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Abstract 

 
Articulography and functional neuroimaging are two major tools for studying the neurobiology of 

speech production. Until now, however, it has generally not been feasible to use both in the same 

experimental setup because of technical incompatibilities between the two methodologies. Here 

we describe results from a novel articulography system dubbed Magneto-articulography for the 

Assessment of Speech Kinematics (MASK; Alves et al., 2016), which is technically compatible 

with magnetoencephalography (MEG) brain scanning systems. In the present paper we describe 

our methodological and analytic approach for extracting brain motor activities related to key 

kinematic and coordination event parameters derived from time-registered MASK tracking 

measurements (Anastasopoulou et al., 2022). Data were collected from ten healthy adults with 

tracking coils on the tongue, lips, and jaw. Analyses targeted the gestural landmarks of reiterated 

utterances /ipa/ and /api/, produced at normal and faster rates (Anastasopoulou et al., 2022; Van 

Lieshout, 2007). The results show that (1) Speech sensorimotor cortex can be reliably located in 

peri-rolandic regions of the left hemisphere; (2) mu (8-12 Hz) and beta band (13-30 Hz) 

neuromotor oscillations are present in the speech signals and contain information structures that 

are independent of those present in higher-frequency broadband noise signals associated with overt 

speech movements in the MEG scanner; and (3) kinematic parameters of speech movements can 

be mapped on to neuromagnetic brain signals using multivariate pattern analytic techniques. These 

results show that MASK provides the capability, for the first time, for deriving subject-specific 

articulatory parameters, based on well-established and robust motor control parameters, in the 

same experimental setup as the brain recordings and in temporal and spatial co-register with the 

brain data. The co-registered MASK data improves the precision and inferential power of MEG 

measures of speech-related brain activity compared to previous methodological approaches. This 

new capability for measuring and characterising speech movement parameters, and the brain 

activities that control them, within the same experimental setup, paves the way for innovative 

cross-disciplinary studies of neuromotor control of human speech production, speech 

development, and speech motor disorders.  
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Introduction 

 In recent years, systematic studies of speech motor control in the human brain have significantly 

expanded our understanding of the neural foundations of expressive speech. Converging evidence 

now points to a comprehensive re-evaluation of conventional and long-held theoretical models of 

speech production (see recent reviews by Hickok & Venezia, 2023 and Silva et al., 2022). This re-

evaluation is ongoing and rapidly evolving, but there is an emerging shift away from the traditional 

Wernicke-Geschwind model9s emphasis on Broca's region in the left hemisphere, and towards a 

greater recognition of the computational roles and network connections of various premotor, 

motor, sensory, and insular regions of the cerebral neocortex (Hickok & Venezia, 2023). 

Much of the information that informs these new models comes from non-invasive 

neuroimaging techniques, predominantly functional magnetic resonance imaging (fMRI) 

(Bohland & Guenther, 2006; Peeva et al., 2010; Pang et al., 2011; Behroozmand et al., 2015; Rong 

et al., 2018; Tourville et al., 2019; Heim & Specht, 2019) and associated techniques including 

diffusion tensor imaging (DTI) (Catani & Forkel, 2019; Chang et al., 2020; Janssen et al., 2022).  

Non-invasive electrophysiology with electroencephalography (EEG) and 

magnetoencephalography (MEG) have added important detail regarding timing of neuronal 

processing events (Munding et al., 2016; Salmelin et al., 2019; Leckey & Federmeier, 2019). 

Finally, recent years have provided an increasing amount of very highly detailed 

electrophysiological evidence from invasive electrophysiological (electrocorticography; ECoG) 

recordings of speech motor regions in neurosurgical patients (Bouchard et al., 2013; Ramsey et 

al., 2018; Chartier et al., 2018; Silva et al., 2022). 

Current evidence is clear that spoken language processing draws on a complex set of neural 

computations performed in a widely distributed set of brain regions (Levelt et al., 1998; Munding 

et al., 2016; Carota et al., 2022). These computations range from abstract and high-level aspects 

of semantics and syntactics to the low-level sensorimotor processes that directly control and 

modulate the overt movements of speech articulators of the peripheral vocal tract (Indefrey & 

Levelt, 2000; Tong et al., 2022). Experimental and clinical protocols for mapping of expressive 

speech centres therefore employ a wide variety of speech tasks according to their specific 

experimental or clinical aims (Salmelin et al., 2019). Speech tasks can be variously deployed to 

emphasise different aspects of spoken language processing: Story listening, object naming, 

rhyming, and covert word production invoke relatively high level linguistic processes and have 

been shown to reliably activate distributed areas of prefrontal, temporal and parietal cortex, 

including Broca9s area in the left hemisphere (Bowyer et al., 2005; Doesburg et al., 2016; Kadis 

et al., 2011; Youssofzadeh & Babajani-Feremi, 2019; Correia et al., 2020); while in contrast, non-

word/pseudoword tasks are intended to limit the requirements for semantic, syntactic and 
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attentional processing and elicit neural activity that is more restricted to brain regions associated 

with sensorimotor processes  (Frankford et al., 2021).  

The subject of the current paper is set within the context of low-level speech motor control: 

the phonological, phonetic, and sensorimotor processes that fairly directly control and/or modulate 

the neuromuscular output to the articulators. In this context, an important methodological 

limitation of current neuroimaging research is that, with rare exceptions (Chartier et al., 2018; 

Mugler et al., 2018; Ouyang et al., 2016), researchers obtain little or no information about the 

actual movements of said articulators. This is a fundamental limitation in light of evidence that 

speech (and other movements) is encoded in the form of kinematic movement trajectories in 

neurons in primary motor cortical neurons (Chartier et al., 2018; Conant et al., 2018; Kolasinski 

et al., 2020). Such essential information is technically difficult to obtain for crucially important 

articulators (such as the tongue) which are located out of the line of sight within the oral cavity. 

Unfortunately, specialised electromagnetic and ultrasound articulography techniques that are 

capable of non-line-of-sight speech tracking are technically incompatible with the scanner 

environments used for functional imaging with fMRI and MEG (Anastasopoulou et al., 2022). 

In the following, we describe our method for linking speech kinematics to brain activity 

using a novel MEG setup. This setup enables us to simultaneously and accurately measure speech 

movements and brain function. The system, termed Magnetoencephalography for Assessment of 

Speech Kinematics (MASK), can track the independent motion of up to 12 lightweight coils that 

are similar in size and shape to the tracking coils used in conventional electromagnetic 

articulography (EMA). In contrast to the passive induction coils used in EMA, MASK coils are 

actively energized by sinusoidal currents, and their associated magnetic fields are measured by the 

MEG sensors. 

