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Abstract

Many digtantly related organisms have convergently evolved traits and lifestyles that enable
themto live in similar ecological environments. However, the extent of phenotypic convergence
evolving through the same or distinct genetic trajectories remains an open question. Here, we
leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast speciesin
the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures
of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We
inferred that the ecological association of yeasts with cacti arose independently ~17 times.
Using machine-learning, we further found that cactophily can be predicted with 76% accuracy
from functional genomic and phenotypic data. The most informative feature for predicting
cactophily was thermotolerance, which is likely associated with duplication and altered
evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We aso
identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes
in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through
disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close
relatives are emerging human opportunistic pathogens, suggesting that the cactophilic
lifestyle—and perhaps more generally lifestyles favoring thermotolerance—may preadapt yeasts
to cause human disease. This work underscores the potential of a multifaceted approach
involving high throughput genomic and phenotypic datato shed light onto ecological adaptation
and highlights how convergent evolution to wild environments could facilitate the transition to

human pathogenicity.
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Introduction

Convergent evolution, the repeated evolution of similar traits among distantly related taxa, is
ubiquitous in nature and has been documented across all domains of life . Convergence
typically arises when organisms occupy similar ecological niches or encounter similar
conditions and selective pressures, facing similar selective pressures, organisms from distinct

lineages often evolve similar adaptations.

Independently evolved phenotypes often share the same genetic underpinnings (parallel
molecular evolution) *” such as similar mutations in specific genes *°%, but can aso arise

through distinct molecular paths and by distinct evolutionary mechanisms **°, such as copy

11-13 14-16

number variation , gene losses , Or gene gains (e.g., horizontal gene transfer or HGT)
1718 Molecular signatures of convergence can also be inferred from independent shiftsin overall
evolutionary rates ** and examined at higher hierarchical levels of molecular organization, such
as functions or pathways %. For instance, comparing rates of evolution across distantly related
animal lineages could pinpoint convergent slowly evolving genesinvolved in adaptive functions
2 or convergent rapidly evolving genes indicating parallel relaxed constraints acting on
dispensable functions ?. Parallel molecular changes are common across all domains of life °,
but their occurrence can be reduced by mutational epistasis or the polygenic nature of some

10,2324

phenotypic traits , particularly when studying convergence in distantly related organisms.

Fungi exhibit very high levels of evolutionary sequence divergence *; the amino acid sequence
divergence between the baker’s yeast Saccharomyces cerevisiae and the human commensal and
opportunistic pathogen Candida albicans, both members of subphylum Saccharomycotina (one
of the three subphyla in Ascomycota, which is one of the more than one dozen fungal phyla) is
comparable to the divergence between humans and sponges %. Due to their very diverse genetic
makeups, convergent phenotypes arising in fungi might involve distinct genetic determinants

and/or mechanisms, including HGT %%, afar less common mechanism among animals (but see

29,30).
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Saccharomycotina yeasts are ecologically diverse, occupy diverse ecosystems *, and vary
considerably in their degree of ecological specialisation ranging from cosmopolitan generalists
to ecological specialists. For instance, Sugiyamaella yeasts are mostly isolated from insects *
and most Tortispora species have been almost exclusively found in association with cacti plants
% The cactus environment accommodates numerous yeast species rarely found in other niches
37 Moreover, cactophilic yeasts are part of amode ecological system involving the tripartite
relationship between cactus, yeast, and Drosophila *%3%®  Cactophilic yeasts use necrotic
tissues of cacti as substrates for growth *° while serving as a food source to cactophilic
Drosophila. Cactophilic flies (and other insects) play, in turn, a crucial role in the yeast’s life

cycle by acting as vectors >

In Drosophila, the adoption of cacti as breeding and feeding sites evolved ~16-21 million years
ago (Mya) and is considered one of the most extensive and successful ecological transitions
within the genus *. Cactophilic Drosophila thrive across a wide range of cacti species that
differ in the profiles of toxic metabolites they produce — Opuntia species, commonly called
prickly pear cactus, generally contain fewer toxic metabolites than columnar cacti species “° and
are likely the ancestral hosts **. The distinctive characteristics of the cacti environment *2
seemingly selected for adaptive traits across cactophilic Drosophila, such as high resistance to
heat, desiccation, and toxic alkaloid compounds produced by certain types of cacti “**%, These
traits are likely associated with several genomic signatures (e.g., positive selection, gene
duplications, gene gains) impacting multiple functions, such as water preservation or

detoxification **°,

Contrasting with Drosophila, where cactophily is largely found within the monophyletic D.
repleta group **, molecular phylogenetic analyses revealed that cactophilic yeasts belong to
phylogenetically distinct clades, indicating that association with cacti evolved multiple times

independently in the Saccharomycotina *’

. While relevant ecological and physiological
information of cacti-associated yeasts is available **", the genetic changes that facilitated the

convergent evolution of multiple yeast lineagesto the cacti environment are unknown.
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Benefiting from the wealth of genomic and phenotypic data available for nearly all known yeast

1

species described in the subphylum Saccharomycotina ' and cross-referencing with the

ecological data available from the cactus-yeast-Drosophila system 33752

, we employed a high
throughput framework to detect signatures of convergent evolution in 17 independently evolved
lineages of cactophilic yeasts. Using a machine learning algorithm, we uncovered distinctive
phenotypic traits enriched among cacti-associated yeasts, including the ability to grow at high (>
37°C) temperatures. We found that thermotolerance might be related to duplication and
digtinctive rates of evolution in genes impacting the integrity of the cell envelope, some of
which are under positive selection in distantly related cactophilic clades. Gene family evolution
analyses identified gene duplications and HGT events involving plant cell wall-degrading
enzymes in distinct clades, suggesting adaptations associated with feeding on plant material.
These reaults reveal that convergence to cactophily by distinct lineages of Saccharomycotina
yeasts was accomplished through diverse evolutionary mechanisms acting on distinct genes,
some of which might be associated with smilar biological functions. Interestingly, we found
that several cacti-associated yeasts and close relatives are emerging opportunistic human
pathogens, raising the hypothesis that fungi inhabiting certain wild environments are preadapted
for opportunistic pathogenicity. More broadly, we advocate for a methodological framework
that couples diverse lines of genomic, phenotypic, and ecological data with multiple analytical
approaches to invegtigate the plurality of evolutionary mechanisms underlying ecological

