be combined with any experimental conditions. Here we decided to perform global ischemia
262 for 25 minutes followed by 1h of reperfusion. After ischemia, the mechanical function dropped
263 drastically with a significant decrease in DP (baseline: 37.7 ± 4 ; reperfusion 10 min: 11.8 ± 2.4
264 mmHg), LV work (baseline: 9351 ± 1174 ; reperfusion 10 min: 2927 ± 545 mmHg*bpm), dP/dt
265 max (baseline: 1509.8 ± 137.1 ; reperfusion 10 min: 551.5 ± 99.6 mmHg.s⁻¹) and dP/dt min
266 (baseline: -1005 ± 101.5 ; reperfusion 10 min: -344.3 ± 59.2 mmHg.s⁻¹) at 10 minutes reperfusion
267 (Figure 5A-E). Then, the mechanical function slowly recovered to baseline level with an average
268 recovery of 79.3 ± 7.2 % for DP, 67.0 ± 9.8 % for LV work, 98.3 ± 11.0 % for dP/dt max, and 75.9
269 ± 8 % for dP/dt min at 60 minutes reperfusion (Figure 5A, Supplementary Figure 3A). Of note, the
270 average coronary flow remained the same throughout the experiment, e.g., in the baseline perfusion
271 and the reperfusion after global ischemia (Supplementary Figure 3B). In contrast to the ventricular
272 function, electrical function stayed relatively stable with no significant change in heart rate, PR and
273 QT interval, intra-atrial and intra-ventricular conduction times (Figure 5F-I, Supplementary Figure
274 3C, D). However, the ventricular effective refractory period was significantly increased after global
275 ischemia (Figure 5J), indicating changes in cardiac repolarization. Besides, though not significant,
276 heart rate tended to be more irregular after global ischemia-reperfusion, as shown by the increase
277 of the average coefficient of variation (standard deviation/mean) of the inter-beat time
278 (Supplementary Figure 3E).

279 Taken together, these results indicate that the ischemia-induced decrease in mechanical
280 function is not due to or linked to changes in electrical function.

281 **4.4 Global ischemia-reperfusion does not affect the electro-mechanical interaction.**

282 We then wondered whether global ischemia affects the electro-mechanical interaction observed
283 at baseline. At the end of reperfusion, 12 hearts were in sinus rhythm, 1 showed sustained 1st degree
284 AV block, 3 had brief episodes of bigeminy accounting for less than 20% of the total time period
285 (Figure 6A) and another one showed a brief episode of idioventricular rhythm faster than sinoatrial
286 rhythm that was not observed at baseline (Figure 6A-C). Of note, apart from one heart in AV block,
287 arrhythmic hearts at baseline and at the end of reperfusion were not the same, meaning that some
288 hearts showed new arrhythmic behavior after global ischemia while others lost their arrhythmic
289 pattern (Figures 3E and 6A). We again compared the mechanical function during episodes of
290 bigeminy in the hearts presenting with this arrhythmia during reperfusion with that of sinus rhythm
291 hearts (Supplementary Figure 4A-D). There was no significant difference in DP, LV work, dP/dt
292 max and min. However, when we compared the mechanical function during episodes of bigeminy
293 and sinus rhythm in the same hearts, there were increases in DP (SR: 40.5 ± 9.9 ; bigeminy: $50.8 \pm$
294 6.6 mmHg) and dP/dt max (SR: 1761 ± 337 ; bigeminy: 2222 ± 95.9 mmHg.s⁻¹) and decreases in
295 LV work (SR: 7968 ± 1158 ; bigeminy: 7098 ± 812 mmHg*bpm) and dP/dt min (SR: -1089 ± 197 ;
296 bigeminy: -1451 ± 280 mmHg.s⁻¹) (Figure 6E-F, Supplementary Figure 4E-F). In addition, the
297 premature beats had on average a DP of 50% of that of the SR (Figure 6G). Therefore, the
298 mechanical response to bigeminy during reperfusion is the same as what was observed at baseline
299 (Figure 4F-J).

300 These results suggest that the electro-mechanical interaction is preserved after global ischemia-
301 reperfusion and that the decrease in mechanical function (Figure 5A) after ischemia is rather due
302 to an ischemia-mediated decrease in intrinsic mechanical properties.

303

304 **5 Discussion**

305 This manuscript presents an approach to simultaneously assess electrical and mechanical
306 function in *ex-vivo* perfused mouse hearts. We also demonstrate that this approach can be combined
307 with varied experimental conditions such as global ischemia-reperfusion. In addition, although this
308 Langendorff setup was designed for mouse hearts, this should be readily transposable to larger mammal
309 hearts such as rabbits with some adjustments for size.

310 **5.1 Simultaneous recording of cardiac mechanical and electrical function**

311 Though there is a growing need for new approaches to study cardiac electro-mechanical
312 interactions, most of the time, the contractile and electrical function of isolated *ex-vivo* perfused hearts
313 are investigated separately (1). In this manuscript, we showed that these can be assessed simultaneously
314 with a balloon inserted in the left ventricle combined with ECG electrodes and an intracardiac octapolar
315 catheter inserted in the right atrium and ventricle (Figure 1,2). Classical ECG parameters (heart rate,
316 PR, and QT interval) can be measured alongside left ventricular mechanical properties (DP, LV work,
317 maximal velocity of contraction and relaxation) (Figure 2). With the addition of the octapolar catheter,
318 electrical conduction properties with intra-atrial and intra-ventricular conduction times can also be
319 measured (Figure 2). This can be further refined by stimulating the heart to obtain data on ventricular
320 refractoriness. Overall, our results at baseline are similar to what was previously described in terms of

321 heart rate, PR interval, QT interval, and VERP in the mouse heart (16), confirming that our modified
322 Langendorff setup does not impact cardiac electrical function. Regarding mechanical function, the left
323 ventricular developed pressure described in literature ranges from 40 to >120 mmHg (17–20) with the
324 DP obtained in our isolated mouse hearts (37.7 ± 4 mmHg) ranking amongst the lower values. This
325 could be explained by the fact that we used a perfusion pressure of 60 mmHg which is associated with
326 lower DP values (18). In addition, in order to evaluate electrical and mechanical function relationships
327 over a wide range, unlike most studies no exclusion criteria based on heart function were applied (21),
328 which may account for both the relatively low DP values and high variability (Figure 2).

329 Interestingly, we found that the developed pressure was not dependent on the heart rate, nor
330 was the relaxation rate dependent on the QT interval (Supplementary Figure 1). We also found that the
331 QT interval was negatively correlated to the heart rate, which is in line with the rate-dependence of the
332 QT interval known in humans and larger mammals (22,23). However, the QT dependence of heart rate
333 in mice is matter of debate, with studies showing either a dependence or no dependence in
334 unanesthetized mouse hearts (24–26), which resulted in the lack of an accurate QT correction formula
335 for mice.

336 5.2 Arrhythmia and subsequent mechanical reaction

337 The advantage of combining ECG recordings and the intracardiac octapolar catheter is that we
338 can better define episodes of arrhythmia (27,28). For example, we found that almost half of the hearts,
339 at baseline, had isolated extrasystoles or brief episodes of bigeminy (Figure 3, Supplementary Figure
340 2). These extrasystoles can originate from the atria (PAC) or the ventricles (PVC), which can easily be
341 seen on the octapolar catheter signals with an extra A or V wave. Although this was not investigated,
342 we could also obtain a rough idea of the origin of the ectopic signal based on which octapolar electrode
343 is reached first. Therefore, the octapolar catheter is a real asset to study regional differences in the right
344 atrium and ventricle, especially regarding blocks of conduction that might not be spotted on the one-
345 lead pseudo-ECG.

346 Here we investigated the effect of brief episodes of bigeminy on the cardiac mechanical
347 function. Comparison between episodes of bigeminy and episodes of sinus rhythm within the same
348 hearts showed a significant improvement in DP and maximal velocity of contraction and relaxation in
349 the subsequent beats following the extrasystole (Figure 4I–J). In contrast, the contraction triggered by
350 the extrasystole was only 50% of those during sinus rhythm (Figure 4J), which is consistent with the
351 phenomenon of “pulse deficit” observed in bigeminy patients: due to reduced diastolic filling and a
352 short coupling interval of the extrasystole, there is a 2:1 pulse deficit in these patients that leads to a
353 regular but slower pulse rate (29). Given the reduced contraction observed during the extrasystole in
354 our heart models, we can assume that these would lead to insufficient ejection fraction and to the same
355 2:1 pulse deficit *in-vivo*. Hence, we showed here that our approach to simultaneously assessing electro-
356 mechanical function can visualize recognized pathophysiological mechanisms and could be used to
357 study the electro-mechanical interaction on a beat-to-beat scale. Indeed, with our modified setup, it is
358 possible to see how each beat behaves electrically and mechanically. One can then study how a change
359 in the electrical signal (arrhythmia, use of pharmacological agents targeting ion channels, pacing) can
360 affect the mechanical function. Inversely, one can see how changes in the mechanical function (change
361 in pressure/volume, use of pharmacological agents targeting the contractile proteins) can influence
362 electrical properties.