To distinguish between the coil fields and brain activities, we drive the tracking coils at 

frequencies higher than 200 Hz, which allows us to separate coil fields from brain activities that 

primarily occur at frequencies lower than 100 Hz. To determine the coil positions we use the same 

computational algorithms used in conventional MEG to localize and track head positioning and 

movement. Line-of-sight is not required, permitting tracking of all oral articulators, including the 

tongue. 

MASK evaluates coil positions every 33 ms for movement tracking at rates up to 50 cm/s 

(Alves et al., 2016). Spatial accuracy depends on the distance of the tracking coils from the MEG 

sensor array. For coils that are close to the array (like those on the tongue), the accuracy is less 

than 1 mm relative position error, similar to the standard MEG head position indicator coils. 

However, for coils that are more distant from the helmet sensor array (like those on the lower lip), 

spatial accuracy decreases non-linearly to approximately 1-2 mm. 
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In a previous paper we have described in detail movement parameters (amplitude, duration, 

velocity) and interarticulator phase relationships derived from direct MASK measurements of 

articulator movements; and have demonstrated that MASK reliably characterizes key kinematic 

and movement coordination parameters of speech motor control with a resolution that is 

comparable to standard electromagnetic articulography devices (Anastasopoulou et al., 2022). In 

the present work we proceed to describe our methodology for separating speech-related brain 

signals from MASK signals; for localising these in space and time-frequency, and for establishing 

a mapping between kinematic parameters and brain activities.  
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Methods  

Participants. Ten healthy adults participated in this study (4F; mean age 32.5, range 19.7- 61.8; 

all right-handed as assessed by the Edinburgh Handedness Inventory). All participants were fluent 

speakers of English; Nine were native English speakers, one participant9s first language was 

Mandarin. All procedures were approved by the Macquarie University Human Research Ethics 

Committee. 

MEG scans. Speech tracking data and neuromagnetic brain activity were recorded concurrently 

with a KIT-Macquarie MEG160 (Model PQ1160R-N2, KIT, Kanazawa, Japan) whole-head MEG 

system consisting of 160 first-order axial gradiometers with a 50-mm baseline (Kado et al., 1999; 

Uehara et al., 2003). MEG data were acquired with analogue filter settings as 0.03 Hz high-pass, 

1000 Hz low-pass, 1000 Hz sampling rate and 16-bit quantization precision. Measurements were 

carried out with participants in supine position in a magnetically shielded room (Fujihara Co. Ltd., 

Tokyo, Japan).  

Structural scans. T1-weighted anatomical magnetic resonance images (MRIs) were acquired for 

all participants in a separate scanning session using a 3T Siemens Magnetom Verio scanner with 

a 12-channel head coil. Those anatomical images were obtained using 3D GR\IR scanning 

sequence with the following acquisition parameters: repetition time, 2000 ms; echo time, 3.94 ms; 

flip angle, 9 degrees; slice thickness, 0.93 mm; field of view, 240 mm; image dimensions, 512 × 

512 × 208. 

Procedure. Five head position indicator coils (HPI) were attached in the head in an elastic cap, 

and their positions were measured at the beginning and at the end of the experiment, with a 

maximum displacement criterion of < 5 mm in any direction. The coils9 positions with respect to 

the three anatomical landmarks (nasion, right and left preauricular landmarks) were measured 

using a handheld digitiser (Polhemus FastTrack; Colchester, VT). 

MASK coils were placed at mid-sagittal positions on the vermilion border of the upper lip 

(UL) and lower lip (LL), the tongue body (TB; 2 cm from the tongue tip) and the lower incisor 

(JAW) sensor which was attached to a thin thermoplastic mould. Tongue sensors were attached 

with surgical glue (Epiglu, MajaK Medical Brisbane; Australia), while lip sensors were attached 

with surgical tape.  

MEG time-aligned speech was recorded in an auxiliary channel of the MEG setup with the 

same sample rate (1000 Hz) as the MEG recordings. An additional speech recording was obtained 

with an optical microphone (Optoacoustics, Or-Yehuda, Israel) fixed on the MEG dewar at a 

distance of 20 cm away from the mouth of the speaker; and digitised using a Creative sound blaster 

X-Fi Titanium HD sound card (Creative, Singapore) with 48 kHz sample rate and 24-bit 

quantization precision. The higher resolution recordings were aligned off-line using the MATLAB 
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alignsignals function to the MEG speech channel to bring them into time register with the 

neuromagnetic data. 

Experimental protocol: Participants performed four speech production tasks and one manual 

button press task. Speech productions were non-word disyllabic sequences with a V1CV2 

structure, /ipa/ and /api/, and each was produced in a reiteration fashion at normal and faster rates. 

The tongue and lip gestures for /ipa/ and /api/ are mirror reversed in phase, providing a robust 

behavioural contrast in terms of interarticulator coordination (Anastasopoulou et al., 2022). 

Variations in speech rate were used as a control variable to examine the intrinsic stability of the 

coordination (Kelso 1986, Van Lieshout et al., 1996). Asking participants to change their speaking 

rate (frequency of executed movements) is a typical characteristic of studies which investigate 

coordination dynamics (Kelso, 1995, Van Lieshout et al., 1996). The same reiterated stimuli have  

been used in previous studies investigating speech motor control strategies in normal and in 

disordered populations (Van Lieshout et al. 1996; Van Lieshout et al. 2002; Van Lieshout et al. 

2007; Van Lieshout, 2017). Nonword stimuli with no linguistic information avoid familiarity 

issues (Van Lieshout, 2017) and have been widely used in the literature to investigate normal and 

pathological function in speech motor control (Murray et al., 2015; Case & Grigos, 2020).  

 Participants performed manual button presses on a response pad with the index finger of 

their dominant hand at a self-paced rate of about 1 per 2 seconds.  

Participants were presented with a fixation cross on a display screen and instructed to take 

a deep breath. The stimulus nonword then appeared on the screen for 12 sec. For the normal rate 

production, participants were required to utter productions at a normal, comfortable rate as they 

would do while conversing with a friend, until the stimulus nonword disappeared from the screen. 

