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Abstract

Articulography and functional neuroimaging are two major tools for studying the neurobiology of

speech production. Until now, however, it has generally not been feasible to use both in the same

experimental setup because of technical incompatibilities between the two methodologies. Here

we describe results from a novel articulography system dubbed Magneto-articulography for the

Assessment of Speech Kinematics (MASK; Alves et al., 2016), which is technically compatible

with magnetoencephalography (MEQG) brain scanning systems. In the present paper we describe

our methodological and analytic approach for extracting brain motor activities related to key

kinematic and coordination event parameters derived from time-registered MASK tracking

measurements (Anastasopoulou et al., 2022). Data were collected from ten healthy adults with

tracking coils on the tongue, lips, and jaw. Analyses targeted the gestural landmarks of reiterated

utterances /ipa/ and /api/, produced at normal and faster rates (Anastasopoulou et al., 2022; Van

Lieshout, 2007). The results show that (1) Speech sensorimotor cortex can be reliably located in

peri-rolandic regions of the left hemisphere; (2) mu (8-12 Hz) and beta band (13-30 Hz)

neuromotor oscillations are present in the speech signals and contain information structures that

are independent of those present in higher-frequency broadband noise signals associated with overt

speech movements in the MEG scanner; and (3) kinematic parameters of speech movements can

be mapped on to neuromagnetic brain signals using multivariate pattern analytic techniques. These

results show that MASK provides the capability, for the first time, for deriving subject-specific

articulatory parameters, based on well-established and robust motor control parameters, in the

same experimental setup as the brain recordings and in temporal and spatial co-register with the

brain data. The co-registered MASK data improves the precision and inferential power of MEG

measures of speech-related brain activity compared to previous methodological approaches. This

new capability for measuring and characterising speech movement parameters, and the brain

activities that control them, within the same experimental setup, paves the way for innovative

cross-disciplinary studies of neuromotor control of human speech production, speech

development, and speech motor disorders.
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Introduction

In recent years, systematic studies of speech motor control in the human brain have significantly
expanded our understanding of the neural foundations of expressive speech. Converging evidence
now points to a comprehensive re-evaluation of conventional and long-held theoretical models of
speech production (see recent reviews by Hickok & Venezia, 2023 and Silva et al., 2022). This re-
evaluation is ongoing and rapidly evolving, but there is an emerging shift away from the traditional
Wernicke-Geschwind model’s emphasis on Broca's region in the left hemisphere, and towards a
greater recognition of the computational roles and network connections of various premotor,
motor, sensory, and insular regions of the cerebral neocortex (Hickok & Venezia, 2023).

Much of the information that informs these new models comes from non-invasive
neuroimaging techniques, predominantly functional magnetic resonance imaging (fMRI)
(Bohland & Guenther, 2006; Peeva et al., 2010; Pang et al., 2011; Behroozmand et al., 2015; Rong
et al., 2018; Tourville et al., 2019; Heim & Specht, 2019) and associated techniques including
diffusion tensor imaging (DTI) (Catani & Forkel, 2019; Chang et al., 2020; Janssen et al., 2022).

Non-invasive  electrophysiology =~ with  electroencephalography  (EEG)  and
magnetoencephalography (MEG) have added important detail regarding timing of neuronal
processing events (Munding et al., 2016; Salmelin et al., 2019; Leckey & Federmeier, 2019).
Finally, recent years have provided an increasing amount of very highly detailed
electrophysiological evidence from invasive electrophysiological (electrocorticography; ECoG)
recordings of speech motor regions in neurosurgical patients (Bouchard et al., 2013; Ramsey et
al., 2018; Chartier et al., 2018; Silva et al., 2022).

Current evidence is clear that spoken language processing draws on a complex set of neural
computations performed in a widely distributed set of brain regions (Levelt et al., 1998; Munding
et al., 2016; Carota et al., 2022). These computations range from abstract and high-level aspects
of semantics and syntactics to the low-level sensorimotor processes that directly control and
modulate the overt movements of speech articulators of the peripheral vocal tract (Indefrey &
Levelt, 2000; Tong et al., 2022). Experimental and clinical protocols for mapping of expressive
speech centres therefore employ a wide variety of speech tasks according to their specific
experimental or clinical aims (Salmelin et al., 2019). Speech tasks can be variously deployed to
emphasise different aspects of spoken language processing: Story listening, object naming,
rhyming, and covert word production invoke relatively high level linguistic processes and have
been shown to reliably activate distributed areas of prefrontal, temporal and parietal cortex,
including Broca’s area in the left hemisphere (Bowyer et al., 2005; Doesburg et al., 2016; Kadis
etal., 2011; Youssofzadeh & Babajani-Feremi, 2019; Correia et al., 2020); while in contrast, non-

word/pseudoword tasks are intended to limit the requirements for semantic, syntactic and
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attentional processing and elicit neural activity that is more restricted to brain regions associated

with sensorimotor processes (Frankford et al., 2021).

The subject of the current paper is set within the context of low-level speech motor control:

the phonological, phonetic, and sensorimotor processes that fairly directly control and/or modulate

the neuromuscular output to the articulators. In this context, an important methodological

limitation of current neuroimaging research is that, with rare exceptions (Chartier et al., 2018;

Mugler et al., 2018; Ouyang et al., 2016), researchers obtain little or no information about the

actual movements of said articulators. This is a fundamental limitation in light of evidence that

speech (and other movements) is encoded in the form of kinematic movement trajectories in

neurons in primary motor cortical neurons (Chartier et al., 2018; Conant et al., 2018; Kolasinski

et al., 2020). Such essential information is technically difficult to obtain for crucially important

articulators (such as the tongue) which are located out of the line of sight within the oral cavity.

Unfortunately, specialised electromagnetic and ultrasound articulography techniques that are

capable of non-line-of-sight speech tracking are technically incompatible with the scanner

environments used for functional imaging with fMRI and MEG (Anastasopoulou et al., 2022).

In the following, we describe our method for linking speech kinematics to brain activity

using a novel MEG setup. This setup enables us to simultaneously and accurately measure speech

movements and brain function. The system, termed Magnetoencephalography for Assessment of

Speech Kinematics (MASK), can track the independent motion of up to 12 lightweight coils that

are similar in size and shape to the tracking coils used in conventional electromagnetic

articulography (EMA). In contrast to the passive induction coils used in EMA, MASK coils are

actively energized by sinusoidal currents, and their associated magnetic fields are measured by the

MEG sensors.