363

364

365 **5.3 Global ischemia-reperfusion effect on electro-mechanical interaction**

366 As mentioned, this combined electro-mechanical assessment approach can be used for any
367 experimental conditions on *ex-vivo* Langendorff-perfused hearts. Here we showed an example of
368 global ischemia-reperfusion with continuous monitoring of both electrical and mechanical function.
369 Interestingly, except for the increased VERP, global ischemia-reperfusion did not affect electrical
370 parameters, even at an early stage of reperfusion (10 minutes) (Figure 5F-J, Supplementary Figure 3C-
371 E). On the other hand, the mechanical function was decreased after ischemia and slowly recovered at
372 the end of reperfusion (Figure 5A-E). This decrease in mechanical function after ischemia-reperfusion
373 is referred to as “myocardial stunning” (30). It is most likely due to an increase in reactive oxygen
374 species (ROS) and alterations in excitation-contraction coupling. Indeed, ROS generation after
375 ischemia impairs sarcoplasmic reticulum function and provokes oxidative modifications of
376 myofibrillar proteins (31-33). Upon post-ischemic reperfusion, cardiomyocytes also suffered from
377 cytosolic Ca^{2+} overload due to increased Na^+/H^+ exchange and subsequent reverse mode of the
378 Na^+/Ca^{2+} exchanger (32,34,35), which contributes to ROS generation and, conversely, is aggravated
379 by the ROS-induced impairment of sarcoplasmic reticulum function. In the end, oxidative modification
380 of myofibrillar proteins leads to a decrease in Ca^{2+} responsiveness where Ca^{2+} dynamics (Ca^{2+} transient
381 generation) is normal, but the contractile response is reduced (32,36,37). This is in line with our results,
382 which show an unaffected electrical activity during reperfusion while the contractile response is
383 decreased. However, we cannot rule out the possibility that part of this decrease in mechanical heart
384 function may also be due to lethal reperfusion injury (8).

385 Interestingly, during reperfusion, we still observed the same contractile response during
386 bigeminy as what was previously seen at baseline. Indeed, the extrasystole-triggered contractions were
387 only 50% as strong as in sinus rhythm, while the subsequent contraction had an increased DP and
388 maximal velocity of contraction and relaxation (Figure 6D-G, Supplementary Figure 4E-F). Therefore,
389 the electro-mechanical interaction was preserved after ischemia-reperfusion, despite decreased
390 mechanical function. This means that our new approach for assessing the electro-mechanical
391 interaction could also be adapted to investigate the cardioprotective effect of a drug on ischemia-
392 reperfusion injury as well as their effect on excitation-contraction and mechanical-electrical feedback.

393 **6 Limitations**

394 Our approach was designed for heart perfusion with the Langendorff method, a technique for
395 which the perfusion is forced into the coronaries with little to no filling of the cardiac chambers. Hence,
396 the ventricles are not exposed to blood/perfusate-induced mechanical strains. Therefore, it will be
397 interesting to try adapting our approach to a perfusion system of working hearts to recreate a more
398 physiological electro-mechanical interaction.

399 **7 Conclusion**

400 Our study presents an approach for simultaneously assessing electrical and mechanical function
401 in Langendorff-perfused mouse hearts on a beat-to-beat scale. We show that this approach can be
402 combined with any experimental conditions in Langendorff-perfused heart with an example of global
403 ischemia-reperfusion. With this approach, we hope to better understand the complex mutual influence
404 of cardiac electrical and mechanical function under physiological and pathophysiological conditions.

405

406

407 **Author contributions**

408 SL, KEO and YD conceived the project. JL, RO, AS, AO, ME, MB, SN and NA did the
409 experiments and acquired the data. JL and RO analyzed the data and drafted the manuscript. BMS and
410 MS created and took care of the mouse strain line. All authors revised the manuscript, approved the
411 final version and agreed to be accountable for all aspects of the work.

412 **Funding**

413 This study was supported by the SNSF through a NRP 78 “Covid-19” Grant (CoVasc, No.
414 4078P0_198297) to YD, KEO and SL.

415 **Acknowledgements**

416 The authors thank Maria Essers for her technical support regarding the isolated mouse heart
417 system.

418 **Conflict of interest**

419 The authors declare that the research was conducted in the absence of any commercial or
420 financial relationships that could be construed as a potential conflict of interest.

421

422 **References**

- 423 1. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: The Langendorff technique of
424 isolated heart perfusion. *Journal of Molecular and Cellular Cardiology* (2011) 50:940–950. doi:
425 10.1016/j.yjmcc.2011.02.018
- 426 2. Skrzypiec-Spring M, Grotthus B, Szeląg A, Schulz R. Isolated heart perfusion according to
427 Langendorff—Still viable in the new millennium. *Journal of Pharmacological and*
428 *Toxicological Methods* (2007) 55:113–126. doi: 10.1016/j.vascn.2006.05.006
- 429 3. Zimmer H-G. The Isolated Perfused Heart and Its Pioneers. *Physiology* (1998) 13:203–210. doi:
430 10.1152/physiologyonline.1998.13.4.203
- 431 4. Sutherland FJ, Hearse DJ. THE ISOLATED BLOOD AND PERFUSION FLUID PERFUSED
432 HEART. *Pharmacological Research* (2000) 41:613–627. doi: 10.1006/phrs.1999.0653
- 433 5. Lecour S, Bøtker HE, Condorelli G, Davidson SM, Garcia-Dorado D, Engel FB, Ferdinand P,
434 Heusch G, Madonna R, Ovize M, et al. ESC working group cellular biology of the heart:
435 position paper: improving the preclinical assessment of novel cardioprotective therapies.
436 *Cardiovasc Res* (2014) 104:399–411. doi: 10.1093/cvr/cvu225
- 437 6. Timmis A, Townsend N, Gale CP, Torbica A, Lettino M, Petersen SE, Mossialos EA, Maggioni
438 AP, Kazakiewicz D, May HT, et al. European Society of Cardiology: Cardiovascular Disease
439 Statistics 2019. *European Heart Journal* (2020) 41:12–85. doi: 10.1093/eurheartj/ehz859
- 440 7. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK,
441 Buxton AE, Carson AP, Commodore-Mensah Y, et al. Heart Disease and Stroke Statistics—

442 2022 Update: A Report From the American Heart Association. *Circulation* (2022) 145: doi:
443 10.1161/CIR.0000000000001052

444 8. Yellon DM, Hausenloy DJ. Myocardial Reperfusion Injury. *The new england journal of
445 medicine* (2007)

446 9. Prasad A, Stone GW, Holmes DR, Gersh B. Reperfusion Injury, Microvascular Dysfunction,
447 and Cardioprotection: The “Dark Side” of Reperfusion. *Circulation* (2009) 120:2105–2112. doi:
448 10.1161/CIRCULATIONAHA.108.814640

449 10. Odening KE, Van Der Linde HJ, Ackerman MJ, Volders PGA, Ter Bekke RMA.
450 Electromechanical reciprocity and arrhythmogenesis in long-QT syndrome and beyond.
451 *European Heart Journal* (2022) 43:3018–3028. doi: 10.1093/eurheartj/ehac135

452 11. Quinn TA, Kohl P, Ravens U. Cardiac mechano-electric coupling research: fifty years of
453 progress and scientific innovation. *Prog Biophys Mol Biol* (2014) 115:71–75. doi:
454 10.1016/j.pbiomolbio.2014.06.007

455 12. Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical
456 Stimulation on Heart Rate and Rhythm. *Physiological Reviews* (2021) 101:37–92. doi:
457 10.1152/physrev.00036.2019

458 13. Basso C, Iliceto S, Thiene G, Perazzolo Marra M. Mitral Valve Prolapse, Ventricular
459 Arrhythmias, and Sudden Death. *Circulation* (2019) 140:952–964. doi:
460 10.1161/CIRCULATIONAHA.118.034075

461 14. Ravelli F. Mechano-electric feedback and atrial fibrillation. *Prog Biophys Mol Biol* (2003)
462 82:137–149. doi: 10.1016/s0079-6107(03)00011-7

463 15. Burn F, Ciocan S, Mendez Carmona N, Berner M, Sourdon J, Carrel TP, Tevaeearai Stahel HT,
464 Longnus SL. Oxygen-transfer performance of a newly designed, very low-volume membrane
465 oxygenator. *Interact CardioVasc Thorac Surg* (2015) 21:352–358. doi: 10.1093/icvts/ivv141

466 16. Appleton GO, Li Y, Taffet GE, Hartley CJ, Michael LH, Entman ML, Roberts R, Khoury DS.
467 Determinants of cardiac electrophysiological properties in mice. *J Interv Card Electrophysiol*
468 (2004) 11:5–14. doi: 10.1023/B:JICE.0000035922.14870.56

469 17. Jin Z-Q, Zhou H-Z, Zhu P, Honbo N, Mochly-Rosen D, Messing RO, Goetzl EJ, Karliner JS,
470 Gray MO. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in
471 wild-type and PKC ϵ knockout mouse hearts. *American Journal of Physiology-Heart and
472 Circulatory Physiology* (2002) 282:H1970–H1977. doi: 10.1152/ajpheart.01029.2001

473 18. Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP. Cardiac and coronary function in the
474 Langendorff-perfused mouse heart model. *Exp Physiol* (2009) 94:54–70. doi:
475 10.1113/expphysiol.2008.043554

476 19. Said M, Vittone L, Mundia-Weilenmann C, Ferrero P, Kranias EG, Mattiazzi A. Role of dual-
477 site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-
478 specific mutants. *American Journal of Physiology-Heart and Circulatory Physiology* (2003)
479 285:H1198–H1205. doi: 10.1152/ajpheart.00209.2003

480 20. Willems L, Zatta A, Holmgren K, Ashton KJ, Headrick JP. Age-related changes in ischemic
481 tolerance in male and female mouse hearts. *Journal of Molecular and Cellular Cardiology*
482 (2005) 38:245–256. doi: 10.1016/j.jmcc.2004.09.014

483 21. Bøtker HE, Hausenloy D, Andreadou I, Antonucci S, Boengler K, Davidson SM, Deshwal S,
484 Devaux Y, Di Lisa F, Di Sante M, et al. Practical guidelines for rigor and reproducibility in
485 preclinical and clinical studies on cardioprotection. *Basic Res Cardiol* (2018) 113:39. doi:
486 10.1007/s00395-018-0696-8

487 22. Franz MR, Swerdlow CD, Liem LB, Schaefer J. Cycle length dependence of human action
488 potential duration in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and
489 deceleration, and different steady-state frequencies. *J Clin Invest* (1988) 82:972–979.

