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Abstract 23 

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the 24 

prediction of complex traits and diseases. However, most existing PRS are primarily trained on 25 

European ancestry populations, limiting their transferability to non-European populations. In 26 

this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres 27 

based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-28 

wide association studies (GWAS) summary statistics from diverse populations to develop 29 

ancestry-specific PRS with improved predictive power for minority populations. The method 30 

uses a combination of ℒ1 (lasso) and ℒ2 (ridge) penalty functions, a parsimonious specification 31 

of the penalty parameters across populations, and an ensemble step to combine PRS generated 32 

across different penalty parameters. We evaluate the performance of PROSPER and other 33 

existing methods on large-scale simulated and real datasets, including those from 23andMe 34 

Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can 35 

substantially improve multi-ancestry polygenic prediction compared to alternative methods 36 

across a wide variety of genetic architectures. In real data analyses, for example, PROSPER 37 

increased out-of-sample prediction R2 for continuous traits by an average of 70% compared to a 38 

state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further, 39 

PROSPER is computationally highly scalable for the analysis of large SNP contents and many 40 

diverse populations.  41 

  42 
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 43 

Introduction 44 

 45 

Tens of thousands of single nucleotide polymorphisms (SNP) have been mapped to human 46 

complex traits and diseases through genome-wide association studies (GWAS) 1, 2. Though each 47 

SNP only explains a small fraction of variation of the underlying phenotype, polygenic risk 48 

scores (PRS), which aggregate the genetic effects of many loci, can have a substantial ability to 49 

predict traits and stratify populations by underlying disease risks 3-12. However, as existing 50 

GWAS to date have been primarily conducted in European ancestry populations (EUR) 13-16, 51 

recent studies have consistently shown that the transferability of EUR-derived PRS to non-EUR 52 

populations often is suboptimal and in particular poor for African Ancestry populations 17-22.  53 

 54 

Despite growing efforts of conducting genetic research on minority populations 23-26, the gap in 55 

sample sizes between EUR and non-EUR populations is likely to persist in the foreseeable 56 

future. As the performance of PRS largely depends on the sample size of training GWAS 3, 27, 57 

using single ancestry methods 28-32 to generate PRS for a minority population, using data from 58 

that population alone may not achieve ideal results. To address this issue, researchers have 59 

developed methods for generating powerful PRS by borrowing information across diverse 60 

ancestry populations 33. For example, Weighted PRS 34 combines single-ancestry PRS generated 61 

from each population using weights that optimize performance for a target population. 62 

Bayesian methods have also been proposed that generate improved PRS for each population by 63 

jointly modeling the effect-size distribution across populations 35, 36. Recently, our group 64 
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proposed a new method named CT-SLEB 22, which extends the clumping and thresholding (CT) 65 

37 method to multi-ancestry settings. The method uses an empirical-Bayes (EB) approach to 66 

estimate effect sizes by borrowing information across populations and a super learning model 67 

to combine PRSs under different tuning parameters. However, the optimality of the methods 68 

depends on many factors, including the ability to account for heterogeneous linkage 69 

disequilibrium (LD) structure across populations and the adequacy of the models for underlying 70 

effect-size distribution 3, 27. In general, our extensive simulation studies and data analyses 71 

suggest that no method is uniformly the most powerful, and exploration of complementary 72 

methods will often be needed to derive the optimal PRS in any given setting 22.  73 

 74 

In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres 75 

based on an enSemble PEnalized Regression (PROSPER) using GWAS summary statistics and 76 

validation datasets across diverse populations. The method incorporates ℒ1 penalty functions 77 

for regularizing SNP effect sizes within each population, an ℒ2 penalty function for borrowing 78 

information across populations, and a flexible but parsimonious specification of the underlying 79 

penalty parameters to reduce computational time. Further, instead of selecting a single optimal 80 

set of tuning parameters, the method combines PRS generated across different populations and 81 

tuning parameters using a final ensemble regression step. We compare the predictive 82 

performance of PROSPER with a wide variety of single- and multi-ancestry methods using 83 

simulation datasets from our recent study22 across five populations (EUR, African (AFR), Ad 84 

Mixed American (AMR), East Asian (EAS), and South Asian (SAS))22. Furthermore, we evaluate 85 

these methods using a variety of real datasets from 23andMe Inc. (23andMe), the Global Lipids 86 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.03.15.532652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/


Genetics Consortium (GLGC) 38, All of Us (AoU) 39, and the UK Biobank study (UKBB) 40. Results 87 

from these analyses indicate that PROSPER is a highly promising method for generating the 88 

most powerful multi-ancestry PRS across diverse types of complex traits. Computationally, 89 

PROSPER is also exceptionally scalable compared to other advanced methods. 90 

 91 

Results 92 

 93 

Method overview  94 

 95 

PRSOSPER is a method designed to improve prediction performance for PRS across distinct 96 

ancestral populations by borrowing information across ancestries (Figure 1). It can integrate 97 

large EUR GWAS with smaller GWAS from non-EUR populations. Ideally, individual-level tuning 98 

data are needed for all populations, because the method needs optimal parameters from 99 

single-ancestry analysis as an input; however, even when data is only available for a target 100 

population, PRSOSPER can still be performed, and the PRS will be optimized and validated 101 

towards the target population. The method can account for population-specific genetic 102 

variants, allele frequencies, and LD patterns and use computational techniques for penalized 103 

regressions for fast implementation. 104 

 105 

PROSPER 106 

 107 
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Assuming a continuous trait, we first consider a standard linear regression model for underlying 108 

individual-level data for describing the relationship between trait values and genome-wide 109 

genetic variants across ý distinct populations. Let Āÿ  denote the �ÿ × 1 vector of trait values, 110 ÿÿ denote the �ÿ × �ÿ  genotype matrix, �ÿ denote the �ÿ × 1 vector of SNP effects, and �ÿ 111 

denote the �ÿ × 1 vector of random errors for the ÿth population. We assume underlying linear 112 

regression models of the form Āÿ = ÿÿ�ÿ + �ÿ , ÿ = 1, & ý; and intend to solve the linear 113 

regression system by least square with a combination of ℒ1 (lasso) 41 and ℒ2 (ridge) 42 penalties 114 

in the form 115 

∑ 1�ÿ (Āÿ 2 ÿÿ�ÿ)Ā(Āÿ 2 ÿÿ�ÿ)1fÿf� + ∑ 2�ÿ‖�ÿ‖111fÿf� + ∑ �ÿ1ÿ2 ‖ �ÿ1Ā�1�2 2 �ÿ2Ā�1�2 ‖221fÿ1<ÿ2f�  116 

where �ÿ , ÿ = 1, & , ý are the population-specific tuning parameters associated with the lasso 117 

penalty; �ÿ1Ā�1�2  and �ÿ2Ā�1�2  denote the vectors of effect-sizes for SNPs for the ÿ1-th and ÿ2-th 118 

populations, respectively, restricted to the set of shared SNPs (Āÿ1ÿ2) across the pair of the 119 

populations; and �ÿ1ÿ2 , 1 ≤ ÿ1 < ÿ2 ≤ ý are the tuning parameters associated with the ridge 120 

penalty imposing effect-size similarity across pairs of populations.  121 

 122 

In the above, the first part, ∑ 2�ÿ‖�ÿ‖111fÿf�  , uses a lasso penalty. Lasso can produce sparse 123 

solution 41 and recent PRS studies that have implemented the lasso penalty in the single-124 

ancestry setting have shown its promising performance 29, 30. The second part, 125 

