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Abstract—Numerous deep learning (DL) methods have been
proposed to identify drug-target interactions (DTIs). However,
these methods often face challenges due to the diversity and
complexity of drugs and proteins and the presence of noise and
bias in the data. Limited labeled data and extracting meaningful
features from datasets also pose difficulties. These limitations
hinder the development of accurate and general deep-learning
models for DTI prediction. To address these challenges, a novel
framework is introduced for identifying DTIs. The framework
incorporates pre-trained molecular representation models and a
transformer module inspired by pre-training. By pre-training the
model, it can acquire a more comprehensive feature representa-
tion, enabling it to handle the diversity and complexity of drugs
and proteins effectively. Moreover, the model mitigates noise
and bias in the data by learning general feature representations
during pre-training, improving prediction accuracy. In addition
to pre-training, a transformer mechanism called MocFormer is
proposed. MocFormer extracts feature matrices from drug and
protein sequences obtains decision vectors, and makes predictions
based on these decision vectors. Experiments were conducted
using public datasets from DrugBank to evaluate the framework’s
effectiveness. The results demonstrate that the proposed frame-
work outperforms state-of-the-art methods regarding accuracy,
area under the ROC curve (AUC), recall, and the area under the
precision-recall curve (AUPRC). The code for the framework
can be accessed from the following GitHub repository: GitHub
Repository.

Index Terms—drug–target interactions, pre-training, trans-
former

I. INTRODUCTION

Drug discovery and drug repurposing are highly valued

in the current field of biomedicine. Identifying drug–target

interactions (DTIs) is critical in drug discovery and repurpos-

ing. But generally, the process is always costly and in high

risk [1], the mean cost of developing a new drug needs a mean

investment of $1335.9 million, which is mainly from repeated

laboratory experimental procedures. Then some computer-

aided methods were developed, such as virtual screening

(VS) [2]. However, the VS method is based on structure with

limited speed. Then, the deep learning method was introduced

into the field of drug discovery.

Recently, deep learning has achieved superior performance

compared with classical methods in many fields, such as

computer vision and natural language processing [3]–[8].

With the production of a large amount of biological activity

data in recent years, predicting DTIs through deep learning

technology has become research. Initially, researchers usually
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only used manual annotation to label proteins and small

molecules with manual descriptors in limited datasets. Tian et

al. proposed using a fully connected neural network (FCNN)

to represent drugs and proteins based on hand annotation.

Drugs and proteins based on hand-crafted descriptors for

prediction. Later on, with the further development of deep

learning itself, transformer [9] and GNN [10] were proposed,

and attempts were made to encode and decode molecules and

proteins separately through transformer [11]. Encoding and

decoding [11], [12] to learn their high-dimensional structures

and input them into neural networks for iteration to simulate

their interactions. Meanwhile, graph neural networks are also

the usual means to study DTI, where one constructs its 2D

structure by treating atoms as nodes and chemical bonds as

edges. The attention mechanism has been widely used in both

approaches, which is thought to capture the key sites where

its small molecules bind to proteins [13].

The main methods of studying DTIs by deep learning are

three categories: Sequence-based, structure-based, and net-

word-based.

1) Sequence-based methods try to analyze features from

the sequence data of drugs in SMILES [14] and protein

amino acids sequence. The function and structure infor-

mation is believed to be included in sequence simplicity.

2) Structure-based methods utilize 3D structure data of

proteins and ligand molecules to study the interaction

details to predict the binding affinity [15]. Net-work-

based methods aim to contain drugs, targets, and other

biological entities into a graph-based network and try to

extract the biochemical functional information [16].

Despite advancements in the field, predicting drug-target

interactions (DTIs) continues to encounter challenges. These

include effectively handling the diversity and complexity of

drugs and proteins, addressing noise and bias in the data,

utilizing limited labeled data efficiently, and extracting mean-

ingful features from the datasets. These obstacles impede the

development of accurate and generalized deep-learning models

for DTI prediction. Overcoming these challenges is crucial for

advancing the field and enhancing the performance of DTI

prediction models.