To distinguish between the coil fields and brain activities, we drive the tracking coils at

frequencies higher than 200 Hz, which allows us to separate coil fields from brain activities that

primarily occur at frequencies lower than 100 Hz. To determine the coil positions we use the same

computational algorithms used in conventional MEG to localize and track head positioning and

movement. Line-of-sight is not required, permitting tracking of all oral articulators, including the

tongue.

MASK evaluates coil positions every 33 ms for movement tracking at rates up to 50 cm/s

(Alves et al., 2016). Spatial accuracy depends on the distance of the tracking coils from the MEG

sensor array. For coils that are close to the array (like those on the tongue), the accuracy is less

than 1 mm relative position error, similar to the standard MEG head position indicator coils.

However, for coils that are more distant from the helmet sensor array (like those on the lower lip),

spatial accuracy decreases non-linearly to approximately 1-2 mm.
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In a previous paper we have described in detail movement parameters (amplitude, duration,
velocity) and interarticulator phase relationships derived from direct MASK measurements of
articulator movements; and have demonstrated that MASK reliably characterizes key kinematic
and movement coordination parameters of speech motor control with a resolution that is
comparable to standard electromagnetic articulography devices (Anastasopoulou et al., 2022). In
the present work we proceed to describe our methodology for separating speech-related brain
signals from MASK signals; for localising these in space and time-frequency, and for establishing

a mapping between kinematic parameters and brain activities.
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Methods

Participants. Ten healthy adults participated in this study (4F; mean age 32.5, range 19.7- 61.8;
all right-handed as assessed by the Edinburgh Handedness Inventory). All participants were fluent
speakers of English; Nine were native English speakers, one participant’s first language was
Mandarin. All procedures were approved by the Macquarie University Human Research Ethics
Committee.

MEG scans. Speech tracking data and neuromagnetic brain activity were recorded concurrently
with a KIT-Macquarie MEG160 (Model PQ1160R-N2, KIT, Kanazawa, Japan) whole-head MEG
system consisting of 160 first-order axial gradiometers with a 50-mm baseline (Kado et al., 1999;
Uehara et al., 2003). MEG data were acquired with analogue filter settings as 0.03 Hz high-pass,
1000 Hz low-pass, 1000 Hz sampling rate and 16-bit quantization precision. Measurements were
carried out with participants in supine position in a magnetically shielded room (Fujihara Co. Ltd.,
Tokyo, Japan).

Structural scans. T1-weighted anatomical magnetic resonance images (MRIs) were acquired for
all participants in a separate scanning session using a 3T Siemens Magnetom Verio scanner with
a 12-channel head coil. Those anatomical images were obtained using 3D GR\IR scanning
sequence with the following acquisition parameters: repetition time, 2000 ms; echo time, 3.94 ms;
flip angle, 9 degrees; slice thickness, 0.93 mm,; field of view, 240 mm; image dimensions, 512 x
512 x 208.

Procedure. Five head position indicator coils (HPI) were attached in the head in an elastic cap,
and their positions were measured at the beginning and at the end of the experiment, with a
maximum displacement criterion of <5 mm in any direction. The coils’ positions with respect to
the three anatomical landmarks (nasion, right and left preauricular landmarks) were measured
using a handheld digitiser (Polhemus FastTrack; Colchester, VT).

MASK coils were placed at mid-sagittal positions on the vermilion border of the upper lip
(UL) and lower lip (LL), the tongue body (TB; 2 cm from the tongue tip) and the lower incisor
(JAW) sensor which was attached to a thin thermoplastic mould. Tongue sensors were attached
with surgical glue (Epiglu, MajaK Medical Brisbane; Australia), while lip sensors were attached
with surgical tape.

MEG time-aligned speech was recorded in an auxiliary channel of the MEG setup with the
same sample rate (1000 Hz) as the MEG recordings. An additional speech recording was obtained
with an optical microphone (Optoacoustics, Or-Yehuda, Israel) fixed on the MEG dewar at a
distance of 20 cm away from the mouth of the speaker; and digitised using a Creative sound blaster
X-Fi Titanium HD sound card (Creative, Singapore) with 48 kHz sample rate and 24-bit

quantization precision. The higher resolution recordings were aligned off-line using the MATLAB
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alignsignals function to the MEG speech channel to bring them into time register with the

neuromagnetic data.

Experimental protocol: Participants performed four speech production tasks and one manual

button press task. Speech productions were non-word disyllabic sequences with a VICV2

structure, /ipa/ and /api/, and each was produced in a reiteration fashion at normal and faster rates.

The tongue and lip gestures for /ipa/ and /api/ are mirror reversed in phase, providing a robust

behavioural contrast in terms of interarticulator coordination (Anastasopoulou et al., 2022).

Variations in speech rate were used as a control variable to examine the intrinsic stability of the

coordination (Kelso 1986, Van Lieshout et al., 1996). Asking participants to change their speaking

rate (frequency of executed movements) is a typical characteristic of studies which investigate

coordination dynamics (Kelso, 1995, Van Lieshout et al., 1996). The same reiterated stimuli have

been used in previous studies investigating speech motor control strategies in normal and in

disordered populations (Van Lieshout et al. 1996; Van Lieshout et al. 2002; Van Lieshout et al.

2007; Van Lieshout, 2017). Nonword stimuli with no linguistic information avoid familiarity

issues (Van Lieshout, 2017) and have been widely used in the literature to investigate normal and

pathological function in speech motor control (Murray et al., 2015; Case & Grigos, 2020).

Participants performed manual button presses on a response pad with the index finger of

their dominant hand at a self-paced rate of about 1 per 2 seconds.

Participants were presented with a fixation cross on a display screen and instructed to take

a deep breath. The stimulus nonword then appeared on the screen for 12 sec. For the normal rate

production, participants were required to utter productions at a normal, comfortable rate as they

would do while conversing with a friend, until the stimulus nonword disappeared from the screen.

