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1.1 Abstract 

Novel sequencing techniques and biochemical pathway prediction resources provide a wealth 

of data on novel proteins and computationally predicted enzymatic reactions. Accurate 

matching of protein sequences to enzymatic activities is crucial for advancing synthetic biology 

and metabolic engineering efforts. Here we present BridgIT+, a computational workflow that 

accounts for enzyme promiscuity and accurately predicts protein-reaction and reaction-protein 

associations. BridgIT+ builds upon the promiscuity-based method for annotating orphan and 

novel reactions with enzymatic activities, BridgIT, and utilizes position-specific scoring 

matrices (PSSM). The framework uses sequence alignment and enzyme promiscuity 

predictions to analyze protein sequences, identify sequence patterns, and create promiscuous 

protein sequence profiles for each reaction. These profiles allow us to predict the protein 

sequences most likely involved in the reaction. We showcase BridgIT+ by annotating (i) 

computationally predicted reactions with proteins and (ii) unannotated proteins of E. coli 

proteome with enzymatic functions. We demonstrated the performance of BridgIT+ on several 

biochemical assays and compared it to three current state-of-the-art methods for matching 

proteins and reactions. We anticipate that the proposed conceptual framework will enhance 

our understanding of gene-protein-reaction relations and advance biological sequence and 

reaction annotation in biology and synthetic biology studies.  
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1.2 Introduction  

While the number of fully sequenced genomes rapidly increases, their functional annotation 

lags behind1. It has been estimated that 30% of unannotated sequences have a metabolic 

function, indicating the critical knowledge gap in our understanding of enzymes and their role 

in cellular metabolism2. This gap exists because functional annotation of uncharacterized 

enzymes requires extensive in vitro and in vivo experiments. Computational methods 

(Supplementary material 1) can significantly reduce the time and cost of this process.  

For enzymatic function annotation, researchers use enzymatic function descriptors3, such as 

the Enzyme Commission (EC) number, which systematically classifies enzymes based on the 

associated biochemical reactions. Current computational methods focus on inferring the EC 

number from a sequence using mainly two approaches: (i) data-driven approaches based on 

machine learning and (ii) homology-based approaches based on the available biochemical 

knowledge4. In recent studies, machine learning (ML) has been successfully used in all stages 

of protein annotation, from structural prediction to functional analysis5. For example, DeepEC 

correctly annotated protein sequences with EC numbers with high precision and sensitivity6. 

However, ML-driven results often need more interpretability and heavily depend on the dataset 

structure and training parameters7. In comparison, homology-based methods use a rational 

approach to identify evolutionarily conserved sequence patterns often representing the protein 

function. For example, PRIAM employs EC-based enzymatic profiles to account for the 

relationship between chemistry and enzyme sequences and improve the functional annotation 

of uncharacterized sequences4. The basic premise of protein homology is that similar 

sequences are derived from a common ancestor and have the same function8. However, this 

assumption cannot explain the functional similarity of orthologs or the different functionality 

between paralogs4. Another major limitation of current homology-based methods is that they 

can only functionally annotate a protein with similarity to other sequenced proteins3. Therefore, 

we need new approaches to broaden the search space for functional annotation of proteins.6 

The links between chemistry and protein sequences are intricate, and phenomena such as 

the substrate promiscuity of the enzymes9 should be considered in the enzyme annotation 

process. This idea was put forward in the BridgIT10 method, showing that enzyme promiscuity 

is essential for discovering the secondary functions of enzymes. BridgIT uses reactive-site-

specific fingerprints, originating from the expert-curated biochemical reaction rules11–14, to 

match reactions based on structural and functional similarity and predict the EC class for 

orphan and novel reactions.  