To address the abovementioned challenges, inspired by

the success of transfer learning and pre-training in computer

vision and natural language processing tasks [17]–[20], this

paper introduces a novel approach called pre-trained inspired

MocFormer for predicting drug-target interactions (DTIs).
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The proposed model takes the SMILES string of drugs and

the amino acid sequence of proteins as input. Initially, both

inputs undergo processing by the Molecule pre-trained module

(Uni-Mol) [21] and the protein pre-trained module (ESM-

2) [22], respectively. Each amino acid and SMILES character

is transformed into its corresponding embedding vector.

Through pre-training, the model can acquire a more com-

prehensive feature representation, enabling it to handle the

diversity and complexity of drugs and proteins effectively.

Moreover, the model can mitigate noise and bias in the data by

learning general feature representations during the pre-training

stage, thereby improving prediction accuracy. Additionally, a

transformer mechanism called MocFormer is proposed. Moc-

Former is utilized to extract feature matrices from drug and

protein sequences, obtain decision vectors, and subsequently

make predictions based on these decision vectors.

In summary, this paper presents the following contributions:

1) To the best of our knowledge, a pre-trained inspired

transformer is proposed for the first time, to achieve transfer

learning based drug and protein interactions prediction, termed

MocFormer. 2) A counterintuitive phenomenon is discovered,

referred to as the ’one-sided trap’. It is observed that solely

employing molecular pre-training or protein pre-training mod-

els results in inferior performance on the DTI task. Possi-

ble explanations are provided for this phenomenon. 3) The

MocFormer pipeline outperforms the state-of-the-art (SOTA)

methods in the DTI task, demonstrating superior performance.

II. METHODS

Figure1 provides an overview of our framework for identi-

fying drug–target interactions (DTIs) from the SMILES string

of drugs and amino acid sequence of proteins. The framework

consists of three main modules: a molecule pre-trained mod-

ule, a protein pre-trained module, and a biologically inspired

attention module. Each module is described in detail below.

Given the drug’s SMILES strings and protein’s amino acid

sequences, CNN block extracts feature matrices from the

sequences of drugs and proteins. And finally, the prediction

results will be the output.

A. Molecule Pre-trained Module

Uni-Mol is a 3D molecule representation learning frame-

work with three main components. Firstly, it utilizes a

transformer-based backbone, which takes atoms and atom

pairs as inputs and incorporates the SE(3) method to reduce the

3D conformation of a molecule. Secondly, the model is trained

on a large dataset comprising 209 million molecules and 3

million proteins. Lastly, the trained model is fine-tuned using

downstream tasks such as predicting the drug-target inter-right

and inter-wrong sites and their corresponding 3D structures.

In the MocFormer pipeline, the grid search method was

employed to fine-tune the pre-trained model provided by Uni-

Mol on the Davis dataset. The pre-trained model from the

Davis dataset underwent fine-tuning using the random forest

regression method, and the learning rate was selected from

the range [1e-5, 1e-4, 4e-4, 1e-3]. Furthermore, different

batch sizes, namely [8, 16, 32], were experimented with. To

ensure robustness, the five-fold cross-validation technique was

utilized. This technique allowed for the selection of three sets

of optimal characterization results. These optimal sets of rep-

resentation vectors were then used as input for MocFormer’s

model inference, and the final choice was determined based

on the best performance.

After the Molecule Pre-trained Module processes the input,

the drug’s embedding matrix, denoted as fD, is obtained. The

computation can be summarized using Equation (1), where f

represents the size of the embeddings for drug strings, and

512 means the embedding dimensions.

fD ∈ R 512×f (1)

B. Protein Pre-trained Module

ESM-2 is developed based on the belief that the informa-

tion regarding structure and function can be found in amino

acid sequences, making LLMs (Large Language Models) a

handy tool for this task. ESM-2 remains a transformer-based

model with a maximum of 15 billion parameters. It utilizes

approximately 138 million sequences for training and employs

an equivalent transformer to represent the protein’s three-

dimensional structure. This results in an attention pattern

corresponding to the protein’s three-dimensional structure.

In the MocFormer model, the chosen variant of ESM-2 is a

large language model with 36 layers and 3 billion parameters.

