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1.1 Abstract

Novel sequencing techniques and biochemical pathway prediction resources provide a wealth
of data on novel proteins and computationally predicted enzymatic reactions. Accurate
matching of protein sequences to enzymatic activities is crucial for advancing synthetic biology
and metabolic engineering efforts. Here we present BridglT+, a computational workflow that
accounts for enzyme promiscuity and accurately predicts protein-reaction and reaction-protein
associations. BridgIT+ builds upon the promiscuity-based method for annotating orphan and
novel reactions with enzymatic activities, BridglT, and utilizes position-specific scoring
matrices (PSSM). The framework uses sequence alignment and enzyme promiscuity
predictions to analyze protein sequences, identify sequence patterns, and create promiscuous
protein sequence profiles for each reaction. These profiles allow us to predict the protein
sequences most likely involved in the reaction. We showcase BridglT+ by annotating (i)
computationally predicted reactions with proteins and (ii) unannotated proteins of E. coli
proteome with enzymatic functions. We demonstrated the performance of BridglT+ on several
biochemical assays and compared it to three current state-of-the-art methods for matching
proteins and reactions. We anticipate that the proposed conceptual framework will enhance
our understanding of gene-protein-reaction relations and advance biological sequence and
reaction annotation in biology and synthetic biology studies.
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1.2 Introduction

While the number of fully sequenced genomes rapidly increases, their functional annotation
lags behind'. It has been estimated that 30% of unannotated sequences have a metabolic
function, indicating the critical knowledge gap in our understanding of enzymes and their role
in cellular metabolism?. This gap exists because functional annotation of uncharacterized
enzymes requires extensive in vitro and in vivo experiments. Computational methods
(Supplementary material 1) can significantly reduce the time and cost of this process.

For enzymatic function annotation, researchers use enzymatic function descriptors?, such as
the Enzyme Commission (EC) number, which systematically classifies enzymes based on the
associated biochemical reactions. Current computational methods focus on inferring the EC
number from a sequence using mainly two approaches: (i) data-driven approaches based on
machine learning and (ii) homology-based approaches based on the available biochemical
knowledge*. In recent studies, machine learning (ML) has been successfully used in all stages
of protein annotation, from structural prediction to functional analysis®. For example, DeepEC
correctly annotated protein sequences with EC numbers with high precision and sensitivity®.
However, ML-driven results often need more interpretability and heavily depend on the dataset
structure and training parameters”. In comparison, homology-based methods use a rational
approach to identify evolutionarily conserved sequence patterns often representing the protein
function. For example, PRIAM employs EC-based enzymatic profiles to account for the
relationship between chemistry and enzyme sequences and improve the functional annotation
of uncharacterized sequences*. The basic premise of protein homology is that similar
sequences are derived from a common ancestor and have the same function8. However, this
assumption cannot explain the functional similarity of orthologs or the different functionality
between paralogs*. Another major limitation of current homology-based methods is that they
can only functionally annotate a protein with similarity to other sequenced proteins?. Therefore,
we need new approaches to broaden the search space for functional annotation of proteins.6

The links between chemistry and protein sequences are intricate, and phenomena such as
the substrate promiscuity of the enzymes® should be considered in the enzyme annotation
process. This idea was put forward in the BridgIT'® method, showing that enzyme promiscuity
is essential for discovering the secondary functions of enzymes. BridgIT uses reactive-site-
specific fingerprints, originating from the expert-curated biochemical reaction rules''-'4, to
match reactions based on structural and functional similarity and predict the EC class for
orphan and novel reactions.

Here, we present BridglT+, an approach that goes beyond BridgIT capabilities and directly
links orphan protein sequences and orphan reactions. In contrast to prominent enzyme
annotation tools DeepEC and PRIAM that assign the EC class to protein sequences, BridgIT+
assigns reactions to protein sequences. Indeed, it captures enzymatic functions based on the
reaction mechanism similarity rather than relying on the EC classification. This way, BridgIT+
overcomes limitations imposed by the EC classification such as misclassification, unclassified
reactions, EC classes missing assigned protein sequences, and the possibility of neglecting
promiscuous candidate enzymes belonging to other EC classes. Our studies demonstrate that
enrichment with functionally close promiscuous enzymes improves the functional enzyme
sequence annotation compared to DeepEC and PRIAM. We also compare our method to
Selenzyme'®, a reference tool for predicting protein sequences of orphan biochemical
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reactions, and obtain improved predictions. We validate BridgIT+ predictions through three
studies involving experimentally confirmed reaction-protein associations. Finally, we illustrate
its applicability through two studies by (i) annotating novel reactions in metabolic pathway
design; and (ii) proposing function for 144 poorly annotated sequences in the E. coli genome.