490 23. Locati ET, Bagliani G, Padeletti L. Normal Ventricular Repolarization and QT Interval: Ionic
491 Background, Modifiers, and Measurements. *Card Electrophysiol Clin* (2017) 9:487–513. doi:
492 10.1016/j.ccep.2017.05.007

493 24. Mitchell GF, Jeron A, Koren G. Measurement of heart rate and Q-T interval in the conscious
494 mouse. *Am J Physiol* (1998) 274:H747-751. doi: 10.1152/ajpheart.1998.274.3.H747

495 25. Mulla W, Murninkas M, Levi O, Etzion Y. Incorrectly corrected? QT interval analysis in rats
496 and mice. *Front Physiol* (2022) 13:1002203. doi: 10.3389/fphys.2022.1002203

497 26. Roussel J, Champeroux P, Roy J, Richard S, Fauconnier J, Le Guennec J-Y, Thireau J. The
498 Complex QT/RR Relationship in Mice. *Sci Rep* (2016) 6:25388. doi: 10.1038/srep25388

499 27. Li N, Wehrens XHT. Programmed Electrical Stimulation in Mice. *J Vis Exp* (2010)1730. doi:
500 10.3791/1730

501 28. Ozhathil LC, Rougier J-S, Arullampalam P, Essers MC, Ross-Kaschitzka D, Abriel H. Deletion
502 of Trpm4 Alters the Function of the Nav1.5 Channel in Murine Cardiac Myocytes. *Int J Mol Sci*
503 (2021) 22:3401. doi: 10.3390/ijms22073401

504 29. Bellmann B, Gemein C, Schauerte P. Regular pulse rate but irregular heart rate? *Neth Heart J*
505 (2016) 24:435–437. doi: 10.1007/s12471-016-0832-8

506 30. Kloner RA, Bolli R, Marban E, Reinlib L, Braunwald E. Medical and cellular implications of
507 stunning, hibernation, and preconditioning: an NHLBI workshop. *Circulation* (1998) 97:1848–
508 1867. doi: 10.1161/01.cir.97.18.1848

509 31. Canton M, Neverova I, Menabò R, Van Eyk J, Di Lisa F. Evidence of myofibrillar protein
510 oxidation induced by postischemic reperfusion in isolated rat hearts. *Am J Physiol Heart Circ
511 Physiol* (2004) 286:H870-877. doi: 10.1152/ajpheart.00714.2003

512 32. Heusch G. Myocardial stunning and hibernation revisited. *Nat Rev Cardiol* (2021) 18:522–536.
513 doi: 10.1038/s41569-021-00506-7

514 33. Rowe GT, Manson NH, Caplan M, Hess ML. Hydrogen peroxide and hydroxyl radical
515 mediation of activated leukocyte depression of cardiac sarcoplasmic reticulum. Participation of
516 the cyclooxygenase pathway. *Circ Res* (1983) 53:584–591. doi: 10.1161/01.res.53.5.584

517 34. Ladilov YV, Siegmund B, Piper HM. Protection of reoxygenated cardiomyocytes against
518 hypercontracture by inhibition of Na+/H+ exchange. *Am J Physiol* (1995) 268:H1531-1539.
519 doi: 10.1152/ajpheart.1995.268.4.H1531

520 35. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of
521 ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and
522 Na+-Ca2+ exchange. *Circ Res* (1989) 65:1045–1056. doi: 10.1161/01.res.65.4.1045

523 36. Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. *Physiol Rev*
524 (1999) 79:609–634. doi: 10.1152/physrev.1999.79.2.609

525 37. Gao WD, Atar D, Backx PH, Marban E. Relationship between intracellular calcium and
526 contractile force in stunned myocardium. Direct evidence for decreased myofilament Ca2+
527 responsiveness and altered diastolic function in intact ventricular muscle. *Circ Res* (1995)
528 76:1036–1048. doi: 10.1161/01.res.76.6.1036

529

530 **Tables**

531 **Table 1.** List of equipment

Perfusion system		
Component	Description and function	Supplier
1.1F Intracardiac octapolar catheter	Placed in the right atrium and ventricle to record the electrical signal with 8 equally interspaced electrodes	EPR-800, Millar Instruments, Houston, Texas, United States
Aortic pressure transducer	Situated in the aortic line and provides feedback for control of pump speed	SP 844, MEMSCAP, Crolles, France
Compliance chamber	Works as a compliance element as well as bubble trap	Radnoti LTD, Dublin, Ireland
Double walled tubing	Double-walled tubing to ensure a suitable buffer temperature with the circulation of warm water through the walls of the tubes	Radnoti LTD, Dublin, Ireland
In-line flowmeter	Situated downstream of peristaltic pump to measure coronary flow	ME3PXN, Transonic Systems Inc., Ithaca NY, United States
Intraventricular silicone balloon	Silicone balloon inserted into the left ventricle and connected to a pressure transducer to measure left ventricular pressures	Custom made of ALPA-Sil 32 silicone (40-2383A/B, Silitec AG, Gümligen, Switzerland)
Ischemic bath	Bath filled with warm (37°C), energy-substrate-free KHB gassed with 95% N ₂ and 5% CO ₂ used to immerse the heart during warm ischemia	Radnoti LTD, Dublin, Ireland

LabChart pro v8	Data analysis software to record and display all the acquired signals	AD Instruments Ltd, Oxford, United Kingdom
Langendorff reservoir with glass tube gas disperser	Reservoir to collect and oxygenate buffer from the non-recirculating line	Radnoti LTD, Dublin, Ireland
Millar catheter	Connected to the intraventricular balloon to measure left ventricular pressure	SPR-671NR, Millar Inc., Houston, USA
Mini oxygenator	Low-volume membrane oxygenator to oxygenate the buffer from the recirculating line	Custom built
Myopacer stimulator	Required to pace the ventricles with a S1-S2 protocol to determine the ventricular effective refractory period	MyoPacer stimulator, IonOptix, Westwood, Massachusetts
Peristaltic pump	Drives both circuits (recirculating and non-recirculating), controlled by a feedback mechanism (STH Pump controller) using a pressure sensor in the aortic line to perfuse the heart at a constant pressure (~60mmHg)	Minipuls 3, Gilson Incorporated, Middleton, Wisconsin, USA
Powerlab	Data acquisition instrument used to record all perfusion data	AD Instruments Ltd, Oxford, United Kingdom
Pump controller	Translate the pressure feedback from the aortic line into an analog signal to control the speed of the peristaltic pump	STH pump controller, AD Instruments Ltd, Oxford, United Kingdom
Recirculating reservoir	Collects the buffer that comes from the heart and feeds it back into the circulation	Radnoti LTD, Dublin, Ireland
Stereomicroscope	To cannulate the mouse heart	ST, s/n 220017, Optech, Munich, Germany
Temperature sensor	Monitors the temperature of the buffer	IT-18, Physitemp Instruments, LLC, Clifton NJ, United States
Ventricular pressure transducer	To measure left ventricular pressure	MLT0670, AD Instruments Ltd, Oxford, United Kingdom

532

533

534

535

536 **Table 2.** List of reagents

Buffer	
10x Krebs-Henseleit Stock Solution	
Component	Art. no., supplier
NaCl	1.06404.100 Merck, Darmstadt, Germany
KCl	6781.3, Roth, Karlsruhe, Germany
KH ₂ PO ₄	3904.2, Roth, Karlsruhe, Germany
CaCl ₂	5239.2, Roth, Karlsruhe, Germany
MgSO ₄	P027.1, Roth, Karlsruhe, Germany
1x Krebs-Henseleit Buffer (KHB)	
Component	Supplier
(D+)Glucose	X997.1, Roth, Karlsruhe, Germany
NaHCO ₃	6885.2, Roth, Karlsruhe, Germany
Pyruvate	P8574, Sigma-Aldrich, Steinheim, Germany
High Fat Albumin Buffer	
Component	Supplier
Albumin	A3803-50G, Sigma-Aldrich, Steinheim, Germany
Ethanol	1.00983.2511, Merck, Darmstadt, Germany
Palmitate	P0500-10G, Sigma-Aldrich, St. Louis, USA
Na ₂ CO ₃	A135.1, Roth, Karlsruhe, Germany
Lactate	71718-10G, Sigma-Aldrich, Steinheim, Germany

537

538

539 **Table 3.** Baseline electrical and mechanical measured parameters.

