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Abstract—Numerous deep learning (DL) methods have been
proposed to identify drug-target interactions (DTIs). However,
these methods often face challenges due to the diversity and
complexity of drugs and proteins and the presence of noise and
bias in the data. Limited labeled data and extracting meaningful
features from datasets also pose difficulties. These limitations
hinder the development of accurate and general deep-learning
models for DTI prediction. To address these challenges, a novel
framework is introduced for identifying DTIs. The framework
incorporates pre-trained molecular representation models and a
transformer module inspired by pre-training. By pre-training the
model, it can acquire a more comprehensive feature representa-
tion, enabling it to handle the diversity and complexity of drugs
and proteins effectively. Moreover, the model mitigates noise
and bias in the data by learning general feature representations
during pre-training, improving prediction accuracy. In addition
to pre-training, a transformer mechanism called MocFormer is
proposed. MocFormer extracts feature matrices from drug and
protein sequences obtains decision vectors, and makes predictions
based on these decision vectors. Experiments were conducted
using public datasets from DrugBank to evaluate the framework’s
effectiveness. The results demonstrate that the proposed frame-
work outperforms state-of-the-art methods regarding accuracy,
area under the ROC curve (AUC), recall, and the area under the
precision-recall curve (AUPRC). The code for the framework
can be accessed from the following GitHub repository: GitHub
Repository.

Index Terms—drug-target interactions, pre-training, trans-
former

I. INTRODUCTION

Drug discovery and drug repurposing are highly valued
in the current field of biomedicine. Identifying drug—target
interactions (DTIs) is critical in drug discovery and repurpos-
ing. But generally, the process is always costly and in high
risk [1], the mean cost of developing a new drug needs a mean
investment of $1335.9 million, which is mainly from repeated
laboratory experimental procedures. Then some computer-
aided methods were developed, such as virtual screening
(VS) [2]. However, the VS method is based on structure with
limited speed. Then, the deep learning method was introduced
into the field of drug discovery.

Recently, deep learning has achieved superior performance
compared with classical methods in many fields, such as
computer vision and natural language processing [3]-[8].
With the production of a large amount of biological activity
data in recent years, predicting DTIs through deep learning
technology has become research. Initially, researchers usually
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only used manual annotation to label proteins and small
molecules with manual descriptors in limited datasets. Tian et
al. proposed using a fully connected neural network (FCNN)
to represent drugs and proteins based on hand annotation.
Drugs and proteins based on hand-crafted descriptors for
prediction. Later on, with the further development of deep
learning itself, transformer [9] and GNN [10] were proposed,
and attempts were made to encode and decode molecules and
proteins separately through transformer [11]. Encoding and
decoding [11], [12] to learn their high-dimensional structures
and input them into neural networks for iteration to simulate
their interactions. Meanwhile, graph neural networks are also
the usual means to study DTI, where one constructs its 2D
structure by treating atoms as nodes and chemical bonds as
edges. The attention mechanism has been widely used in both
approaches, which is thought to capture the key sites where
its small molecules bind to proteins [13].

The main methods of studying DTIs by deep learning are
three categories: Sequence-based, structure-based, and net-
word-based.

1) Sequence-based methods try to analyze features from
the sequence data of drugs in SMILES [14] and protein
amino acids sequence. The function and structure infor-
mation is believed to be included in sequence simplicity.

2) Structure-based methods utilize 3D structure data of
proteins and ligand molecules to study the interaction
details to predict the binding affinity [15]. Net-work-
based methods aim to contain drugs, targets, and other
biological entities into a graph-based network and try to
extract the biochemical functional information [16].

Despite advancements in the field, predicting drug-target
interactions (DTIs) continues to encounter challenges. These
include effectively handling the diversity and complexity of
drugs and proteins, addressing noise and bias in the data,
utilizing limited labeled data efficiently, and extracting mean-
ingful features from the datasets. These obstacles impede the
development of accurate and generalized deep-learning models
for DTI prediction. Overcoming these challenges is crucial for
advancing the field and enhancing the performance of DTI
prediction models.