For the faster rate, they were instructed to produce the stimuli as fast as possible while maintaining

accuracy (Van Lieshout et al. 2002). Following Van Lieshout (2007), we refer to the reiterated

productions generated within the span of a breath intake as a “trial set”. A short break was provided

after each trial set. Participants generated about 10 individual productions in each normal rate trial

set and about 12 individual productions in each faster rate trial set. Since 100+ individual trials (in

this case, individual nonword productions) are typically required for downstream analyses of MEG

data, the number of trials was increased to 10 trial sets at each rate. The recorded productions of a

female native Australian speaker were used to train the participants before data acquisition began.

Participants were trained to avoid incorrect speech productions or head movements, were required

to produce each task correctly at the correct rate before data acquisition began and to avoid eye

blinking during the speech production trial sets. They were allowed to blink their eyes between

the trial sets but were instructed to avoid these during trial sets.
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For the manual nonspeech task, participants performed self-paced button presses at a rate
of about 1/ 2 seconds on a fibre optic response pad (Current Designs, Philadelphia) for 180sec (see
Figure 1B). (Cheyne et al., 2008; Cheyne et al., 2014; De Nil et al., 2021; Johnson & He, 2019).

Fixation and
breath Trial Set 2 s Trial Set 10

intake

Fixation and o
Speecfh breath Trial Set 1 L]
Instructions 3 Set Interval
intake

ET ErE R T e

B Button Self paced
Press Fixation button

Instructions press

| Ssec [ 180sec |

Figure 1. Experimental procedures. A. Speech task. Instructions were displayed for 30s,
followed by a 5s fixation cross ‘+’ and breath intake in preparation for the speech production trial
set. During a trial set participants produced the indicated nonword in a reiterated fashion for 12s.
10 consecutive trial sets were performed for each nonword stimulus. B. Button press task.
Instructions were displayed for about 30s followed by a fixation cross, during which participants
performed self-paced button pressed with the index finger of their dominant (right) hand at a rate
of about 1 per 2 seconds for a total of about 90 trials.

Analyses: Data analyses proceeded in four main phases:
(1) Analyses of MASK speech movement signals to characterise speech kinematic
profiles;
(2) MEG source reconstruction to identify location of speech motor cortex;
(3) Extraction of MEG-time frequency spectrograms from source-localised speech motor
cortex, followed by and multivariate pattern analysis of speech-relevant brain rhythms.
(4) Mapping of speech kinematic profiles onto source- and frequency-constrained MEG
data, via representational similarity analysis (RSA).

For the purposes of clarity, we present details of each set of analytic methods along with their

results, organised according to these four analytic phases.
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1. Analysis of MASK-derived speech movement signals.

1A. Methods. The raw MASK position data were head motion corrected using MASK coils placed

at fiducial landmarks (nose, left and right ear) and transformed from the MEG coordinate system

into the occlusal plane frame of reference such that motion signals could be measured relative to

a midsagittal plane defined by the x (posterior-anterior) and z (inferior-superior) axes relative to

the bite plane origin. These transformed signals were then analysed using EGUANA software

(Henriques & Van Lieshout, 2013; Van Lieshout, 2021) to derive signal amplitude and phase for

selected articulators and speech gestures. Movement artifacts were initially screened out, and

subsequent analyses were focused on accurate productions (Case & Grigos, 2020), with errors

such as substitutions and lengthy pauses being excluded.

/ipa/ and /api/ productions involve specific movements of the lips and tongue. To create

the voiceless stop /p/ sound, a bilabial closure (BC) gesture is used. The two tongue body

constriction gestures (TB) are used to produce the sounds /i/ and /a/. The BC gesture was calculated

using the two-dimensional (x-y) Euclidian distance of the upper and lower lip positions, while the

tongue body gesture was derived from the two-dimensional (x-y) Euclidian distance of the tongue

body and the nasal reference coil, as described in Van Lieshout et al. (2007). The kinematic and

coordination parameters were computed using the methods described in (Anastasopoulou et al.,

2022; van Lieshout et al., 2002; van Lieshout et al., 2007).

The opening and closing movements of each cycle were identified using the minimum and

maximum vertical position of the gestural and articulatory signals (Van Lieshout, 2017). The

amplitude levels of the opening and closing movements at 10% and 90% were determined for each

individual cycle. Custom MATLAB scripts were then utilized to determine the times

corresponding to the 10% and 90% amplitude levels of each opening and closing movement of

each individual gestural signal of BC and TB. Finally, the individual times of the onset and offset

of the opening and closing movements were brought into time register with MEG data by aligning

the acoustic signal of the MASK acquisition signal and the acoustic signal recorded in the MEG

adult acquisition computer, as shown in Figure 2.
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Figure 2: Temporal alignment of MEG and MASK signals. MASK articulatory signals are
brought into register with the MEG brain data using the MATLAB alignsignals function on the
MEG and PsiFi acoustic signals (top and second rows). Inset shows enlargement of rectangle
bounded area in main figure. 1 = onset of opening movement; 2 = offset of opening movement; 3
= onset of closing movement; 4 = offset of closing movement.
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IB. Results

MASK tracking signals. Figure 3 displays acoustic recordings and tracking signals of the tongue

body (TB) and bilabial closure (BC) from Participant 1 for a single trial of each of the four speech

production tasks. The participant produced 14 utterances of /ipa/ and /api/ at a normal speaking

rate and 18-19 utterances at a faster rate.

The contrast between the mirrored positions of the tongue and lips in /ipa/ and /api/ is

clearly observed in the MASK measurements of tongue and lip gestures. Peaks and valleys in

Figure 3 indicate the high and low positions achieved by the BC and TB gestures during the

production of /api/ and /ipa/. Valleys occur during the bilabial constriction gesture and the tongue

body gesture for /i/, while peaks occur for the tongue body gesture of /a/. (We note that these

positions are Euclidean distances relative to the nasion. Within this reference frame “low a” is a

peak, and “high /i/” is a valley). In /api/, the /p/ closure occurs during the upward motion of the

TB, going from the low /a/ to the high /i/ position. On the other hand, in /ipa/, the /p/ closure occurs

during the downward motion of the TB, going from the high /i/ to low /a/ position. The gestural

movements of /ipa/ and /api/ are mirror images, with the relative timing of the motions of TB and

BC gestures reversed.