adaptation.
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Results

Yeadt cactophily likely evolved independently 17 times

We examined the ecological association of yeasts with the cacti environment across a dataset of
1,154 strains from 1,049 yeast species *®!. Yeast-cacti associations vary substantially in their
strengths *. Some cacti-associated yeast species are more cosmopolitan, being commonly
isolated from cacti but also other environments (henceforth referred to as transient), whereas
others are dtrictly cactophilic, defined as those almost exclusively isolated from cacti (Table S1;
note that this classification is based on the available ecological information, which may be
impacted by sampling bias and other sampling issues — it is possible that grictly cactophilic
species could also be found in other, yet unsampled, environments). We observed that strictly
cactophilic species are found across almost the entire Saccharomycotina subphylum spanning
from the Trigonopsidales (i.e., Tortispora spp.) * to the Saccharomycetales (i.e., Kluyveromyces
starmeri) ** (Fig. 1). Using these species in an ancestral state reconstruction, we inferred a total

of 17 origins for the evolution of cactophily (Fig. S1).

Cactophily is found in single species belonging to different orders, but it also involves nearly
entire genus (i.e., Tortispora). Specifically, seven of the 17 instances of cactophily evolution
involve clades containing two or more species while the remaining 10 involve single species,
suggesting that different taxa evolved this ecological association at different times (Fig. 1). For
instance, cross referencing relaxed molecular clock analyses of the yeast phylogeny ** with
ancestral state reconstructions suggests that cactophily in Tortispora likely emerged twice, once
in the most recent common ancestor (MRCA) of T. starmeri/T. phaffi around 47 Mya and in the
MRCA of T. caseinolytica/T. mauiana/T. ganteri around 11 Mya (Fig. 1). An alternative
hypothesis would place the emergence of cactophily in the MRCA of the genus around 180
Mya, which is inconsistent with the 35 Mya estimated origin of the Cactaceae family
Cactophily in the genus Starmera and the Pichia cactophila group emerged more recently, most

likely around 12 and 3 Mya, respectively (Fig. 1).
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Cacti-associated yeasts seemingly exhibit significant niche partitioning (Table S1). For
example, T. ganteri is typically isolated from columnar cacti, while its close relative T.
caseinolytica is more commonly found in Opuntia spp. *. Furthermore, Pichia cactophila is
considered a generalist cactophilic yeast, being widely distributed across a wide range of cacti
species ¥, while closely related P. heedii has been predominantly found in association with
certain species of columnar cacti *°. However, many species (e.g., T. starmeri or P. insulana)
aternate between the two types of cacti **>*, similar to some Drosophila species **. Other
species, such as Wickerhamiella cacticola or Kodamaea nitidulidarum, are associated with cacti

flowers and/or flower-visiting insects, like beetles, and not with necrotic cacti tissues **%°%,
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Fig. 1. Yeast cactophily originated repeatedly and at different times. (top) Genome-wide-
based phylogeny of the subphylum Saccharomycotina ** depicting the different types of

ecological association of strictly cactophilic yeast species with the cacti environment: (necrotic)
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cacti tissues, which include both Opuntia spp. and columnar cacti, cacti flowers, and cacti-
visiting insects. Cactophilic lineages and well-known yeasts, such as Saccharomyces spp. and
Candida albicans, are noted on the phylogeny. a., b., and c.. Subtrees of three cactophilic
clades: a. Tortispora, b. Starmera, and c. Pichia. Estimated times of origin, as determined in **,

for the emergence of cactophily are represented for these three example clades.

Detecting signatures of convergent evolution in cactophilic yeasts

We envision three distinct scenarios that may capture how different yeast lineages convergently

evolved cactophily (Fig. 2A):

Scenario |: Convergent phenotypes and genotypes
Selective pressures associated with the cacti environment (e.g., high temperature, desiccation, or
presence of toxic compounds) favor similar phenotypic traits that evolved through the same

genomic mechanisms;

Scenario 11: Convergent phenotypes through divergent genotypes

Selective pressures associated with the cacti environment favor similar phenotypic traits across
cactophilic species, but different evolutionary mechanisms (e.g., gene duplication, HGT)
contribute to phenotypic convergence of different lineages. In this scenario, similar phenotypes

emerge through distinct evolutionary trajectories,

Scenario |l1: Divergent phenotypes and genotypes
Distinct phenotypic landscapes are explored by digtinct clades when thriving in the same
environment (niche partitioning); different evolutionary mechanisms contribute to these

phenotypes.

To explore which scenario(s) best reflect(s) the process of yeast adaptation to the cacti

environment, we developed a framework for identifying signatures of adaptation and
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convergence from high-throughput genomic and phenotypic data ** (Fig. 2B). Specifically, we
performed: machine learning to identify phenotypic and genetic commonalities that distinguish
cactophilic from non-cactophilic yeasts, genome-wide family analyses to identify patterns of
gene presence/absence due to gene duplication, gene loss, and HGT; and genome-wide
evolutionary rate analyses to detect signatures of convergence in evolutionary rates and of
positive selection in individual genes (Fig. 2B), which have been also frequently implicated in
adaptive evolution >*%?+%% \We applied this methodological framework to study convergence
in ecological specialization in yeasts but note that it can be applied more generally to study the

process of convergent or adaptive evolution.
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Fig. 2. Alternative scenarios for the evolution of yeast cactophily and methodological
framework employed in this study. (A) Methodological framework for investigating signatures
of convergent evolution of yeast cactophily (B). A) Association with cacti evolved multiple times
in yeasts from distinct genetic backgrounds, which are represented by distinct shades of grey.
Convergent adaptation to the cacti environment might have involved convergence at both