Parameters	Mean + SEM ⁴⁰
Body weight (g)	29.2 ± 2 ⁵⁴¹
Heart weight (mg)	154.7 ± 6.5 ⁵⁴² 543
Canulation time (sec)	295.7 ± 22.2 ⁵⁴⁴
* Heart rate (bpm)	267 ± 17 ⁵⁴⁵
PR interval (ms)	47.1 ± 2.7 ⁵⁴⁶ 547
QT interval (ms)	91.9 ± 4.5 ⁵⁴⁸
Intra-atrial conduction time (ms)	2.8 ± 0.4 ⁵⁴⁹
Intra-ventricular conduction time (ms)	1.1 ± 0.1 ⁵⁵⁰ 551
Ventricular effective refractory period (VERP) (ms)	38.2 ± 3.6 ⁵⁵² 553
DP (mmHg)	37.7 ± 4 ⁵⁵⁴
LV work (mmHg*bpm)	9851 ± 1174 ⁵⁵⁵
dP/dt max (mmHg.s ⁻¹)	1509.8 ± 137.1 ⁵⁵⁶ 557
dP/dt min (mmHg.s ⁻¹)	-1005.4 ± 101.5 ⁵⁵⁸
Coronary flow BL (mL.min ⁻¹)	2.1 ± 0.3 ⁵⁵⁹

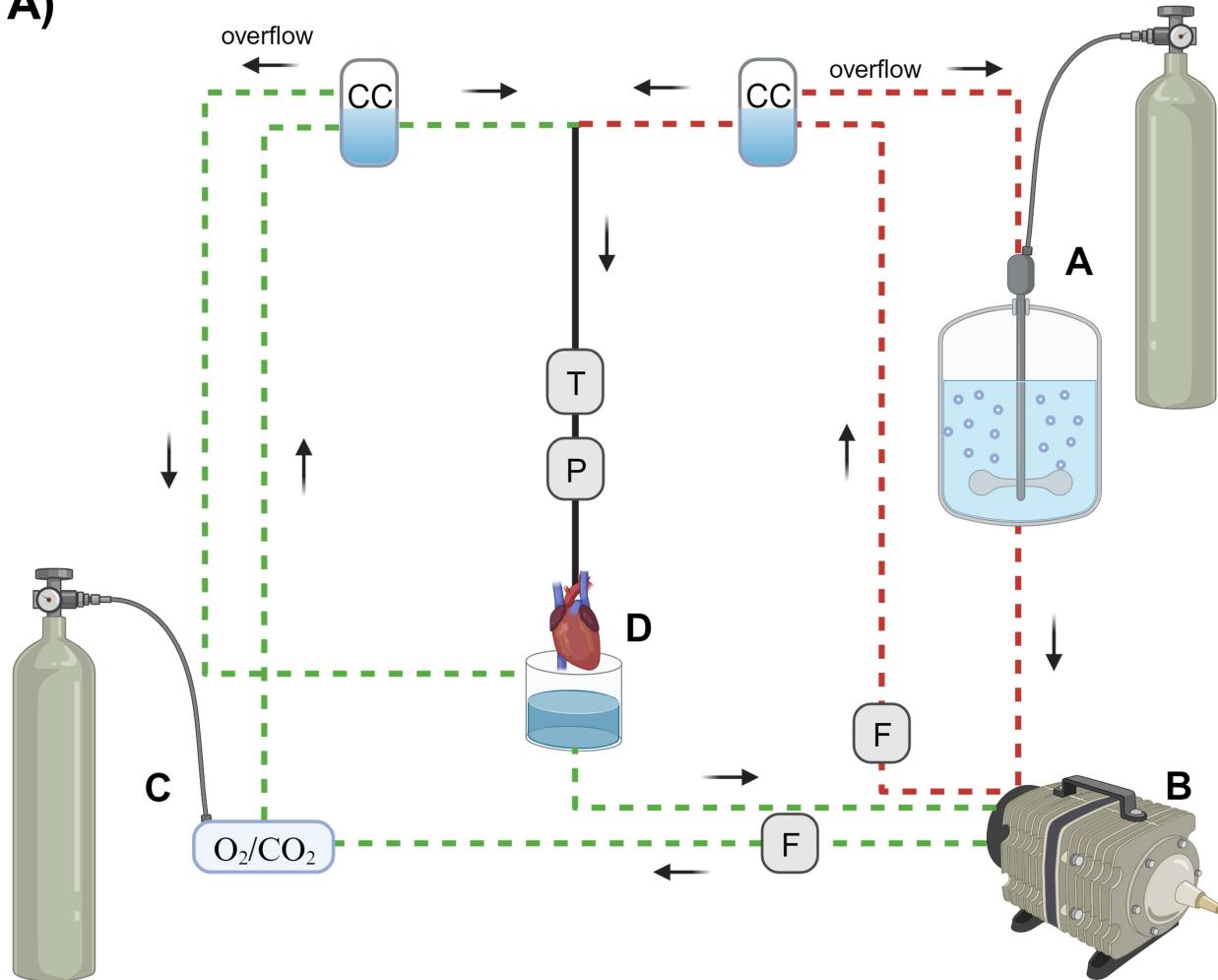
560

561 *Heart rate corresponds to the baseline frequency of the isolated hearts once mounted on the
562 Langendorff system and perfused with modified Krebs-Henseleit solution. DP: developed pressure;
563 LV work: left ventricular work; dP/dt max: maximal velocity of contraction; dP/dt min: maximal
564 velocity of relaxation.

565

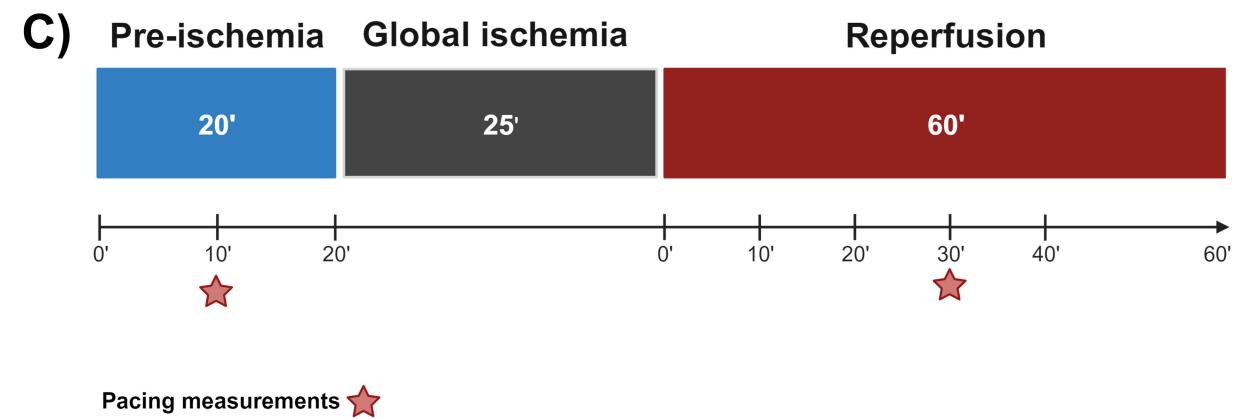
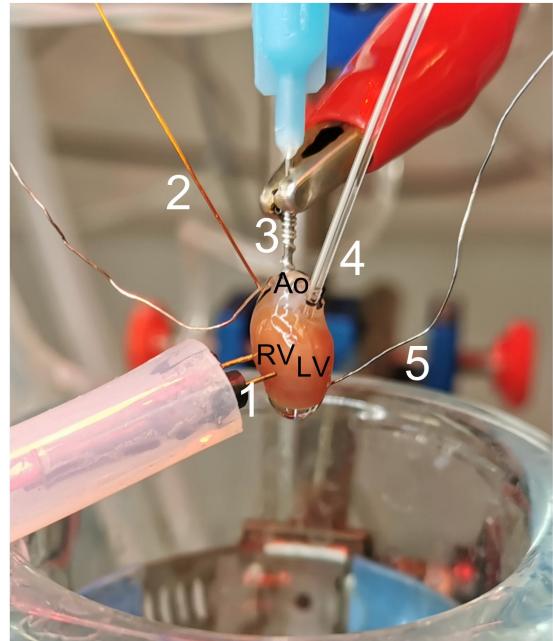
566 **Figures**