1.3  Results and discussion

1.3.1 BridgIT+ method

Briefly, the BridglT+ workflow can perform two annotation tasks that link: (i) an orphan and
novel computationally predicted reactions with proteins and (ii) orphan proteins with enzymatic
functions. The core building block in both tasks is the creation of BridglT+ PSSM profiles
(Figure 1a). The input to this block is a collection of EC numbers. Whereas in our studies we
select EC numbers based on promiscuity using BridglT?, this input can be provided from other
sources such as experimental studies and other computational prediction methods. The
creation of these profiles is organized into three main steps: (1) identifying protein sequences
from the UniProt database'® that correspond to the collected EC numbers; (2) sequence
alignment using MAFFT'7; and (3) creation of the enzymatic profiles corresponding to the
aligned sequences, BridgIT+ PSSM profiles, using PSI-BLAST'8.

For annotating an orphan or a novel reaction with proteins (task (i)), the workflow uses BridgIT
to provide a collection of promiscuous EC numbers corresponding to this reaction (Figure 1b).
We then use this collection to compute PSSM profiles, and we screen these profiles against
databases of known sequences such as TrEMBL and Swiss-Prot' using RPS-BLAST'8. The
pipeline output is a ranked protein sequence set that matches the orphan or novel reaction.

To perform task (ii), annotating orphan proteins with enzymatic functions, we use RPS-BLAST
to screen the orphan sequence against the previously created database of BridglT+ PSSM
profiles of known reactions (Methods). The database of BridglT+ PSSM profiles can be
extended by creating PSSM profiles of new reactions using BridgIT and the BridglT+ core
building block (Figures 1a and 1c).
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Figure 1. The BridgIT+ framework. a. General pipeline for the generation of BridgIT+ PSSM profiles structured in
three steps: (1) identifying protein sequences of promiscuous enzymes (UniProt), (2) sequence alignment
(MAFFT), and (3) creation of the enzymatic profiles of the alighed sequences (PSI-BLAST). BridgIT+ enzymatic
profiles are employed for the annotation of: b. orphan reactions with enzymatic sequence and c. unannotated
sequences with known reactions.

1.3.2 Validation against biochemical assays

To assess BridglT+ performance using experimentally confirmed reaction-protein
associations, we performed three validation studies using biochemical knowledge originating
from the previous versions of the KEGG database, namely v.2011 and v.2015. Using the
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biochemical information from the earlier versions of the KEGG database allows us to
demonstrate BridglT+ capability to predict reaction-protein relations confirmed by the later
database versions (v.2021). In the validation studies, we endeavored to (A) match the orphan
reactions and orphan proteins from the KEGG v.2011 database to each other, (B) use the
knowledge of KEGG v.2011 protein profiles to successfully match orphan reactions to proteins
later added in the KEGG database, and (C) find protein sequences for confirmed novel
reactions predicted in 2015 and whose protein sequences were annotated between 2015 and

2021 (Figure 2).
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Figure 2. Design of validation studies of BridglIT+ against biochemical assays. a. Mapping orphan reactions to
orphan sequences, both available in public databases in 2011, but not linked to each other. b. Mapping orphan
reactions from 2011 to novel sequences added to public databases in 2012-2021. c. Mapping novel reactions
computationally predicted in 2015 to protein sequences added to public databases in 2015-2021.
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A. BridglIT+ correctly matches orphan reactions to orphan sequences