Here, we present BridgIT+, an approach that goes beyond BridgIT capabilities and directly 

links orphan protein sequences and orphan reactions. In contrast to prominent enzyme 

annotation tools DeepEC and PRIAM that assign the EC class to protein sequences, BridgIT+ 

assigns reactions to protein sequences. Indeed, it captures enzymatic functions based on the 

reaction mechanism similarity rather than relying on the EC classification. This way, BridgIT+ 

overcomes limitations imposed by the EC classification such as misclassification, unclassified 

reactions, EC classes missing assigned protein sequences, and the possibility of neglecting 

promiscuous candidate enzymes belonging to other EC classes. Our studies demonstrate that 

enrichment with functionally close promiscuous enzymes improves the functional enzyme 

sequence annotation compared to DeepEC and PRIAM. We also compare our method to 

Selenzyme15, a reference tool for predicting protein sequences of orphan biochemical 
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reactions, and obtain improved predictions. We validate BridgIT+ predictions through three 

studies involving experimentally confirmed reaction-protein associations. Finally, we illustrate 

its applicability through two studies by (i) annotating novel reactions in metabolic pathway 

design; and (ii) proposing function for 144 poorly annotated sequences in the E. coli genome. 

1.3 Results and discussion 

1.3.1 BridgIT+ method 

Briefly, the BridgIT+ workflow can perform two annotation tasks that link: (i) an orphan and 

novel computationally predicted reactions with proteins and (ii) orphan proteins with enzymatic 

functions. The core building block in both tasks is the creation of BridgIT+ PSSM profiles 

(Figure 1a). The input to this block is a collection of EC numbers. Whereas in our studies we 

select EC numbers based on promiscuity using BridgIT10, this input can be provided from other 

sources such as experimental studies and other computational prediction methods. The 

creation of these profiles is organized into three main steps: (1) identifying protein sequences 

from the UniProt database16 that correspond to the collected EC numbers; (2) sequence 

alignment using MAFFT17; and (3) creation of the enzymatic profiles corresponding to the 

aligned sequences, BridgIT+ PSSM profiles, using PSI-BLAST18. 

For annotating an orphan or a novel reaction with proteins (task (i)), the workflow uses BridgIT 

to provide a collection of promiscuous EC numbers corresponding to this reaction (Figure 1b). 

We then use this collection to compute PSSM profiles, and we screen these profiles against 

databases of known sequences such as TrEMBL and Swiss-Prot19 using RPS-BLAST18. The 

pipeline output is a ranked protein sequence set that matches the orphan or novel reaction. 

To perform task (ii), annotating orphan proteins with enzymatic functions, we use RPS-BLAST 

to screen the orphan sequence against the previously created database of BridgIT+ PSSM 

profiles of known reactions (Methods). The database of BridgIT+ PSSM profiles can be 

extended by creating PSSM profiles of new reactions using BridgIT and the BridgIT+ core 

building block (Figures 1a and 1c). 
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Figure 1. The BridgIT+ framework. a. General pipeline for the generation of BridgIT+ PSSM profiles structured in 

three steps: (1) identifying protein sequences of promiscuous enzymes (UniProt), (2) sequence alignment 

(MAFFT), and (3) creation of the enzymatic profiles of the aligned sequences (PSI-BLAST). BridgIT+ enzymatic 

profiles are employed for the annotation of: b. orphan reactions with enzymatic sequence and c. unannotated 

sequences with known reactions.  

1.3.2 Validation against biochemical assays 

To assess BridgIT+ performance using experimentally confirmed reaction-protein 

associations, we performed three validation studies using biochemical knowledge originating 

from the previous versions of the KEGG database, namely v.2011 and v.2015. Using the 
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biochemical information from the earlier versions of the KEGG database allows us to 

demonstrate BridgIT+ capability to predict reaction-protein relations confirmed by the later 

database versions (v.2021). In the validation studies, we endeavored to (A) match the orphan 

reactions and orphan proteins from the KEGG v.2011 database to each other, (B) use the 

knowledge of KEGG v.2011 protein profiles to successfully match orphan reactions to proteins 

later added in the KEGG database, and (C) find protein sequences for confirmed novel 

reactions predicted in 2015 and whose protein sequences were annotated between 2015 and 

2021 (Figure 2).  