Overall, the TB and BC tracking signals measured with MASK are entirely comparable in

morphology and quality with those obtained from a conventional electromagnetic articulography

setup (please see Anastasopoulou et al., 2022, for a direct comparison of MASK and EMA signals

measured during the same utterances described here).
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Figure 3. Representative acoustic and kinematic measurements from MASK. Data are shown
for two participants for a single /ipa/ trial set at normal and faster speaking rates. Shown are (from
top to bottom) waveforms for the audio signal, tongue body (TB) gesture, and bilabial constriction
(BC) gesture.

Derived kinematic profiles. The next stage in our analysis pipeline involves generating profiles
that capture the relationships between key kinematic parameters of BC and TB gestures.
Specifically, we examine the amplitudes, durations, velocities, and stiffnesses of gestural
movements, as these parameters are known to covary in highly consistent ways and reflect
"invariant" properties of speech kinematic movements. These invariant properties are crucial in
understanding the motor control of human speech.

Figure 4 illustrates the covariation of these kinematic parameters for /ipa/ and /api/ for two
participants. Our analysis shows that movement peak velocity increases as a linear function of
movement amplitude, indicating that larger movement distances are associated with higher peak

speeds. Furthermore, we observe comparable amplitude/velocity relationships for opening and


https://doi.org/10.1101/2023.06.12.544529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544529; this version posted September 16, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Neuroimaging of speech motor control

closing movements, suggesting that these parameters are controlled similarly regardless of
movement direction. This roughly linear relationship between amplitude and peak velocity is a
well-established characteristic of speech kinematics, and has been described for a variety of
articulators, gestures, and utterances (33,38). Regarding the stiffness vs. duration relationship, our
results indicate that stiffness systematically decreases as a curvilinear function of durations less

than 200 ms, after which the relationship plateaus into a relatively flat line.
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Figure 4. Covariation of kinematic parameters of speech movements for two participants.
Left columns: Velocity versus amplitude. Right columns: Stiffness versus duration. BC = bilabial
closure. TB = tongue body.
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2. MEG source reconstruction of speech motor cortex

2A. Methods: Source reconstruction of brain activity was carried out using the synthetic aperture
magnetometry (SAM) beamformer algorithms implemented in the BrainWave MATLAB toolbox
(Jobst et al., 2018; cheynelab.utoronto.ca/brainwave). The raw KIT/Yokogawa data files were
initially converted to CTF format and transformed to the CTF head coordinate system using the
fiducial coil positions relative to the sensor array. Each participant’s structural MRI was then
spatially coregistered with the MEG data and normalised into standard adult MNI template space
using SPM12 (Wellcome Institute of Cognitive Neurology).

For the speech motor cortex localiser analyses, the onset of each speech trial set was
marked according to the onset of the acoustic signal and raw data were pre-filtered using a 100 Hz
low pass bidirectional zero phase-shift Butterworth filter and epoched into 15 sec segments, from
10 sec prior to speech onset to 5 seconds after speech onset. Each 15 sec segment encompassed
three distinct task periods: the last five seconds of the preceding trial set (-10 to — 5 sec); the inter-
trial set rest period (-5 to 0 sec); and the first five seconds of the current trial set (0 to +5 sec),
thereby providing maximal contrast between active (speech) and rest periods.

The current trial set and inter-trial rest period intervals were used for the SAM pseudo-T
analysis window and baseline window respectively. We used a sliding active window of 1 second
duration starting from 0-1000 ms (step size 200 ms, 10 steps), and a fixed baseline window of 2
seconds duration extending from -5 to -3 seconds relative to speech movement onset and a
bandpass of 18-22 Hz (centre of the beta frequency range). The full 15 second time window was
used to compute the data covariance matrix for beamformer weight calculations. SAM pseudo-T
images were volumetrically reconstructed using a 4 mm resolution grid covering the entire brain.

In all individuals SAM source reconstruction resulted in robust peaks centred on the left
middle precentral gyrus and adjacent regions of the left middle frontal gyrus. The time-course of
source activity was then computed as the output of the beamformer with optimized orientation
(“virtual sensor”) and plotted as time-frequency spectrograms (encompassing the entire 15 sec
data epoch) to assess the temporal correspondence of beta activity with active and rest periods. To
maximise the number of trials (and consequently, the signal to noise ratio) in this analysis we use
trial sets from all four speech tasks (for a total of 40 trial sets).

For the hand knob localiser analysis, trials were prefiltered with a bandpass of 0-100 Hz
and epoched with respect to the button press onset into 1.5 sec segments (-500 to +1000 ms),
encompassing the established time course of beta-band desynchronisation (several hundred ms
prior to and after the button press) and “rebound” synchronisation (several hundred ms starting
about 500 ms after the button press) (see Cheyne, 2013; Cheyne et al., 2014; Johnson et al., 2016).

Following the maximal contrast approach used for the speech analysis, the SAM pseudo-T analysis
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used a sliding active window of 200 ms duration starting from 600-800 ms, (step size 10 ms, 10
steps), a fixed baseline window from 0 to 200 ms, and bandpass of 18-22 Hz. The full 1.5 second
epoch was used to compute the data covariance matrix for beamformer weight calculations.
Volumetric reconstruction used the same grid employed for the speech analysis.

In all individuals SAM source reconstruction resulted in robust peaks centred on the hand
knob of the left precentral gyrus, and a smaller mirror source centred on the right hemisphere
homologue. The left hemisphere virtual sensor source activity was then computed and plotted as
a time-frequency spectrogram (encompassing the entire 1.5 sec data epoch) to assess the
correspondence with the established time course of beta band activity associated with the manual

button press task (Cheyne, 2013; Cheyne et al., 2014; Johnson et al., 2020).

2B. Results. Figure 6 shows that the SAM beamformer cluster maxima encompass the middle
portion of the prefrontal gyrus (mPFG) and the immediately adjacent region of the middle frontal
gyrus (MFGQG), both established areas of low-level speech motor control (Silva et al., 2022). The
anatomical localisation of the mPFG is well-supported by comparison with the SAM beamformer
map for the button press task, which shows a cluster maximum in the hand knob of the immediately
dorsal region of precentral gyrus.

Physiological activities at the locations of the SAM beamformer cluster maxima are
visualised in the “virtual sensor” time frequency plots below their respective brain maps. For the
button press task the time-frequency plot shows the well-established pattern of beta-band (13-30
Hz) desynchronisation, starting several hundred ms before the button press, persisting for several
hundred ms after, and followed by a “rebound” beta synchronisation at about 600-700 ms after the
button press.