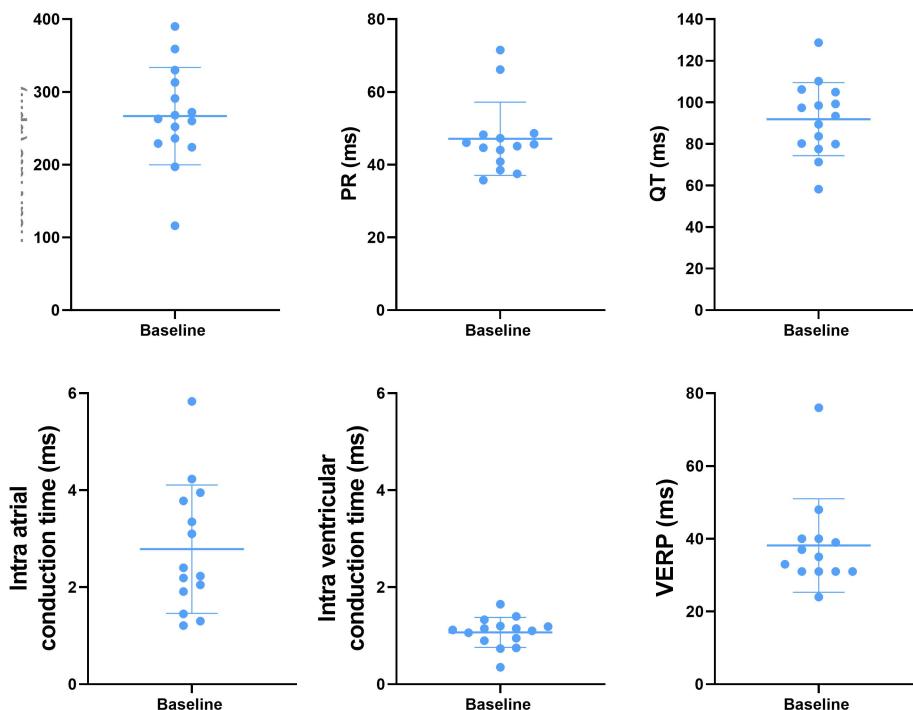
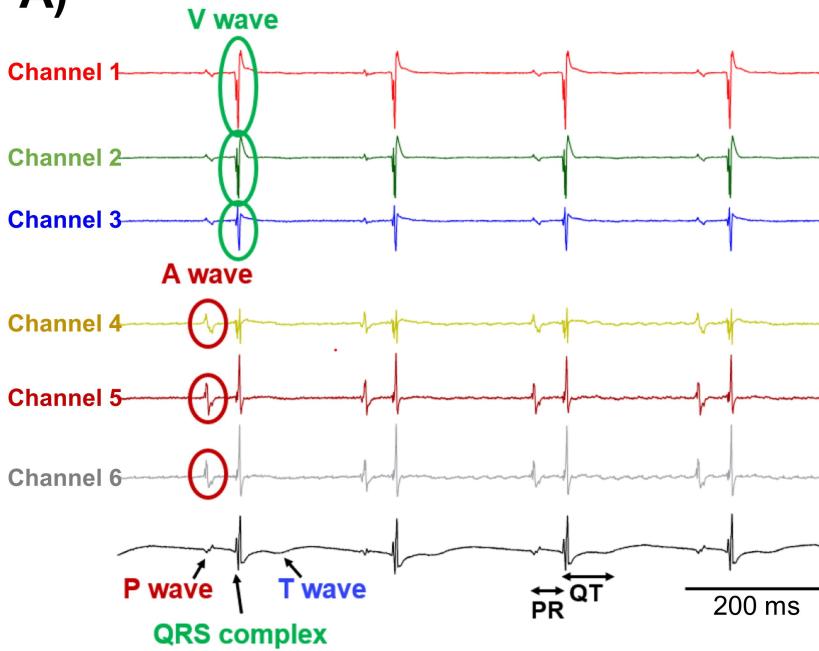
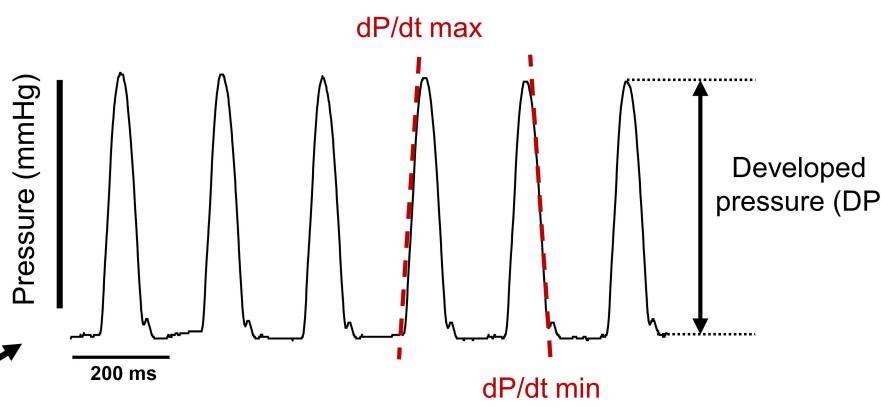
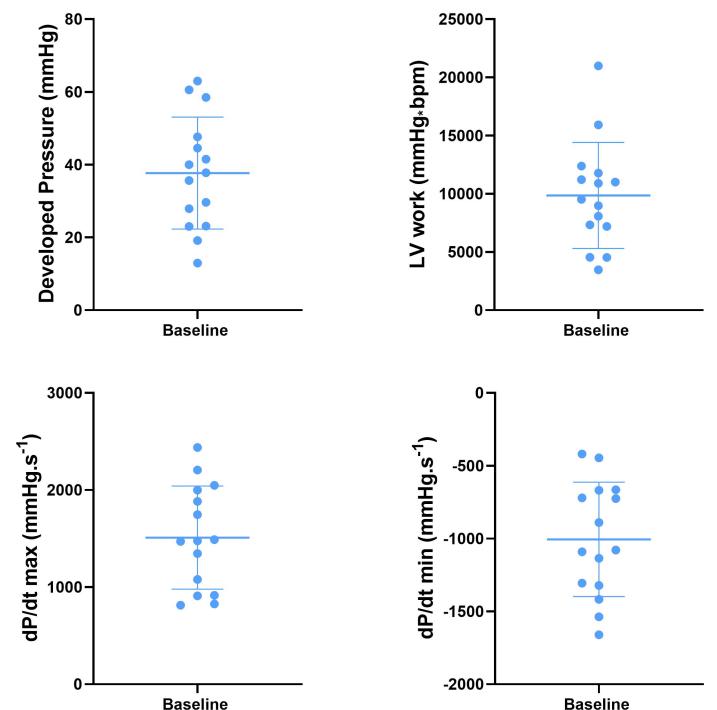
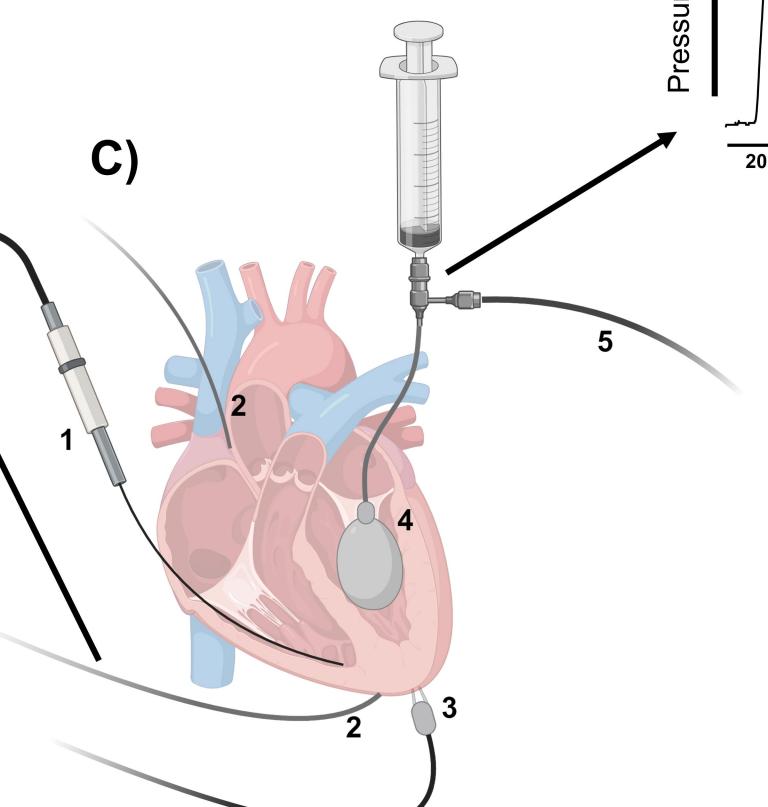
567 **Figure 1. The Langendorff system.** (A) General diagram of the Langendorff system and its different
568 components. (B) Photo of a cannulated heart mounted on the Langendorff system and perfused via the
569 aorta. The intracardiac octapolar catheter is inserted in the right atrium and right ventricle, while the
570 balloon is inserted in the left ventricle after removal of the left atrium. 1 = pacing electrodes, 2 =
571 intracardiac octapolar catheter, 3 = aortic cannula, 4 = intraventricular balloon system coupled to
572 pressure measurement, 5 = silver wires, Ao = aorta, RV = right ventricle, LV = left ventricle. (C)
573 Ischemia-reperfusion protocol during which the hearts are perfused aerobically for 20 min (pre-
574 ischemia) before the 25 min global ischemia phase, during which perfusion is stopped, and the hearts
575 are placed in an energy-substrate-free immersion bath. Hearts are then reperfused aerobically for 60
576 min. Red stars indicate the time points at which the ventricular effective refractory period was assessed
577 by electrical pacing. *Figure 1A and 1C were created with BioRender.com.*