In the KEGG and UniProt databases released in 2011, we found seven orphan reactions that,
in the later versions of KEGG, became associated with orphan protein sequences of UniProt
v.2011. To be more specific, the UniProt v.2011 already contained protein sequences capable
of catalyzing these reactions, but their functions still needed to be discovered. Their enzymatic
activities were later discovered, assigned to new EC numbers, and linked to the KEGG
reactions. Matching directly orphan reactions to orphan sequences is more challenging than
assigning a reaction to an EC number and an EC number to a protein sequence because the
EC numbers corresponding to these enzymatic activities were unknown in 2011. Indeed,
methods that require information about the EC classification, such as DeepEC and PRIAM,
cannot be used to perform this task. Since these enzymatic activities have been
experimentally confirmed using biochemical assays, we used these seven reactions as a
benchmark to evaluate the BridglT+ performance.

To this end, we formed the BridgIT reference reaction database using the reactions from
KEGG v.2011, and we created the BridglT+ protein profiles based on the protein sequences
in Swiss-Prot v.2011 (Methods). The BridgIT+ profiles represent the alignment of promiscuous
protein sequences proposed by BridgIT based on the structural similarity of their reactions.
We then performed a homology search between each orphan protein in UniProt v.2011 and
BridglT+ profiles using the RPS-BLAST program. Finally, we compared the BridglT+
annotation results with the approved enzyme assignments in later versions of KEGG.
Remarkably, BridgIT+ matched the seven orphan reactions to their correct orphan sequences
and three-level EC numbers corresponding to the reaction mechanism (Table 1).

Table 1. Annotation of formerly orphan KEGG reactions with protein sequence using the 2011 version of
BridglIT+ reference profiles.

KEGG EC numbers used in BridgIT+ Profile | E-value bit-score | Entry EC number

R08124 2.7.1.45 2.7.1.58 4.81E-22 88 P45543 2.7.1.218
2.7.1.13

R08619 2333 2331 1.27E-161 | 462 Q9FG67 2.3.3.17
2.3.1.182 2.3.3.14
2.3.3.6 2.3.3.13

R0O8631 2333 2331 1.27E-161 | 462 Q9FG67 2.3.3.17
2.3.1.182 2.3.3.14
2.3.3.6 2.3.3.13

R08640 2333 2331 1.27E-161 | 462 Q9FG67 2.3.3.17
2.3.1.182 2.3.3.14
2.3.3.6 2.3.3.13

R0O3758 4.1.1.88 1.1.1.85 4.36E-17 73 P69936 1.1.1.381
4.1.1.9 (+11 other EC)
1.1.1.276

RO7759 1.1.1.35 1.1.1.184 3.39E-08 49 Q1DNC5 1.1.1.330
1.1.1.211 (+54 other EC)

R0O6687 2.1.1.83 2.1.1.175 1.94E-40 140 Q06528 2.1.1.292
2.1.1.109 (+56 other EC)
2.1.1.128

B. BridgIT+ correctly matches orphan reactions to newly added protein sequences


https://doi.org/10.1101/2023.09.13.557547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.13.557547; this version posted September 17, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

We used the trained profiles based on information from 2011 to determine whether BridgIT+
can link the orphan reactions in 2011 to the correct protein sequences added between 2012
to 2021. Out of 234 orphan reactions in KEGG 2011 that became later non-orphan, 75 were
structurally balanced and assigned to a new EC number, and we used them to test BridgIT+.
37 out of 75 reactions were correctly mapped to their protein sequences with the exact four-
level EC number, demonstrating BridgIT+ ability to match reactions to enzymes with correct
substrate specificity (Supplementary Table 1, bit-score: 23 to 1084). More strikingly, all 75
reactions were linked to a protein sequence with the correct three-level EC number, indicating
that our method matches reactions to enzymes with correct reaction mechanisms. In other
words, BridgIT+ trained only on biochemical information from 2011 can correctly assign the
orphan reactions from 2011 to protein sequences confirmed in later years.