A comparable pattern of beta band activity is evident in the speech virtual sensor plot,
keeping in mind the different time scales (1.5 sec for button press, 15 sec for speech) and
movement requirements (a single punctate button press versus 10 seconds of steady state,
reiterated speech) of the two tasks. Beta band desynchronisation begins several hundred ms before
speech onset and persists for the duration of the speech movements. Note that in this plot the
baseline of the colour scaling (the five second inter trial set rest period) was chosen to emphasise
event-related desynchronisation. Baselining to the speaking portions of the epoch will emphasise
the event-related synchronisation during the rest period).

Taken together, the results of the localisation procedure provide a focussed and well-
grounded target for subsequent analyses that can incorporate the kinematic and coordination
parameters derived from MASK. The plausibility of the mPFG/MFG target is well-supported by
the time-frequency characteristics of the virtual sensor and its anatomic location immediately

dorsal to the established landmark of the PFG hand knob, independently localised with data from
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the button press task: a task that has been long established to provide highly reliable beta-band

activations located in the hand regions of the sensorimotor cortices (e.g. Cheyne et al., 2014).

The speech-related plausibility of the mPFG/MFG region is also strongly supported by

recent evidence from invasive neurosurgical studies of expressive speech function. The region of

the precentral gyrus located immediately ventral to the hand motor region of the precentral gyrus

has been functionally defined in neurosurgical studies and termed middle precentral gyrus

(midPrCG). It has been posited that this region functions to coordinate complex phonological

sequences into motor plans (Silva et al., 2022). Further, the coactivation of the posterior region of

the middle frontal gyrus (pMFG) in our results is to be expected since this region that is tightly

functionally associated with the midPrCG (Glasser et al., 2016).

Button Press

Frequency (Hz) (,

Figure 5. Localisation of speech motor cortex. Left: Anatomical Landmarks. 1 — Hand regions
of precentral gyrus (hand knob); 2 — Hand region of postcentral gyrus; 3 — Middle precentral gyrus;
4 — Middle frontal gyrus; 5 — Rolandic fissure; 6 — precentral gyrus; 7 — postcentral gyrus. Top
right panel: SAM beamformer maps. Button press task elicited activation of hand region of pre
(motor) and postcentral (somatosensory) gyri. Speech task shows maximal activation in middle
precentral gyrus, immediately ventral to the hand motor region of the precentral gyrus. Speech
activation cluster also encompasses the middle frontal gyrus immediately adjacent to the middle
precentral speech region. Bottom right panel: Time-frequency plots showing temporal evolution

of oscillatory responses at virtual sensors placed at locations of cluster maxima shown above.
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3. Extraction and pattern analysis of source-localised MEG time-frequency spectrograms.

3A. Methods. For each production task, continuously recorded MEG signals were pre-filtered

with a bandpass of 0-100 Hz and 50 Hz notch filter and segmented into 4 second epochs (-2 sec to

+2 sec) using the onset of the BC opening movement for each speech task as time zero. Data

epochs were subsequently truncated to 3 seconds (-1.5 sec to + 1.5 sec) to remove edge effects

from the frequency analysis. Using the speech motor cortex coordinates derived from the speech

localiser for a virtual sensor, time-frequency spectrograms were generated for each individual trial

and the resulting three-dimensional (time x frequency x trial) matrix was exported for

classification analysis using the MVPA-Light MATLAB toolbox for classification and regression

of multidimensional data (Treder, 2020).

Equivalent duration non-speaking “resting” condition epochs were derived by randomly

selecting epoch-reference time-points from the inter- trial set rest periods of the MEG data. For

each speaking condition and participant, an equal number of resting condition trials was epoched.

Our aim in this analysis was to perform a “time-frequency classification” to determine if

the trial by trial time-frequency data derived from the speech motor cortex virtual sensor contains

information that is able to discriminate between the neural activities associated with speech and

rest trials; and, if so, to determine if the discriminative information is confined to a specific

frequency range' (Treder, 2020).

We performed a searchlight analysis using a binary linear discriminant analysis (LDA)

classifier and a metric of “accuracy” (fraction of correctly predicted class labels, range = 0 — 1),

with training parameters of five folds and five repetitions.

Group level 2 statistics were performed using nonparametric permutation testing and

cluster corrections for multiple comparisons (Maris & Oostenveld, 2007) as implemented in the

MVPA-Light toolbox (Treder, 2020).

3B. Results. Figure 6 shows source-localised time-frequency spectrograms for individual

participant S1119. The speech-condition spectrograms show clear speech rate related modulation

of circa 20 Hz beta-band activity in all speech conditions. A clear and distinct pattern of circa 10

Hz mu band activity is also observable for both of the /api/ productions. Substantial movement-

related broadband noise is also evident in the supra-beta frequencies for all speaking conditions

and is especially prominent in the /api/ faster rate condition. Both the beta and mu-band rhythms

are well-known and established rhythms of the central motor cortices (Cheyne, 2013; Cheyne et

al., 2014).

! In the case of event-related experimental designs the time-frequency classification can also determine if
discrimination is confined to specific times (Treder, 2020). The reiterated speech paradigm used here is akin to a

system in steady state, so the analytic question at this stage simplifies to frequency discrimination alone.
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In contrast to the speaking conditions, for the non-speech resting conditions mu and beta
activities are manifest as relatively continuous (unmodulated) bands of activity throughout most
of the epoch, and broadband movement-related noise patterns are absent from the resting
spectrograms.

The MVPA classification results of Figure 9 shows that the classification show up both the
mu and beta band rhythms, with a well-defined frequency boundary between the two rhythms that
is clear and prominent in the cases of the /ipa/ faster rate and /api/ normal rate date. The classifier
also picks up speech-movement related noise (from the speech condition), particularly in the /api/
faster rate condition. Speech movement-related noise is evident as high-frequency broad-band
patterns extending to circa 50-60 Hz. The broadband noise in the classification patterns is well
separated in frequency from the beta/mu classifier signals and confined to frequencies above 50

Hz.
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Figure 6. Time-frequency characteristics of speech and resting conditions for an individual
participant. All plots show three seconds of MEG data derived from the medial frontal gyrus
voxel. Top row. Time-frequency spectrograms during speech. Data are epoched relative to the
onset of the bilabial closure opening movement. Speech rate modulated beta-band (circa 20 Hz)
activity is evident in all plots, and mu-band activity is evident in several, especially the /api/ normal
rate condition. Middle row. Spectrograms derived from the inter-trial set rest periods. Relatively
continuous beta-band ERS is evident in all plots, as well as mu-band ERS in the /api/ conditions.
Bottom row. MVPA classification results for speech versus resting conditions. High classification
accuracy is quite tightly constrained to circa 20 Hz beta band, and a well-defined mu-frequency
band is evident in the /ipa/ faster rate and /api/ normal rate conditions.