 

Figure 2. Design of validation studies of BridgIT+ against biochemical assays. a. Mapping orphan reactions to 

orphan sequences, both available in public databases in 2011, but not linked to each other. b. Mapping orphan 

reactions from 2011 to novel sequences added to public databases in 2012-2021. c. Mapping novel reactions 

computationally predicted in 2015 to protein sequences added to public databases in 2015-2021. 
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A. BridgIT+ correctly matches orphan reactions to orphan sequences 

In the KEGG and UniProt databases released in 2011, we found seven orphan reactions that, 

in the later versions of KEGG, became associated with orphan protein sequences of UniProt 

v.2011. To be more specific, the UniProt v.2011 already contained protein sequences capable 

of catalyzing these reactions, but their functions still needed to be discovered. Their enzymatic 

activities were later discovered, assigned to new EC numbers, and linked to the KEGG 

reactions. Matching directly orphan reactions to orphan sequences is more challenging than 

assigning a reaction to an EC number and an EC number to a protein sequence because the 

EC numbers corresponding to these enzymatic activities were unknown in 2011. Indeed, 

methods that require information about the EC classification, such as DeepEC and PRIAM, 

cannot be used to perform this task. Since these enzymatic activities have been 

experimentally confirmed using biochemical assays, we used these seven reactions as a 

benchmark to evaluate the BridgIT+ performance. 

To this end, we formed the BridgIT reference reaction database using the reactions from 

KEGG v.2011, and we created the BridgIT+ protein profiles based on the protein sequences 

in Swiss-Prot v.2011 (Methods). The BridgIT+ profiles represent the alignment of promiscuous 

protein sequences proposed by BridgIT based on the structural similarity of their reactions. 

We then performed a homology search between each orphan protein in UniProt v.2011 and 

BridgIT+ profiles using the RPS-BLAST program. Finally, we compared the BridgIT+ 

annotation results with the approved enzyme assignments in later versions of KEGG. 

Remarkably, BridgIT+ matched the seven orphan reactions to their correct orphan sequences 

and three-level EC numbers corresponding to the reaction mechanism (Table 1). 

Table 1. Annotation of formerly orphan KEGG reactions with protein sequence using the 2011 version of 

BridgIT+ reference profiles.  

KEGG EC numbers used in BridgIT+ Profile E-value bit-score Entry EC number 

R08124 2.7.1.45  

2.7.1.13  

2.7.1.58 4.81E-22 88 P45543 2.7.1.218 

R08619 2.3.3.3  

2.3.1.182  

2.3.3.6 

2.3.3.1 

2.3.3.14 

2.3.3.13 

1.27E-161 462 Q9FG67 2.3.3.17 

R08631 2.3.3.3 

2.3.1.182 

2.3.3.6 

2.3.3.1 

2.3.3.14 

2.3.3.13 

1.27E-161 462 Q9FG67 2.3.3.17 

R08640 2.3.3.3 

2.3.1.182 

2.3.3.6  

2.3.3.1 

2.3.3.14 

2.3.3.13 

1.27E-161 462 Q9FG67 2.3.3.17 

R03758 4.1.1.88 

4.1.1.9 

1.1.1.276 

1.1.1.85 

(+11 other EC) 

4.36E-17 73 P69936 1.1.1.381 

R07759 1.1.1.35 

1.1.1.211  

1.1.1.184 

(+54 other EC) 

3.39E-08 49 Q1DNC5 1.1.1.330 

R06687 2.1.1.83 

2.1.1.109 

2.1.1.128  

2.1.1.175  

(+56 other EC) 

1.94E-40 140 Q06528 2.1.1.292 

 

B. BridgIT+ correctly matches orphan reactions to newly added protein sequences 
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We used the trained profiles based on information from 2011 to determine whether BridgIT+ 

can link the orphan reactions in 2011 to the correct protein sequences added between 2012 

to 2021. Out of 234 orphan reactions in KEGG 2011 that became later non-orphan, 75 were 

structurally balanced and assigned to a new EC number, and we used them to test BridgIT+. 

37 out of 75 reactions were correctly mapped to their protein sequences with the exact four-

level EC number, demonstrating BridgIT+ ability to match reactions to enzymes with correct 

substrate specificity (Supplementary Table 1, bit-score: 23 to 1084). More strikingly, all 75 

reactions were linked to a protein sequence with the correct three-level EC number, indicating 

that our method matches reactions to enzymes with correct reaction mechanisms. In other 

words, BridgIT+ trained only on biochemical information from 2011 can correctly assign the 

orphan reactions from 2011 to protein sequences confirmed in later years.  