phenotypic and genomic levels (Scenario 1), convergence at the phenotypic level but through
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distinct molecular paths (Scenario 1) or involved lack of convergence at both phenotypic and
genotypic levels (Scenario IIlI). Each of these scenarios is tested using a methodological
framework (B) involving (a) machine learning approach wherein a model is trained to distinguish
cactophilic from non-cactophilic yeasts from genomic and phenotypic features; (b) gene family
evolution to find evidence of gene gains, duplications, losses, and HGT that might have
occurred in cactophilic yeasts; (c) evaluation of signatures of positive selection (omega, w) and
of changes in relative evolutionary rates in branches leading to cactophilic clades. This strategy
will expose both genomic and phenotypic traits associated with cactophily (a, b) and highlight
genes that are evolving slower or faster than the average of the genome or are under positive

selection in cactophilic vs. non-cactophilic species (c).

Specific metabolic and genomic traits predict cactophily

To investigate if cactophilic yeasts share similar phenotypic and/or genomic traits, we used a
dataset of 1,154 yeast strains >, from which 52 are either grictly cactophilic (rarely found in
other environments, n=31) or transient (frequently isolated from cacti but cosmopolitan, n=21)
(Table S1). Functional genomic annotations (KEGG — 5,043 features) and physiological data
(122 features) were retrieved >* and used as features in a supervised random forest (RF)
classifier trained to distinguish cactophilic from non-cactophilic yeasts. By training 20
independent RF runs using randomly selected balanced datasets (52 non-cactophilic species
randomized each time and the 52 cactophilic species), we correctly identified an average of 38
cactophilic species (Fig. 3A), yielding an overall accuracy and precision of 72% and 73%,
respectively. Species incorrectly assigned in 10 or more independent runs were equally
distributed across gtrictly and transiently cactophilic groups (seven in each) (Table S2). We next
repeated the analysis considering only strictly cactophilic species (transient were considered
non-cactophilic) and obtained slightly higher accuracy (76%) and precision (76%) (Fig. 3B).
Notably, correct classifications were obtained across phylogenetically distantly related genera
(e.g., Tortispora, Phaffomyces or Pichia) (Fig. 3A), while incorrect classifications were

obtained for species belonging to cactophilic clades in which correct classifications were
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obtained; for ingtance, despite being closely related, we obtained both correct and incorrect
classifications for cactophilic species belonging to the Phaffomyces genus (highlighted in light
blue, Fig. 3A). These results suggest that the phylogenetic relatedness between some cactophilic

species did not interfere with the accuracy of the RF classifier.

We next examined the top features that significantly contributed to the RF classifier. The feature
with the highest relative importance was growth at 37°C either when analysing all cactophilic
species (Fig. 3A) or just strictly cactophilic species (Fig. 3B). Ability to grow at high

388 and is also an

temperatures was previously found to be prevalent in cacti-associated yeasts
adaptive feature of cactophilic Drosophila ®%®. Growth at 40°C and 42°C were also among the
top ten most important features, supporting the hypothesis that thermotolerance is a distinctive
feature of cactophilic species. In fact, 90%, 66%, and 46% of cactophilic yeasts can grow at
37°C, 40°C and 42°C, respectively, compared to only 39%, 19% and 10% of non-cactophilic

yeadts (Chi-Squared Test, p < 0.01) (Fig. 3C).

Analysing the top 100 most important metabolic features, we observed that 74 are less common
in cactophilic species compared to non-cactophilic species (Table S2). For instance, trehalose
assimilation is more rarely found in cactophilic species (~25%) than non-cactophilic species
(~74%) (Chi-Squared Test, p-value < 0.01) (Fig. 3C). Trehalose generally accumulates during
numerous stress conditions including heat stress ®”®. When cells return to a more favourable
condition, the accumulated trehalose is hydrolysed into glucose by the trehalase Nthl.
Inactivation of NTH1 by mutations, and therefore subsequent impairment of trehalose
hydrolysis, can be one of the outcomes of the heat stress response in experimentally evolved
strains of S cerevisiae under high temperature stress **™, suggesting that deficient trehalose
hydrolysis can be beneficial under long-term thermal stress conditions. However, NTH1 is
generally present in cactophilic genomes, suggesting that absence of NTH1 does not explain
impairment in trehalose assimilation in these species. Other top important metabolic features,
such as sucrose assimilation, are also more rarely found in cactophilic species (Chi-Squared

Ted, p-value < 0.001) (Table S2, Fig. 3C), echoing the general trend of a narrower spectrum of
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carbon sources assimilated by cactophilic species compared to their non-cactophilic
counterparts (Fig. 3D). However, some metabolic traits are more frequently found among cacti-
associated yeasts, such as assimilation of lactate (Chi-Squared Tedt, p-value < 0.01) (Fig. 3D),

which was previously found to be positively associated with the cacti environment 3,

Among the most important genomic features were presence or absence of genes involved in
multiple distinct functions: K15325 (splicing), K06116 (glycerol metabolism), K01192 (N-
glycan metabolism), K00547 (amino acid metabolism), K11762 (chromatin remodelling),
K11370 (DNA repair), K11511 (DNA repair), or K19783 (post-replication repair). All these
features are less common in cactophilic than in non-cactophilic species (Table S2). One
interesting exception is K03686, a Hsp40 family protein encoded by 85% of cactophilic and

57% of non-cactophilic species (Table S2).
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Fig. 3. Cactophilic and non-cactophilic yeasts can be predicted from genomic and

metabolic data with good accuracy. A) (left) Distribution of correct random forest (RF)
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classifications of cactophilic yeasts across the Saccharomycotina phylogeny. (right) Confusion
matrix showing the average number of true positives (37.40), true negatives (39.95), false
positives (16.60), and false negatives (14.05) across strictly cactophilic and transient species
resulting from 20 independent RF runs. On the bottom, the top ten most important metabolic
(presence or absence of growth; in blue) and genomic (presence or absence of KEGG; in grey)
features for the RF classifier ranked according to their importance scores are shown. B)
Confusion matrix and top ten most important features for the RF classifier using only strictly
cactophilic species. C) Distribution of the proportion of the most important features to predict
cactophily (strict cactophilic and transient) and non-cactophilic species for the entire dataset of
1,154 yeasts. D) Distribution of the proportion of metabolic traits (representing presence or
absence of growth under the conditions shown) ** across cactophilic (strict and transient) and
non-cactophilic species. Only metabolic traits for which no more than 50% of data were missing
were considered. Additionally, only metabolic traits exhibiting more than 10% prevalence in one
of the groups (cactophilic or non-cactophilic) are shown. Statistically significant differences (Chi-
Squared Test; * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001) between the proportions
of cactophilic and non-cactophilic species able to grow in each carbon/nitrogen source are

shown.