Level 2 group analysis of the speaking/resting classifier results are shown in Figure 7. The

group results are entirely consistent with the individual results described above and provide clear
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statistical support for high classification accuracy for the mu and beta motor rhythms, as well as

the high-frequency movement-related noise region. The mu/beta frequencies are well separated by

by a region of low-classifier accuracy for circa 30-50 Hz frequencies, suggesting at least a lack of

continuity between these frequency regions, and possibly that the underlying informational

structures of the motor rhythms and the noise are functionally independent. We consider this issue

more formally in the frequency generalisation analyses below.
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Figure 7. Group analysis of classifier performance for speech versus resting conditions. All

plots show three seconds of MEG data derived from the medial frontal gyrus voxel. As seen in
Figure 7, classifier performance is high for both speech-related high-frequency noise and
beta/mu signals.

Frequency generalisation (cross-frequency decoding).

In addition to providing an estimate of decodability for the task contrasts described above,

time/frequency series decoding can be applied to provide a picture of the continuity (or

discontinuity) of decoding estimates over time or frequency. This provides an important inferential

advantage for further interpretation of the timing or frequency specificity of experimental effects.

This “cross-decoding approach” involves training the classifier on a given time or frequency and

then testing classifier performance on different times or frequencies. The logic of this approach

relies on the classifier’s ability to partition multidimensional space as a basis for discriminating

between experimental conditions: hence, where a classifier trained on a given time or frequency

can successfully discriminate experimental classes based on other time or frequency points, one

can infer that the structure of the underlying multidimensional space is similar for those two points.

Conversely, in the case where cross-point decoding is unsuccessful, one can infer that the

underlying multidimensional patterns are sufficiently different that the distinction between class

labels determined at one point are not meaningful for discrimination at the second point

(Grootswagers et al., 2017; Treder, 2020).
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In the present context cross-frequency decoding enables us to more precisely address
questions about possible relations between frequency bands identified by the basic speech/rest
classificational analyses described in Figures 7 and 8: (1) Do the beta/mu band signals rely on the
same classification information as the high frequency signals, which we interpret to reflect non-
neural noise associated with speech movements? In this case redundancy would suggest the
beta/mu signals simply contain some level of speech movement noise that is the basis for class
discrimination. On the other hand, a lack of cross frequency generalisation supports the conclusion
that they are independent signals and further, that the beta/mu signals are not significantly
contaminated by broadband noise. (2) In a similar fashion, it is of interest to assess the cross-
frequency generalisation between the mu and beta bands, two motor rhythms that have been
frequently observed to co-occur in electrophysiological studies and can be assumed to have some
functional inter-relationship (Cheyne et. al., 2014).

The frequency generalisation results of Figure 8 provide clear answers to both questions.
First, there no evidence for frequency generalisation between mu/beta and the high frequency noise
region, at either the individual or group level. To the contrary, frequency generalisation
(observable as off-diagonal clustering) occurs within the sub-30 Hz mu/beta frequencies, and
within the supra-60 Hz frequencies (particularly within the range of about 60-80 Hz); but the
intermediate zone between mu/beta and high frequency noise (circa 30-60 Hz) exhibits a fairly
strictly diagonal trajectory (for example, see group means for /api/ normal and faster rates).
Classification of speech and resting conditions can clearly rely on either high frequencies
associated with speech movements, or mu/beta frequency information: both frequency regions are
prominent in the classification plots of Figures 7-9. However, the cross-frequency coding results
provide clear support for the conclusion that the high frequency (noise) band and the mu/beta
bands are discontinuous and rely on distinct patterns of multidimensional structure within their
data to achieve discrimination between speech and resting data conditions.

On the second question, the group results show clear frequency generalisation between
beta frequencies circa 15-Hz and also suggest a possibly weaker generalization for beta training
frequencies and mu test frequencies (circa 8-12 Hz; see group statistical results for /ipa/ and /api/
faster rates. Although the mu/beta clusters do not achieve statistical significance for the slower
speech rates, comparable clusters are evident in their group mean data. The individual results for
S1119 are entirely comparable to the group mean data but show a much clearer distinction between
the mu and beta bands (see especially plot for /api/ normal rate): These data show that mu training
frequencies about 8-12 Hz generalise to beta band frequencies; and that beta training frequencies
circa 20-30 Hz generalise to mu test frequencies. However, the plots also show a clear mu/beta

discontinuity, with low classification accuracy for frequencies between about 13-20 Hz. This
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mu/beta discontinuity is not as evident in the group results, presumably due to individual

differences in the precise frequency ranges of the mu rhythm (Pfurtscheller et al., 1997).
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Figure 8. Frequency generalisation. In this analysis the classifier is trained on a given frequency
and decoding performance is tested on a different frequency. This is repeated for all possible
frequency pairs. The classifier results show that beta frequencies generalise to each other and to
some extent to mu frequencies (bottom row, /ipa/ faster and /api/ faster). Importantly, beta/mu
frequencies do not generalise to the higher frequency noise band, and conversely the noise band
does not generalise to the beta/mu frequencies. Permutation-based significance tests used 500

permutations, Wilcoxin signed rank test (alpha < .05), controlled for multiple comparisons using
FDR.
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4. Mapping of speech kinematic parameters onto source- and frequency-constrained MEG
data.

In the preceding analyses we have used standard MVPA classification of speech versus
resting conditions to demonstrate that the neural signals derived from speech motor cortex contain
information that is capable of discriminating between speaking and resting conditions; and then
employed cross-frequency classification to determine that the mu-beta motor rhythms contain the
informational basis of speech-rest discrimination. Importantly, cross-frequency generalisation also
shows that the informational structure of the mu/beta rhythm is independent of the high frequency
broadband noise that is an inevitable confound for electrophysiological recordings during overt
speech.