∑ �ÿ1ÿ2 ‖�ÿ1Ā�1�2 2 �ÿ2Ā�1�2‖221fÿ1<ÿ2f�  , uses a ridge penalty. As it has been widely shown that the 126 

causal effect sizes of SNPs tend to be correlated across populations 43, 44, we propose to use the 127 

ridge penalty to induce genetic similarity across populations. Compared to the fused lasso 45, 128 
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which uses lasso penalty for the differences, we use ridge penalty instead, which allows a small 129 

difference in SNP effects across populations rather than truncating them to zero. The solutions 130 

for population-specific effect size using the combined lasso and ridge penalties can be sparse. 131 

 132 

The estimate of �ÿ , ÿ = 1, & , ý in the above individual-level linear regression systems can be 133 

obtained by minimizing the above least square objective function. Following the derivation of 134 

lassosum 29, a single-ancestry method for fitting the lasso model to GWAS summary statistics 135 

data, we show that the objective function for individual-level data can be approximated using 136 

GWAS summary statistics and LD reference matrices by substituting 
1Ą� ÿÿĀÿÿ by �ÿ  , where �ÿ  is 137 

the estimated LD matrix based on a reference sample from the ÿ-th population , and 
1Ą� ÿÿĀ�ÿ, by 138 

�ÿ, where �ÿ is the GWAS summary statistics in the ÿ-th population. Therefore, the objective 139 

function of the summary-level model can be written as 140 

∑ (�ÿĀ(�ÿ + �ÿ�)�ÿ 2 ��ÿĀ�ÿ + 2�ÿ‖�ÿ‖11)1fÿf� + ∑ �ÿ1ÿ2 ‖�ÿ1Ā�1�2 2 �ÿ2Ā�1�2 ‖221fÿ1<ÿ2f�  141 

where the additional tuning parameters �ÿ, ÿ = 1, & , ý , are introduced for regularization of 142 

the LD matrices across the different populations 30. For a fixed set of tuning parameters, the 143 

above objective function can be solved using fast coordinate descent algorithms 46 by iteratively 144 

updating each element of �ÿ, ÿ = 1, & , ý (see the section of Obtain PROSPER solution in 145 

Methods). 146 

 147 

Reducing tuning parameters 148 

 149 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.03.15.532652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/


For the selection of tuning parameters, we assume we have access to individual-level data 150 

across the different populations which are independent of underlying GWAS from which 151 

summary statistics are generated. The above setting involves three sets of tuning parameters, 152 {�ÿ}ÿ=1�  , {�ÿ}ÿ=1� , and {�ÿ1ÿ2}1fÿ1<ÿ2f�, totaling to the number of ý + ý + �(�21)2 . As grid search 153 

across many combinations of tuning parameter values can be computationally intensive, we 154 

propose to reduce the search range by a series of steps. First, we use lassosum2 30 to analyze 155 

GWAS summary statistics and tuning data from each ancestry population by itself and obtain 156 

underlying values of optimal tuning parameters, (�ÿ0, �ÿ0) for ÿ = 1, & , ý; if tuning data is only 157 

available for the target population, the (�ÿ0, �ÿ0) for non-target ÿ can be optimized towards the 158 

target population. For fitting PROSPER, we fix �ÿ = �ÿ0 for ÿ = 1, & , ý as these are essentially 159 

used to regularize estimates of population-specific LD matrices. We note that the optimal 160 {�ÿ}ÿ=1�  depend on sample sizes of underlying GWAS (Supplementary Figure 1), and thus should 161 

not be arbitrarily assumed to be equal across all populations. Considering that the optimal 162 

tuning parameters associated with the ℒ1 penalty function from the single-ancestry analyses 163 

should reflect the characteristics of GWAS data, which includes underlying sparsity of effect 164 

sizes and sample sizes, we propose to specify the ℒ1-tuning parameters in PROSPER as �ÿ =165 ��ÿ0, i.e. they are determined by the corresponding tuning parameters from the ancestry-166 

specific analysis except for the constant multiplicative factor � . Finally, for computational 167 

feasibility, we further assume that effect sizes across all pairs of populations have a similar 168 

degree of homogeneity and thus set all {�ÿ1ÿ2}1fÿ1<ÿ2f� to be equal to �. We will later discuss 169 

this assumption and perform a sensitivity analysis in the Discussion section. By using the above 170 

assumptions, the objective function to minimize with respect to �ÿ , ÿ = 1, & , ý, becomes 171 
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∑ (�ÿĀ(�ÿ + �ÿ0�)�ÿ 2 ��ÿĀ�ÿ + 2��ÿ0‖�ÿ‖11)1fÿf� + ∑ � ‖�ÿ1Ā�1�2 2 �ÿ2Ā�1�2 ‖221fÿ1<ÿ2f�  172 

where � and � are the only two tuning parameters needed for lasso penalty and genetic 173 

similarity penalty, respectively. 174 

 175 

Ensemble 176 

 177 

Using an ensemble method to combine PRS has been shown to be promising in CT-type 178 

methods as opposed to picking an optimal threshold 22, 37. In general, a specific form of the 179 

penalty function, or equivalently a model for prior distribution in the Bayesian framework, may 180 

not be able to adequately capture the complex nature of the underlying distribution of the 181 

SNPs across diverse populations. We conjecture that when effect size distribution is likely to be 182 

mis-specified, an ensemble method, which combines PRS across different values of tuning 183 

parameters instead of choosing one optimal set, is likely to improve prediction. Therefore, as a 184 

last step, we obtain the final PROSPER model using an ensemble method, super learning 47-49, 185 

implemented in the SuperLearner R package, to combine PRS generated from various tuning 186 

parameter settings and optimized using tuning data from the target population. The super 187 

learner we use here was based on three supervised learning algorithms, including lasso 41, ridge 188 

42, and linear regression (see Methods). 189 

 190 

Results 191 

 192 

Methods comparison on simulated data 193 
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 194 

We conducted simulation analyses on continuous traits under various genetic architectures 22 195 

to evaluate the performance of different methods that can be categorized into five groups: 196 

single-ancestry methods trained from target GWAS data (single-ancestry method), single-197 

ancestry methods trained from EUR GWAS data (EUR PRS based method), simple multi-ancestry 198 

methods by weighting single-ancestry PRS (weighted PRS), recently published multi-ancestry 199 

methods (existing multi-ancestry methods), and our proposed method, PROSPER. Single-200 

ancestry methods include CT 37, LDpred2 31, and lassosum2 30. Existing multi-ancestry methods 201 

include PRS-CSx 35 and CT-SLEB 22. The performance of the methods is evaluated by R2 202 

measured on validation samples independent of training and tuning datasets. Analyses in this 203 

and the following sections are restricted to a total of 2,586,434 SNPs, which are included in 204 

either HapMap 3 (HM3) 50 or the Multi-Ethnic Genotyping Arrays (MEGA) chips array 51. LD 205 

reference samples for all five ancestries, EUR, AFR, AMR, EAS, and SAS, in this and the following 206 

sections, are from 1000 Genomes Project (Phase 3) 52 (1000G).  207 

 208 

The results (Figure 2, Supplementary Figure 2-6, Supplementary Table 1.1-1.5) show that 209 

multi-ancestry methods generally exhibit superior performance compared to single-ancestry 210 

methods. Weighted PRS generated from methods modeling LD (Ldpred2 and lassosum2) can 211 

lead to a noticeable improvement in performance (green bars in Figure 2). Notably, PROSPER 212 

shows robust performance uniformly across different scenarios. When the sample size of the 213 

target non-EUR population is small (þā�ÿ��ā = 15K) (Figure 2a), PROSPER has comparable 214 

performance with other multi-ancestry methods under a high degree of polygenicity (���ĂĀ�Ă =215 
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0.01). However, under the same sample size setting and lower polygenicity (���ĂĀ�Ă =216 0.01 and 5 × 1024), PRS-CSx and CT-SLEB outperform PROSPER, with the margin of 217 

improvement increasing as the strength of negative selection decreases (strong negative 218 

selection in Figure 2a, mild strong negative selection in Supplementary Figure 2a, and no 219 

negative selection in Supplementary Figure 3a). When the sample size of the target population 220 

is large (þā�ÿ��ā = 80K) (Figure 2b, and Supplementary Figure 2-5 b), PROSPER almost 221 

uniformly outperforms all other methods, particularly for the AFR population.  222 