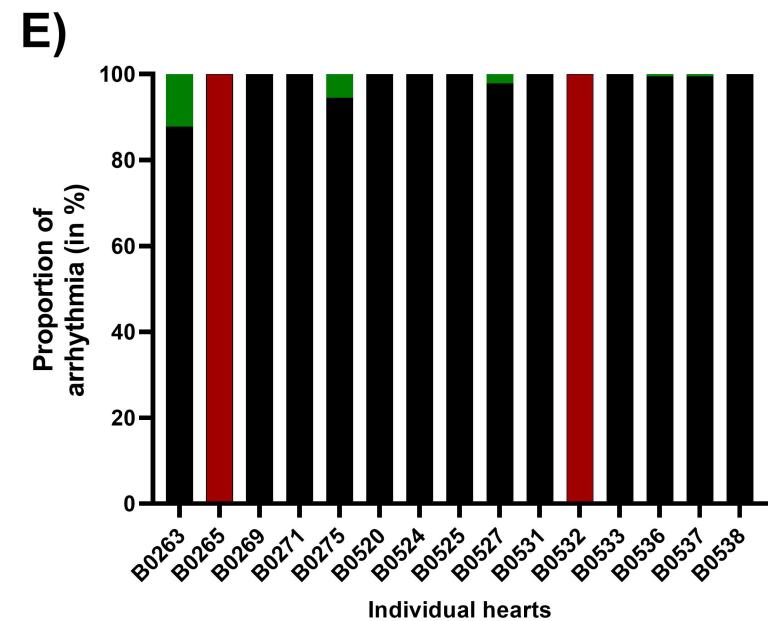
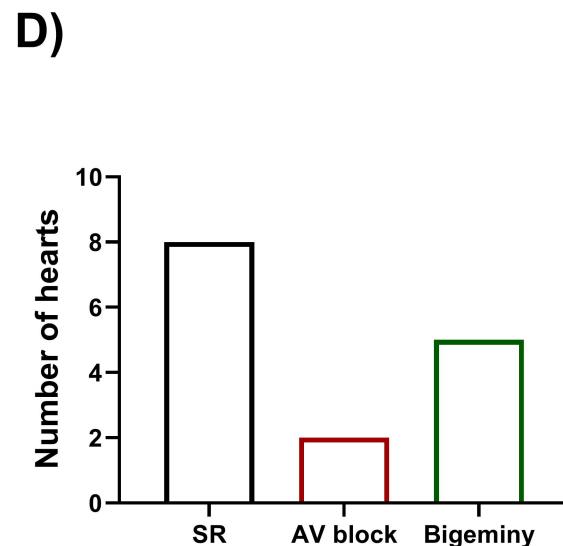
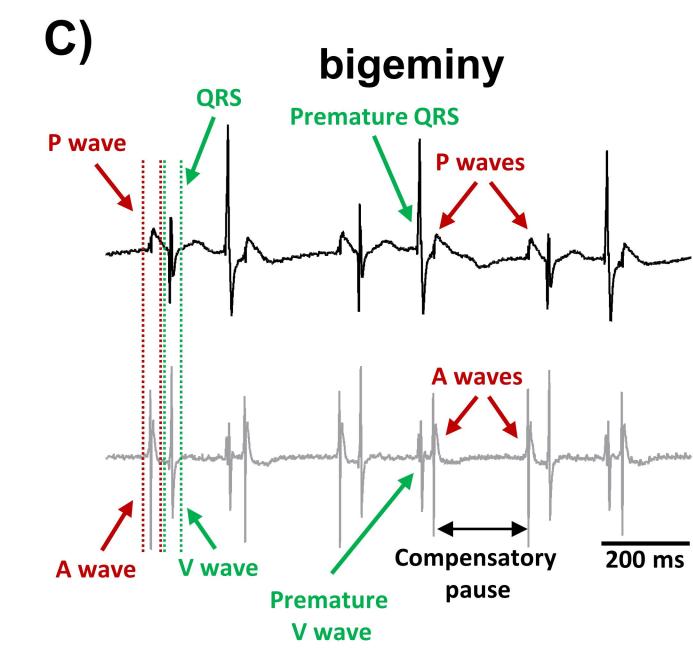
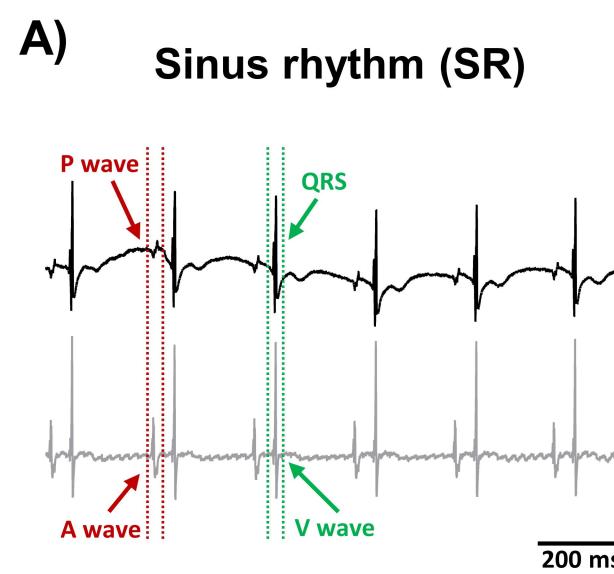

578 **Figure 2. Combined measurements of electrical and mechanical function on *ex-vivo* perfused
579 mouse hearts.** (A) Example trace recordings obtained from the intracardiac octapolar catheter (channel
580 1-6) and ECG recording with associated average heart rate, PR interval, QT interval, intra-atrial and
581 intra-ventricular conduction times, and ventricular effective refractory period (VERP) at baseline from
582 the *ex-vivo* perfused hearts (N=15). Data are expressed as mean \pm standard deviation (SD). (B)
583 Example trace recording of the left ventricular pressure and associated average developed pressure
584 (DP), left ventricular (LV) work and maximal velocity of contraction (dP/dt max) and relaxation (dP/dt
585 min) at baseline from the *ex-vivo* perfused hearts (N=15). Data are expressed as mean \pm standard
586 deviation (SD). (C) Schematic illustration of a Langendorff-perfused heart with the intracardiac
587 octapolar catheter inserted in the right atrium and ventricle (1), silver wires to record the
588 electrocardiogram (2), pacing electrodes to assess the VERP (3), and the balloon (4) inserted in the left
589 ventricle coupled to pressure recording (5) to measure left ventricular pressure. *Figure 2C was created
590 with BioRender.com.*

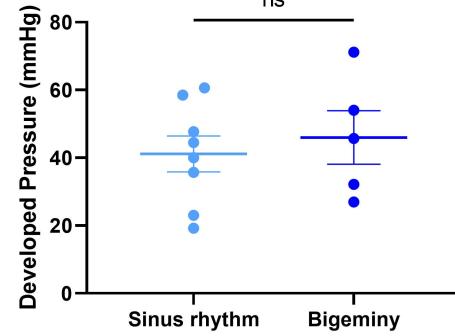
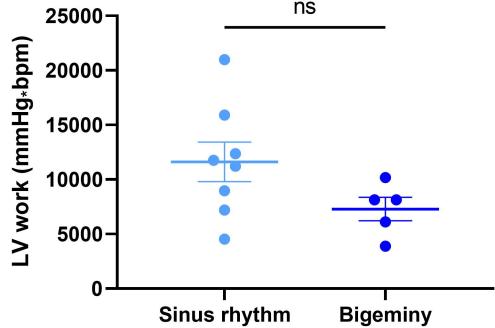
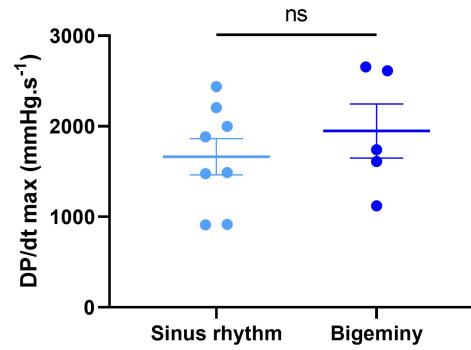
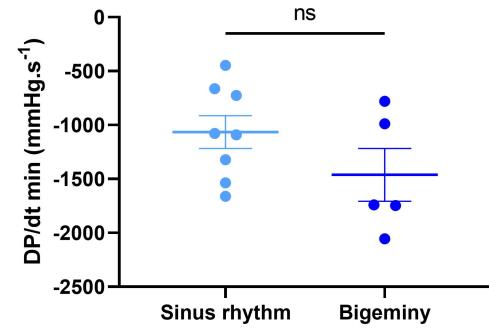
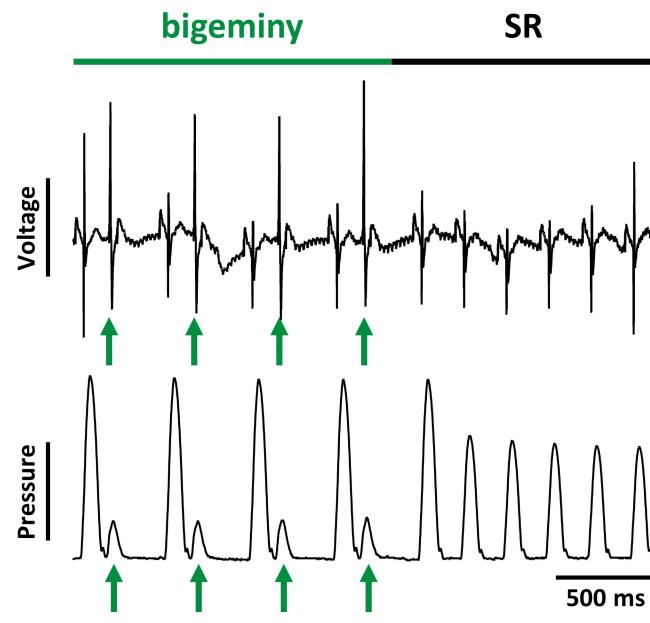
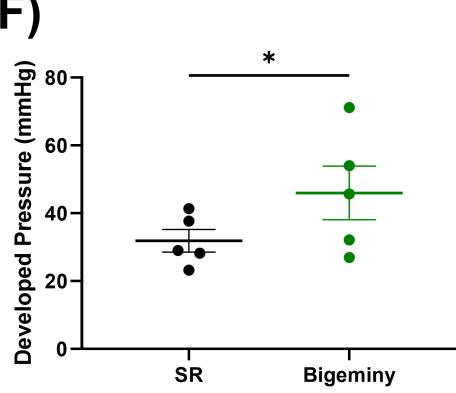
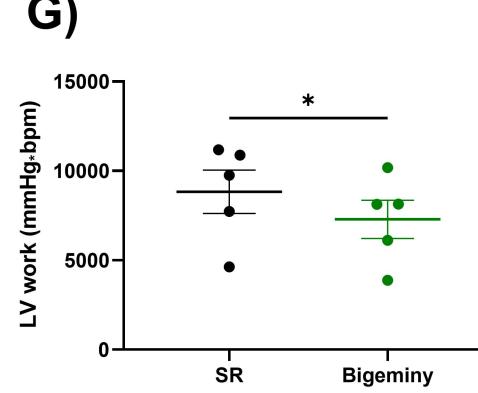
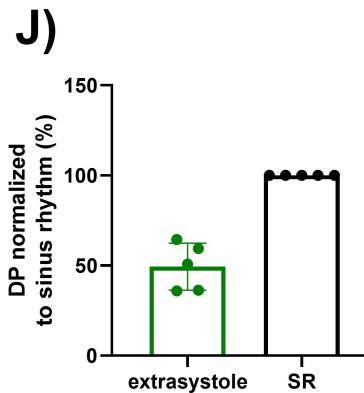
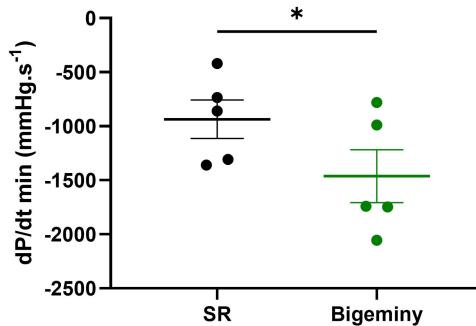
591 **Figure 3. Spontaneous arrhythmia at baseline.** Example recordings of the electrocardiogram trace
592 (top, black) and one signal trace (channel 6, see Figure 2) from the octapolar catheter (bottom, gray)
593 of sinus rhythm (SR) (A), AV block (B) and bigeminy (C) episodes at baseline. Red and green arrows
594 indicate atrial and ventricular signals, respectively. (D) Proportion of *ex-vivo* hearts showing sinus
595 rhythm, AV block or bigeminy at baseline (N=15). (E) Proportion of arrhythmia occurrence during the
596 considered baseline time-window in individual hearts. Black = SR, red = AV block and green =
597 bigeminy.

