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Abstract

Great efforts are being made to develop advanced polygenic risk scores (PRS) to improve the
prediction of complex traits and diseases. However, most existing PRS are primarily trained on
European ancestry populations, limiting their transferability to non-European populations. In
this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres
based on enSemble of PEnalized Regression models (PROSPER). PROSPER integrates genome-
wide association studies (GWAS) summary statistics from diverse populations to develop
ancestry-specific PRS with improved predictive power for minority populations. The method
uses a combination of £, (lasso) and £, (ridge) penalty functions, a parsimonious specification
of the penalty parameters across populations, and an ensemble step to combine PRS generated
across different penalty parameters. We evaluate the performance of PROSPER and other
existing methods on large-scale simulated and real datasets, including those from 23andMe
Inc., the Global Lipids Genetics Consortium, and All of Us. Results show that PROSPER can
substantially improve multi-ancestry polygenic prediction compared to alternative methods
across a wide variety of genetic architectures. In real data analyses, for example, PROSPER
increased out-of-sample prediction R? for continuous traits by an average of 70% compared to a
state-of-the-art Bayesian method (PRS-CSx) in the African ancestry population. Further,
PROSPER is computationally highly scalable for the analysis of large SNP contents and many

diverse populations.
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Introduction

Tens of thousands of single nucleotide polymorphisms (SNP) have been mapped to human
complex traits and diseases through genome-wide association studies (GWAS) 2. Though each
SNP only explains a small fraction of variation of the underlying phenotype, polygenic risk
scores (PRS), which aggregate the genetic effects of many loci, can have a substantial ability to
predict traits and stratify populations by underlying disease risks 312, However, as existing
GWAS to date have been primarily conducted in European ancestry populations (EUR) 13-1¢,
recent studies have consistently shown that the transferability of EUR-derived PRS to non-EUR

populations often is suboptimal and in particular poor for African Ancestry populations 17-22,

Despite growing efforts of conducting genetic research on minority populations 23-26, the gap in
sample sizes between EUR and non-EUR populations is likely to persist in the foreseeable
future. As the performance of PRS largely depends on the sample size of training GWAS % %/,
using single ancestry methods 2832 to generate PRS for a minority population, using data from
that population alone may not achieve ideal results. To address this issue, researchers have
developed methods for generating powerful PRS by borrowing information across diverse
ancestry populations 33, For example, Weighted PRS 3* combines single-ancestry PRS generated
from each population using weights that optimize performance for a target population.
Bayesian methods have also been proposed that generate improved PRS for each population by

jointly modeling the effect-size distribution across populations 3> 36, Recently, our group
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proposed a new method named CT-SLEB 22, which extends the clumping and thresholding (CT)
37 method to multi-ancestry settings. The method uses an empirical-Bayes (EB) approach to
estimate effect sizes by borrowing information across populations and a super learning model
to combine PRSs under different tuning parameters. However, the optimality of the methods
depends on many factors, including the ability to account for heterogeneous linkage
disequilibrium (LD) structure across populations and the adequacy of the models for underlying
effect-size distribution 27 In general, our extensive simulation studies and data analyses
suggest that no method is uniformly the most powerful, and exploration of complementary

methods will often be needed to derive the optimal PRS in any given setting 22

In this article, we propose a novel method for generating multi-ancestry Polygenic Risk scOres
based on an enSemble PEnalized Regression (PROSPER) using GWAS summary statistics and
validation datasets across diverse populations. The method incorporates £, penalty functions
for regularizing SNP effect sizes within each population, an £, penalty function for borrowing
information across populations, and a flexible but parsimonious specification of the underlying
penalty parameters to reduce computational time. Further, instead of selecting a single optimal
set of tuning parameters, the method combines PRS generated across different populations and
tuning parameters using a final ensemble regression step. We compare the predictive
performance of PROSPER with a wide variety of single- and multi-ancestry methods using
simulation datasets from our recent study?? across five populations (EUR, African (AFR), Ad
Mixed American (AMR), East Asian (EAS), and South Asian (SAS))?2. Furthermore, we evaluate

these methods using a variety of real datasets from 23andMe Inc. (23andMe), the Global Lipids
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87  Genetics Consortium (GLGC) 38, All of Us (AoU) *°, and the UK Biobank study (UKBB) %°. Results
88 from these analyses indicate that PROSPER is a highly promising method for generating the
89  most powerful multi-ancestry PRS across diverse types of complex traits. Computationally,