C. BridgIT+ correctly matches novel reactions to protein sequences

The ATLAS of Biochemistry databases?%23 provide a comprehensive source of theoretically
possible biochemical reactions. The first version of this database was centered around KEGG
compounds available in 2015. In 2020, we found that the newly available biochemical data
validated 107 novel reactions predicted in ATLAS 20152'. Here, we examined the capability
of BridgIT+ to assign correct protein sequences to these novel reactions. From 2015, Swiss-
Prot sequences were assigned to 83 out of 107 formerly novel reactions according to KEGG
and Rhea databases. For these 83 reactions, we compared the validated protein sequence
annotation with BridglT+ predictions. These reactions have up to 255 unique validated
sequences, with a median of 4 sequences per reaction. For 70 reactions (84%), experimentally
assigned sequences identically matched the Swiss-Prot identifiers predicted by BridglT+
(Supplementary Table 2). For 9 out of the remaining 13 reactions the BridglT+ top-ranked
enzyme sequence corresponded to the reaction mechanism with the identical three-level EC
number as the queried reaction (Supplementary material 2). For one of the remaining 13
reactions, only one protein sequence was available for the EC classes predicted with BridgIT;
since this sequence was correctly matched, the BridglT+ pipeline was superfluous. For the
other two out of the remaining 13 reactions, even though the best EC number prediction
according to BridglT was correct, BridglT+ could correctly capture the reaction mechanism
only if we neglected the enzyme promiscuity (Supplementary material). Finally, one reaction
did not have information about the reaction mechanism because only a two-level EC number
was assigned to it (Supplementary material). Overall, these results demonstrate the predictive
capabilities of BridglT+ for novel reactions because it assigned identical or matching rection
mechanism protein sequences for 79 of 83 formerly novel reactions (95%).

We next compared the predictions for KEGG and Rhea databases separately. Of 60 reactions
with manually annotated protein sequences in Rhea, 51 had a correct protein sequence
assigned with BridgIT+. Similarly, for 50 out of 59 reactions with Swiss-Prot protein annotation
in KEGG, BridglT+ performed correct sequences assignment. These results indicate that
BridgIT+ is agnostic to the source of reactions and that it performs equally well for the Rhea
and KEGG databases.

1.3.3 Comparison with other tools

Protein sequence annotation. Annotating sequences with enzymatic function is valuable for
the prediction of metabolic phenotypes of organisms based on sequenced genomes. We
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compared the protein annotation performance of BridgIT+ (using the EC-based profiles) with
the representative tools in the field: DeepEC and PRIAM.

We evaluated the prediction performances of the three tools for annotating Swiss-Prot
sequences (Table 2). We selected Swiss-Prot as ground truth for comparison because it has
been expertly annotated using a state-of-the-art methodology (automated screening) and
current biological knowledge (human inspection). For each enzyme sequence, we counted
how many enzyme activities predicted by these tools were reported in Swiss-Prot (true
positive, TP), not reported (probable false positive, FP), and how many activities reported in

Swiss-Prot were missed by the tool (false negative, FN). We evaluated the quality of the

. . TP+ TN . . TP TP
predictions using the accuracy (—) precision ( ) recall ( ) F1 score (2 -
TP+FP+TN+FN TP+FP TP+FN

precision - recall )

, and area under the curve (AUC) measures. Since there is no systematic

precision + recall
testing for the absent enzymatic activities of enzymes reported to Swiss-Prot, the true negative
(TN) measure and associated statistical metrics could not be estimated.

BridglT+ outperformed PRIAM and DeepEC in this task regarding all measured performance
indicators (Table 2). We obtained a larger area under the ROC?2* curve (AUC) in BridglT+
predictions (0.91) compared to PRIAM (0.83) and DeepEC (0.65). Moreover, BridglT+
precision and recall indicators (0.98 and 0.95, respectively) were superior compared to
DeepEC (0.89, 0.82) and PRIAM (0.87, 0.81). We also noted that BridglT and PRIAM
demonstrate a better ability to discriminate the EC numbers than DeepEC due to the
advantage of homology-based tools over the neural networks for the sequence annotation
with few known homology instances per EC number. We argue that the improvement in the
performance of BridglT+ was achieved by enriching the profiles with promiscuous sequences
assigned to alternative EC numbers.

Table 2. Comparison of the accuracy, F1 score (the harmonic mean of precision and recall), precision,
recall, and AUC (the area under the curve) for the three tools annotating Swiss-Prot sequences. The
selected threshold (bit-score for PRIAM and BridgIT+, the score for DeepEC) is based on the best F1
score. The number of processable by the tool unique protein sequences is indicated for each tool.