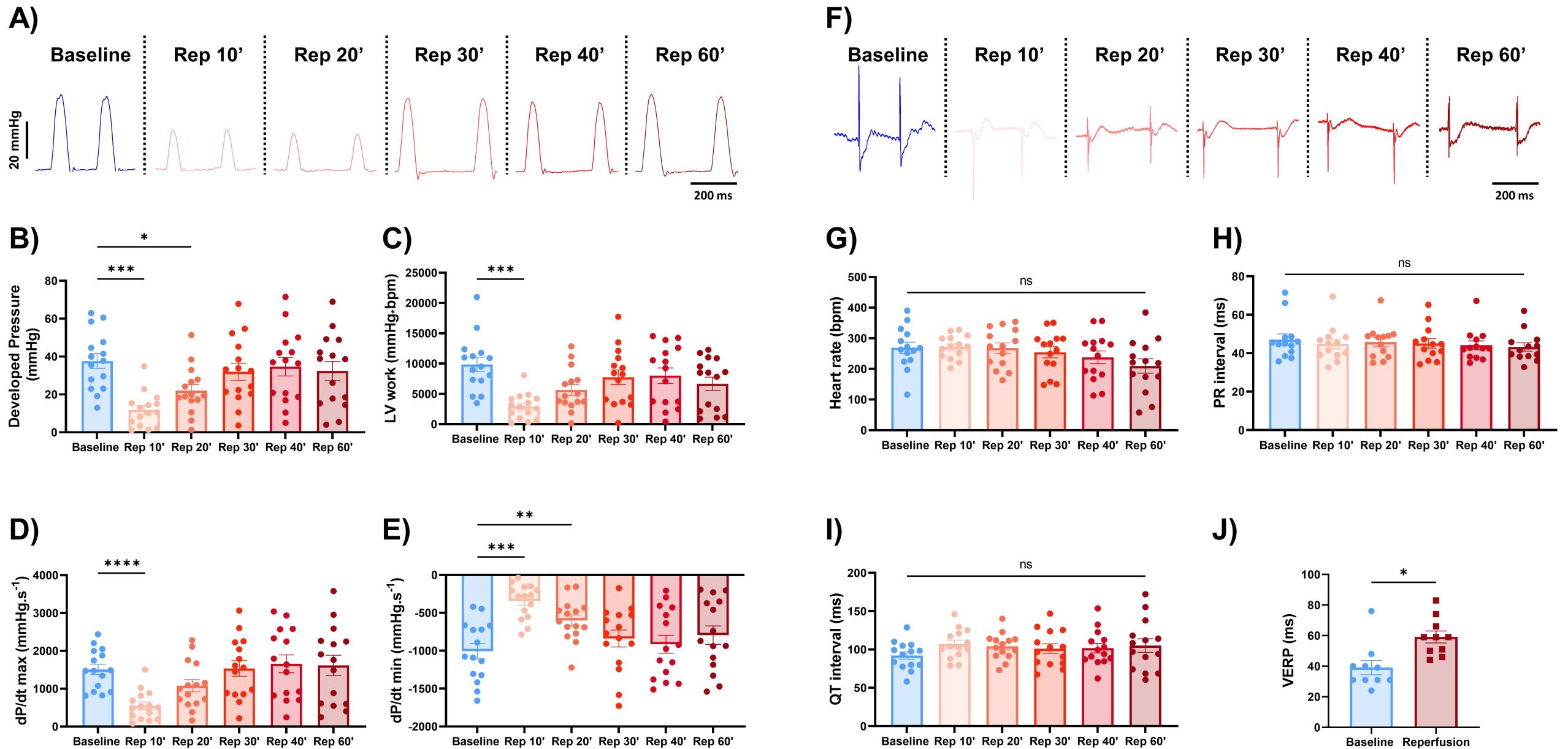
598 **Figure 4. Altered mechanical function during episodes of bigeminy.** Average developed pressure
599 (A), left ventricular (LV) work (B), and maximal velocity of contraction (dP/dt max) (C) and relaxation
600 (dP/dt min) (D) among hearts presenting with sinus rhythm or bigeminy at baseline (N=13). (E)
601 Example trace recording of ECG (top) and left ventricular pressure (bottom) from one of the individual
602 hearts showing a brief episode of bigeminy (green bar) followed by sinus rhythm (black bar). Green
603 arrows indicate the extrasystoles. Average developed pressure (F), left ventricular (LV) work (G), and
604 maximal velocity of contraction (dP/dt max) (H) and relaxation (dP/dt min) (I) between episodes of
605 sinus rhythm (black) or bigeminy (green) in the same hearts (N=5). (J) Average developed pressure
606 (DP) of the extrasystoles (green) normalized to average DP during episodes of sinus rhythm (SR, black)
607 in the same hearts (N=5). ns = non-significant, *p < 0.05, **p < 0.01 with unpaired (A-D) and paired
608 (F-I) t-test.