HGT and duplication of cell wall degrading enzymesin cactophilic yeasts

We next looked for genes that might be implicated in cactophily by examining gene family
evolution * across three groups that contained two or more cactophilic lineages. We constructed
three distinct datasets (Table S3) containing species of interest and closest relatives within the
Lipomycetales/Dipodascales/Trigonopsidales orders (referred to as LDT group, including
Tortispora spp., Dipodascus audralienss, Magnusomyces starmeri, Myxozyma mucilagina,
and Myxozyma neglecta), Phaffomycetales (including Starmera spp. and Phaffomyces spp.) and

Pichiales (including two distinct Pichia spp. cactophilic clades).

We focused on gene duplications and gene gains (e.g., HGT), as gene losses are usually not

reliably estimated due to annotation and sampling issues or inaccurate gene family clustering .
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Using gene tree — species tree reconciliation analyses implemented in GeneRax "* we first
examined genes with evidence of duplication in at least one cactophilic species belonging to
each group. We cross-referenced the candidate genes with their respective functional
annotations (KEGG) ** and found 11 KEGG families with evidence of duplication in all three
groups and 29-37 families with evidence of duplication in two of the three groups (Table $4).
Among these gene families, we found duplicated cellulase-encoding genes (K01210) in
Dipodascus australiensis (LDT group) and Starmera species (Phaffomycetales). For the latter
species, however, we could not recover complete gene sequences as they were located either at
the end of scaffolds or in short scaffolds. Nevertheless, BLASTp searches againgt the non-
redundant (nr) NCBI database indicate that these sequences were endoglucanase-like enzymes

similar to those found in filamentous fungi (e.g., KOS23166.1) and are rarely found in yeasts’.

Duplication of another gene involved in plant cell wall degradation, encoding a
rhamnogalacturonan endolyase (K18195), was detected in the cactophilic P. antillenss, P.
opuntiae, and Candida coquimbonensis (Phaffomycetales, Table $4). These species contained
two copies of this gene compared to their closest relatives, which contained only one (Fig. 4A).
These enzymes are responsible for the extracellular cleavage of pectin ", which along with
cellulose, is one of the major components of plant cell wall. Pectin lyase ™ activities have been
rarely reported among yeasts; therefore, we assessed the distribution of the rhamnogalacturonan
endolyase across the 1,154 proteomes using a BLASTp search (e-value cutoff €) and found

that it displayed a patchy distribution, being found in fewer than 60 species (Fig. 4A).

Interestingly, by inspecting orthogroups that uniquely contained cactophilic species, we found a
gene encoding a pectate/pectin lyase was uniquely found in P. eremophila (drictly cactophilic)
and P. kluyveri (transient), which are commonly isolated from rotting cacti tissues. Sequence
similarity searches across the entire dataset of 1,154 yeast genomes confirmed that this gene is
absent from all other species. Pectate lyases are also extracellular enzymes involved in pectin
hydrolysis and plant cell wall degradation. Consistent with this function, these enzymes are

75,76

mostly found among plant pathogens and plant-associated fungi and bacteria , and their
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activity has only been reported in a handful of Saccharomycotina species "“. Phylogenetic
analyses showed that the two yeast sequences are nested deeply within a clade of bacterial
pectin lyases (Fig. 4B). The most closely related sequence belongs to Acinetobacter boisseri 7,
which has been frequently isolated from plants and flowers, and to Xanthomonas and Dickeya,

two genera of plant pathogenic bacteria ",

Consistent with their function, HGT-derived pectin lyases as well as celulases and
rhamnogalacturonan endolyases, were predicted to localize to the extracellular space based on
primary sequence analyses " (Fig. S2, Fig. 4). Pectin lyase enzymatic activity was previously
detected in P. kluyveri strains associated with coffee fermentation "°®°, suggesting that the

identified HGT-derived pectin lyase islikely responsible for this activity.
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Fig. 4. Duplication and horizontal gene transfer of plant cell wall-degrading enzymes in
cactophilic species. A) Distribution of rhamnogalacturonan endolyases across the 1,154 yeast
genomes (presence in black and absence in grey). (on the right) Phylogenetic tree of yeast

rhamnogalacturonan endolyase and closest relatives, highlighting the duplication events in
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cactophilic Phaffomyces species. Phylogeny was constructed in IQ-TREE v2.0.6 (-m TEST, -bb
1,000) %2, Branch support (bootstrap >= 90) is represented as black circles. A BLASTp search
against the NCBI nr database (selecting 500 hits) was performed using P. opuntiae
g001049.m1 protein sequence as query. BLASTp was also performed against the yeast dataset
of 1,154 proteomes and all significant hits were retrieved (e-value cutoff €®). In P. opuntiae,
there are two additional partial sequences (g001496.m1 and g001773.m1, 163 amino acids)
that only partially overlap (from 39 to 163 overlapping amino acids) with the remaining nearly
complete sequences (g002229.m1: 468 amino acids and g001049.m1: 610 amino acids).