C. BridgIT+ correctly matches novel reactions to protein sequences 

The ATLAS of Biochemistry databases20–23 provide a comprehensive source of theoretically 

possible biochemical reactions. The first version of this database was centered around KEGG 

compounds available in 2015. In 2020, we found that the newly available biochemical data 

validated 107 novel reactions predicted in ATLAS 201521. Here, we examined the capability 

of BridgIT+ to assign correct protein sequences to these novel reactions. From 2015, Swiss-

Prot sequences were assigned to 83 out of 107 formerly novel reactions according to KEGG 

and Rhea databases. For these 83 reactions, we compared the validated protein sequence 

annotation with BridgIT+ predictions. These reactions have up to 255 unique validated 

sequences, with a median of 4 sequences per reaction. For 70 reactions (84%), experimentally 

assigned sequences identically matched the Swiss-Prot identifiers predicted by BridgIT+ 

(Supplementary Table 2). For 9 out of the remaining 13 reactions the BridgIT+ top-ranked 

enzyme sequence corresponded to the reaction mechanism with the identical three-level EC 

number as the queried reaction (Supplementary material 2). For one of the remaining 13 

reactions, only one protein sequence was available for the EC classes predicted with BridgIT; 

since this sequence was correctly matched, the BridgIT+ pipeline was superfluous. For the 

other two out of the remaining 13 reactions, even though the best EC number prediction 

according to BridgIT was correct, BridgIT+ could correctly capture the reaction mechanism 

only if we neglected the enzyme promiscuity (Supplementary material). Finally, one reaction 

did not have information about the reaction mechanism because only a two-level EC number 

was assigned to it (Supplementary material). Overall, these results demonstrate the predictive 

capabilities of BridgIT+ for novel reactions because it assigned identical or matching rection 

mechanism protein sequences for 79 of 83 formerly novel reactions (95%). 

We next compared the predictions for KEGG and Rhea databases separately. Of 60 reactions 

with manually annotated protein sequences in Rhea, 51 had a correct protein sequence 

assigned with BridgIT+. Similarly, for 50 out of 59 reactions with Swiss-Prot protein annotation 

in KEGG, BridgIT+ performed correct sequences assignment. These results indicate that 

BridgIT+ is agnostic to the source of reactions and that it performs equally well for the Rhea 

and KEGG databases.  

1.3.3 Comparison with other tools  

Protein sequence annotation. Annotating sequences with enzymatic function is valuable for 

the prediction of metabolic phenotypes of organisms based on sequenced genomes. We 
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compared the protein annotation performance of BridgIT+ (using the EC-based profiles) with 

the representative tools in the field: DeepEC and PRIAM. 

We evaluated the prediction performances of the three tools for annotating Swiss-Prot 

sequences (Table 2). We selected Swiss-Prot as ground truth for comparison because it has 

been expertly annotated using a state-of-the-art methodology (automated screening) and 

current biological knowledge (human inspection). For each enzyme sequence, we counted 

how many enzyme activities predicted by these tools were reported in Swiss-Prot (true 

positive, TP), not reported (probable false positive, FP), and how many activities reported in 

Swiss-Prot were missed by the tool (false negative, FN). We evaluated the quality of the 

predictions using the accuracy ! !"#	!%

!"#&"#!%#&%
", precision ! !"

!"#&"
", recall ! !"

!"#&%
", F1 score  (2	 ;

'()*+,+-.	;	()*011

'()*+,+-.	#	()*011
), and area under the curve (AUC) measures. Since there is no systematic 

testing for the absent enzymatic activities of enzymes reported to Swiss-Prot, the true negative 

(��) measure and associated statistical metrics could not be estimated.  

BridgIT+ outperformed PRIAM and DeepEC in this task regarding all measured performance 

indicators (Table 2). We obtained a larger area under the ROC24 curve (AUC) in BridgIT+ 

predictions (0.91) compared to PRIAM (0.83) and DeepEC (0.65). Moreover, BridgIT+ 

precision and recall indicators (0.98 and 0.95, respectively) were superior compared to 

DeepEC (0.89, 0.82) and PRIAM (0.87, 0.81). We also noted that BridgIT and PRIAM 

demonstrate a better ability to discriminate the EC numbers than DeepEC due to the 

advantage of homology-based tools over the neural networks for the sequence annotation 

with few known homology instances per EC number. We argue that the improvement in the 

performance of BridgIT+ was achieved by enriching the profiles with promiscuous sequences 

assigned to alternative EC numbers.  