To address the abovementioned challenges, inspired by
the success of transfer learning and pre-training in computer
vision and natural language processing tasks [17]-[20], this
paper introduces a novel approach called pre-trained inspired
MocFormer for predicting drug-target interactions (DTIs).
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The proposed model takes the SMILES string of drugs and
the amino acid sequence of proteins as input. Initially, both
inputs undergo processing by the Molecule pre-trained module
(Uni-Mol) [21] and the protein pre-trained module (ESM-
2) [22], respectively. Each amino acid and SMILES character
is transformed into its corresponding embedding vector.

Through pre-training, the model can acquire a more com-
prehensive feature representation, enabling it to handle the
diversity and complexity of drugs and proteins effectively.
Moreover, the model can mitigate noise and bias in the data by
learning general feature representations during the pre-training
stage, thereby improving prediction accuracy. Additionally, a
transformer mechanism called MocFormer is proposed. Moc-
Former is utilized to extract feature matrices from drug and
protein sequences, obtain decision vectors, and subsequently
make predictions based on these decision vectors.

In summary, this paper presents the following contributions:
1) To the best of our knowledge, a pre-trained inspired
transformer is proposed for the first time, to achieve transfer
learning based drug and protein interactions prediction, termed
MocFormer. 2) A counterintuitive phenomenon is discovered,
referred to as the ’one-sided trap’. It is observed that solely
employing molecular pre-training or protein pre-training mod-
els results in inferior performance on the DTI task. Possi-
ble explanations are provided for this phenomenon. 3) The
MocFormer pipeline outperforms the state-of-the-art (SOTA)
methods in the DTI task, demonstrating superior performance.

II. METHODS

Figurel provides an overview of our framework for identi-
fying drug—target interactions (DTIs) from the SMILES string
of drugs and amino acid sequence of proteins. The framework
consists of three main modules: a molecule pre-trained mod-
ule, a protein pre-trained module, and a biologically inspired
attention module. Each module is described in detail below.
Given the drug’s SMILES strings and protein’s amino acid
sequences, CNN block extracts feature matrices from the
sequences of drugs and proteins. And finally, the prediction
results will be the output.

A. Molecule Pre-trained Module

Uni-Mol is a 3D molecule representation learning frame-
work with three main components. Firstly, it utilizes a
transformer-based backbone, which takes atoms and atom
pairs as inputs and incorporates the SE(3) method to reduce the
3D conformation of a molecule. Secondly, the model is trained
on a large dataset comprising 209 million molecules and 3
million proteins. Lastly, the trained model is fine-tuned using
downstream tasks such as predicting the drug-target inter-right
and inter-wrong sites and their corresponding 3D structures.

In the MocFormer pipeline, the grid search method was
employed to fine-tune the pre-trained model provided by Uni-
Mol on the Davis dataset. The pre-trained model from the
Davis dataset underwent fine-tuning using the random forest
regression method, and the learning rate was selected from
the range [le-5, le-4, 4e-4, le-3]. Furthermore, different
batch sizes, namely [8, 16, 32], were experimented with. To

ensure robustness, the five-fold cross-validation technique was
utilized. This technique allowed for the selection of three sets
of optimal characterization results. These optimal sets of rep-
resentation vectors were then used as input for MocFormer’s
model inference, and the final choice was determined based
on the best performance.

After the Molecule Pre-trained Module processes the input,
the drug’s embedding matrix, denoted as fp, is obtained. The
computation can be summarized using Equation (1), where f
represents the size of the embeddings for drug strings, and
512 means the embedding dimensions.

fD cR 512x f (1)

B. Protein Pre-trained Module

ESM-2 is developed based on the belief that the informa-
tion regarding structure and function can be found in amino
acid sequences, making LLMs (Large Language Models) a
handy tool for this task. ESM-2 remains a transformer-based
model with a maximum of 15 billion parameters. It utilizes
approximately 138 million sequences for training and employs
an equivalent transformer to represent the protein’s three-
dimensional structure. This results in an attention pattern
corresponding to the protein’s three-dimensional structure.