For the faster rate, they were instructed to produce the stimuli as fast as possible while maintaining 

accuracy (Van Lieshout et al. 2002). Following Van Lieshout (2007), we refer to the reiterated 

productions generated within the span of a breath intake as a <trial set=. A short break was provided  

after each trial set. Participants generated about 10 individual productions in each normal rate trial 

set and about 12 individual productions in each faster rate trial set. Since 100+ individual trials (in 

this case, individual nonword productions) are typically required for downstream analyses of MEG 

data, the number of trials was increased to 10 trial sets at each rate. The recorded productions of a 

female native Australian speaker were used to train the participants before data acquisition began. 

Participants were trained to avoid incorrect speech productions or head movements, were required 

to produce each task correctly at the correct rate before data acquisition began and to avoid eye 

blinking during the speech production trial sets. They were allowed to blink their eyes between 

the trial sets but were instructed to avoid these during trial sets.  
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For the manual nonspeech task, participants performed self-paced button presses at a rate 

of about 1/ 2 seconds on a fibre optic response pad (Current Designs, Philadelphia) for 180sec (see 

Figure 1B). (Cheyne et al., 2008; Cheyne et al., 2014; De Nil et al., 2021; Johnson & He, 2019). 

 

 

Figure 1. Experimental procedures.  A. Speech task.  Instructions were displayed for 30s, 

followed by a 5s fixation cross 8+9 and breath intake in preparation for the speech production trial 

set. During a trial set participants produced the indicated nonword in a reiterated fashion for 12s.  

10 consecutive trial sets were performed for each nonword stimulus. B. Button press task. 

Instructions were displayed for about 30s followed by a fixation cross, during which participants 

performed self-paced button pressed with the index finger of their dominant (right) hand at a rate 

of about 1 per 2 seconds for a total of about 90 trials. 

 

Analyses: Data analyses proceeded in four main phases:  

(1) Analyses of MASK speech movement signals to characterise speech kinematic 

profiles;  

(2) MEG source reconstruction to identify location of speech motor cortex;  

(3) Extraction of MEG-time frequency spectrograms from source-localised speech motor 

cortex, followed by and multivariate pattern analysis of speech-relevant brain rhythms.  

(4) Mapping of speech kinematic profiles onto source- and frequency-constrained MEG 

data, via representational similarity analysis (RSA).  

For the purposes of clarity, we present details of each set of analytic methods along with their 

results, organised according to these four analytic phases.  
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1. Analysis of MASK-derived speech movement signals. 

1A. Methods. The raw MASK position data were head motion corrected using MASK coils placed 

at fiducial landmarks (nose, left and right ear) and transformed from the MEG coordinate system 

into the occlusal plane frame of reference such that motion signals could be measured relative to 

a midsagittal plane defined by the x (posterior-anterior) and z (inferior-superior) axes relative to 

the bite plane origin. These transformed signals were then analysed using EGUANA software 

(Henriques & Van Lieshout, 2013; Van Lieshout, 2021) to derive signal amplitude and phase for 

selected articulators and speech gestures. Movement artifacts were initially screened out, and 

subsequent analyses were focused on accurate productions (Case & Grigos, 2020), with errors 

such as substitutions and lengthy pauses being excluded.  

/ipa/ and /api/ productions involve specific movements of the lips and tongue. To create 

the voiceless stop /p/ sound, a bilabial closure (BC) gesture is used. The two tongue body 

constriction gestures (TB) are used to produce the sounds /i/ and /a/. The BC gesture was calculated 

using the two-dimensional (x-y) Euclidian distance of the upper and lower lip positions, while the 

tongue body gesture was derived from the two-dimensional (x-y) Euclidian distance of the tongue 

body and the nasal reference coil, as described in Van Lieshout et al. (2007). The kinematic and 

coordination parameters were computed using the methods described in (Anastasopoulou et al., 

2022; van Lieshout et al., 2002; van Lieshout et al., 2007). 

The opening and closing movements of each cycle were identified using the minimum and 

maximum vertical position of the gestural and articulatory signals (Van Lieshout, 2017). The 

amplitude levels of the opening and closing movements at 10% and 90% were determined for each 

individual cycle. Custom MATLAB scripts were then utilized to determine the times 

corresponding to the 10% and 90% amplitude levels of each opening and closing movement of 

each individual gestural signal of BC and TB. Finally, the individual times of the onset and offset 

of the opening and closing movements were brought into time register with MEG data by aligning 

the acoustic signal of the MASK acquisition signal and the acoustic signal recorded in the MEG 

adult acquisition computer, as shown in Figure 2. 
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Figure 2: Temporal alignment of MEG and MASK signals. MASK articulatory signals are 

brought into register with the MEG brain data using the MATLAB alignsignals function on the 

MEG and PsiFi acoustic signals (top and second rows). Inset shows enlargement of rectangle 

bounded area in main figure. 1 = onset of opening movement; 2 = offset of opening movement; 3 

= onset of closing movement; 4 = offset of closing movement.  
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1B. Results 

MASK tracking signals. Figure 3 displays acoustic recordings and tracking signals of the tongue 

body (TB) and bilabial closure (BC) from Participant 1 for a single trial of each of the four speech 

production tasks. The participant produced 14 utterances of /ipa/ and /api/ at a normal speaking 

rate and 18-19 utterances at a faster rate.  

The contrast between the mirrored positions of the tongue and lips in /ipa/ and /api/ is 

clearly observed in the MASK measurements of tongue and lip gestures. Peaks and valleys in 

Figure 3 indicate the high and low positions achieved by the BC and TB gestures during the 

production of /api/ and /ipa/. Valleys occur during the bilabial constriction gesture and the tongue 

body gesture for /i/, while peaks occur for the tongue body gesture of /a/. (We note that these 

positions are Euclidean distances relative to the nasion. Within this reference frame <low a= is a 

peak, and <high /i/= is a valley). In /api/, the /p/ closure occurs during the upward motion of the 

TB, going from the low /a/ to the high /i/ position. On the other hand, in /ipa/, the /p/ closure occurs 

during the downward motion of the TB, going from the high /i/ to low /a/ position. The gestural 

movements of /ipa/ and /api/ are mirror images, with the relative timing of the motions of TB and 

BC gestures reversed. 

Overall, the TB and BC tracking signals measured with MASK are entirely comparable in 

morphology and quality with those obtained from a conventional electromagnetic articulography 

setup (please see Anastasopoulou et al., 2022, for a direct comparison of MASK and EMA signals 

measured during the same utterances described here). 
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Figure 3. Representative acoustic and kinematic measurements from MASK. Data are shown 

for two participants for a single /ipa/ trial set at normal and faster speaking rates. Shown are (from 

top to bottom) waveforms for the audio signal, tongue body (TB) gesture, and bilabial constriction 

(BC) gesture.  