In subsequent analyses we attempt to derive a more detailed picture of the information
structures contained within the neural data, by performing classification between data partitions
within the speech condition, rather than between speech and rest conditions. Representational
Similarity Analysis (RSA; Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013) is an MVPA
technique based on the simple logic that classes of neural data with more similar informational
(representational) structures should be more difficult to classify, relative to classes with more
distinct representational structures. Previous studies have successfully applied RSA to tracking
data of hand movements (Kolasinski et al., 2020), articulator movements during vowel production
(Carey et al., 2017), and acoustic measurements during speech production (Zhang et al., 2020).

We follow this logic to test specific hypotheses about potential representational structures
in speech motor cortex activity as follows (see Figure 9 for a summary of the computational steps):

(1) Our starting hypotheses concerning candidate representational structures within
speech motor cortex activity come from the well-behaved kinematic profiles derived
from direct MASK measurements of speech articulator movements (Figure 4): both
the strikingly linear relationship between amplitude and velocity, and the orderly
curvilinear relationship between duration and stiffness have been proposed to reflect
“control parameters” that are relatively tightly specified at some level within the
speech motor system;

(2) Within a given kinematic profile, we divide the behavioural data points into partitions
that reflect different (Euclidean) distances between the coordinates within each
partition. Here we have used 10 partitions to provide a reasonable spread of inter-
partition distances.

(3) Data points are averaged within each partition to provide a representation of the central
tendency of each partition.

(4) A “behavioural dissimilarity matrix™ is generated based on the Euclidean distances

between averaged data points in all possible pairs of partitions.


https://doi.org/10.1101/2023.06.12.544529
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544529; this version posted September 16, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Neuroimaging of speech motor control

(5) The MEG data (consisting of N trials by 3000-time points x 100 frequencies) is
similarly divided into sets of individual trials that correspond to the behavioural data
points within a partition.

(6) Classification analysis is performed for all possible pairs of MEG trial partitions.

(7) A “neural dissimilarity matrix” (for each time and frequency point) is generated based
on the Euclidean distances between the classification accuracy scores.

(8) An “RSA time-frequency plot” is generated containing the correlations between the
behavioural dissimilarity matrix and the neural matrices for each time and frequency
point.

Model evaluation is restricted in time to a 1 second epoch centred on the onset of the BC opening
movement, as this event is the reference for the epoching of the MEG data. Model evaluation is
further restricted to the frequencies of the mu and beta speech motor frequency bands of interest
defined by the analyses described in the frequency localisation sections above; and for comparison
purposes, a third high frequency region (60-80 Hz) dominated by speech movement noise and
which we therefore do not expect to contain useable information concerning the representational
structures of speech neuromotor activity.

Group data were statistically evaluated with cluster-based permutation analyses using 500

permutations, alpha < .05, and controlled for multiple comparisons using FDR.
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Figure 9. Procedure for calculation of behavioural and neural correlations. A. Velocity versus
amplitude and stiffness versus duration profiles are partitioned into 10 blocks containing equal
numbers of trials. Distances between each partition based on the partition mean coordinates are
used to generate the behavioural RDMs. For each partition, the same trials of MEG data are input
to MVPA classification analysis. The resulting classification (accuracy) metric is used to generate
a neural RDM, for each time-frequency point. B. A time-frequency correlation matrix resulting
from correlating the (in this case, stiffness-duration) behavioural RDM with the neural RDM for
each time-frequency point. Group statistics/model evaluation are performed for the mean alpha,
beta, and gamma frequency bands within the time range of -500 to +500 ms from onset of the BC
opening movement.
4B. Results. The statistically significant results of model evaluation are shown in Figure 10. Of
the two behavioural models, four speech conditions, and three frequency bands evaluated, only the
/api/ normal rate condition shows showed statistically significant correlations, for beta band and
for the stiffness-duration model. Three observations are relevant from these results: (1) The group
mean correlations are overall very weak, with peaks restricted to a range of less than - .2 to .2; (2)
The temporal structure of the significant positive clusters is appropriate, beginning at a latency of
about 100 ms prior to the onset of the BC opening movement. This timing is in good accordance
with what one would expect for neural activity associated with behavioural movements. (3) The
post-movement cluster of correlations is oppositely (negatively) correlated to the premovement
cluster.

Figure 10 also shows comparable (though non-significant after cluster-correction) results
for /ipa/ normal rate for the velocity-amplitude model. While we do not wish to over-interpret a

non-significant result, the circa -90 ms timing of the peak positive correlation cluster is entirely

comparable to that observed for the /api/ normal rate stiffness-duration data described above.
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Figure 10. RSA model evaluation. Black lines show group mean correlations between
behavioural and neural RDMs; shading shows standard errors. Left panel: The beta-band profile
for /api/ normal rate shows three significant correlational clusters against the stiffness-duration
RDM. The first positive cluster begins about 90 ms prior to onset of the first opening movement
of BC. A second positive cluster occurs beginning at time zero, and a third cluster of weak negative
correlations begins about 180 ms post movement-onset. Right panel: Beta correlation against
amplitude-velocity time profile shows a similar positive peak circa -90 ms, although the t-value
clusters do not survive cluster correction for FDR rate.

Group mean behavioural-neural correlation time series are shown for all speech conditions,
frequency bands, and behavioural models in Figure 11. As expected, in the gamma frequency band
no significant results were obtained for any speech condition or behavioural model, and there is
no discernible, consistent temporal structure in any of the plots. The mu band similarly shows no

discernible or consistent temporal structure, and no significant results were obtained.
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Figure 11. Group mean behavioural-neural correlations for all speech conditions, frequency
bands, and behavioural models. Black lines show group mean correlations; shading shows
standard errors.
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In summary, the present results provide support for very weak but statistically significant
encoding of the stiffness-duration relationship only in the beta motor rthythm. This encoding is
statistically robust in only one speaking condition and is very weak in terms of magnitude of
correlation. However, it is well-structured in time and shows an appropriate and expected temporal

relationship (about -90 ms) with respect to movement onset.
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Discussion

In the current paper we have presented an analytic framework for MASK-MEG: for
measuring and characterising speech movement kinematic parameters and relationships; for spatial
localisation of anatomically pertinent regions of interest within the widely distributed brain
language network; for frequency localisation of speech-related sensorimotor brain signals; and for
mapping of MASK-derived kinematic movement parameters on to temporally co-registered
neurophysiological signals from MEG. This analytic framework has the following features:

(1) It provides detailed profiles of speech articulator movements (including non-line-of-
sight articulators including the tongue) movements that are demonstrably comparable
to those obtained by conventional and established speech movement tracking setups in
motor control research laboratories.