72,83

Prediction of subcellular localization according to SignalP and Deeploc is shown in the

panel below. B) Phylogenetic tree of closest related sequences to pectin lyases from P.
eremophila and P. kluyveri. (on the right) Pruned tree highlighting the ecological association of

bacteria species harboring the closest related pectin lyase sequences to P.

72,83

eremophila/P.kluyveri proteins. Prediction of subcellular localization is shown in the panel

below.

Convergent accelerated ratesin heat resisgance-related genes

We next specifically looked for evidence of convergent evolutionary rates ®, another indicator
of adaptation %%, For this analysis, we selected all cactophilic species found within the

Pichiales, Phaffomycetales and the LD T group.

Correlation analyses between relative evolutionary rates (RER) and cactophily across ancestral
(anc) and terminal branches revealed changes in evolutionary rate associated with the evolution
of cactophily. Specifically, we inferred that 20 / 3,029 gene familiesinthe LDT group are under
accelerated evolution (evolving significantly faster than the average gene) and 33/ 3,029 have
undergone decelerated evolution (evolving significantly slower than the average gene) (Table
S5, Fig 5A). In the Pichiales, 14 / 2,204 showed evidence of acceleration and 25 / 2,204 of
deceleration (Fig. 5A). In the Phaffomycetales, we found 32 / 3,550 accelerated genes and 30 /

3,550 decelerated genes (Table S5, Fig. 5A).
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The accelerated genes are associated with varied cellular functions. In Pichiales, 7 out of 14
accel erated genes impact heat resistance according to large-scale studies ®. For instance, SM6,
encodes a transcription factor that induces transcription during heat stress, and deletion of this
gene causes several impairments in the resistance to multiple stresses, including heat ® and cold
8 Among the accelerated genes in Phaffomycetales, we found LEC1, which was recently

associated with ergosterol organization (Fig. 5B) .

Inspecting the literature for phenotypes associated with either null or conditional mutants %, we
found that, irrespective of their function, 12 / 20 genes that exhibited accelerated rates in the
LDT group are involved in either heat and/or desiccation resistance. For instance, loss of
function mutations in CAP2, which encodes part of a capping complex involved in barbed-end
actin filament capping and filamentous growth, are associated with heat sensitivity and
abnormal chitin localization leading to aberrant cell morphology . Another gene identified as
having accelerated evolutionary ratesin the LDT group was PHO23 (Fig. 5B), which was found
to be required for the growth of S cerevisiae during heat shock %. Genes that underwent
decelerated evolution also play multiple roles (Table S5), and some are involved in essentia

functions such as DNA repair, cell cycle and splicing or encoding ribosomal subunits.
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Fig. 5. Genes involved in maintenance of the cell envelope show accelerated evolution in
cactophilic clades. A) Genes with accelerated evolutionary rates in the three groups of

cactophilic species inspected. Correlation statistics (Rho) for converge between accelerated
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rates of evolution in specific genes and cactophilic as well as the respective statistical
significance of the correlation (p-value) are displayed. B) Relative evolutionary rates (RER) and
respective fixed-topology phylogenies for genes related with integrity of the cell membrane

(LEC1) and heat stress (PHO23).

We next assessed the occurrence of positive selection across cactophilic clades using branch-site
tests of rates of nonsynonymous (dN) and synonymous substitutions (dS). These tests were
performed separately for each of the five cactophilic subclades within the maor lineages
selected: Pichia A and Pichia B clades (Pichiales), Sarmera and Phaffomyces clades
(Phaffomycetales), and Tortispora clade (Trigonopsidales) (Fig. S3). Only genes for which no
evidence of positive selection was found in the non-cactophilic sister clades (p-value < 0.05)
were considered (Fig. S3). With this conservative approach, we found evidence for positive
selection for 292 / 2,384 genes examined in Tortispora; 328 / 2,175 in Pichia A; 259/ 2,155 in
Pichia B; 90 / 1,685 in Phaffomyces; and 105/1,602 in Sarmera (Table S6). Importantly,
signatures of selection (significantly higher  values than 1 in branches leading to cactophilic
clades) can stem from either high dN or low dS values **, and we did not specifically distinguish
between the two scenarios. Genes under positive selection showed limited overlap; six genes
were under positive selection in three clades and 134 genes in two clades, while no genes

presented evidence for positive selectionin all five clades.

While the distribution of presence / absence of the trehalase gene NTH1 was not associated with
the low prevalence of trehalose assimilation in cactophilic species (Fig. 3C), NTH1 was among
the genes under positive selection in the two Pichia clades (Table S6). The 140 genes with
evidence of positive selection in two or three clades were enriched in multiple biological
functions including chemotropism, trandation and splicing, carnitine metabolism, lactate
oxidation, and ergosterol biosynthesis (Table S7). More specifically, 6/140 genes were involved
in several steps of ergosterol biosynthesis (ERG1, ERG8, ERG24, ERG26, UPC2, SIP3) (Fig.

6). ERG13 was also under positive selection in the Starmera clade. Ergosterol is involved in
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gabilising cell membranes during heat stress and therefore has a major role in the tolerance to

numerous stresses in fungi ®9%%,

Other genes were specifically involved in cell wall biosynthesis and integrity (Table S6). For
instance, CDA2, which encodes a chitin deacetylase involved in the function of the fungal cell
wall ®% was under positive selection in the stem branches of three distinct cactophilic clades

(Fig. 6) and was duplicated in the Tortispora clade (Fig. 6).