 223 

We further compare the computational efficiency of PROSPER in comparison to PRS-CSx, the 224 

state-of-the-art Bayesian method available for generating multi-ancestry PRS. We train PRS 225 

models for the two methods using simulated data for chromosome 22 using a single core with 226 

AMD EPYC 7702 64-Core Processors running at 2.0 GHz. We observe (Supplementary Table 2) 227 

that PROSPER is 37 times faster than PRS-CSx (3.0 vs. 111.1 minutes) in a two-ancestry analysis 228 

including AFR and EUR; and 88 times faster (6.8 vs. 595.8 minutes) in the analysis of all five 229 

ancestries. The memory usage for PRS-CSx is about 2.8 times smaller than PROSPER (0.78 vs. 230 

2.24 Gb in two-ancestry analysis, and 0.84 vs. 2.35 Gb in five-ancestry analysis).  231 

 232 

23andMe data analysis 233 

 234 

We applied various methods to GWAS summary statistics available from the 23andMe, Inc. to 235 

predict two continuous traits, heart metabolic disease burden and height; as well as five binary 236 

traits, any cardiovascular disease (any CVD), depression, migraine diagnosis, morning person, 237 
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and sing back musical note (SBMN). The datasets are available for all five ancestries, African 238 

American (AA), Latino, EAS, EUR, and SAS. The methods are tuned and validated on a set of 239 

independent individuals of the corresponding ancestry from the 23andMe participant cohort 240 

(see the section of Real data analysis in Methods for data description, and Supplementary 241 

Table 3-4 for sample sizes used in training, tuning and validation).  242 

 243 

From the analysis of two continuous traits (Figure 3 and Supplementary Table 5.1), we observe 244 

that lassosum2 and its related methods (EUR lassosum2 and weighted lassosum2) generally 245 

perform better than CT and Ldpred2, and their related methods. On the basis of the advantage 246 

of lassosum2, PROSPER further improves the performance, and for most of the settings, 247 

outperforms all alternative methods, including PRS-CSx and CT-SLEB. PROSPER demonstrates 248 

particularly remarkable improvement for both traits in AA and Latino (26.9 % relative 249 

improvement in R2 over the second-best method on average, yellow cells in Supplementary 250 

Table 5.2) (first two panels in Figure 3a-b). For EAS and SAS, PROSPER is slightly better than 251 

other methods, except for heart metabolic disease burden of SAS (the last panel in Figure 3a), 252 

which has the smallest sample size (~20K). 253 

 254 

The results from the analysis of the binary traits (Figure 4 and Supplementary Table 5.1) show 255 

that PROSPER generally exhibits better performance (7.8% and 12.3% relative improvement in 256 

logit-scale variance (see Methods) over CT-SLEB and PRS-CSx, respectively, averaged across 257 

populations and traits) (blue and red cells, respectively, in Supplementary Table 5.2). A similar 258 

trend is observed for the analyses of AA and Latino, where PROSPER usually has the best 259 
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performance (first two panels in Figure 4a-e). In general, no single method can uniformly 260 

outperform others. Weighted lassosum2 has outstanding performance for depression (Figure 261 

4b), while PROSPER is superior for morning person (Figure 4d). PRS-CSx shows a slight 262 

improvement in the analysis of migraine diagnosis for EAS populations (last second panel in 263 

Figure 4c), and CT-SLEB performs the best in the analysis of any CVD for SAS population (last 264 

panel in Figure 4a). 265 

 266 

GLGC and AoU data analysis 267 

 268 

Considering the uncommonly huge sample sizes from 23andMe, we further applied alternative 269 

methods for the analysis of two other real datasets, GLGC and AoU. The GWAS summary 270 

statistics from GLGC for four blood lipid traits, high-density lipoprotein (HDL), low-density 271 

lipoprotein (LDL), log-transformed triglycerides (logTG), and total cholesterol (TC), are publicly 272 

downloadable and available for all five ancestries, African/Admixed African, Hispanic, EAS, EUR, 273 

and SAS (see Methods for data description, and Supplementary Table 3 for sample sizes). 274 

Further, we generated GWAS summary statistics data from the AoU study for two 275 

anthropometric traits, body mass index (BMI) and height, for individuals from three ancestries, 276 

AFR, EUR, and Latino/Admixed American (see Methods for data description, and 277 

Supplementary Table 3 for sample sizes). Both the blood lipid traits and anthropometric traits 278 

have corresponding phenotype data available in the UKBB, which we use to perform tuning and 279 

validation (see the section of Real data analysis in Methods for the ancestry composition, and 280 

Supplementary Table 4 for sample sizes). Given the limited sample sizes of genetically inferred 281 
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AMR ancestry individuals in UKBB, we do not report the performance of PRS on AMR 282 

individuals in UKBB. 283 

 284 

Results from analysis of four blood lipid traits (Figure 5 and Supplementary Table 6.1) from 285 

GLGC and UKBB show that PRS generated by lasso-type methods substantially outperform 286 

alternative methods. In particular, we observe that the weighted lassosum2 always 287 

outperforms the other two weighted methods. Furthermore, our proposed method, PROSPER, 288 

shows improvement over weighted lassosum2 in both AFR and SAS (13.1% and 12.3% relative 289 

improvement in R2, respectively, averaged across traits) (green and orange cells, respectively, in 290 

Supplementary Table 6.2), but not in EAS. To investigate whether the additional gain from 291 

PROSPER arises from modeling shared effects across populations or from combining PRS with 292 

super learning, we further employ a super learning step for lassosum2 as a point of comparison. 293 

The results (Supplementary Figure 6 and Supplementary Table 6.3) indicate that the additional 294 

gain for EAS and SAS is likely derived from the joint modeling in PROSPER, whereas for AFR, the 295 

super learning step in lassosum2 has already yielded significant improvement. This aligns with 296 

the intuition that AFR is more genetically distinct from other populations. Notably, PROSPER 297 

outperforms PRS-CSx and CT-SLEB in most scenarios (34.2% and 37.7% relative improvement in 298 

R2, respectively, averaged across traits and ancestries) (blue and red cells, respectively, in 299 

Supplementary Table 6.2), with the improvement being particularly remarkable for the AFR 300 

population (Figure 5) in which PRS development tends to be the most challenging. 301 

 302 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.03.15.532652doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/


The results from AoU and UKBB (Figure 6 and Supplementary Table 7.1) show that PROSPER 303 

generates the most predictive PRS for the two analyzed anthropometric traits for the AFR 304 

population. It appears that Bayesian and penalized regression methods that explicitly model LD 305 

tend to outperform corresponding CT-type methods (CT, EUR CT, and weighted CT) which 306 

excluded correlated SNPs. Among weighted methods, both Ldpred2 and lassosum2 show major 307 

improvement over the corresponding CT method. Further, for both traits, PROSPER shows 308 

remarkable improvement over the best of the weighted methods and the two other advanced 309 

methods, PRS-CSx and CT-SLEB (91.3% and 76.5% relative improvement in R2, respectively, 310 

averaged across the two traits) (blue and red cells, respectively, in Supplementary Table 7.2).  311 