Accuracy F1 Precision | Recall AUC Selected | # protein
threshold | sequences
PRIAM 0.81 0.83 0.87 0.81 0.83 244 82’089
DeepEC 0.83 0.85 0.89 0.82 0.65 0.99 213’320
Bridgl T+ 0.95 0.96 0.98 0.95 0.91 574 93’446

Reaction annotation with protein sequences. To comparatively evaluate BridglT+
performance in this task, we used the standard tool for linking reactions to protein sequences,
Selenzyme’®. Selenzyme was published in 2018, and we could not modify the tool's reference
set, train it based on information from 2011, and perform a fair comparison. Nevertheless, we
used the current version of Selenzyme to annotate the seven orphan reactions that BridgIT+
correctly matched to the orphan sequences (see Validation against biochemical assays and
Supplementary Table 3). In the list of top 50 candidates per reaction Selenzyme provided, we
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could find a protein sequence with the correct EC number for only 5 out of 7 reactions. This
result suggests that BridgIT+ performs better than Selenzyme for establishing protein-reaction
associations.

1.3.4 Applications

BridgIT+ facilitates enzyme discovery in metabolic pathway design. Microbial
biosynthesis is one of the most effective approaches to producing complex compounds such
as natural pharmaceuticals?. To guide and accelerate the design of biosynthesis pathways
toward biochemicals, computational tools for enzyme discovery are essential. In a recent
study, Srinivasan et al. implemented the conversion of hyoscyamine and scopolamine to
cognate N-oxides to produce natural plant products in yeast using two novel ATLAS reactions
along with their putative enzyme candidates suggested by BridglT26. BridgIT proposed
senecionine N-oxygenase (EC 1.14.13.101) as the best candidate for both conversions.
Srinivasan et al. analyzed the activity of 3 orthologs of this enzyme from three different species
in yeast: T/SNO from Tyria jacobaeae (cinnabar moth), GgPNO from Grammia geneura
(Nevada tiger moth), and ZvPNO from Zonocerus variegatus (harlequin locust). They finally
reported the highest heterologous production of hyoscyamine N-oxide and scopolamine N-
oxide by the yeast strain expressing ZvPNO.

Here, instead of proposing EC numbers, we go further with BridglT+ and annotate these two
novel ATLAS reactions with a ranked list of candidate protein sequences. If BridglT+ were
available at the time, it would replace the manual work of selecting the best protein candidates
for the EC numbers. Following the BridglT+ pipeline, we trained an enzyme promiscuity-
enriched profile for each novel reaction. Then, we used RPS-BLAST to search and rank the
enzyme orthologs from different species in Swiss-Prot and TrEMBL databases
(Supplementary Table 4). Finally, we compared the results of BridgIT+ with the experimental
results by Srinivasan et al. In the ranking results of BridglT+, ZvPNO (bit scores: 96.8 and
94.5) ranked higher compared to T/SNO (with bit scores 76.4, 74) and GgPNO (with bit scores:
74, 71.3), thus matching the experimental observations closely. These results indicate that
BridglT+ can provide precise enzyme sequence predictions for annotating computationally
predicted reactions, facilitating the metabolic pathway design.

BridgIT+ correctly annotated enzyme activities in the whole genome of E. coli and
proposed function for 144 poorly annotated sequences. The rate of protein functional
elucidation needs to catch up to the pace of gene and protein sequence discovery, leading to
an accumulation of proteins with unknown functions. Escherichia coli, perhaps the best-
studied model organism extensively annotated in the Swiss-Prot database, is not an
exception. Recent studies show that 1’431 proteins (35%) of E. coli are still not functionally
annotated?’.