It is fine-tuned using the DTI (Drug-Target Interaction) task on

the Davis dataset. The selected method for fine-tuning is the

K-neighborhood algorithm, which is optimized using the grid

search approach. The hyperparameters being searched include

the batch size (options: 8, 16, 32), the number of neighbors

(options: 5, 10), the weighting strategy (options: uniform,

distance), and the algorithm type (options: ball tree, kd tree,

brute). The leaf size is also considered for the algorithm

(options: BallTree, KDTree). Finally, three sets of vector

representations are selected and fed into the subsequent model

to determine the best set of representation vectors.

After the Protein Pre-trained Module processes the input, the

protein’s embedding matrix, denoted as fP , is obtained. The

computation can be summarized using Equation (2), where f

represents the size of the embeddings for protein strings, and

2560 means the embedding dimensions.

fP ∈ R 2560×f (2)

C. Transformer Module

In this pipeline, two transformers are employed to encode

and decode the drug and target within the transformer module.

The transformer module utilizes a multi-attention mechanism

to capture the most significant vector dimensions for the drug-

target prediction task. This mechanism assigns higher weights

to these dimensions from the 512-dimensional drug vectors

and the 2,560-dimensional protein vectors. Moreover, the

multi-head attention mechanism within the transformer further

enhances this process, ensuring that the more critical vector

dimensions are emphasized for the drug-target prediction task.
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Fig. 1. An overview of Pre-trained Inspired MocFormer.

The allocation of weights facilitates MocFormer in learning

the intrinsic patterns associated with drug-target interactions.

The computation can be summarized using Equation 3–

6. The query (Q), key (K), and value (V ) are defined as

follows: Q represents the query, K represents the key, and

V represents the value of the protein and drug. The weight

matrices are denoted as WQ, WK , and WV , while dk means

the dimensions of the vectors.

Q = fD ×WQ (3)

K = fD ×WK (4)

V = fD ×WV (5)

Attention = softmax(
Q×KT

√
dk

)× V (6)

The multi-head attention is then introduced and summarized

using Equation 7–8. For each head, there are weight matrices

W
Q
i , WK

i , and WV
i , with dimensions W

Q
i ∈ R

d512×d64 ,

WK
i ∈ R

d512×d64 , and WV
i ∈ R

d512×d64 . Additionally, a linear

transformation matrix WO
i ∈ R

d512×d512 is utilized.

Headi = Attention(Q×W
Q
i ,K ×WK

i , V ×WV
i ) (7)

MultiHead = Concat(Head1, ...Head8)×WQ (8)

The fully connected feed-forward network comprises two

dense layers, each followed by a ReLU activation function,

allowing for nonlinear transformations. This can be summa-

rized using Equation 9. The weight matrices W1 and W2

have dimensions of R
f×f , and bias terms b1 and b2 are also

included.

FFND = max(0, x×W1 + b1)W2 + b2 ∈ R 256×f (9)

The handling of protein embedding vectors is also some-

thing to consider.

Q = fP ×WQ (10)

K = fP ×WK (11)

V = fP ×WV (12)

W
Q
i ,WK

i ,WV
i are all weight matrices, W

Q
i ∈ R d2560×d512 ,

WK
i ∈ R d2560×d512 , WV

i ∈ R d2560×d512 , WO
i ∈

R d2560×d2560 is the linear transformation matrix.

Headi = Attention(Q×W
Q
i ,K ×WK

i , V ×WV
i ) (13)

MultiHead = Concat(Head1, ...Head8)×WQ (14)

Also, the network comprises two dense layers, each fol-

lowed by a ReLU activation function, allowing for nonlinear

transformations. This can be summarized using Equation 9.

The weight matrices W1 and W2 have dimensions of R
f×f ,

and bias terms b1 and b2 are also included.