 

 

Derived kinematic profiles. The next stage in our analysis pipeline involves generating profiles 

that capture the relationships between key kinematic parameters of BC and TB gestures. 

Specifically, we examine the amplitudes, durations, velocities, and stiffnesses of gestural 

movements, as these parameters are known to covary in highly consistent ways and reflect 

"invariant" properties of speech kinematic movements. These invariant properties are crucial in 

understanding the motor control of human speech. 

Figure 4 illustrates the covariation of these kinematic parameters for /ipa/ and /api/ for two 

participants. Our analysis shows that movement peak velocity increases as a linear function of 

movement amplitude, indicating that larger movement distances are associated with higher peak 

speeds. Furthermore, we observe comparable amplitude/velocity relationships for opening and 
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closing movements, suggesting that these parameters are controlled similarly regardless of 

movement direction. This roughly linear relationship between amplitude and peak velocity is a 

well-established characteristic of speech kinematics, and has been described for a variety of 

articulators, gestures, and utterances (33,38). Regarding the stiffness vs. duration relationship, our 

results indicate that stiffness systematically decreases as a curvilinear function of durations less 

than 200 ms, after which the relationship plateaus into a relatively flat line. 

 

 

Figure 4.  Covariation of kinematic parameters of speech movements for two participants. 

Left columns: Velocity versus amplitude. Right columns: Stiffness versus duration.  BC = bilabial 

closure. TB = tongue body. 
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2. MEG source reconstruction of speech motor cortex  

 

2A. Methods: Source reconstruction of brain activity was carried out using the synthetic aperture 

magnetometry (SAM) beamformer algorithms implemented in the BrainWave MATLAB toolbox 

(Jobst et al., 2018; cheynelab.utoronto.ca/brainwave). The raw KIT/Yokogawa data files were 

initially converted to CTF format and transformed to the CTF head coordinate system using the 

fiducial coil positions relative to the sensor array. Each participant9s structural MRI was then 

spatially coregistered with the MEG data and normalised into standard adult MNI template space 

using SPM12 (Wellcome Institute of Cognitive Neurology).  

For the speech motor cortex localiser analyses, the onset of each speech trial set was 

marked according to the onset of the acoustic signal and raw data were pre-filtered using a 100 Hz 

low pass bidirectional zero phase-shift Butterworth filter and epoched into 15 sec segments, from 

10 sec prior to speech onset to 5 seconds after speech onset. Each 15 sec segment encompassed 

three distinct task periods: the last five seconds of the preceding trial set (-10 to 3 5 sec); the inter-

trial set rest period (-5 to 0 sec); and the first five seconds of the current trial set (0 to +5 sec), 

thereby providing maximal contrast between active (speech) and rest periods.  

The current trial set and inter-trial rest period intervals were used for the SAM pseudo-T 

analysis window and baseline window respectively. We used a sliding active window of 1 second 

duration starting from 0-1000 ms (step size 200 ms, 10 steps), and a fixed baseline window of 2 

seconds duration extending from -5 to -3 seconds relative to speech movement onset and a 

bandpass of 18322 Hz (centre of the beta frequency range). The full 15 second time window was 

used to compute the data covariance matrix for beamformer weight calculations. SAM pseudo-T 

images were volumetrically reconstructed using a 4 mm resolution grid covering the entire brain.  

In all individuals SAM source reconstruction resulted in robust peaks centred on the left 

middle precentral gyrus and adjacent regions of the left middle frontal gyrus. The time-course of 

source activity was then computed as the output of the beamformer with optimized orientation 

(<virtual sensor=) and plotted as time-frequency spectrograms (encompassing the entire 15 sec 

data epoch) to assess the temporal correspondence of beta activity with active and rest periods. To 

maximise the number of trials (and consequently, the signal to noise ratio) in this analysis we use 

trial sets from all four speech tasks (for a total of 40 trial sets). 

For the hand knob localiser analysis, trials were prefiltered with a bandpass of 0-100 Hz 

and epoched with respect to the button press onset into 1.5 sec segments (-500 to +1000 ms), 

encompassing the established time course of beta-band desynchronisation (several hundred ms 

prior to and after the button press) and <rebound= synchronisation (several hundred ms starting 

about 500 ms after the button press) (see Cheyne, 2013;  Cheyne et al., 2014; Johnson et al., 2016). 

Following the maximal contrast approach used for the speech analysis, the SAM pseudo-T analysis 
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used a sliding active window of 200 ms duration starting from 600-800 ms, (step size 10 ms, 10 

steps), a fixed baseline window from 0 to 200 ms, and bandpass of 18-22 Hz.  The full 1.5 second 

epoch was used to compute the data covariance matrix for beamformer weight calculations. 

Volumetric reconstruction used the same grid employed for the speech analysis.  

In all individuals SAM source reconstruction resulted in robust peaks centred on the hand 

knob of the left precentral gyrus, and a smaller mirror source centred on the right hemisphere 

homologue. The left hemisphere virtual sensor source activity was then computed and plotted as 

a time-frequency spectrogram (encompassing the entire 1.5 sec data epoch) to assess the 

correspondence with the established time course of beta band activity associated with the manual 

button press task (Cheyne, 2013; Cheyne et al., 2014; Johnson et al., 2020).  

 

2B. Results. Figure 6 shows that the SAM beamformer cluster maxima encompass the middle 

portion of the prefrontal gyrus (mPFG) and the immediately adjacent region of the middle frontal 

gyrus (MFG), both established areas of low-level speech motor control (Silva et al., 2022). The 

anatomical localisation of the mPFG is well-supported by comparison with the SAM beamformer 

map for the button press task, which shows a cluster maximum in the hand knob of the immediately 

dorsal region of precentral gyrus.   

  Physiological activities at the locations of the SAM beamformer cluster maxima are 

visualised in the <virtual sensor= time frequency plots below their respective brain maps. For the 

button press task the time-frequency plot shows the well-established pattern of beta-band (13-30 

Hz) desynchronisation, starting several hundred ms before the button press, persisting for several 

hundred ms after, and followed by a <rebound= beta synchronisation at about 600-700 ms after the 

button press.  