In the MocFormer model, the chosen variant of ESM-2 is a
large language model with 36 layers and 3 billion parameters.
It is fine-tuned using the DTI (Drug-Target Interaction) task on
the Davis dataset. The selected method for fine-tuning is the
K-neighborhood algorithm, which is optimized using the grid
search approach. The hyperparameters being searched include
the batch size (options: 8, 16, 32), the number of neighbors
(options: 5, 10), the weighting strategy (options: uniform,
distance), and the algorithm type (options: ball_tree, kd_tree,
brute). The leaf size is also considered for the algorithm
(options: BallTree, KDTree). Finally, three sets of vector
representations are selected and fed into the subsequent model
to determine the best set of representation vectors.

After the Protein Pre-trained Module processes the input, the
protein’s embedding matrix, denoted as fp, is obtained. The
computation can be summarized using Equation (2), where f
represents the size of the embeddings for protein strings, and
2560 means the embedding dimensions.

fP cR 2560 f (2)

C. Transformer Module

In this pipeline, two transformers are employed to encode
and decode the drug and target within the transformer module.
The transformer module utilizes a multi-attention mechanism
to capture the most significant vector dimensions for the drug-
target prediction task. This mechanism assigns higher weights
to these dimensions from the 512-dimensional drug vectors
and the 2,560-dimensional protein vectors. Moreover, the
multi-head attention mechanism within the transformer further
enhances this process, ensuring that the more critical vector
dimensions are emphasized for the drug-target prediction task.
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Fig. 1. An overview of Pre-trained Inspired MocFormer.

The allocation of weights facilitates MocFormer in learning
the intrinsic patterns associated with drug-target interactions.

The computation can be summarized using Equation 3—
6. The query (@), key (K), and value (V) are defined as
follows: @ represents the query, K represents the key, and
V' represents the value of the protein and drug. The weight
matrices are denoted as W<, WX, and WV, while dj, means
the dimensions of the vectors.

Q= foxW® 3)

K= fpx W& 4)

V=fxw" 5)
Qx KT

Attention = softmax(

— ) xV 6)
Vdy
The multi-head attention is then introduced and summarized
using Equation 7-8. For each head, there are weight matrices
W&, WK, and WY, with dimensions W € Rds12xdos,

WHE ¢ Risi2xdss_and W}V € Ré512%des Additionally, a linear
transformation matrix W € R¥s12xds12 jg utilized.

Head; = Attention(Q x W2 K x WE V xWY) ()

MultiHead = Concat(Heady, ...Headg) x Wgo  (8)

The fully connected feed-forward network comprises two
dense layers, each followed by a ReLU activation function,
allowing for nonlinear transformations. This can be summa-
rized using Equation 9. The weight matrices W; and W
have dimensions of R¥*/ and bias terms b; and by are also
included.

FFNp =max(0,2 x Wy +b1)Wa+by €R 256xf  (9)

The handling of protein embedding vectors is also some-
thing to consider.

Q=fpxW? (10)

K =fpxWE (11)

V=FfpxWwW" (12)

WiQ,WiK WY are all weight matrices, WiQ € R d2s60xds1z
WiK c R d2560><d512’ WiV c R d2560><d512’ Wio c
R d2ss0xd2seoig the linear transformation matrix.

Head; = Attention(Q x W K x WK,V xWY) (13)

MultiHead = Concat(Head, .. Heads) x Wg  (14)

Also, the network comprises two dense layers, each fol-
lowed by a ReLU activation function, allowing for nonlinear
transformations. This can be summarized using Equation 9.
The weight matrices W, and W, have dimensions of Rf*f,
and bias terms b; and by are also included.

FFNp =maz(0,2 x Wy +b1)Wa + by €512 x f  (15)

D. Bilinear Pooling and Full Connected Layer

The bilinear pooling technique fuses features from the drug
and protein decoders. It involves bilinearly multiplying the first
two features at the same position to obtain the matrix B. Then,
sum pooling is applied to all positions in B to get the matrix
&. The matrix £ is further transformed into a vector, referred to
as the bilinear vector x. Additionally, moment normalization
and L2 normalization operations are performed on x to obtain
the fused features Z. The bilinear pooling method is utilized
to merge the output of the drug and protein decoders.