FFNP = max(0, x×W1 + b1)W2 + b2 ∈ 512× f (15)

D. Bilinear Pooling and Full Connected Layer

The bilinear pooling technique fuses features from the drug

and protein decoders. It involves bilinearly multiplying the first

two features at the same position to obtain the matrix B. Then,

sum pooling is applied to all positions in B to get the matrix

ξ. The matrix ξ is further transformed into a vector, referred to

as the bilinear vector x. Additionally, moment normalization

and L2 normalization operations are performed on x to obtain

the fused features Z. The bilinear pooling method is utilized

to merge the output of the drug and protein decoders.
Then, the merged vector representation will be fed into

a multi-layer, fully connected layer network. The activation

function is relu, a dropout layer is added after each layer to

prevent overfitting, and a binary cross entropy is used to output

the final prediction results.

B(x, fP , fD) = fP × fT
D (16)

ξ =
A
∑

x

fP × fT
D (17)
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m = vec(ξ) (18)

y = sign(x)
√

|x| (19)

y =
y

||y||2
∈ R 2560×512×1 (20)

III. EXPERIMENTAL RESULTS

This section presents the results obtained by applying the

proposed methods to the DrugBank dataset. The experimental

dataset and evaluation metrics will be explained in Section

A. The implementation details of the experiments will be

discussed in Section B. In addition, Section C will present

the results of the ablation study, while Section D will provide

a comprehensive comparison with the current state of the art.

A. Dataset and Evaluation Metrics

The experimental dataset for this study was derived by ex-

tracting drug and target data from the DrugBank database [23],

as presented in Table I. The dataset used in this research

corresponds to the data released on January 3, 2020 (version

5.1.5). Inorganic compounds and tiny molecule compounds

(e.g., Iron [DB01592] and Zinc [DB01593]) were manually

discarded, along with drugs having SMILES strings that

could not be recognized by the RDKit Python package [24].

After this filtering process, 6,655 drugs, 4,294 proteins, and

17,511 positive drug-target interactions (DTIs) remained in the

dataset.

To create a balanced dataset with equal positive and negative

samples, unlabeled drug-protein pairs were sampled following

a common practice [11], [25]. This approach allowed for the

generation of negative samples, resulting in a balanced dataset

for analysis.

Four key metrics were considered for a comprehensive

performance analysis: Accuracy, AUC, Recall, and Area Un-

der the Precision-Recall Curve (AUPRC). Accuracy assesses

overall correctness, AUC evaluates the model’s ability to

rank positive and negative samples correctly, Recall measures

the model’s effectiveness in identifying positive samples, and

AUPRC evaluates the model’s performance in classifying

imbalanced datasets.

TABLE I
SUMMARY OF THE BENCHMARK DATASETS

Datasets Protein Drug Interaction Positive Negative

DrugBank 4294 6655 35022 17511 17511

B. Implementation Details

The framework used in this study is built on the PyTorch

platform and utilizes an NVIDIA Tesla V100S GPU. The

entire dataset was divided into training, validation, and testing

sets, with proportions of 70%, 20%, and 10%, respectively.

Each experiment employed a 5-fold cross-validation approach.

The AdamW optimizer optimized the model with an initial

learning rate of 0.001 and a weight decay 0.001. Additionally,

a learning rate schedule based on ReduceROnPlateau was

implemented. This schedule had a patience of 5, meaning that

if the model’s validation loss did not decrease after five epochs,

the learning rate would decay to 10% of the previous rate.

C. Ablation Study

To assess the effectiveness of each component in our

method, a series of ablation experiments were conducted,

as presented in Table II. These experiments progressively

enhanced the baseline network by applying the following con-

figurations: 1) Adding only the molecule pre-trained module

(A) to the baseline. 2) Adding only the protein pre-trained

module (B) to the baseline. 3) Simultaneously adding the

molecule and protein pre-trained modules to the baseline. 4)

A transformer with bilinear pooling was incorporated After

combining the molecule and protein pre-trained modules with

the baseline (C).