 312 

Discussion 313 

 314 

In this article, we propose PROSPER as a powerful method that can jointly model GWAS 315 

summary statistics from multiple ancestries by an ensemble of penalized regression models to 316 

improve the performance of PRS across diverse populations. We show that PROSPER is a 317 

uniquely promising method for generating powerful PRS in multi-ancestry settings through 318 

extensive simulation studies, analysis of real datasets across a diverse type of complex traits, 319 

and considering the most recent developments of alternative methods. Computationally, the 320 

method is an order of magnitude faster compared to PRS-CSx 35, an advanced Bayesian method, 321 

and comparable to CT-SLEB 22, which derives the underlying PRS in closed forms. We have 322 

packaged the algorithm into a command line tool based on the R programming language 323 

(https://github.com/Jingning-Zhang/PROSPER).  324 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 17, 2023. ; https://doi.org/10.1101/2023.03.15.532652doi: bioRxiv preprint 

https://github.com/Jingning-Zhang/PROSPER
https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/


 325 

We compare PROSPER with a number of alternative simple and advanced methods using both 326 

simulated and real datasets. The simulation results show that PROSPER generally outperforms 327 

other existing multi-ancestry methods when the target sample size is large (Figure 2b). 328 

However, when the sample size of the target population is small (Figure 2a), no method 329 

performed uniformly the best. In this setting, when the degree of polygenicity is the lowest 330 

(���ĂĀ�Ă = 5 × 1024), CT-SLEB outperforms other methods by a noticeable margin, and 331 

PROSPER performs slightly worse than PRS-CSx. Simulations also show that in the scenario of a 332 

highly polygenic trait (���ĂĀ�Ă = 0.01), irrespective of sample size, both weighted lassosum2 333 

and PROSPER tend to exhibit superiority compared to all other methods. In terms of 334 

computational time, PROSPER is an order of magnitude faster than PRS-CSx in a five-ancestry 335 

analysis. The memory usage for PRS-CSx is smaller than PROSPER, but both are acceptable 336 

(Supplementary Table 2).  337 

 338 

We observe that for the analysis of both continuous and binary traits using 23andMe Inc. data, 339 

PROSPER demonstrates a substantial advantage over all other methods for the AA and Latino 340 

populations, which have the largest sample sizes among all minority groups. The result is 341 

consistent with the superior performance of PROSPER observed in simulation settings when the 342 

sample size of the target population is large. However, it is worth noting that even for the two 343 

other populations, EAS and SAS, which have much smaller sample sizes, PROSPER still performs 344 

the best in half of the settings (the last two panels in Figure 3a-b and Figure 4a-e). For the 345 

prediction of blood lipid traits, methods built upon the lasso penalty (lassosum2, weighted 346 
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lassosum2, PROSPER) perform substantially better than all other alternative methods. 347 

Intuitively, this might result from the robustness of the heavy-tail lasso penalty function in 348 

dealing with large-effect loci that tend to be present for molecular traits, such as lipid levels 349 

(Supplementary Table 8), and sometimes for complex traits as well. For the analysis of two 350 

anthropometric traits using training data from AoU, we observe that methods that explicitly 351 

model and account for LD differences (e.g. lassosum2, Ldpred2, and their corresponding 352 

weighted methods) generally achieve higher predictive accuracy than CT-based methods which 353 

discard correlated SNPs. In addition, we observe major improvement in PRS performance using 354 

PROSPER over weighted lassosum2 and all other existing multi-ancestry methods. The result is 355 

consistent with what we have observed in simulation settings under extreme polygenic 356 

architectures as expected for complex traits like height and BMI. In conclusion, our results show 357 

that PROSPER is a promising method for handling complex traits of diverse genetic 358 

architectures.  359 

 360 

PROSPER, while showing promising results in our simulations and real data analyses, does have 361 

several limitations. First, when the sample size for the training sample for a target population is 362 

small, particularly for traits with low polygenicity, the method may not perform as well as some 363 

of the other existing methods (Figure 2a). In this specific scenario where the number of true 364 

causal variants is small, a potential reason for suboptimal performance of PROSPER is the bias 365 

induced by lasso. This inspires future work of extending PROSPER to adaptive lasso 53 for 366 

unbiased estimation and other forms of penalty functions for sparser solutions. Second, the use 367 

of a super learning step in PROSPER can lead to poorer performance compared to weighted 368 
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lassosum2 when the sample size for the tuning dataset is not adequately large. In the analysis 369 

of lipid traits for EAS, for example, we observe lower predictive accuracy of PROSPER than 370 

weighted lassosum2 (the middle panel in Figure 5b and d). This can be attributed to overfitting 371 

in the tuning sample, as the number of tuning samples of EAS origin in the UKBB is only ~1000, 372 

while the number of PRSs combined in the super learning step is close to 500. In this scenario, 373 

we suggest comparing the performance of the ensemble PRS with that without the ensemble 374 

step, as the latter one might be more resilient to overfitting. We conducted simulation analyses 375 

to further explore the ideal sample size for tuning (Supplementary Figure 7). Generally, a 376 

tuning sample size within the range of 1000-3000 is adequate for continuous traits. Third, we 377 

used a constant tuning parameter for the genetic similarity penalty, disregarding varying 378 

genetic distances among populations 54. However, introducing additional tuning parameters 379 

could result in both computational challenges and numerical instability. We have investigated 380 

this by analyzing GLGC data (see Supplementary Table 9, and Methods), adding an extra tuning 381 

parameter to accommodate adaptable distances between the AFR population and others. 382 

Results indicate a disproportionate increase in computational load (5th column in 383 

Supplementary Table 9) relative to the marginal enhancement in predictive accuracy, and a 384 

potential of instability and overfitting (gray cells in Supplementary Table 9). Lastly, the 385 

framework is modeled on a standardized genotype scale characterized by strong negative 386 

selection; however, there could be diverse genetic architectures in reality. To address this 387 

limitation, models could be extended to varying degrees of negative selection by multiplied by 388 

exponentiations of allele frequencies, as discussed in a previous paper 22. 389 

 390 
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PROSPER and a number of other recent methods have been developed for modeling summary 391 

statistics data across discrete populations typically defined by self-reported ancestry 392 

information. Increasing sample size for reference sample sizes for various populations well-393 

matched with those providing training datasets can further enhance performance of PROSPER 394 

and other methods that explicitly incorporates LD information into modeling. Further, there is 395 

an emerging need to consider the underlying continuum of genetic diversity across populations 396 

in both the development and implementational of PRS in diverse populations in the future 55. 397 

Towards this goal, a recent method called GAUDI 56 has been proposed based on the fused 398 

lasso penalty for developing PRS in admixed population using individual-level data. While 399 

GAUDI shares similarities with PROSPER in terms of the use of the lasso-penalty function, the 400 

two methods are distinct in terms of the specification of tuning parameters and use of the 401 

ensemble step. Our model specification of PROSPER makes it easily amendable to handle 402 

continuous genetic ancestry data, but further research is needed for scalable implementation 403 

of the method with individual-level data and extensive empirical evaluations.   404 