Then, the merged vector representation will be fed into
a multi-layer, fully connected layer network. The activation
function is relu, a dropout layer is added after each layer to
prevent overfitting, and a binary cross entropy is used to output
the final prediction results.

Bz, fp, fp) = fp % f} (16)

A
=Y fpxfh (17)
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m = vec(€) (18)
y = sign(z)/|z| (19)
y Y € R 2560x512x1 (20)

lyll

III. EXPERIMENTAL RESULTS

This section presents the results obtained by applying the
proposed methods to the DrugBank dataset. The experimental
dataset and evaluation metrics will be explained in Section
A. The implementation details of the experiments will be
discussed in Section B. In addition, Section C will present
the results of the ablation study, while Section D will provide
a comprehensive comparison with the current state of the art.

A. Dataset and Evaluation Metrics

The experimental dataset for this study was derived by ex-
tracting drug and target data from the DrugBank database [23],
as presented in Table I. The dataset used in this research
corresponds to the data released on January 3, 2020 (version
5.1.5). Inorganic compounds and tiny molecule compounds
(e.g., Iron [DB01592] and Zinc [DB01593]) were manually
discarded, along with drugs having SMILES strings that
could not be recognized by the RDKit Python package [24].
After this filtering process, 6,655 drugs, 4,294 proteins, and
17,511 positive drug-target interactions (DTIs) remained in the
dataset.

To create a balanced dataset with equal positive and negative
samples, unlabeled drug-protein pairs were sampled following
a common practice [11], [25]. This approach allowed for the
generation of negative samples, resulting in a balanced dataset
for analysis.

Four key metrics were considered for a comprehensive
performance analysis: Accuracy, AUC, Recall, and Area Un-
der the Precision-Recall Curve (AUPRC). Accuracy assesses
overall correctness, AUC evaluates the model’s ability to
rank positive and negative samples correctly, Recall measures
the model’s effectiveness in identifying positive samples, and
AUPRC evaluates the model’s performance in classifying
imbalanced datasets.

TABLE I
SUMMARY OF THE BENCHMARK DATASETS

Positive
17511

Interaction
35022

Protein
4294

Datasets
DrugBank

Drug
6655

Negative
17511

B. Implementation Details

The framework used in this study is built on the PyTorch
platform and utilizes an NVIDIA Tesla V100S GPU. The
entire dataset was divided into training, validation, and testing
sets, with proportions of 70%, 20%, and 10%, respectively.
Each experiment employed a 5-fold cross-validation approach.

The AdamW optimizer optimized the model with an initial
learning rate of 0.001 and a weight decay 0.001. Additionally,
a learning rate schedule based on ReduceROnPlateau was
implemented. This schedule had a patience of 5, meaning that
if the model’s validation loss did not decrease after five epochs,
the learning rate would decay to 10% of the previous rate.

C. Ablation Study

To assess the effectiveness of each component in our
method, a series of ablation experiments were conducted,
as presented in Table II. These experiments progressively
enhanced the baseline network by applying the following con-
figurations: 1) Adding only the molecule pre-trained module
(A) to the baseline. 2) Adding only the protein pre-trained
module (B) to the baseline. 3) Simultaneously adding the
molecule and protein pre-trained modules to the baseline. 4)
A transformer with bilinear pooling was incorporated After
combining the molecule and protein pre-trained modules with
the baseline (C).