Table 2. Comparison of the accuracy, F1 score (the harmonic mean of precision and recall), precision, 
recall, and AUC (the area under the curve) for the three tools annotating Swiss-Prot sequences. The 
selected threshold (bit-score for PRIAM and BridgIT+, the score for DeepEC) is based on the best F1 
score. The number of processable by the tool unique protein sequences is indicated for each tool. 

 Accuracy F1 Precision Recall AUC Selected 
threshold  

# protein 
sequences 

PRIAM 0.81 0.83 0.87 0.81 0.83 244 82’089 

DeepEC 0.83 0.85 0.89 0.82 0.65 0.99 213’320 

BridgIT+ 0.95  0.96 0.98 0.95 0.91 574 93’446 

 

Reaction annotation with protein sequences. To comparatively evaluate BridgIT+ 

performance in this task, we used the standard tool for linking reactions to protein sequences, 

Selenzyme15.  Selenzyme was published in 2018, and we could not modify the tool's reference 

set, train it based on information from 2011, and perform a fair comparison. Nevertheless, we 

used the current version of Selenzyme to annotate the seven orphan reactions that BridgIT+ 

correctly matched to the orphan sequences (see Validation against biochemical assays and 

Supplementary Table 3). In the list of top 50 candidates per reaction Selenzyme provided, we 
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could find a protein sequence with the correct EC number for only 5 out of 7 reactions. This 

result suggests that BridgIT+ performs better than Selenzyme for establishing protein-reaction 

associations.  

1.3.4 Applications  

BridgIT+ facilitates enzyme discovery in metabolic pathway design. Microbial 

biosynthesis is one of the most effective approaches to producing complex compounds such 

as natural pharmaceuticals25. To guide and accelerate the design of biosynthesis pathways 

toward biochemicals, computational tools for enzyme discovery are essential. In a recent 

study, Srinivasan et al. implemented the conversion of hyoscyamine and scopolamine to 

cognate N-oxides to produce natural plant products in yeast using two novel ATLAS reactions 

along with their putative enzyme candidates suggested by BridgIT26. BridgIT proposed 

senecionine N-oxygenase (EC 1.14.13.101) as the best candidate for both conversions. 

Srinivasan et al. analyzed the activity of 3 orthologs of this enzyme from three different species 

in yeast: TjSNO from Tyria jacobaeae (cinnabar moth), GgPNO from Grammia geneura 

(Nevada tiger moth), and ZvPNO from Zonocerus variegatus (harlequin locust). They finally 

reported the highest heterologous production of hyoscyamine N-oxide and scopolamine N-

oxide by the yeast strain expressing ZvPNO. 

Here, instead of proposing EC numbers, we go further with BridgIT+ and annotate these two 

novel ATLAS reactions with a ranked list of candidate protein sequences. If BridgIT+ were 

available at the time, it would replace the manual work of selecting the best protein candidates 

for the EC numbers. Following the BridgIT+ pipeline, we trained an enzyme promiscuity-

enriched profile for each novel reaction. Then, we used RPS-BLAST to search and rank the 

enzyme orthologs from different species in Swiss-Prot and TrEMBL databases 

(Supplementary Table 4). Finally, we compared the results of BridgIT+ with the experimental 

results by Srinivasan et al. In the ranking results of BridgIT+, ZvPNO (bit scores: 96.8 and 

94.5) ranked higher compared to TjSNO (with bit scores 76.4, 74) and GgPNO (with bit scores: 

74, 71.3), thus matching the experimental observations closely. These results indicate that 

BridgIT+ can provide precise enzyme sequence predictions for annotating computationally 

predicted reactions, facilitating the metabolic pathway design. 

 

BridgIT+ correctly annotated enzyme activities in the whole genome of E. coli and 

proposed function for 144 poorly annotated sequences. The rate of protein functional 

elucidation needs to catch up to the pace of gene and protein sequence discovery, leading to 

an accumulation of proteins with unknown functions. Escherichia coli, perhaps the best-

studied model organism extensively annotated in the Swiss-Prot database, is not an 

exception. Recent studies show that 1’431 proteins (35%) of E. coli are still not functionally 

annotated27. 