 405 

To conclude, we have proposed PROSPER, a statistically powerful and computationally scalable 406 

method for generating multi-ancestry PRS using GWAS summary statistics and additional tuning 407 

and validation datasets across diverse populations. While no method is uniformly powerful in 408 

all settings, we show that PROSPER is the most robust among a large variety of recent methods 409 

proposed across a wide variety of settings. As individual-level data from GWAS of diverse 410 

populations becomes increasingly available, PROSPER and other methods will require additional 411 
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considerations for incorporating continuous genetic ancestry information, both global and local, 412 

into the underlying modeling framework.  413 

  414 
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Code Availability 458 

 459 

All codes for data analysis, including simulation and real data analysis, are posted through 460 

GitHub at https://github.com/Jingning-Zhang/PROSPER_analysis and 461 

https://github.com/andrewhaoyu/multi_ethnic/tree/master. Codes, scripts, reference data, 462 

and toy example to perform PROSPER are publicly available at https://github.com/Jingning-463 

Zhang/PROSPER.  464 

The majority of our statistical analysis was performed using R 3.6.1 and R 4.0.2, and R 465 

packages 9optparse9,9bigreadr9,9readr9,9stringr9, 8caret9, 8SuperLearner9, 8glmnet9, 8MASS9, 8Rcpp9, 466 

8RcppArmadillo9, 8inline9, 8doMC9, 8foreach9. We used PLINK2 for computing PRS available at 467 

https://www.cog-genomics.org/plink/1.9/; https://www.cog-genomics.org/plink/2.0/  468 

 469 

The PRS models in the analysis includes: CT performed by plink 1.9 available at 470 

https://www.cog-genomics.org/plink/1.9/; Lassosum2 and LDpred2 performed by bigsnpr 1.8.1 471 

available at https://github.com/privefl/bigsnpr; PRS-CSx performed by python 3.8.2 and scripts 472 

available at https://github.com/getian107/PRScsx; CT-SLEB performed by codes available at 473 

https://github.com/andrewhaoyu/CTSLEB.  474 

 475 

 476 
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Data Availability 478 

Simulated genotype data for 600K subjects from five ancestries: 479 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/COXHAP  480 

GWAS summary level statistics for five ancestries from GLGC: 481 

http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific/  482 

GWAS summary level statistics for three ancestries from AoU are available upon request.  483 

GWAS summary statistics for the 23andMe discovery data set could be made available through 484 

23andMe to qualified researchers under an agreement with 23andMe that protects the privacy 485 

of the 23andMe participants. Please visit https://research.23andme.com/collaborate/#dataset-486 

access/ for more information and to apply to access the data. Participants provided informed 487 

consent and volunteered to participate in the research online, under a protocol approved by 488 

the external AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services. As of 2022, 489 

E&I Review Services is part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb). 490 

GRCh37 and GRCh38 reference genome data from Phase-3 1000 Genome Project (1000G) is 491 

available from https://www.internationalgenome.org/data.  492 

Access to UKBB individual level data can be requested from 493 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access. 494 

Source data are provided with this paper. 495 
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Online Methods 497 

 498 

Data preparation and formatting in PROSPER. We match SNPs and their alleles in GWAS 499 

summary statistics and genotypes of individuals for tuning and validation purposes to that in 500 

1000G reference data (phase 3) 52. To simplify computing huge-dimensional LD matrix, we use 501 

existing LD block information from EUR 29 to divide the whole genome, and assume the blocks 502 

to be independent. We use PLINK1.9 57 with flag --r bin4 to compute the LD matrix within each 503 

block in each ancestry for common SNPs (MAF>0.01) either in HM3 50 or the MEGA 51. For SNPs 504 

not common in all populations, we only model them in the populations where they are 505 

common; if a SNP is population-specific that is only common in one population, we model it 506 

only using the lasso penalty without the genetic similarity penalty. The parameter path of the 507 

tuning parameter � for the scale factor in lasso penalty is set to a sequence evenly spaced on a 508 

logarithmic scale from  �max = min1fÿfă ( max1≤�≤�(|ÿ��|)��0 )  to �min = 0.001 × �max which is set to 509 

guarantee non-zero solutions, where ÿÿā is the GWAS summary statistics for the ā-th SNP in the 510 ÿ-th population, and �ÿ0 is the underlying values of optimal tuning parameter � for the ÿ-th 511 

population. The parameter path for the tuning parameter � for the genetic similarity penalty is 512 

set to a sequence evenly spaced on a quad-root scale from �min = 2 to �max = 100, i.e. 513 

seq(�min^(1/4), �max^(1/4), length.out = 10)^4 using R command. For all analyses excluding 514 

23andMe, the length of sequences of both parameters are set to be 10, while for the analysis of 515 

23andMe, it is set to be 5 to reduce the computation workload caused by the confidential 516 

requirements of the 23andMe dataset. 517 
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 518 

Obtain PROSPER solution. For ý populations, the objective function to minimize for �ÿ-519 

dimentional vector of SNP effect, �ÿ , ÿ = 1, & , ý, is  520 

�(�1, & , �ă) = ∑ (�ÿĀ(�ÿ + �ÿ�)�ÿ 2 ��ÿĀ�ÿ + 2�ÿ‖�ÿ‖11)1fÿf�521 

+ ∑ �ÿ1ÿ2 ‖�ÿ1Ā�1�2 2 �ÿ2Ā�1�2‖221fÿ1<ÿ2f�  522 

where �ÿ  is an estimate of �ÿ-by-�ÿ LD matrix based on a reference sample from the ÿ-th 523 

population, �ÿ is the �ÿ-dimentional vector of GWAS summary statistics in the ÿ-th population, 524 �ÿ1Ā�1�2  and �ÿ2Ā�1�2  denote the effect vectors for the SNPs shared across ÿ1-th and ÿ2-th 525 

populations (the set of SNPs is denoted by Āÿ1ÿ2); �ÿ, �ÿ and �ÿ1ÿ2  are tuning parameters as 526 

defined in above sections.  527 

This optimization can be solved using coordinate descent algorithms by iteratively updating 528 

each element in the vectors. We take derivative for SNP ā in ÿ-th population, ā = 1, & , �ÿ, ÿ =529 1, & , ý 530 ��(�1, & , �ă)��ÿā531 

= 2 (1 + �ÿ + ∑ �ÿÿ2ÿ2bÿ,1fÿ2f� ) �ÿā + 2�ÿ �|�ÿā|��ÿā532 

2 2 (ÿÿā 2 ∑ �ÿ,ā2ā�ÿā2ā2bā,1fā2f� + ∑ �ÿÿ2�ÿ2ā1fÿ2f�,s.t.ā∈ÿ�,�2 ) 533 

where �ÿā  denotes the SNP ā in �ÿ, ÿÿā denotes the SNP ā SNP in �ÿ, and �ÿ,ā2ā  denotes LD 534 

between the SNP ā and the SNP ā2 in �ÿ .  535 
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By solving 
��(�1,&,��)���� = 0 after the (ā)-th iteration, we can get the updating rule for the (ā +536 