The baseline will be to perform the encoding and decoding
process for small molecules and protein sequences using the
two word2vec functions in gensim, respectively, using average
pooling to connect the two types of vectors and pass them to
the multilayer perceptron MLP (consisting of multiple fully-
connected layers). Baseline+A, on the other hand, Baseline+A
will replace the word2vec representation in baseline with the
pre-trained model (fine-tuned) of Uni_mol, using the word2vec
process for proteins. Baseline+A, the word2vec in the baseline,
is replaced by a pre-trained model of Uni_mol (fine-tuned) to
characterize small molecules vectorially. At the same time,
proteins are still processed using word2vec and input to
the MLP using average pooling. Baseline+B, the vectorial
characterization of proteins, is replaced by a pre-trained model
of ESM2 (fine-tuned). At the same time, small molecules are
still processed using Baseline+A+B, and the embeddings are
generated using the pre-training strategies of Uni_mol and
ESM-2, respectively, and input into the MLP after average
pooling. Baseline+A+B+C is our final pipeline. Uni_mol and
ESM-2 generate the embeddings and input into the MLP
after the bilinear pooling layer. The embeddings are generated
by Uni_mol and ESM-2, respectively, fused by the bilinear
pooling layer, input to the transformer, processed by multi-
head self-attention mechanism, and then entered into a fully
connected layer to get the prediction result.

During the experiments, a counterintuitive discovery was
made: the final performance of both Baseline+A and Base-
line+B was weaker than that of Baseline. This finding was
unexpected, considering that Uni_mol and ESM-2, known as
powerful molecular characterization models, were expected to
enhance the model’s representation.

One possible explanation for this phenomenon is that us-
ing word2vec-generated vector representations as input might
drive the model to rely on topology for predictions. These
word2vec-generated vector representations lack true biochem-
ical meaning when used as input. Additionally, the interactions
with embeddings generated by other pre-trained molecular
characterization models can potentially lead the model to
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Fig. 2. Box plot of quantitative comparisons.
learn an incorrect paradigm, ultimately resulting in weakened TABLE III
results. RESULTS OF QUANTITATIVE COMPARISONS
TABLE II Settings Acc (%) AUC (%) Recall (%) AUPR (%)
RESULTS OF ABLATION STUDIES DrugBAN [26] 81.5 88.6 81.0 88.8
HyperAttentionDTI [27]  80.8 88.7 80.3 89.4
Settings Acc (%)  AUC (%)  Recall (%) AUPR (%)  MolTrans [11] 79.0 86.5 79.5 85.7
- TransformerCPI2.0 [28] 79.9 87.3 79.6 86.1
Baseline 76.0 82.2 75.6 84.2
Bascline+A 72.8 77.9 71.7 79.2 Ours 834 91.2 83.2 91.0
Baseline+B 70.1 73.7 68.9 77.9
Baseline+A+B 77.9 86.1 77.6 86.1
Baseline+A+B+C 834 91.2 83.2 91.0

D. Comparison with Other Methods

The proposed framework was evaluated using the Davis
dataset in the experiments. The results demonstrated superior
performance compared to state-of-the-art methods regarding
accuracy, AUC, recall, and AUPR, as shown in Figure2 and
Tablelll. The experimental results indicate that our method,
which incorporates a robust pre-training-inspired transformer
architecture, outperforms existing methods that train from
scratch, thus achieving a new state-of-the-art (SOTA) result.

IV. CONCLUSION

This paper introduces the Pre-trained Inspired MocFormer,
a novel framework for identifying Drug-Target Interactions
(DTIs). The proposed architecture effectively addresses the
challenges posed by the diversity and complexity of drugs

and proteins and the presence of noise and bias in the data.
The framework extracts meaningful features from limited
labeled data and datasets by leveraging pre-trained molecular
representation models and a pre-training-inspired transformer
module. The primary objective of pre-training the model is
to obtain a comprehensive feature representation capable of
adequately handling the diversity and complexity of drugs and
proteins. Furthermore, the pre-training stage helps mitigate
noise and bias in the data by facilitating the learning of
general feature representations, thereby improving prediction
accuracy. The transformer mechanism is employed to extract
feature matrices from drug and protein sequences, enabling the
derivation of decision vectors. These decision vectors form the
basis for making predictions. Experiments were conducted on
the Davis dataset to evaluate our method’s effectiveness. The
results demonstrate that our framework significantly advances
the development of accurate and general deep-learning models
for DTI prediction. In future research, we plan to explore the
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End-to-End Learning Paradigm to enhance the performance of
the identification approach further.
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