Other cell wall-related functions were found among the group of genes that showed evidence for
positive selection in two or more clades, namely chitin synthases CHS1, CHS2, and CHS3 and
chitin-related genes CHSG (involved in Chs3 transport from the Golgi to the plasma membrane)
and CSH7 (involved the export of Chs3 from the endoplasmic reticulum) and UTR2 (chitin
transglycosylase). DCWL1 (encoding a mannosidase required for cell wall formation and
resistance to high temperatures) ¥, STE7 (encoding a signal transducing MAP kinase involved
in cell wall integrity and pseudohyphal growth) %, and AYRL (encoding a bifunctional
triacylglycerol lipase involved in cell wall biosynthesis) *°, were also found among the genes
under positive selection in two cactophilic clades. Mutations in these genes have been
associated with cell wall defects and increased heat sensitivity in S cerevisae '®'® and
differential transcriptional responses to heat stress have also been documented for some of these

genes and functions ***
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Fig. 6. Signatures of convergent molecular evolution across cactophilic clades. Genes
and functions for which detection of distinctive evolutionary alterations (positive selection,
duplication, and HGT) in more than one cactophilic clade are highlighted. The distinct
evolutionary events are represented by squares filled with different colors, as indicated in the
key. Schematic representations of the fungal cell envelope and plant cell wall are shown as
many of the genes with signatures of convergence are associated with functions impacting

these two structures.

Some genes under positive selection in cactophilic clades show evidence of codon

optimization

To infer the transcriptional activity of cactophilic yeasts, we determined gene-wise relative
synonymous codon usage (gw-RSCU), a metric which measures biasesin codon usage that have
been shown to be associated with expression level *®, and examined the top-ranked genes (95"
percentile) in cactophilic species (Table S8). Top-ranked genes include many encoding
ribosomal subunits and histones, which are known to be highly expressed and codon-optimized
in S cerevisiae '®. We found that the chitin deacetylase gene CDA2 and genes involved in
ergosterol biosynthesis (namely ERG2, ERG5, ERG6, and ERG11) were among the genes that
fell within the 95™ percentile rank for gw-RSCU in multiple cactophilic species. To ascertain
whether these genes also show signatures of codon optimization in closely related non-
cactophilic species, we determined their respective gw-RSCU percentile ranks. While no clear
pattern was observed for ERG genes (these genes were al so highly ranked for gw-RSCU in non-
cactophilic species), we observed that CDA2 is particularly highly ranked in Phaffomyces,
Starmera, and Pichia clades compared to their closest relative non-cactophilic species (Fig. $4).
CDA2 showed evidence for positive selection in both Pichia clades and Starmera, suggesting
that distinctive synonymous and/or nonsynonymous might have resulted from translational

selection for optimized codons due to higher gene expression.
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Cactophily asalaunching pad for the emergence of opportunistic human pathogens?

Thermotolerance is a key shared trait by human fungal pathogens %%, Interestingly, several
cactophilic or closely related species are emerging human opportunistic pathogens (Fig. 7, Fig.
S5). Examples include Candida inconspicua and Pichia norvegensis °, which cluster within

the Pichia cactophila clade (Fig. 7), and Pichia cactophila, which was also isolated from human

111 1

tissue ™. Cases of fungemia have also been associated with Pichia kluyveri **, a transient

species belonging to a separate clade within the Pichiales. Kodamaea ohmeri, which has also
been isolated from the cacti environment > and is closely related to the cactophilic Ko.
nitidulidarum and Ko. restingae, is also an emerging human pathogen with a significant

mortality rate ™.

In addition to thermotolerance, other aspects of the cactophilic lifestyle might be pre-
adaptations for human pathogenicity. For instance, the sterol composition of the cell envelope

has been implicated in fungal virulence ***8 Mutations in genes involved in the ergosterol

118-121

biosynthetic pathway are associated with antifungal resistance , making it amajor target of

antifungal drugs %

. We showed that the evolutionary rates of several genes involved in the
ergosterol biosynthesis across multiple cactophilic clades have changed, suggesting that this
pathway might be under a new selection regime in these lineages. However, the impact of these

aterations remains to be elucidated.
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Fig. 7. Example cactophilic lineages that contain human opportunistic pathogens.

Ecological associations of cactophilic species and their closest relatives are represented,

highlighting examples of species associated with human infections. Ecological information for

additional cactophilic species and closest relatives is provided in Fig. S5.
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Discussion

By examining high-throughput genomic, phenotypic, and ecological datafor 1,049 yeast species
we unveiled multiple (~17) independent occurrences of cacti association. The ability to grow at
> 37°C emerged as the strongest predictor of the cactophilic lifestyle. Being a polygenic trait,
thermotolerance can arise through multiple distinct evolutionary trajectories ', Heat stress
generally affects protein folding and cell integrity and involves a complex response from
multiple genes impacting the expression of heat shock proteins, the integrity of the cell wall and
membranes, production of compatible solutes, repression of protein biosynthesis, and/or
temporary interruption of the cell cycle ®’. The expression of genes involved in cell wall
biosynthesis and integrity is for instance affected when strains of S. cerevisiae are exposed to
heat stress . Possibly in association with thermotolerance, we found genes involved in
maintaining the cell envelope exhibiting evidence of positive selection, codon optimization, and

duplication in multiple cactophilic clades.

We also found genomic fingerprints that indicate phenotypic convergence in the ability to feed
on plant material. Acquisition and duplication of plant cell wall-degrading enzymes can be
interpreted as adaptive and supports the involvement of cactophilic yeasts in the cacti necrosis
process “°. Interestingly, the contrasting mechanisms employed, HGT of a bacterial pectin lyase
and duplication of cellulases and a rhamnogalacturonan lyase, show that phenotypic
convergence can arise through disparate molecular mechanisms. While we found possible cases
of phenotypic and molecular convergence for thermotolerance (Scenario |, Fig. 2) and cases of
possible phenotypic convergence through distinct molecular mechanisms in respect to plant cell
wall degrading ability (Scenario 11, Fig. 2), we found limited evidence for convergence at both
phenotypic and genomic levels (Scenario 11, Fig. 2). Based on these data, we conclude that
cactophily can originate through multiple phenotypic and genetic changes, some commonly
found and some more rare.

It was previously postulated that most cactophilic yeasts evolved from ancestors associated with

plants ¥ (Fig. S5), indicating that the ability to thrive in plant-related environments was already
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present in the ancestors of many of the lineages that evolved cactophilic lifestyle. However,
cacti are native to arid and semiarid climates in the Americas ', where extremely high (and
low) temperatures and low humidity congtitute crucial challenges. This reasoning aligns with
our finding that thermotolerance is the phenotypic feature with the strongest signature of
adaptation to cacti.