A comparable pattern of beta band activity is evident in the speech virtual sensor plot, 

keeping in mind the different time scales (1.5 sec for button press, 15 sec for speech) and 

movement requirements (a single punctate button press versus 10 seconds of steady state, 

reiterated speech) of the two tasks. Beta band desynchronisation begins several hundred ms before 

speech onset and persists for the duration of the speech movements. Note that in this plot the 

baseline of the colour scaling (the five second inter trial set rest period) was chosen to emphasise 

event-related desynchronisation. Baselining to the speaking portions of the epoch will emphasise 

the event-related synchronisation during the rest period).  

Taken together, the results of the localisation procedure provide a focussed and well-

grounded target for subsequent analyses that can incorporate the kinematic and coordination 

parameters derived from MASK. The plausibility of the mPFG/MFG target is well-supported by 

the time-frequency characteristics of the virtual sensor and its anatomic location immediately 

dorsal to the established landmark of the PFG hand knob, independently localised with data from 
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the button press task: a task that has been long established to provide highly reliable beta-band 

activations located in the hand regions of the sensorimotor cortices (e.g. Cheyne et al., 2014).  

The speech-related plausibility of the mPFG/MFG region is also strongly supported by 

recent evidence from invasive neurosurgical studies of expressive speech function. The region of 

the precentral gyrus located immediately ventral to the hand motor region of the precentral gyrus 

has been functionally defined in neurosurgical studies and termed middle precentral gyrus 

(midPrCG). It has been posited that this region functions to coordinate complex phonological 

sequences into motor plans (Silva et al., 2022). Further, the coactivation of the posterior region of 

the middle frontal gyrus (pMFG) in our results is to be expected since this region that is tightly 

functionally associated with the midPrCG (Glasser et al., 2016). 

 

 

Figure 5. Localisation of speech motor cortex. Left: Anatomical Landmarks. 1 3 Hand regions 

of precentral gyrus (hand knob); 2 3 Hand region of postcentral gyrus; 3 3 Middle precentral gyrus; 

4 3 Middle frontal gyrus; 5 3 Rolandic fissure; 6 3 precentral gyrus; 7 3 postcentral gyrus. Top 

right panel: SAM beamformer maps. Button press task elicited activation of hand region of pre 

(motor) and postcentral (somatosensory) gyri. Speech task shows maximal activation in middle 

precentral gyrus, immediately ventral to the hand motor region of the precentral gyrus. Speech 

activation cluster also encompasses the middle frontal gyrus immediately adjacent to the middle 

precentral speech region. Bottom right panel: Time-frequency plots showing temporal evolution 

of oscillatory responses at virtual sensors placed at locations of cluster maxima shown above.  
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3. Extraction and pattern analysis of source-localised MEG time-frequency spectrograms. 

3A. Methods. For each production task, continuously recorded MEG signals were pre-filtered 

with a bandpass of 0-100 Hz and 50 Hz notch filter and segmented into 4 second epochs (-2 sec to 

+2 sec) using the onset of the BC opening movement for each speech task as time zero. Data 

epochs were subsequently truncated to 3 seconds (-1.5 sec to + 1.5 sec) to remove edge effects 

from the frequency analysis. Using the speech motor cortex coordinates derived from the speech 

localiser for a virtual sensor, time-frequency spectrograms were generated for each individual trial 

and the resulting three-dimensional (time x frequency x trial) matrix was exported for 

classification analysis using the MVPA-Light MATLAB toolbox for classification and regression 

of multidimensional data (Treder, 2020).  

Equivalent duration non-speaking <resting= condition epochs were derived by randomly 

selecting epoch-reference time-points from the inter- trial set rest periods of the MEG data. For 

each speaking condition and participant, an equal number of resting condition trials was epoched.  

Our aim in this analysis was to perform a <time-frequency classification= to determine if 

the trial by trial time-frequency data derived from the speech motor cortex virtual sensor contains 

information that is able to discriminate between the neural activities associated with speech and 

rest trials; and, if so, to determine if the discriminative information is confined to a specific 

frequency range1 (Treder, 2020).  

We performed a searchlight analysis using a binary linear discriminant analysis (LDA) 

classifier and a metric of <accuracy= (fraction of correctly predicted class labels, range = 0 3 1), 

with training parameters of five folds and five repetitions.  

Group level 2 statistics were performed using nonparametric permutation testing and 

cluster corrections for multiple comparisons (Maris & Oostenveld, 2007) as implemented in the 

MVPA-Light toolbox (Treder, 2020). 

 

3B. Results. Figure 6 shows source-localised time-frequency spectrograms for individual 

participant S1119. The speech-condition spectrograms show clear speech rate related modulation 

of circa 20 Hz beta-band activity in all speech conditions. A clear and distinct pattern of circa 10 

Hz mu band activity is also observable for both of the /api/ productions. Substantial movement-

related broadband noise is also evident in the supra-beta frequencies for all speaking conditions 

and is especially prominent in the /api/ faster rate condition. Both the beta and mu-band rhythms 

are well-known and established rhythms of the central motor cortices (Cheyne, 2013; Cheyne et 

al., 2014).  

 

1 In the case of event-related experimental designs the time-frequency classification can also determine if 

discrimination is confined to specific times (Treder, 2020). The reiterated speech paradigm used here is akin to a 

system in steady state, so the analytic question at this stage simplifies to frequency discrimination alone. 
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 In contrast to the speaking conditions, for the non-speech resting conditions mu and beta 

activities are manifest as relatively continuous (unmodulated) bands of activity throughout most 

of the epoch, and broadband movement-related noise patterns are absent from the resting 

spectrograms.  

 The MVPA classification results of Figure 9 shows that the classification show up both the 

mu and beta band rhythms, with a well-defined frequency boundary between the two rhythms that 

is clear and prominent in the cases of the /ipa/ faster rate and /api/ normal rate date. The classifier 

also picks up speech-movement related noise (from the speech condition), particularly in the /api/ 

faster rate condition. Speech movement-related noise is evident as high-frequency broad-band 

patterns extending to circa 50-60 Hz. The broadband noise in the classification patterns is well 

separated in frequency from the beta/mu classifier signals and confined to frequencies above 50 

Hz.    

 

 

Figure 6. Time-frequency characteristics of speech and resting conditions for an individual 

participant. All plots show three seconds of MEG data derived from the medial frontal gyrus 

voxel. Top row. Time-frequency spectrograms during speech. Data are epoched relative to the 

onset of the bilabial closure opening movement. Speech rate modulated beta-band (circa 20 Hz) 

activity is evident in all plots, and mu-band activity is evident in several, especially the /api/ normal 

rate condition. Middle row. Spectrograms derived from the inter-trial set rest periods. Relatively 

continuous beta-band ERS is evident in all plots, as well as mu-band ERS in the /api/ conditions. 