To analyze the capabilities of BridgIT+ for genome annotation, we applied BridgIT+ profiles to 

the E. coli K-12 proteome and compared BridgIT+ results with the manual annotation in Swiss-

Prot (Figure 3, A). Out of 1’130 EC numbers linked to 6’066 protein entries in Swiss-Prot, 603 

EC numbers associated with 686 proteins could be processed by BridgIT+ (Methods). Of the 

603 EC numbers, 598 (98%) linked to 660 protein sequences were correctly annotated by 

BridgIT+ (Figure 3, B). The remaining five EC numbers had assigned highly promiscuous EC 
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numbers with very broad substrate specificity (3.5.2.6, 3.1.1.5, 2.5.1.18, 3.1.3.2, and 3.2.1.21). 

A possible way to annotate enzymes with such broad substrate specificity with BridgIT+ is to 

remove the promiscuity from consideration. This way, the BridgIT+ profile would be more 

specific to substrates of metabolic reactions during the homology search.  

We next used BridgIT+ to address the need for genome functional annotation. BridgIT+ 

annotated 144 E. coli sequences currently missing a four-level EC number with 110 unique 

four-level EC numbers (Figure 3, C). The identified EC numbers correspond to reactions not 

currently cataloged in the E. coli metabolism. These results suggest that BridgIT+ can fill the 

metabolic gaps and annotate new biochemical pathways in any sequenced genome.  

 

Figure 3. Annotation of E. coli proteome using BridgIT+ reference profiles. a. Schematic representation of the 

approach used to annotate an organism proteome with BridgIT+ profiles. b. Bit-score for 598 reactions correctly 

linked to 660 protein sequences by BridgIT+. c. Bit-score for 144 E. coli sequences without 4-level EC number 

annotation assigned with 110 unique four-level EC numbers using BridgIT+ profiles.  

1.4 Conclusions 

The wealth of genome and proteome data calls for robust methods for the functional 

annotation of genes and proteins. A prominent approach leveraging multiple sequence 

alignment for annotations is PRIAM4. It collects sequences per EC number and creates 

position-specific scoring matrices (PSSM) for homologous modules found within each 

enzyme-specific collection. Recently, a deep learning approach DeepEC6 outperformed 

PRIAM primarily due to its sensitivity to nonlinearities introduced by mutated domains and 

binding site residues. Still, scarce data for some EC classes hinder DeepEC’s performance, a 

common drawback of deep learning approaches. Both DeepEC and PRIAM link enzyme 

functionality to protein sequences through EC numbers. However, knowledge of EC numbers 
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is not always sufficient for establishing protein-reaction associations because multiple proteins 

can catalyze reactions with a single four-level EC number. Additionally, EC numbers do not 

capture the evolutionary changes of enzymes. Indeed, it was reported that approximately 40% 

of enzymes have evolved to completely new functionality, i.e., to EC classes differing in the 

first digit of EC9. Therefore, relying entirely on EC can lead to erroneous predictions. 

Here proposed method, BridgIT+, bases its reaction-protein associations on the individual 

reaction mechanisms rather than on a human-error-prone EC classification. In other words, 

whereas EC-based approaches indicate which proteins best represent EC numbers, BridgIT+ 

answers which proteins best represent reactions. Similar to the previously proposed method 

BridgIT, which outperformed peers for reaction annotation with EC numbers16, BridgIT+ 

leverages knowledge of reaction mechanisms and enzyme promiscuity to annotate reactions 

with protein sequences likely to catalyze these reactions. BridgIT+ can be used on current 

reaction and protein databases to draw meaningful functional associations between the two. 

Building this direct link allows us to go beyond EC numbers and provide interpretable 

predictions for sequences and reactions lacking EC annotation. 

Comparing our method to experimental biochemical assays, we demonstrated that BridgIT+ 

could successfully match the orphan reactions and orphan proteins available in the databases 

but missed the link to each other. We have also shown that our method can successfully use 

the current biochemical knowledge contained in reaction and protein databases to match 

future orphan reactions and proteins.  

BridgIT+ brings significant advantages compared to existing methods as it does not require 

extensive data, e.g., for neural network training, and adds promiscuity into consideration to 

improve the prediction in case of the absence of homology. Compared to DeepEC, PRIAM, 

and Selenzyme, the observed improvement in performance is brought about by grouping 

reference sequences based on their catalytic function. BridgIT+ produces a ranked list of 

protein sequences for any reaction and can be adapted to any specific organism or application. 