Compared to mammals, a lineage that has provided spectacular examples of parallel molecular
evolution underpinning the independent emergence of convergent traits >®#%'*'?  yeags
exhibit far higher levels of genetic and physiological diversity %°. Consequently, the probability
of finding overlapping evolutionary paths might be reduced as pleiotropic effects or mutational
epistasis might be more prominent across divergent genetic backgrounds **°. It is also possible
that collection of additional phenotypic data or evolutionary genomic analyses will revise our
understanding of the nature of convergent evolution to cactophily. This caveat notwithstanding,
these results present a first snapshot of the study of convergent evolution of an ecological trait
in yeasts, employing multiple state-of-the-art methodologies that aim at looking into a wide
range of evolutionary mechanisms, phenotypes, and genetic determinants. It also underlines the
exceptional value of combining high throughput physiological, genomic, and ecological datato

investigate still-pressing questions in evolutionary biology.
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Materialsand M ethods
Species selection

Yeast species associated were selected from Opulente & LaBella et a. ** by cross referencing
ecological information available from the literature 333537:3952545558:6063.128129 Ty different
groups of cactophilic species were determined according to their degree of association with
cacti: dtrictly cactophilic (species that are mainly isolated from cacti and very rarely isolated
from other environments) or transiently cactophilic (species frequently found in cacti, but also
frequently found in other environments or for which strong association with cacti was not clear
from the literature) (Table S1). Species very rarely isolated from this environment were not

considered as they could either represent misidentifications or have originated from stochastic

events.
Inference and dating of cacti association eventsin the Sacchar omycotina

The number of independent events of cacti association were inferred by performing an ancestral
date reconstruction using a continuous-time Markov model for discrete trait evolution
implemented in Mr Bayes **°. A simplified workflow implemented in the R environment was
followed ¥, Only species classified as strictly cactophilic (Table S1) were considered as
exhibiting the trait (cactophily). Transient species were considered as not having the trait. The
estimated times for the emergence of cactophily were inferred according to a relaxed molecular

clock analyses of the subphylum Saccharomycotina >
Machine learning

To assess whether cactophilic species can be classified based on physiological and/or genomic
traits, we used physiological data (for 893/1,154 strains) and genomic data (functional KEGG
annotations) for 1,154 yeast strains >*. Both strictly and transiently cactophilic species were used
and classified as “1" (meaning having the trait). All the remaining species in the dataset were
classified as “0” (meaning lacking the trait). We trained a machine learning algorithm built by

an XGBoost (1.7.3) random forest classifier (XGBRFClassifier()) with the parameters “
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max_depth=12, n_estimators=100, use |label_encoder =False, eval_metric="mlogloss’, n_jobs
= 8 on 90% of the data, and we used the remaining 10% for cross-validation, using
RepeatedStratifiedK Fold ~ from  sklearn.model_selection  (1.2.1) 3% We used
RepeatedStratifiedKFold to generate accuracy measures. We used the cross va_predict()
function from Sci-Kit Learn to generate the confusion matrixes, these matrices show the
numbers of grains correctly predicted to be cactophilic or non cactophilic (True Positives and
True Negatives, respectively) and incorrectly predicted (False Positives, which are predicted to
be cactophilic but are not; and False Negatives, which are not predicted to be, but are
cactophilic). Top features were automatically generated by the XGBRFClassifier using Gini
importance, which uses node impurity (the amount of variance in growth on a given carbon
source for strains that either have or do not have this trait/feature). This process was repeated for
20 runs with 52 (or 31 for the analysis excluding transiently cactophilic species) randomly
selected non-cactophilic species for each run, and then the averages of each result were used in

the final confusion matrixes and feature importance graphs.
Gene family evolution analyses

To find genes that are specific to or have expanded in cactophilic clades, orthogroup assignment
was performed with Orthofinder v.2.3.8 ** using an inflation parameter of 1.5 and DIAMOND
v2.0.13.151 *** as the sequence aligner. Due to the high phylogenetic distance between the
major strictly cactophilic clades, in order to optimize the number of orthogroups correctly
assigned, this analysis was performed separately for each cactophilic group (LDT group,
Pichiales and Phaffomycetales) (Table S3). Closely related non-cactophilic species were
included according to the previously reported phylogeny in Opulente & LaBélla, et. al., 2023 *.
Species in which more than 30% of the genes were multi-copy were discarded. Gene family
evolutionary history was inferred using GeneRax v1.1.0 ", which incorporates a Maximum-
likelihood and species-tree-aware method. For that, orthogroups containing more than ten
137

sequences were aligned with MAFFT v7.402 using an iterative refinement method (L-INS-i)

. Pruned species trees for each dataset were obtained from the main Saccharomycotina tree *
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using PHYKIT v 1.11.12 '3, The species trees, and alignments were subsequently used as
inputs in GeneRax. Briefly, the UndatedDTL probabilistic model was used to compute the
reconciliation likelihood that accounts for duplications, transfers, and losses. For simplification,
the same model of segquence evolution for all gene families (LG+I+G4) during gene tree
inference by GeneRax. Reconciled trees were visualized with Notung v2.9 .

Phylogenetic trees were congructed for candidate genes/gene families putatively relevant for

niche adaptation.