Bottom row. MVPA classification results for speech versus resting conditions. High classification 

accuracy is quite tightly constrained to circa 20 Hz beta band, and a well-defined mu-frequency 

band is evident in the /ipa/ faster rate and /api/ normal rate conditions.  

 

 Level 2 group analysis of the speaking/resting classifier results are shown in Figure 7. The 

group results are entirely consistent with the individual results described above and provide clear 
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statistical support for high classification accuracy for the mu and beta motor rhythms, as well as 

the high-frequency movement-related noise region. The mu/beta frequencies are well separated by  

by a region of low-classifier accuracy for circa 30-50 Hz frequencies, suggesting at least a lack of 

continuity between these frequency regions, and possibly that the underlying informational 

structures of the motor rhythms and the noise are functionally independent. We consider this issue 

more formally in the frequency generalisation analyses below.  

 

 

 

Figure 7. Group analysis of classifier performance for speech versus resting conditions. All 

plots show three seconds of MEG data derived from the medial frontal gyrus voxel. As seen in 

Figure 7, classifier performance is high for both speech-related high-frequency noise and 

beta/mu signals.  

 

Frequency generalisation (cross-frequency decoding). 

  

In addition to providing an estimate of decodability for the task contrasts described above, 

time/frequency series decoding can be applied to provide a picture of the continuity (or 

discontinuity) of decoding estimates over time or frequency. This provides an important inferential 

advantage for further interpretation of the timing or frequency specificity of experimental effects. 

This <cross-decoding approach= involves training the classifier on a given time or frequency and 

then testing classifier performance on different times or frequencies. The logic of this approach 

relies on the classifier9s ability to partition multidimensional space as a basis for discriminating 

between experimental conditions: hence, where a classifier trained on a given time or frequency 

can successfully discriminate experimental classes based on other time or frequency points, one 

can infer that the structure of the underlying multidimensional space is similar for those two points. 

Conversely, in the case where cross-point decoding is unsuccessful, one can infer that the 

underlying multidimensional patterns are sufficiently different that the distinction between class 

labels determined at one point are not meaningful for discrimination at the second point 

(Grootswagers et al., 2017; Treder, 2020).  
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In the present context cross-frequency decoding enables us to more precisely address 

questions about possible relations between frequency bands identified by the basic speech/rest 

classificational analyses described in Figures 7 and 8: (1) Do the beta/mu band signals rely on the 

same classification information as the high frequency signals, which we interpret to reflect non-

neural noise associated with speech movements?  In this case redundancy would suggest the 

beta/mu signals simply contain some level of speech movement noise that is the basis for class 

discrimination. On the other hand, a lack of cross frequency generalisation supports the conclusion 

that they are independent signals and further, that the beta/mu signals are not significantly 

contaminated by broadband noise. (2) In a similar fashion, it is of interest to assess the cross-

frequency generalisation between the mu and beta bands, two motor rhythms that have been 

frequently observed to co-occur in electrophysiological studies and can be assumed to have some 

functional inter-relationship (Cheyne et. al., 2014).  

The frequency generalisation results of Figure 8 provide clear answers to both questions. 

First, there no evidence for frequency generalisation between mu/beta and the high frequency noise 

region, at either the individual or group level. To the contrary, frequency generalisation 

(observable as off-diagonal clustering) occurs within the sub-30 Hz mu/beta frequencies, and 

within the supra-60 Hz frequencies (particularly within the range of about 60-80 Hz); but the 

intermediate zone between mu/beta and high frequency noise (circa 30-60 Hz) exhibits a fairly 

strictly diagonal trajectory (for example, see group means for /api/ normal and faster rates). 

Classification of speech and resting conditions can clearly rely on either high frequencies 

associated with speech movements, or mu/beta frequency information: both frequency regions are 

prominent in the classification plots of Figures 7-9. However, the cross-frequency coding results 

provide clear support for the conclusion that the high frequency (noise) band and the mu/beta 

bands are discontinuous and rely on distinct patterns of multidimensional structure within their 

data to achieve discrimination between speech and resting data conditions.  

On the second question, the group results show clear frequency generalisation between 

beta frequencies circa 15-Hz and also suggest a possibly weaker generalization for beta training 

frequencies and mu test frequencies (circa 8-12 Hz; see group statistical results for /ipa/ and /api/ 

faster rates. Although the mu/beta clusters do not achieve statistical significance for the slower 

speech rates, comparable clusters are evident in their group mean data. The individual results for 

S1119 are entirely comparable to the group mean data but show a much clearer distinction between 

the mu and beta bands (see especially plot for /api/ normal rate): These data show that mu training 

frequencies about 8-12 Hz generalise to beta band frequencies; and that beta training frequencies 

circa 20-30 Hz generalise to mu test frequencies. However, the plots also show a clear mu/beta 

discontinuity, with low classification accuracy for frequencies between about 13-20 Hz. This 
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mu/beta discontinuity is not as evident in the group results, presumably due to individual 

differences in the precise frequency ranges of the mu rhythm (Pfurtscheller et al., 1997).  

 

 
Figure 8. Frequency generalisation. In this analysis the classifier is trained on a given frequency 

and decoding performance is tested on a different frequency. This is repeated for all possible 

frequency pairs. The classifier results show that beta frequencies generalise to each other and to 

some extent to mu frequencies (bottom row, /ipa/ faster and /api/ faster).  Importantly, beta/mu 

frequencies do not generalise to the higher frequency noise band, and conversely the noise band 

does not generalise to the beta/mu frequencies. Permutation-based significance tests used 500 

permutations, Wilcoxin signed rank test (alpha < .05), controlled for multiple comparisons using 

FDR.  
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4. Mapping of speech kinematic parameters onto source- and frequency-constrained MEG 

data. 

In the preceding analyses we have used standard MVPA classification of speech versus 

resting conditions to demonstrate that the neural signals derived from speech motor cortex contain 

information that is capable of discriminating between speaking and resting conditions; and then 

employed cross-frequency classification to determine that the mu-beta motor rhythms contain the 

informational basis of speech-rest discrimination. Importantly, cross-frequency generalisation also 

shows that the informational structure of the mu/beta rhythm is independent of the high frequency 

broadband noise that is an inevitable confound for electrophysiological recordings during overt 

speech.  