1)-th iteration 537 

�ÿā(ā+1) = sign(Ăÿā) ⋅ max {0, |Ăÿā| 2 �ÿ}1 + �ÿ + ∑ �ÿÿ21fÿ2f�,s.t.ā∈ÿ�,�2  538 

where  539 

Ăÿā = ÿÿā 2 ∑ �ÿ,ā2ā�ÿā2(ā)ā2bā,1fā2f� + ∑ �ÿÿ2�ÿ2ā(ā)1fÿ2f�,s.t.ā∈ÿ�,�2  540 

 541 

Super learning. After getting PRSs for all populations under all tuning parameter settings, we 542 

further apply super learning to combine them to be trained on the tuning samples to get the 543 

final PROSPER model and tested on the validation samples. We use the function <SuperLearner= 544 

implemented in the R package with the same name, and include three linear prediction 545 

algorithms: lasso, ridge, and linear regression for continuous outcomes; and two prediction 546 

algorithms: lasso and linear regression for binary outcomes. We did not include ridge for binary 547 

outcomes due to the unavailability of ridge for binary outcomes in the function. For the 548 

included algorithms which have parameters: (1) in lasso, we use 100 values in lambda path 549 

calculated in the default setting in glmnet package; (2) in ridge, we use a lambda path of 550 

sequence from 1 to 20 incrementing by 0.1. We use Area under the ROC curve (AUC) as the 551 

objective function for binary outcomes and thus use the flag <method = method. AUC= in the 552 

function.  553 

 554 
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Existing PRS methods. We compare five groups of PRS methods. The first group is: single-555 

ancestry method, which contains commonly known single-ancestry methods, including CT, 556 

LDpred2, and lassosum2, that are trained from the GWAS data from the target population. The 557 

second group is: EUR PRS based method, which is the three above single-ancestry methods 558 

trained from EUR GWAS data. The third group is: weighted PRS, which uses the weights 559 

estimated from a linear regression to combine the PRSs estimated from the corresponding 560 

single-ancestry method from all populations. The fourth group is: existing multi-ancestry 561 

methods, which includes two recently published and well-performed multi-ancestry methods, 562 

PRS-CSx and CT-SLEB. The last group is our proposed PROSPER. For all algorithms that have 563 

tuning parameters or weights, the optimal ones are determined based on predictive R2 or AUC 564 

on tuning samples and finally evaluated on validation samples.  565 

Below are detailed descriptions of the existing PRS methods used as comparisons in this 566 

manuscript. In short, CT and CT-SLEB are methods that use less-dependent genetic variants 567 

after a clumping step in models. LDpred2 and PRS-CSx are Bayesian methods that can account 568 

for LD among genetic variants. Lassosum2 and our proposed PROSPER are penalized regression 569 

methods capable of modeling genome-wide genetic variants and fitting the model in a speedy 570 

way. As for the three multi-ancestry methods, CT-SLEB and PRS-CSx model the cross-ancestry 571 

genetic correlation using a multivariate Bayesian prior, while our proposed PROSPER uses a 572 

ridge penalty to impose effect-size similarity across pairs of populations. 573 

CT is implemented in our analysis by using r2-cutoff of 0.1 in the clumping step and then 574 

thresholding by treating p-value-cutoff as a tuning parameter and being chosen from 575 5 × 1028, 1 × 1027, 5 × 1027, 1 × 1026, & , 5 × 1021, 1.0.  576 
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LDpred2 is a PRS method that uses a spike-and-slab prior on GWAS summary statistics and 577 

modeling LD across SNPs. We implement LDpred2 by the function <snp_ldpred2_grid= in the R 578 

package <bigsnpr=. The two tuning parameters in the algorithm include: the proportion of 579 

causal SNPs, which is chosen from a sequence of length 17 that are evenly spaced on a 580 

logarithmic scale from 1024 to 1; per-SNP heritability, which is chosen from 0.7, 1, or 1.4 times 581 

the total heritability estimated by LD score regression divided by the number of causal SNPs. 582 

We fix the additional <sparse= option (for truncating small effects to zero) to FALSE.  583 

lassosum2 is a PRS method that uses lasso regression on GWAS summary statistics for a single 584 

ancestry. We implement lassosum2 by the function <snp_lassosum2= in the R package 585 

<bigsnpr=. The two tuning parameters in the algorithm include: tuning parameter for the lasso 586 

penalty, which is chosen from a sequence of length 20 that are evenly spaced on a logarithmic 587 

scale from 0.01 × max1fāf�(|ÿā|) to max1fāf�(|ÿā|); and regularization parameter for LD matrix, which 588 

is chosen from a sequence of length 10 that are evenly spaced on a cube-root scale from 0.01 589 

to 100, i.e. seq(0.01^(1/3), 100^(1/3), length.out = 10)^3 using R command.  590 

EUR PRS are the PRSs trained from EUR GWAS using the above single-ancestry methods, CT, 591 

LDpred2, and lassosum2, that are then applied to individuals of the target population. There is 592 

no need to perform tuning for them because the models have been tuned in EUR tuning 593 

samples. When computing scores for EUR PRS based method, we exclude SNPs that are not 594 

presented in the validation samples from the target population. 595 

Weighted PRS linearly combines the corresponding single-ancestry method trained from all 596 

populations. The weights in the linear combination are estimated by a simple linear regression 597 

in the tuning samples from the target population.  598 
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PRS-CSx is a Bayesian multi-ancestry PRS method that jointly models GWAS summary statistics 599 

and LD structures across multiple populations using a continuous shrinkage prior. It has a 600 

further step to linearly combine the posterior effect-sizes estimates for EUR and the target 601 

population using weights in a simple linear regression in the tuning samples from the target 602 

population. We implement PRS-CSx using their python-based command line tool <PRS-CSx=. The 603 

parameter phi was chosen from the default candidate values, 1, 1022, 1024 and 1026. Due to 604 

the package restriction, the models are fitted with only HM3 SNPs.  605 

CT-SLEB is a multi-ancestry PRS method that starts from clumping and thresholding, then uses 606 

Empirical-Bayes (EB) method to estimate the coefficients of PRS, and finally combines PRS by a 607 

super learning model. The three tuning parameters in the algorithm include: r2-cutoff and base 608 

size of the clumping window size used in the clumping step, which are chosen from (0.01, 0.05, 609 

0.1, 0.2, 0.5) and (50kb, 100kb), respectively; and p-value cutoffs for EUR and the target 610 

population, which are chosen from 5 × 1028, 5 × 1027, 5 × 1026, & , 5 × 1021 and 1.0. 611 

 612 

Simulation analysis. The simulated data were generated as described in a previous paper 22. 613 

The data were simulated under five assumed genetic architecture (as described in the legends 614 

of Figure 2, Supplementary Figure 2-5) and three different degrees of polygenicity ���ĂĀ�Ă =615 0.01, 0.001 and 5 × 1024. The sample sizes for GWAS training data are assumed to be 15,000 616 

and 80,000 for the four non-EUR target populations; and is fixed at 100,000 for the EUR 617 

population. PRS generated from all methods are tuned in 10,000 samples, and then tested in 618 

10,000 independent samples in each target population.  619 

 620 
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Computational time and memory usage. The computational time and memory usage of 621 

PROSPER and PRS-CSx are compared based on the analysis using simulated data on 622 

chromosome 22. The analysis starts from inputting all required data into the algorithms, such as 623 

summary statistics and LD reference data, and ends with outputting the final PRS coefficients 624 

from the algorithms. PROSPER requires an input of optimal parameters in single-ancestry 625 

analysis, so we also include the step of running the single-ancestry analysis, lassosum. The 626 

analyses are performed using a single core with AMD EPYC 7702 64-Core Processors running at 627 

2.0 GHz. The reported results are averaged over 10 replicates. The sample size for training 628 

GWAS summary statistics is 15,000 for non-EUR populations and 100,000 for EUR population. 629 

The sample size for the tuning dataset is 10,000 for each population.  630 

 631 

Real data analysis. Training GWAS summary statistics are from 23andMe, GLGC, and AoU. 632 

Tuning and validation individual-level data are from 23andMe and UKBB. LD reference data are 633 

from 1000G. Detailed descriptions of those datasets are listed below.  634 

1000G Data. We used samples in five populations, AFR, AMR, EAS, EUR, and SAS from 1000 635 