Evolutionary rates

To determine which genes might exhibit altered evolutionary rates in cactophilic
clades/species, we used both branch-site tests of positive selection using codeml implemented in
PAML ** and convergent evolutionary rates analyses implemented in RER converge ® . For
PAML, only strictly cactophilic species were considered and only clades containing three or
more cactophilic species were included. Remaining cactophilic (strictly or transient) species
were excluded. In this way, five datasets (see Fig. S3) were considered including members of
different lineages (two subclades within the Phaffomycetales. Starmera and Phaffomyces; two
within the Pichiales: Pichia A and Pichia B; and one within Trigonopsidales: Tortispora). In
Tortispora we aso included T. agaves because, despite not being associated with Cactaceae
species, it is associated with plants with similar characteristics (Agave spp.) . For all these five
datasets, closely related species belonging to each of the families were included based on the
species phylogeny based on ** (Fig. S3). Next, selection of orthogroups using Orthofinder
v.2.3.8 was performed for all the species included in the five datasets. Clustering of sequences
was based on protein sequence similarity and calculated using DIAMOND v2.0.13.151 using an
inflation parameter of 1.5. Single copy orthologs (SCOs) present in all species in each dataset
were selected. To avoid masking nonparallel signatures of positive selection, each dataset was
separately analysed in PAML ** using the branch-site model *** and considering the branch

leading to the cactophilic clade as the foreground branch. The likelihood of a gene being under
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positive selection was evaluated through a likelihood ratio test [LRT: 2x(Ings-Ingg)] **

usng a
p-value threshold of <0.001 (chi-square test with one degree of freedom; critical value =
10.8276). To avoid cases where genes under positive selection in the foreground branch were
also under positive selection in closely related species (background branches), branch-site tests
were performed in the same way but considering the sister clade as the foreground branch (Fig.
S3) Genes for which a significant signal for positive selection was also obtained for the sister
clade (p-value threshold of <0.05) were excluded. In this way, a conservative approach was
employed, only considering genes for which a strong signal for positive selection was found
specifically in the cactophilic branches. We further examined which genes were under positive
selection in more than one clade. We assessed whether convergent amino acid substitutions

occurred in genes that showed evidence of positive selection in three distinct clades (six in total:

CDA2, BDF1, PET112, GRSL, CCT3 and SPN1) using PCOC 2,

To further investigate fingerprints of convergence in evolutionary rates, we used RER converge
with an extended dataset, in order to include more than one cactophilic clade/species per dataset,
s0 that convergence could be tested (Table S3). In this case, SCOs from the Orthofinder run
performed for the gene family evolution analysis were used. To increase the number of
orthologs available for analysis, multi-copy orthogroups that were present in at least two species
belonging to distinct cactophilic clades within each dataset were selected. Next, SCOs from
each multi-copy orthogroup were pruned using OrthoSNAP v0.0.1 *3. Next, multiple sequence
alignments were produced for each multi-copy orthogroup using MAFFT v7.402 (-- localpair)
and phylogenies were obtained with FastTree . We next ran OrthoSNAP with default
parameters, keeping at least 50% of the species from the original dataset (50% occupancy). For
each orthogroup, branch lengths were estimated on a fixed topology obtained from the
Saccharomycotina species tree ** by pruning the species of interest using PHYKIT v 1.11.12 ™%,
Each orthogroup was first aligned with MAFFT v7.402 (-- localpair), and the best-fitting model

was assessed using |Q-TREE v2.0.6. Branch lengths were determined for each orthogroup, in

the fixed tree topology, using RAXML-NG v.0.9.0 *** under the best protein models inferred by
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IQ-TREE. All phylogenies were further analysed with RER converge to find evidence of

convergent evolutionary ratesin cactophilic speciesincluded in each dataset.

Briefly, we tested the hypothesis of convergent evolutionary rates in the ancestral branches
leading to the cactophilic clades and/or species. Only phylogenies including a minimum of two
foreground species and ten species in total were considered. Genes for which a correlation ratio
(Rho- correlation between relative evolutionary rate and trait) higher than 0.25 and a p-vaue
(association between relative evolutionary rate and trait) lower than 0.05 were obtained were
further considered as good candidates for being under convergent accelerated evolution. For
those, original trees were manually checked. For Phaffomycetales, we exceptionally considered

rho > 0.15 because we failed to find genes with rho > 0.25.
A detailed scheme of the entire workflow can be found in Fig. S6.
Enrichment analyses of genesunder positive selection

Gene ontology (GO) enrichment analyses were performed for the genes under positive selection
in each clade (NStarmerazlosa NPhaffomyceszgoy Npichiaa= 328, Npichiaa= 259, NTortispora=293) and for

the genes under positive selection in two or more clades (N=140).

First, associated GO terms were obtained for all genes using eggNOG-mapper **°. For in-clade
analyses, enrichment analyses were performed using P. cactophila (for Pichia A and PichiaB
datasets), Sarmera amethionina (for Sarmera dataset), Phaffomyces opuntiae (for Phaffomyces
dataset), and T. caseinolytica (for Tortispora dataset) whole genome annotations as the
background. For the analyses involving genes under positive selection in two or more clades, P.
cactophila genome annotations were used as the background. GO enrichment analyses were
performed using the R package topGO 2.28.0 *'. Statistical significance was assessed using
Fisher's exact test using the “classic”, “elim”, and default “weight01” methods. Correction for
multiple testing was performed the “BH” correction method. The results can be assessed in

Table S7.
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Codon Usage Bias

To examine codon optimization in particular genes of cactophilic species, we calculated the
gene-wise relative synonymous codon usage (gw-RSCU), implemented in Biokit v0.0.9 '®. This
metric was shown to correlate with the tRNA adaptation index (tAl) ', which measures the
translation efficiency by considering both codon optimization and the intracellular concentration
of tRNA molecules **®, The gw-RSCU was calculated by determining the mean relative
synonymous codon usage value for all codons in each gene in the genome based on their
genome-wide RSCU values. We ranked the genes with the highest gw-RSCU values
(subtracting the standard deviation to the gw-RSCU mean value) and looked at the genes falling
into the 95™ percentile and above (Table S8). Next, gene functions that were relevant for the
cactophilic lifestyle were selected, and their gw-RSCU values were inspected in non-cactophilic
closest related species. Briefly, a local BLASTp was used to find the putéative orthologs by
considering a protein identity of > 40%. The top hit was considered to correspond to the
orthologous gene; however, whenever multiple hits with similar protein sequence identity were
found, the one with the highest rank was considered. The percentile ranking for CDA2 was

determined using the R package dplyr *.
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