To analyze the capabilities of BridglT+ for genome annotation, we applied BridgIT+ profiles to
the E. coli K-12 proteome and compared BridgIT+ results with the manual annotation in Swiss-
Prot (Figure 3, A). Out of 1130 EC numbers linked to 6’066 protein entries in Swiss-Prot, 603
EC numbers associated with 686 proteins could be processed by BridglT+ (Methods). Of the
603 EC numbers, 598 (98%) linked to 660 protein sequences were correctly annotated by
BridgIT+ (Figure 3, B). The remaining five EC numbers had assigned highly promiscuous EC
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numbers with very broad substrate specificity (3.5.2.6, 3.1.1.5,2.5.1.18, 3.1.3.2, and 3.2.1.21).
A possible way to annotate enzymes with such broad substrate specificity with BridgIT+ is to
remove the promiscuity from consideration. This way, the BridglT+ profile would be more
specific to substrates of metabolic reactions during the homology search.

We next used BridglT+ to address the need for genome functional annotation. BridgIT+
annotated 144 E. coli sequences currently missing a four-level EC number with 110 unique
four-level EC numbers (Figure 3, C). The identified EC numbers correspond to reactions not
currently cataloged in the E. coli metabolism. These results suggest that BridglT+ can fill the
metabolic gaps and annotate new biochemical pathways in any sequenced genome.

A E.coli proteome
| Proteins
—— = annotated with
s _'|I > RPS-BLAST — @ EC numbers
N
BridgIT+ profiles
EC-based
B c

1000 1500 2000 ; 100 200 300 400 500
bit score bit score

Figure 3. Annotation of E. coli proteome using Bridg|T+ reference profiles. a. Schematic representation of the
approach used to annotate an organism proteome with BridgIT+ profiles. b. Bit-score for 598 reactions correctly
linked to 660 protein sequences by BridglIT+. c. Bit-score for 144 E. coli sequences without 4-level EC number
annotation assigned with 110 unique four-level EC numbers using BridgIT+ profiles.

1.4 Conclusions

The wealth of genome and proteome data calls for robust methods for the functional
annotation of genes and proteins. A prominent approach leveraging multiple sequence
alignment for annotations is PRIAM*. It collects sequences per EC number and creates
position-specific scoring matrices (PSSM) for homologous modules found within each
enzyme-specific collection. Recently, a deep learning approach DeepEC® outperformed
PRIAM primarily due to its sensitivity to nonlinearities introduced by mutated domains and
binding site residues. Still, scarce data for some EC classes hinder DeepEC’s performance, a
common drawback of deep learning approaches. Both DeepEC and PRIAM link enzyme
functionality to protein sequences through EC numbers. However, knowledge of EC numbers
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is not always sulfficient for establishing protein-reaction associations because multiple proteins
can catalyze reactions with a single four-level EC number. Additionally, EC numbers do not
capture the evolutionary changes of enzymes. Indeed, it was reported that approximately 40%
of enzymes have evolved to completely new functionality, i.e., to EC classes differing in the
first digit of EC®. Therefore, relying entirely on EC can lead to erroneous predictions.

Here proposed method, BridglT+, bases its reaction-protein associations on the individual
reaction mechanisms rather than on a human-error-prone EC classification. In other words,
whereas EC-based approaches indicate which proteins best represent EC numbers, BridgIT+
answers which proteins best represent reactions. Similar to the previously proposed method
BridglT, which outperformed peers for reaction annotation with EC numbers'é, BridglT+
leverages knowledge of reaction mechanisms and enzyme promiscuity to annotate reactions
with protein sequences likely to catalyze these reactions. BridglT+ can be used on current
reaction and protein databases to draw meaningful functional associations between the two.
Building this direct link allows us to go beyond EC numbers and provide interpretable
predictions for sequences and reactions lacking EC annotation.

Comparing our method to experimental biochemical assays, we demonstrated that BridgIT+
could successfully match the orphan reactions and orphan proteins available in the databases
but missed the link to each other. We have also shown that our method can successfully use
the current biochemical knowledge contained in reaction and protein databases to match
future orphan reactions and proteins.

BridglT+ brings significant advantages compared to existing methods as it does not require
extensive data, e.g., for neural network training, and adds promiscuity into consideration to
improve the prediction in case of the absence of homology. Compared to DeepEC, PRIAM,
and Selenzyme, the observed improvement in performance is brought about by grouping
reference sequences based on their catalytic function. BridglT+ produces a ranked list of
protein sequences for any reaction and can be adapted to any specific organism or application.
We expect that BridglT+ predictive capabilities will grow as more enzyme sequences are
introduced into protein sequence databases and more reaction mechanisms are discovered
and cataloged.