In subsequent analyses we attempt to derive a more detailed picture of the information 

structures contained within the neural data, by performing classification between data partitions 

within the speech condition, rather than between speech and rest conditions. Representational 

Similarity Analysis (RSA; Kriegeskorte, 2008; Kriegeskorte & Kievit, 2013) is an MVPA 

technique based on the simple logic that classes of neural data with more similar informational 

(representational) structures should be more difficult to classify, relative to classes with more 

distinct representational structures. Previous studies have successfully applied RSA to tracking 

data of hand movements (Kolasinski et al., 2020), articulator movements during vowel production 

(Carey et al., 2017), and acoustic measurements during speech production (Zhang et al., 2020).  

We follow this logic to test specific hypotheses about potential representational structures 

in speech motor cortex activity as follows (see Figure 9 for a summary of the computational steps): 

(1) Our starting hypotheses concerning candidate representational structures within 

speech motor cortex activity come from the well-behaved kinematic profiles derived 

from direct MASK measurements of speech articulator movements (Figure 4): both 

the strikingly linear relationship between amplitude and velocity, and the orderly 

curvilinear relationship between duration and stiffness have been proposed to reflect 

<control parameters= that are relatively tightly specified at some level within the 

speech motor system; 

(2) Within a given kinematic profile, we divide the behavioural data points into partitions 

that reflect different (Euclidean) distances between the coordinates within each 

partition. Here we have used 10 partitions to provide a reasonable spread of inter-

partition distances.  

(3) Data points are averaged within each partition to provide a representation of the central 

tendency of each partition.  

(4) A <behavioural dissimilarity matrix= is generated based on the Euclidean distances 

between averaged data points in all possible pairs of partitions. 
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(5) The MEG data (consisting of N trials by 3000-time points x 100 frequencies) is 

similarly divided into sets of individual trials that correspond to the behavioural data 

points within a partition.  

(6) Classification analysis is performed for all possible pairs of MEG trial partitions.  

(7) A <neural dissimilarity matrix= (for each time and frequency point) is generated based 

on the Euclidean distances between the classification accuracy scores.  

(8) An <RSA time-frequency plot= is generated containing the correlations between the 

behavioural dissimilarity matrix and the neural matrices for each time and frequency 

point.  

Model evaluation is restricted in time to a 1 second epoch centred on the onset of the BC opening 

movement, as this event is the reference for the epoching of the MEG data. Model evaluation is 

further restricted to the frequencies of the mu and beta speech motor frequency bands of interest 

defined by the analyses described in the frequency localisation sections above; and for comparison 

purposes, a third high frequency region (60-80 Hz) dominated by speech movement noise and 

which we therefore do not expect to contain useable information concerning the representational 

structures of speech neuromotor activity.  

Group data were statistically evaluated with cluster-based permutation analyses using 500 

permutations, alpha < .05, and controlled for multiple comparisons using FDR. 
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Figure 9. Procedure for calculation of behavioural and neural correlations. A. Velocity versus 

amplitude and stiffness versus duration profiles are partitioned into 10 blocks containing equal 

numbers of trials. Distances between each partition based on the partition mean coordinates are 

used to generate the behavioural RDMs. For each partition, the same trials of MEG data are input 

to MVPA classification analysis. The resulting classification (accuracy) metric is used to generate 

a neural RDM, for each time-frequency point. B. A time-frequency correlation matrix resulting 

from correlating the (in this case, stiffness-duration) behavioural RDM with the neural RDM for 

each time-frequency point. Group statistics/model evaluation are performed for the mean alpha, 

beta, and gamma frequency bands within the time range of -500 to +500 ms from onset of the BC 

opening movement.  

 

4B. Results. The statistically significant results of model evaluation are shown in Figure 10. Of 

the two behavioural models, four speech conditions, and three frequency bands evaluated, only the 

/api/ normal rate condition shows showed statistically significant correlations, for beta band and 

for the stiffness-duration model. Three observations are relevant from these results: (1) The group 

mean correlations are overall very weak, with peaks restricted to a range of less than - .2 to .2; (2) 

The temporal structure of the significant positive clusters is appropriate, beginning at a latency of 

about 100 ms prior to the onset of the BC opening movement. This timing is in good accordance 

with what one would expect for neural activity associated with behavioural movements. (3) The 

post-movement cluster of correlations is oppositely (negatively) correlated to the premovement 

cluster.  

 Figure 10 also shows comparable (though non-significant after cluster-correction) results 

for /ipa/ normal rate for the velocity-amplitude model. While we do not wish to over-interpret a 

non-significant result, the circa -90 ms timing of the peak positive correlation cluster is entirely 

comparable to that observed for the /api/ normal rate stiffness-duration data described above.  
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Figure 10. RSA model evaluation. Black lines show group mean correlations between 

behavioural and neural RDMs; shading shows standard errors. Left panel: The beta-band profile 

for /api/ normal rate shows three significant correlational clusters against the stiffness-duration 

RDM. The first positive cluster begins about 90 ms prior to onset of the first opening movement 

of BC. A second positive cluster occurs beginning at time zero, and a third cluster of weak negative 

correlations begins about 180 ms post movement-onset. Right panel: Beta correlation against 

amplitude-velocity time profile shows a similar positive peak circa -90 ms, although the t-value 

clusters do not survive cluster correction for FDR rate.  

 

 

Group mean behavioural-neural correlation time series are shown for all speech conditions, 

frequency bands, and behavioural models in Figure 11. As expected, in the gamma frequency band 

no significant results were obtained for any speech condition or behavioural model, and there is 

no discernible, consistent temporal structure in any of the plots. The mu band similarly shows no 

discernible or consistent temporal structure, and no significant results were obtained.  
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Figure 11. Group mean behavioural-neural correlations for all speech conditions, frequency 

bands, and behavioural models. Black lines show group mean correlations; shading shows 

standard errors. 
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In summary, the present results provide support for very weak but statistically significant 

encoding of the stiffness-duration relationship only in the beta motor rhythm. This encoding is 

statistically robust in only one speaking condition and is very weak in terms of magnitude of 

correlation. However, it is well-structured in time and shows an appropriate and expected temporal 

relationship (about -90 ms) with respect to movement onset.  
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Discussion 

In the current paper we have presented an analytic framework for MASK-MEG: for 

measuring and characterising speech movement kinematic parameters and relationships; for spatial 

localisation of anatomically pertinent regions of interest within the widely distributed brain 

language network; for frequency localisation of speech-related sensorimotor brain signals; and for 

mapping of MASK-derived kinematic movement parameters on to temporally co-registered 

neurophysiological signals from MEG. This analytic framework has the following features: 

(1) It provides detailed profiles of speech articulator movements (including non-line-of-

sight articulators including the tongue) movements that are demonstrably comparable 

to those obtained by conventional and established speech movement tracking setups in 

motor control research laboratories.  