(2) It reduces the spatial dimensionality of the overall analysis problem, in this case from
160 MEG channels (or alternatively, thousands of source-reconstructed voxels) to a
single virtual sensor. Further, the virtual sensor is centred in a region of speech motor
cortex encompassing the middle central gyrus/medial frontal gyrus; As we have noted,
there is now substantial evidence that this region plays a central role in control and
coordination of integrative speech movements.

(3) It reduces the frequency dimensionality of the analysis problem to the mu/beta band
rhythms, which are well-established rhythms of the sensorimotor cortices of the brain.

(4) It further demonstrates that these sensorimotor rhythms are well-separated and
structurally independent (in terms of information content that determines speech-
nonspeech classification) from higher broadband frequencies that reflect speech
movement noise. This is an important consideration for electrophysiological
measurements of overt speech, which will almost inevitably suffer from contamination
from movement-related broadband noise generated by the muscles that move the
articulators.

(5) Finally, it provides a means of mapping overt speech behaviours onto neural activities,
in a manner that allows for direct evaluation of hypotheses concerning the types of
information that may be contained within these neural activities; and that further allows
for strong inferences concerning the timing of relevant neural activations with respect

to behavioural outputs.

We note that while our analytic framework dramatically and effectively reduces the dimensionality
of the MEG analytic problems, there remains a large decision space concerning the selection of
speech behaviours for input to the overall analyses. Here we have fairly arbitrarily focussed on a

single articulator metric (the first opening movement of the bilabial closure gesture) and have
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tested 2 simple models (derived from the observed kinematic profiles) of the neural informational
structures that may underlie this movement. Our results nonetheless provide support for the
conclusion that the stiffness-duration relationship of the first opening movement of the bilabial
closure may be (very weakly) encoded in the beta-band sensorimotor rhythm, with a timing
beginning approximately 90 ms before the onset of the movement. The reason for the occurrence
of a second period of significant (but oppositely valanced) association with stiffness-duration at a
latency of about 200 ms post movement is presently unclear: one possibility is that reflects a
sensory reafference event that provides a check on the motor commands.

Overall, since we have obtained such a very weak association between behaviour and
neural activity (and in only one of four speech conditions), it is clear that future work should more
systematically probe the sets of possible models of speech movement encoding, including models
that describe relationships between articulators that are likely required for integrative speech
behaviours (e.g., the Linguistic Gestural Model (LGM) which is a combination of Articulatory
Phonology and Task Dynamics (Saltzman & Munhall, 1989; Browman & Goldstein, 1992;
Browman & Goldstein, 1997, the speed-accuracy trade off known as Fitts’ law (Fitts, 1954; Gafos
& van Lieshout, 2021; Kuberski & Gafos, 2021). The current analytic approach provides a

framework for just such a systematic assessment of models of speech neuromotor control.

Conclusions

MASK-MEG addresses an important gap in current neuroscientific capabilities for studying
expressive language function in the human brain. While we possess robust and well-established
methods for measuring and characterising overt movements of the speech articulators, and highly
sophisticated equipment and methods for defining the brain activities that control these
movements, the two methodologies are not readily or easily combined within a single experimental
setup. As a result, speech movement tracking and speech neuroimaging methods have largely
evolved within separate laboratories -- even separate disciplines -- and there remains no easy way
to co-register and reconcile the different types of information that are derived from them. The
advent of neuroimaging-compatible speech tracking technologies such as MASK opens a new
window for integrative studies of human speech motor control, combining precision measures of
overt speech behaviours with temporally co-registered and spatially localised measures of brain
function.

Recent results from invasive ECoG studies of human neurosurgical patients provide
compelling reasons to believe that such integrative capabilities will be important for future
progress in understanding speech motor control. For example, Chartier et al. (2018) obtained direct
cortical recordings of human speech sensorimotor cortex together with (inferred) articulatory

kinematics derived from a recurrent neural network based articulatory inversion technique which
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learned a mapping from produced speech acoustic to a speaker generic articulator space. This study

showed that articulator movements were reflected significantly better in measured neural activity

than were either acoustic or phonemic features of speech; that encoding is more related to

coordinated movements of multiple articulators than to movements of single articulators; and that

the behaviours of encoded movements were governed by damped oscillatory dynamics. These

authors concluded that these coordinative and dynamical properties align neatly with the properties

of articulatory units of speech (vocal tract gestures) as conceived within the theoretical framework

of articulatory phonology and its associated task dynamics model (Browman & Goldstein, 1992;

Goldstein & Fowler, 2003; Saltzman, 1986). As such, it seems clear that concurrent speech

movement tracking and non-invasive neuroimaging should provide richer datasets with mutually

reinforcing inferential power and precision relative to experiments that currently are largely

conducted with only one or the other measure of speech motor control.

These new technical capabilities also have clear clinical relevance for advancing our

understanding and treatment of developmental and acquired disorders of speech. Speech-sound

difficulties are the most common problems encountered by paediatricians and present formidable

social, educational and employment obstacles in cases where these problems cannot be readily

treated and resolved (Morgan, 2018). Childhood apraxia of speech (CAS) is an intriguing example

of a highly debilitating and persistent disorder of speech development whose origins are

considered to lie within the brain mechanisms responsible for coordinating and sequencing speech

movements, but whose study with conventional neuroimaging approaches has so far proved highly

resistant to establishing any clear connection to any particular brain region. In such cases, the

capability to directly map speech kinematic and coordination function in speech motor control

centres within highly focal and specific brain regions promises to provide more powerful insights

into the origins of speech problems in CAS (and conversely, into why speech development

proceeds more smoothly in most other children). Similarly, acquired apraxias of speech are a

common and debilitating outcome of strokes and other brain injuries. The greater functional

specificity of MASK-MEG has a clear bearing on studies aimed at understanding the nature and

degree of functional compromise and plastic capabilities in the brain of these patients.
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