1.5 Methods

e Curating input for BridgIT+

The input for BridglT+ is generated using BridglT'®. The standard BridglT output has a
similarity score for each predicted EC number. The reactive site is identified using BNICE.ch'3
reaction rules, the fingerprint is generated, and the EC number and score are predicted as
described in the original BridgIT publication. Alternatively, any set of EC numbers per reaction
can be used as input.

e Constructing EC-specific profiles with BridgIT+

As input to the BridglT+ workflow for creating profiles, we collected known EC numbers
(reference ECs). To create a BridglT+ profile, the collected ECs (1) needed to have a four-
level EC number defined, (2) were linked to at least two protein sequences in total, (3) were
linked to at least one metabolic reaction in the public databases, (4) the linked reaction was
reconstructed with an enzymatic rule, and (5) the linked reaction participants were fully
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structured (e.g., not including proteins or polymers). ECs satisfying criteria (1)-(5) were eligible
for BridglT+ processing and were considered for proteome annotation. Similarly, orphan
reactions for which a profile is created should be reconstructed with an enzymatic reaction
rule and be fully structured to be processable. The reference EC numbers were used to query
the LCSB database to find all linked biochemical reactions. Next, we used BridgIT to find the
most similar reactions to the extracted biochemical reactions with the reactive site-centric
fingerprints. The EC classes were collected from the BridglT output depending on the
prediction score threshold and distance from the reactive site (level). The EC numbers
associated with the most similar reactions designated the candidate’s promiscuous activities.
The ranked list of EC numbers was used to collect sequences from protein databases (such
as UniProt'®). We used the MAFFT (Multiple Sequence Alignment by the Fast Fourier
Transform) method'” to align reference sequences with clustered promiscuous sequences.
MAFFT method begins by creating a Multiple Sequence Alignment (MSA) of the reference
sequences, then aligns the promiscuous sequences cluster to the reference MSA (joint MSA).
Joint MSA preserves the biochemical knowledge of the reference EC number and takes
promiscuity into account. Finally, the alignment was used to generate enzymatic profiles
(BridgIT+ profiles) using PSI-BLAST.

¢ Predicting protein sequence for an orphan reaction

A single orphan reaction could be an input for the BridglT+ workflow to construct an orphan
reaction-specific profile and predict a protein to catalyze it. First, BridglT was used to find the
most similar reactions with complete EC class annotation. Corresponding EC classes were
collected, linked sequences requested from UniProt, aligned, and used to construct the
BridglT+ profile for the orphan reaction. This profile can be used to find a potential catalyzing
sequence within a specific organism or the whole set of sequences using RPS-BLAST.

e Sequence prediction and ranking for each BridgIT+ level profile

A collection of reference EC numbers can be used as BridglT+ input for protein function
annotation. After creating BridgIT profiles for all the reference EC numbers, they can be used
for annotating a genome using RPS-BLAST. Matching a BridgIT+ profile to a sequence implies
the catalytic activity and the corresponding reference EC number, with a bit-score of more
than 50 signifying the confidence of the predicted EC annotation.

e Comparison of BridgIT+ performance to PRIAM and DeepEC

In comparing BridglT+ with related tools, we have used a standard procedure and the optimal
thresholds for each tool. The following optimal thresholds were used: a bit score of 50 for
BridgIT+, e-value of 1030 for PRIAM, and default hyperparameters of DeepEC.

¢ Swiss-Prot database download

The set of annotated protein sequences was downloaded from
https://www.uniprot.org/uniprotkb?query=reviewed:true in August 2018.

¢ Acquiring Selenzyme results

Selenzyme results were retrieved in December 2021 based on KEGG identifiers from
http://selenzyme.synbiochem.co.uk.
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1.6  Data and code availability

The data and scripts used to produce, analyze, and visualize the results are available at
https://doi.org/10.5281/zenodo.8268529 . The code for the BridglT+ pipeline is available at
https://github.com/EPFL-LCSB/BridgITplus.
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