(2) It reduces the spatial dimensionality of the overall analysis problem, in this case from 

160 MEG channels (or alternatively, thousands of source-reconstructed voxels) to a 

single virtual sensor. Further, the virtual sensor is centred in a region of speech motor 

cortex encompassing the middle central gyrus/medial frontal gyrus; As we have noted, 

there is now substantial evidence that this region plays a central role in control and 

coordination of integrative speech movements.  

(3) It reduces the frequency dimensionality of the analysis problem to the mu/beta band 

rhythms, which are well-established rhythms of the sensorimotor cortices of the brain.  

(4) It further demonstrates that these sensorimotor rhythms are well-separated and 

structurally independent (in terms of information content that determines speech-

nonspeech classification) from higher broadband frequencies that reflect speech 

movement noise. This is an important consideration for electrophysiological 

measurements of overt speech, which will almost inevitably suffer from contamination 

from movement-related broadband noise generated by the muscles that move the 

articulators.  

(5) Finally, it provides a means of mapping overt speech behaviours onto neural activities, 

in a manner that allows for direct evaluation of hypotheses concerning the types of 

information that may be contained within these neural activities; and that further allows 

for strong inferences concerning the timing of relevant neural activations with respect 

to behavioural outputs.  

 

We note that while our analytic framework dramatically and effectively reduces the dimensionality 

of the MEG analytic problems, there remains a large decision space concerning the selection of 

speech behaviours for input to the overall analyses. Here we have fairly arbitrarily focussed on a 

single articulator metric (the first opening movement of the bilabial closure gesture) and have 
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tested 2 simple models (derived from the observed kinematic profiles) of the neural informational 

structures that may underlie this movement. Our results nonetheless provide support for the 

conclusion that the stiffness-duration relationship of the first opening movement of the bilabial 

closure may be (very weakly) encoded in the beta-band sensorimotor rhythm, with a timing 

beginning approximately 90 ms before the onset of the movement. The reason for the occurrence 

of a second period of significant (but oppositely valanced) association with stiffness-duration at a 

latency of about 200 ms post movement is presently unclear: one possibility is that reflects a 

sensory reafference event that provides a check on the motor commands.  

Overall, since we have obtained such a very weak association between behaviour and 

neural activity (and in only one of four speech conditions), it is clear that future work should more 

systematically probe the sets of possible models of speech movement encoding, including models 

that describe relationships between articulators that are likely required for integrative speech 

behaviours (e.g., the Linguistic Gestural Model (LGM) which is a combination of Articulatory 

Phonology and Task Dynamics (Saltzman & Munhall, 1989; Browman & Goldstein, 1992; 

Browman & Goldstein, 1997, the speed-accuracy trade off known as Fitts9 law (Fitts, 1954; Gafos 

& van Lieshout, 2021; Kuberski & Gafos, 2021).  The current analytic approach provides a 

framework for just such a systematic assessment of models of speech neuromotor control. 

  

Conclusions 

MASK-MEG addresses an important gap in current neuroscientific capabilities for studying 

expressive language function in the human brain. While we possess robust and well-established 

methods for measuring and characterising overt movements of the speech articulators, and highly 

sophisticated equipment and methods for defining the brain activities that control these 

movements, the two methodologies are not readily or easily combined within a single experimental 

setup.  As a result, speech movement tracking and speech neuroimaging methods have largely 

evolved within separate laboratories -- even separate disciplines -- and there remains no easy way 

to co-register and reconcile the different types of information that are derived from them. The 

advent of neuroimaging-compatible speech tracking technologies such as MASK opens a new 

window for integrative studies of human speech motor control, combining precision measures of 

overt speech behaviours with temporally co-registered and spatially localised measures of brain 

function.  

 Recent results from invasive ECoG studies of human neurosurgical patients provide 

compelling reasons to believe that such integrative capabilities will be important for future 

progress in understanding speech motor control. For example, Chartier et al. (2018) obtained direct 

cortical recordings of human speech sensorimotor cortex together with (inferred) articulatory 

kinematics derived from a recurrent neural network based articulatory inversion technique which 
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learned a mapping from produced speech acoustic to a speaker generic articulator space. This study 

showed that articulator movements were reflected significantly better in measured neural activity 

than were either acoustic or phonemic features of speech; that encoding is more related to 

coordinated movements of multiple articulators than to movements of single articulators; and that 

the behaviours of encoded movements were governed by damped oscillatory dynamics. These 

authors concluded that these coordinative and dynamical properties align neatly with the properties 

of articulatory units of speech (vocal tract gestures) as conceived within the theoretical framework 

of articulatory phonology and its associated task dynamics model (Browman & Goldstein, 1992; 

Goldstein & Fowler, 2003; Saltzman, 1986). As such, it seems clear that concurrent speech 

movement tracking and non-invasive neuroimaging should provide richer datasets with mutually 

reinforcing inferential power and precision relative to experiments that currently are largely 

conducted with only one or the other measure of speech motor control.  

 These new technical capabilities also have clear clinical relevance for advancing our 

understanding and treatment of developmental and acquired disorders of speech. Speech-sound 

difficulties are the most common problems encountered by paediatricians and present formidable 

social, educational and employment obstacles in cases where these problems cannot be readily 

treated and resolved (Morgan, 2018).  Childhood apraxia of speech (CAS) is an intriguing example 

of a highly debilitating and persistent disorder of speech development whose origins are 

considered to lie within the brain mechanisms responsible for coordinating and sequencing speech 

movements, but whose study with conventional neuroimaging approaches has so far proved highly 

resistant to establishing any clear connection to any particular brain region. In such cases, the 

capability to directly map speech kinematic and coordination function in speech motor control 

centres within highly focal and specific brain regions promises to provide more powerful insights 

into the origins of speech problems in CAS (and conversely, into why speech development 

proceeds more smoothly in most other children). Similarly, acquired apraxias of speech are a 

common and debilitating outcome of strokes and other brain injuries. The greater functional 

specificity of MASK-MEG has a clear bearing on studies aimed at understanding the nature and 

degree of functional compromise and plastic capabilities in the brain of these patients.  
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