Genomes Project (Phase 3) 52. The components of the five populations are described in 636 

https://useast.ensembl.org/Help/Faq?id=532.   637 

23andMe Data. We analyzed two continuous traits, heart metabolic disease burden and height; 638 

and five binary traits, any CVD, depression, migraine diagnosis, morning person and SBMN, 639 

using GWAS summary statistics obtained from 23andMe Inc.. The information of individuals 640 

included in our analyses from the 23andMe participant cohort has consent and answered 641 

surveys online according to the human subject protocol reviewed and approved by Ethical & 642 
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Independent Review Services, a private institutional review board 643 

(http://www.eandireview.com) as described in a previous paper 22. Data on the seven traits are 644 

available for all five populations: AA, EAS, EUR, Latino, and SAS. The LD reference panels used 645 

for the five populations, respectively, are unrelated individuals from 1000G of AFR, EAS, EUR, 646 

AMR, and SAS origins. The tuning and validation are performed on a set of independent 647 

individuals of the corresponding ancestry from 23andMe participant cohort. Please see 648 

Supplementary Table 3 for training sample sizes and Supplementary Table 4 for tuning and 649 

validation sample sizes. The details of the data, including genotyping, quality control, 650 

imputation, removing related individuals, ancestry determination, and the preprocessing of 651 

GWAS, are also described in the previous paper 22. For continuous traits, we evaluate PRS 652 

performance by the predictive R2 of the PRS for residualized trait values obtained from 653 

regressing the traits on covariates. For binary traits, we evaluated PRS performance by the AUC 654 

by using the roc.binary function in the R package RISCA version 1.0 58. To compare the PRS 655 

performance for two different methods, we used the relative increase of logit-scale variance. 656 

The logit-scale variance of binary traits is converted from AUC by the formula �2 =657 2�21(���), where � is the cumulative distribution function of the standard normal 658 

distribution. 659 

GLGC Data. We analyzed four blood lipid traits, LDL, HDL, logTG and TC, using GWAS summary 660 

statistics computed without UKBB samples that are publicly available from GLGC 661 

(http://csg.sph.umich.edu/willer/public/glgc-lipids2021/). Detailed information about the 662 

design of the study, genotyping, quality control, and GWAS is described in Graham, S. E. et al. 663 

(2021) 38. Data on the four traits are available for all five populations: admixed African or 664 
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African, EAS, EUR, Hispanic, and SAS. The LD reference panels used for the five populations, 665 

respectively, are unrelated individuals from 1000G of AFR, EAS, EUR, AMR, and SAS origins. The 666 

tuning and validation are performed on UKBB individuals (as described below) from the same 667 

reference ancestry label as the LD reference panel. Please see Supplementary Table 3 for 668 

sample sizes and the number of SNPs included in the analysis. The cleaning and preprocessing 669 

of the GWAS data are described in a previous paper 22. 670 

AoU Data. We analyzed two anthropometric traits, BMI and height, using GWAS summary 671 

statistics trained from AoU. The information of individuals included in our analyses has been 672 

collected according to All of Us Research Program Operational Protocol 673 

(https://allofus.nih.gov/sites/default/files/aou_operational_protocol_v1.7_mar_2018.pdf). 674 

Details of the data and GWAS summary statistics are previously described22. Data for the two 675 

traits are available for three ancestries: AFR, Latino/Admixed American, and EUR. The LD 676 

reference panel used for the three populations, respectively, are 1000G unrelated individuals of 677 

AFR, AMR, and EUR origins. The tuning and validation are performed using UKBB individuals (as 678 

described below) from the same reference ancestry label as the LD reference panel. Please see 679 

Supplementary Table 3 for sample sizes and the number of SNPs included in the analysis. The 680 

cleaning and preprocessing of the GWAS data are described in a previous paper 22. 681 

UKBB data. We used UKBB data only for tuning and validation purposes. The four blood lipid 682 

traits and two anthropometric traits mentioned above have direct measurements in UKBB. The 683 

ancestry label of UKBB individuals is determined by genetically predicted ancestry, which are 684 

described in a previous paper 22. Tuning and validation are based on R2 of the PRS regressed on 685 

the residuals of the phenotypes adjusted by sex, age and PC1-10. Please see Supplementary 686 
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Table 4 for sample sizes. We note that for PRS we tested in UKBB validation samples, we use 687 

the ancestry labels in UKBB (AFR, AMR, EAS, EUR or SAS), instead of ancestry labels in the 688 

GWAS training data, to report the R2 in the figures, result, and discussion sections of this paper. 689 

 690 

Extra tuning parameter for varying genetic distances. In the discussion, we investigated adding 691 

an extra tuning parameter to accommodate adaptable distances between the AFR population 692 

and others. Specifically, the pair-wise �ÿĀ follows the formula  693 

�ÿĀ = {   ÿ × �    if ÿ or Ā = ���      �           if ÿ and Ā b ���  694 

where ÿ and � are tuning parameters; ÿ takes values from 0.5, 1,1.5; and � takes the same 695 

sequence of candidate values as described in the first paragraph of Methods. 696 

 697 

 698 

 699 

  700 
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Figure 1: Detailed flowchart of PROSPER. The analysis of M populations in PROSPER involves 1 

three key steps: 1. Separate single-ancestry analysis for all populations � = 1, & ,�; 2. Joint 2 

analysis across populations using penalized regression; 3. Ensemble regression. In step 1, the 3 

training GWAS data is used to train lassosum2 models, and the tuning data is used to obtain the 4 

optimal tuning parameters in a single-ancestry analysis. In step 2, the training GWAS and the 5 

optimal tuning parameter values from step 1 are used to train the joint cross-population 6 

penalized regression model, and obtain solution ��,�,� for each � and �. In step 3, the tuning 7 

data is used to train the super learning model for the ensemble of PRSs computed from the 8 

solutions in step 2, �ýþ�,�,� = ���,�,�. The final PRS is computed as �ýþ = �(∑��,�,���,�,�), 9 

where ��,�,�  are the weights from the super learning model. Refer to the <Method Overview= 10 

section in the main text for a full explanation of all notations in the flowchart.  11 

  12 
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Figure 2: Performance comparison of alternative methods on simulated data generated with 14 

different sample sizes and genetic architectures under strong negative selection and fixed 15 

common-SNP heritability. Data are simulated for continuous phenotype under a strong 16 

negative selection model and three different degrees of polygenicity (top panel: ������� = 0.01, 17 

middle panel: ������� = 0.001, and bottom panel: ������� = 5 × 10−4). Common SNP 18 

heritability is fixed at 0.4 across all populations, and the correlations in effect sizes for share 19 

SNPs between all pairs of populations is fixed at 0.8. The sample sizes for GWAS training data 20 

are assumed to be (a) 15,000, and (b) 80,000 for the four non-EUR target populations; and is 21 

fixed at 100,000 for the EUR population. PRS generated from all methods are tuned in 10,000 22 

samples, and then tested in 10,000 independent samples in each target population. The PRS-23 

CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 24 

either HM3 or MEGA. 25 
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Figure 3: Performance comparison of alternative methods for prediction of two continuous 27 

traits in 23andMe. We analyzed two continuous traits, (a) heart metabolic disease burden and 28 

(b) height. PRS are trained using 23andMe data that available for five populations: African 29 

American, Latino, EAS, EUR, and SAS, and then tuned in an independent set of individuals from 30 