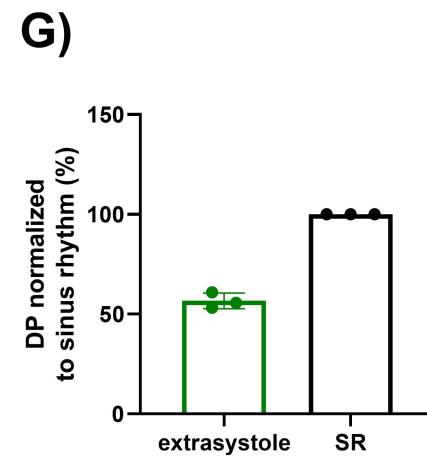
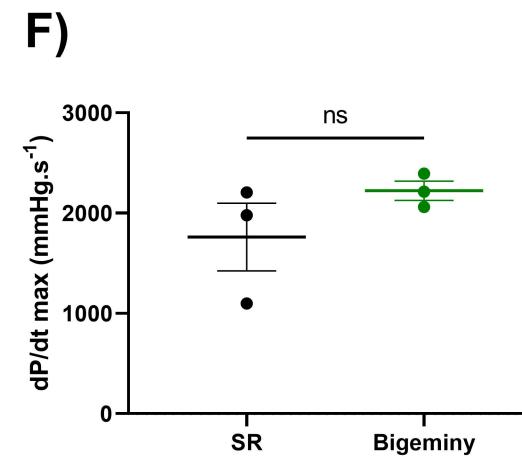
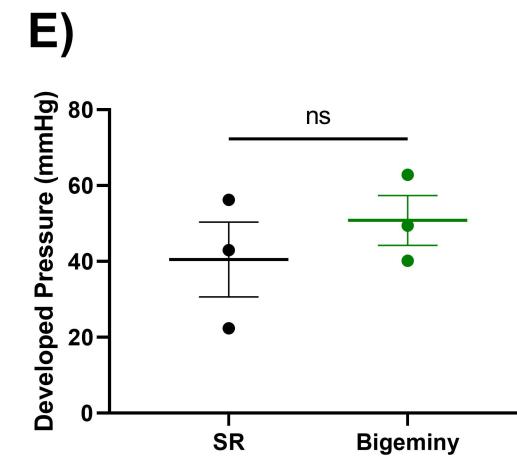
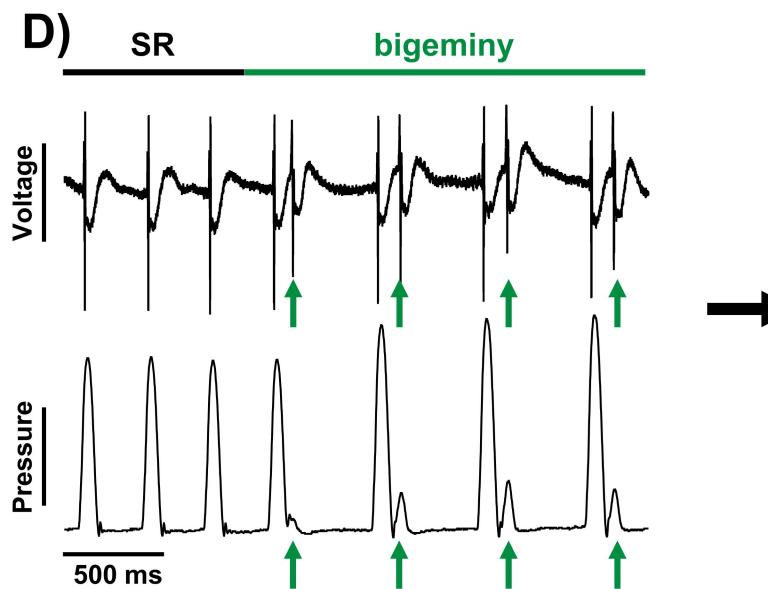
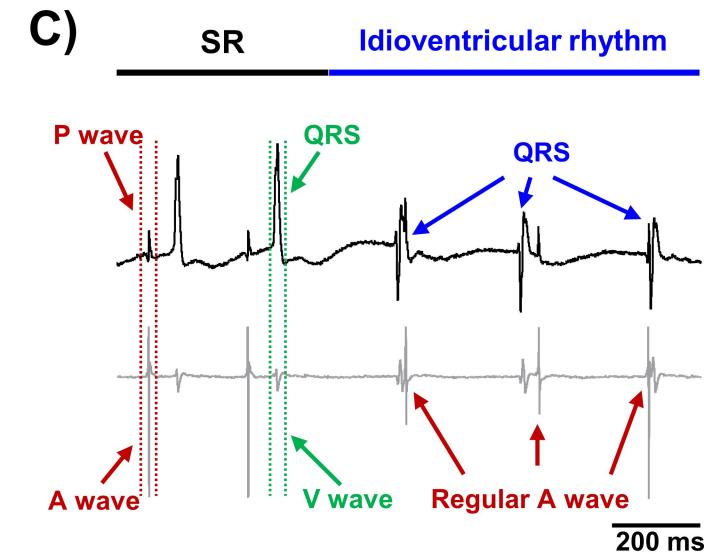
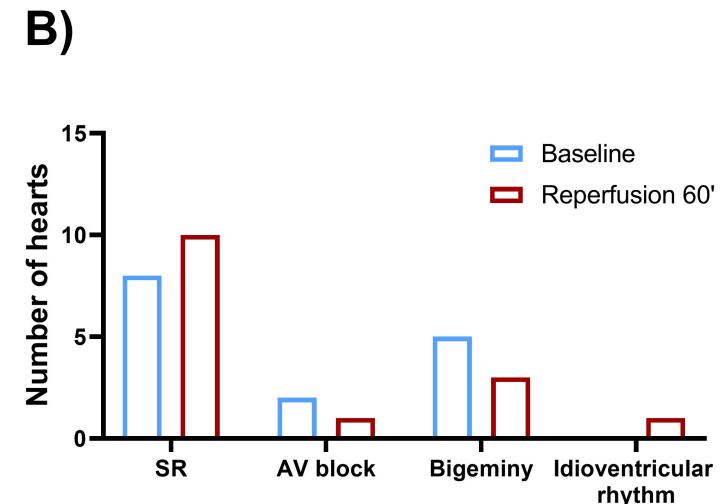
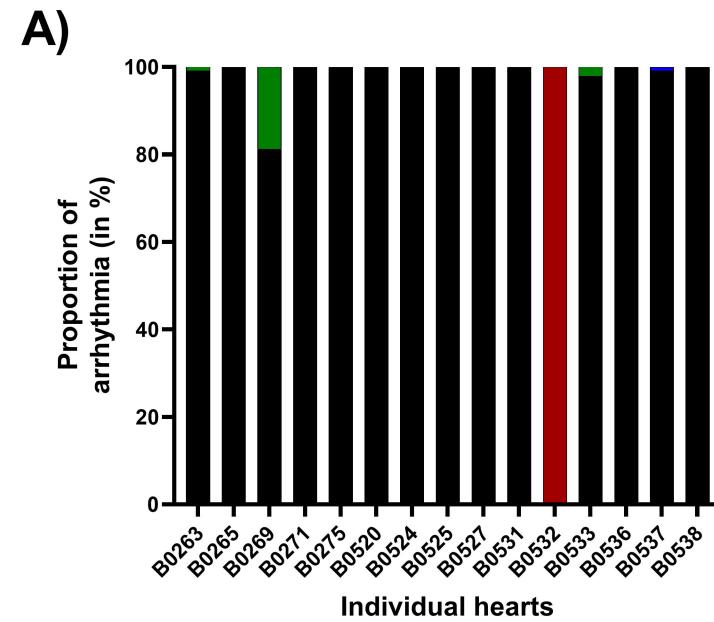


609 **Figure 5. Global ischemia-reperfusion decreased mechanical function, while electrical function**
610 **remained largely unaffected.** (A) Example trace recordings of the left ventricular pressure and
611 average developed pressure (B), left ventricular (LV) work (C) and maximal velocity of contraction
612 (dP/dt max) (D) and relaxation (dP/dt min) (E) at baseline and 10, 20, 30, 40, and 60 minutes of
613 reperfusion (Rep 10', 20', 30', 40', 60') (N=15). (F) Example ECG recordings and average heart rate
614 (G), PR interval (H) and QT interval (I) at baseline and 10, 20, 30, 40, and 60 minutes of reperfusion
615 (Rep 10', 20', 30', 40', 60') (N=15). (J) Average ventricular effective refractory period (VERP)
616 between baseline (blue) and reperfusion (red) (N=10). *ns = non-significant, * p < 0.05, ** p < 0.01,*
617 **** p < 0.001, **** p < 0.0001 with one-way ANOVA followed by Dunnett's multiple comparison test*
618 *(compared to baseline) (B-E, G-I) or paired t-test (J).*






619 **Figure 6. Effect of bigeminy episodes on mechanical function is preserved after global ischemia-**
620 **reperfusion.** (A) Proportion of arrhythmia occurrence for a 2-minute period in individual hearts at the
621 end of reperfusion. Black = sinus rhythm (SR), red = AV block, green = bigeminy and blue =
622 idioventricular rhythm (N=15). (B) Proportion of *ex-vivo* hearts showing sinus rhythm (SR), AV block,
623 bigeminy or idioventricular rhythm at baseline (blue bars) and 60 minutes reperfusion (red bars)
624 (N=15). (C) Example trace recording of ECG (top) and one signal trace (channel 6, see Figure 2) from
625 the octapolar catheter (bottom, gray) from the individual heart showing sinus rhythm (SR, black bar)
626 followed by an episode of idioventricular rhythm faster than the sinoatrial node rate (idioventricular
627 rhythm, blue bar). Red and green arrows indicate atrial and ventricular signals, respectively, while blue
628 arrows indicate QRS complexes during idioventricular rhythm. (D) Example trace recording of ECG
629 (top) and left ventricular pressure (bottom) from one heart showing sinus rhythm (SR, black bar)
630 followed by an episode of bigeminy (green bar) during reperfusion. Green arrows indicate the
631 extrasystoles. Average developed pressure (E) and maximal velocity of contraction (dP/dt max) (F)
632 between episodes of sinus rhythm (black) or bigeminy (green) in the same hearts (N=3). Average
633 developed pressure (DP) of the extrasystoles (green) normalized to average DP during episodes of
634 sinus rhythm (SR, black) in the same hearts (N=3). *ns = non-significant with paired t-test.*





A)










A: Langendorff reservoir
 B: Peristaltic roller pump
 C: Mini-oxygenator
 D: Cannulated mouse heart


— Langendorff line, non-recirculating
 - - - Recirculating line
 — Aortic line








B)

A)**B)****C)**

A)**B)****C)****D)****E)****F)****G)****J)****I)**