The baseline will be to perform the encoding and decoding

process for small molecules and protein sequences using the

two word2vec functions in gensim, respectively, using average

pooling to connect the two types of vectors and pass them to

the multilayer perceptron MLP (consisting of multiple fully-

connected layers). Baseline+A, on the other hand, Baseline+A

will replace the word2vec representation in baseline with the

pre-trained model (fine-tuned) of Uni mol, using the word2vec

process for proteins. Baseline+A, the word2vec in the baseline,

is replaced by a pre-trained model of Uni mol (fine-tuned) to

characterize small molecules vectorially. At the same time,

proteins are still processed using word2vec and input to

the MLP using average pooling. Baseline+B, the vectorial

characterization of proteins, is replaced by a pre-trained model

of ESM2 (fine-tuned). At the same time, small molecules are

still processed using Baseline+A+B, and the embeddings are

generated using the pre-training strategies of Uni mol and

ESM-2, respectively, and input into the MLP after average

pooling. Baseline+A+B+C is our final pipeline. Uni mol and

ESM-2 generate the embeddings and input into the MLP

after the bilinear pooling layer. The embeddings are generated

by Uni mol and ESM-2, respectively, fused by the bilinear

pooling layer, input to the transformer, processed by multi-

head self-attention mechanism, and then entered into a fully

connected layer to get the prediction result.

During the experiments, a counterintuitive discovery was

made: the final performance of both Baseline+A and Base-

line+B was weaker than that of Baseline. This finding was

unexpected, considering that Uni mol and ESM-2, known as

powerful molecular characterization models, were expected to

enhance the model’s representation.

One possible explanation for this phenomenon is that us-

ing word2vec-generated vector representations as input might

drive the model to rely on topology for predictions. These

word2vec-generated vector representations lack true biochem-

ical meaning when used as input. Additionally, the interactions

with embeddings generated by other pre-trained molecular

characterization models can potentially lead the model to
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Fig. 2. Box plot of quantitative comparisons.

learn an incorrect paradigm, ultimately resulting in weakened

results.

TABLE II
RESULTS OF ABLATION STUDIES

Settings Acc (%) AUC (%) Recall (%) AUPR (%)

Baseline 76.0 82.2 75.6 84.2
Baseline+A 72.8 77.9 71.7 79.2
Baseline+B 70.1 73.7 68.9 77.9
Baseline+A+B 77.9 86.1 77.6 86.1
Baseline+A+B+C 83.4 91.2 83.2 91.0

D. Comparison with Other Methods

The proposed framework was evaluated using the Davis

dataset in the experiments. The results demonstrated superior

performance compared to state-of-the-art methods regarding

accuracy, AUC, recall, and AUPR, as shown in Figure2 and

TableIII. The experimental results indicate that our method,

which incorporates a robust pre-training-inspired transformer

architecture, outperforms existing methods that train from

scratch, thus achieving a new state-of-the-art (SOTA) result.

IV. CONCLUSION

This paper introduces the Pre-trained Inspired MocFormer,

a novel framework for identifying Drug-Target Interactions

(DTIs). The proposed architecture effectively addresses the

challenges posed by the diversity and complexity of drugs

TABLE III
RESULTS OF QUANTITATIVE COMPARISONS

Settings Acc (%) AUC (%) Recall (%) AUPR (%)

DrugBAN [26] 81.5 88.6 81.0 88.8
HyperAttentionDTI [27] 80.8 88.7 80.3 89.4
MolTrans [11] 79.0 86.5 79.5 85.7
TransformerCPI2.0 [28] 79.9 87.3 79.6 86.1

Ours 83.4 91.2 83.2 91.0

and proteins and the presence of noise and bias in the data.

The framework extracts meaningful features from limited

labeled data and datasets by leveraging pre-trained molecular

representation models and a pre-training-inspired transformer

module. The primary objective of pre-training the model is

to obtain a comprehensive feature representation capable of

adequately handling the diversity and complexity of drugs and

proteins. Furthermore, the pre-training stage helps mitigate

noise and bias in the data by facilitating the learning of

general feature representations, thereby improving prediction

accuracy. The transformer mechanism is employed to extract

feature matrices from drug and protein sequences, enabling the

derivation of decision vectors. These decision vectors form the

basis for making predictions. Experiments were conducted on

the Davis dataset to evaluate our method’s effectiveness. The

results demonstrate that our framework significantly advances

the development of accurate and general deep-learning models

for DTI prediction. In future research, we plan to explore the
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End-to-End Learning Paradigm to enhance the performance of

the identification approach further.
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