We expect that BridgIT+ predictive capabilities will grow as more enzyme sequences are 

introduced into protein sequence databases and more reaction mechanisms are discovered 

and cataloged. 

1.5 Methods 

• Curating input for BridgIT+ 

The input for BridgIT+ is generated using BridgIT10. The standard BridgIT output has a 

similarity score for each predicted EC number. The reactive site is identified using BNICE.ch13 

reaction rules, the fingerprint is generated, and the EC number and score are predicted as 

described in the original BridgIT publication. Alternatively, any set of EC numbers per reaction 

can be used as input. 

• Constructing EC-specific profiles with BridgIT+ 

As input to the BridgIT+ workflow for creating profiles, we collected known EC numbers 

(reference ECs). To create a BridgIT+ profile, the collected ECs (1) needed to have a four-

level EC number defined, (2) were linked to at least two protein sequences in total, (3) were 

linked to at least one metabolic reaction in the public databases, (4) the linked reaction was 

reconstructed with an enzymatic rule, and (5) the linked reaction participants were fully 
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structured (e.g., not including proteins or polymers). ECs satisfying criteria (1)-(5) were eligible 

for BridgIT+ processing and were considered for proteome annotation. Similarly, orphan 

reactions for which a profile is created should be reconstructed with an enzymatic reaction 

rule and be fully structured to be processable. The reference EC numbers were used to query 

the LCSB database to find all linked biochemical reactions. Next, we used BridgIT to find the 

most similar reactions to the extracted biochemical reactions with the reactive site-centric 

fingerprints. The EC classes were collected from the BridgIT output depending on the 

prediction score threshold and distance from the reactive site (level). The EC numbers 

associated with the most similar reactions designated the candidate’s promiscuous activities. 

The ranked list of EC numbers was used to collect sequences from protein databases (such 

as UniProt16). We used the MAFFT (Multiple Sequence Alignment by the Fast Fourier 

Transform) method17 to align reference sequences with clustered promiscuous sequences. 

MAFFT method begins by creating a Multiple Sequence Alignment (MSA) of the reference 

sequences, then aligns the promiscuous sequences cluster to the reference MSA (joint MSA). 

Joint MSA preserves the biochemical knowledge of the reference EC number and takes 

promiscuity into account. Finally, the alignment was used to generate enzymatic profiles 

(BridgIT+ profiles) using PSI-BLAST. 

• Predicting protein sequence for an orphan reaction 

A single orphan reaction could be an input for the BridgIT+ workflow to construct an orphan 

reaction-specific profile and predict a protein to catalyze it. First, BridgIT was used to find the 

most similar reactions with complete EC class annotation. Corresponding EC classes were 

collected, linked sequences requested from UniProt, aligned, and used to construct the 

BridgIT+ profile for the orphan reaction. This profile can be used to find a potential catalyzing 

sequence within a specific organism or the whole set of sequences using RPS-BLAST. 

• Sequence prediction and ranking for each BridgIT+ level profile 

A collection of reference EC numbers can be used as BridgIT+ input for protein function 

annotation. After creating BridgIT profiles for all the reference EC numbers, they can be used 

for annotating a genome using RPS-BLAST. Matching a BridgIT+ profile to a sequence implies 

the catalytic activity and the corresponding reference EC number, with a bit-score of more 

than 50 signifying the confidence of the predicted EC annotation. 

• Comparison of BridgIT+ performance to PRIAM and DeepEC 

In comparing BridgIT+ with related tools, we have used a standard procedure and the optimal 

thresholds for each tool. The following optimal thresholds were used: a bit score of 50 for 

BridgIT+, e-value of 10-30 for PRIAM, and default hyperparameters of DeepEC. 

• Swiss-Prot database download 

The set of annotated protein sequences was downloaded from 

https://www.uniprot.org/uniprotkb?query=reviewed:true in August 2018. 

• Acquiring Selenzyme results 

Selenzyme results were retrieved in December 2021 based on KEGG identifiers from 

http://selenzyme.synbiochem.co.uk.  
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1.6 Data and code availability 

The data and scripts used to produce, analyze, and visualize the results are available at 

https://doi.org/10.5281/zenodo.8268529 . The code for the BridgIT+ pipeline is available at 

https://github.com/EPFL-LCSB/BridgITplus.  
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