23andMe of the corresponding ancestry. Performance is reported based on adjusted R2 31 

accounting for sex, age and PC1-5 in a held-out validation sample of individuals from 23andMe 32 

of the corresponding ancestry. The ratio of sample sizes for training, tuning and validation is 33 

roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The PRS-CSx 34 

package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 35 

either HM3 or MEGA. 36 
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Figure 4: Performance comparison of alternative methods for prediction of five binary traits 40 

in 23andMe. We analyzed five binary traits, (a) any CVD, (b) depression, (c) migraine diagnosis, 41 

(d) morning person and (e) SBMN. PRS are trained using 23andMe data that available for five 42 

populations: African American, Latino, EAS, EUR, and SAS, and then tuned in an independent 43 

set of individuals from 23andMe of the corresponding ancestry. Performance is reported based 44 

on adjusted AUC accounting for sex, age, PC1-5 in a held-out validation sample of individuals 45 

from 23andMe of the corresponding ancestry. The ratio of sample sizes for training, tuning and 46 

validation is roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The 47 

PRS-CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs 48 

from either HM3 or MEGA.49 
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Figure 5: Performance comparison of alternative methods for prediction of four blood lipid 51 

traits (GLGC-training and UKBB-tuning/validation). We analyzed four blood lipid traits, (a) HDL, 52 

(b) LDL, (c) logTG and (d) TC. PRS are trained using GLGC data that available for five populations: 53 

admixed African or African, East Asian, European, Hispanic, and South, and then tuned in 54 

individuals from UKBB of the corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see the 55 

section of Real data analysis in Methods for ancestry composition). Performance is reported 56 

based on adjusted R2 accounting for sex, age, PC1-10 in a held-out validation sample of 57 

individuals from UKBB of the corresponding ancestry. Sample sizes for training, tuning and 58 

validation data are in Supplementary Table 3-4. Results for AMR are not included due to the 59 

small sample size of genetically inferred AMR ancestry individuals in UKBB. The PRS-CSx 60 

package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from 61 

either HM3 or MEGA. 62 
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Figure 6: Performance comparison of alternative methods for prediction of two 67 

anthropometric traits (AoU-training and UKBB-tuning/validation). We analyzed two 68 

anthropometric traits, (a) BMI and (b) height. PRS are trained using AoU data that are available 69 

for three populations: African, Latino/Admixed American, and European and then tuned in 70 

individuals from UKBB of the corresponding ancestry: AFR, AMR, and EUR (see the section of 71 

Real data analysis in Methods for ancestry composition). Performance is reported based on 72 

adjusted R2 accounting for sex, age, PC1-10 in a held-out validation sample of individuals from 73 

UKBB of the corresponding ancestry. Sample sizes for training, tuning and validation data are in 74 

Supplementary Table 3-4. Results for AMR are not included due to the small sample size of 75 

genetically inferred AMR ancestry individuals in UKBB. The number of SNPs analyzed in AoU 76 

analyses is much smaller than other analyses because the GWAS from AoU is on array data only 77 

(see Supplementary Table 3 for the number of SNPs). The PRS-CSx package is restricted to SNPs 78 

from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA. 79 
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Supplementary Figure 1: Optimal tuning parameter lambda in lasso. The simulation is 83 

performed for design matrix with 1000 predictors (� = 1000), and 5% of them are randomly 84 

selected to be causal. Correlation structure of those predictors is AR1 with � = 0.4. The total 85 

heritability is simulated to be 0.2.  86 
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Supplementary Figure 2: Performance of alternative methods on simulated data generated 89 

with different sample sizes and different genetic architectures. Data are simulated for 90 

continuous phenotype under a mild negative selection model and three different degrees of 91 

polygenicity (top panel: ������� = 0.01, middle panel: ������� = 0.001, and bottom panel: 92 ������� = 5 × 10−4). Common SNP heritability is fixed at 0.4 across all populations, and the 93 

correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The 94 

sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four 95 

non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 96 

from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 97 

in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 98 

alternative methods use SNPs from either HM3 or MEGA. 99 
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Supplementary Figure 3: Performance of alternative methods on simulated data generated 102 

with different sample sizes and different genetic architectures. Data are simulated for 103 

continuous phenotype under a no negative selection model and three different degrees of 104 

polygenicity (top panel: ������� = 0.01, middle panel: ������� = 0.001, and bottom panel: 105 ������� = 5 × 10−4). Common SNP heritability is fixed at 0.4 across all populations, and the 106 

correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The 107 

sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four 108 

non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 109 

from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 110 

in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 111 

alternative methods use SNPs from either HM3 or MEGA. 112 
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Supplementary Figure 4: Performance of alternative methods on simulated data generated 115 

with different sample sizes and different genetic architectures. Data are simulated for 116 

continuous phenotype under a strong negative selection model and three different degrees of 117 

polygenicity (top panel: ������� = 0.01, middle panel: ������� = 0.001, and bottom panel: 118 ������� = 5 × 10−4). Per-SNP heritability is assumed to be the same across all populations and 119 

thus leads to the common SNP heritability value of 0.32, 0.21, 0.16, 0.19 and 0.17 for AFR, AMR, 120 

EAS, EUR and SAS, respectively. The correlations in effect sizes for share SNPs between all pairs 121 

of populations is fixed at 0.8. The sample sizes for GWAS training data are assumed to be (a) 122 

15,000, and (b) 80,000 for the four non-EUR target populations; and is fixed at 100,000 for the 123 

EUR population. PRS generated from all methods are tuned in 10,000 samples, and then tested 124 

in 10,000 independent samples in each target population. The PRS-CSx package is restricted to 125 

SNPs from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA. 126 
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Supplementary Figure 5: Performance of alternative methods on simulated data generated 128 

with different sample sizes and different genetic architectures. Data are simulated for 129 

continuous phenotype under a strong negative selection model and three different degrees of 130 

polygenicity (top panel: ������� = 0.01, middle panel: ������� = 0.001, and bottom panel: 131 ������� = 5 × 10−4). Per-SNP heritability is assumed to be the same across all populations, and 132 

the correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.6. 133 

The sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the 134 

four non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated 135 

from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples 136 

in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other 137 

alternative methods use SNPs from either HM3 or MEGA. 138 
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Supplementary Figure 6: Performance comparison of lassosum2 (with super learning step) 141 

and PROSPER for prediction of four blood lipid traits (GLGC-training and UKBB-142 

tuning/validation). We analyzed four blood lipid traits, (a) HDL, (b) LDL, (c) logTG and (d) TC. 143 

PRS are trained using GLGC data that available for five populations: admixed African or African, 144 

East Asian, European, Hispanic, and South, and then tuned in individuals from UKBB of the 145 

corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see the section of Real data analysis in 146 

Methods for ancestry composition). Performance is reported based on adjusted R2 accounting 147 

for sex, age, PC1-10 in a held-out validation sample of individuals from UKBB of the 148 

corresponding ancestry. Sample sizes for training, tuning and validation data are in 149 

Supplementary Table 3-4. Results for AMR are not included due to the small sample size of 150 

genetically inferred AMR ancestry individuals in UKBB.  151 
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Supplementary Figure 7: The relationship between tuning sample size and predictive R2. Data 155 

are same as those in Figure 2, simulated under strong negative selection and three different 156 

degrees of polygenicity, with a fixed common-SNP heritability at 0.4 across all populations, and 157 

fixed genetic correlations at 0.8 between all pairs of populations. The sample sizes for GWAS 158 

training data for the four non-EUR populations are assumed to be 15K, 45K, 80K, and 100K 159 

(indicated by color), and are fixed at 100,000 for the EUR population. PRS is tuned with 5000, 160 

3000, 1000, 500, 300, and 100 tuning samples, and then tested in 10,000 independent samples 161 

in each target population. 162 
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