90 PROSPER is also exceptionally scalable compared to other advanced methods.

91

92 Results

93
94 Method overview

95
96 PRSOSPER is a method designed to improve prediction performance for PRS across distinct
97  ancestral populations by borrowing information across ancestries (Figure 1). It can integrate
98 large EUR GWAS with smaller GWAS from non-EUR populations. Ideally, individual-level tuning
99 data are needed for all populations, because the method needs optimal parameters from
100 single-ancestry analysis as an input; however, even when data is only available for a target
101  population, PRSOSPER can still be performed, and the PRS will be optimized and validated
102  towards the target population. The method can account for population-specific genetic
103  variants, allele frequencies, and LD patterns and use computational techniques for penalized
104  regressions for fast implementation.
105
106  PROSPER

107
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Assuming a continuous trait, we first consider a standard linear regression model for underlying
individual-level data for describing the relationship between trait values and genome-wide
genetic variants across M distinct populations. Let ¥; denote the n; X 1 vector of trait values,
X; denote the n; X p; genotype matrix, #; denote the p; X 1 vector of SNP effects, and ¢;
denote the n; X 1 vector of random errors for the it population. We assume underlying linear
regression models of the formY; = X;B; + €;,i = 1, ... M; and intend to solve the linear
regression system by least square with a combination of £; (lasso) ** and L, (ridge) % penalties

in the form

Bsiﬂz _ ﬁsiﬂ'z

i1 iz

Z nli(yi_XiBi)T(Yi_Xiﬁi)‘l' Z 22:11B: 11 + Z Ci,i,

1<isM 1<isM 1<iy<i <M

where 4;,i = 1, ..., M are the population-specific tuning parameters associated with the lasso
penalty; Bisliliz and BZ“Z denote the vectors of effect-sizes for SNPs for the i;-th and i,-th
populations, respectively, restricted to the set of shared SNPs (s; ;,) across the pair of the
populations; and ¢; ;,, 1 < i; < i, < M are the tuning parameters associated with the ridge

penalty imposing effect-size similarity across pairs of populations.

In the above, the first part, ;1 <;<p 24;1|B;113 , uses a lasso penalty. Lasso can produce sparse
solution #! and recent PRS studies that have implemented the lasso penalty in the single-

ancestry setting have shown its promising performance >3, The second part,

ﬂsiﬂz _ Ifiﬂz

lei1<i2sM Ciji, iy iy

2
, uses a ridge penalty. As it has been widely shown that the
2

causal effect sizes of SNPs tend to be correlated across populations %> %4, we propose to use the

ridge penalty to induce genetic similarity across populations. Compared to the fused lasso #°,
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which uses lasso penalty for the differences, we use ridge penalty instead, which allows a small
difference in SNP effects across populations rather than truncating them to zero. The solutions

for population-specific effect size using the combined lasso and ridge penalties can be sparse.

The estimate of f8;,i = 1, ..., M in the above individual-level linear regression systems can be

obtained by minimizing the above least square objective function. Following the derivation of

lassosum 2%, a single-ancestry method for fitting the lasso model to GWAS summary statistics

data, we show that the objective function for individual-level data can be approximated using
L

GWAS summary statistics and LD reference matrices by substituting - Xl-TXi by R; , where R; is

i
. . . . 1
the estimated LD matrix based on a reference sample from the i-th population, and ;XiTyi, by
1

T;, where 1; is the GWAS summary statistics in the i-th population. Therefore, the objective

function of the summary-level model can be written as

Bsiﬂz _ ﬁsiﬂz

i1 iz

D BT R+ DB~ 26Tri+ 228D+ ) e,

1<isM 1<i1<ip <M
where the additional tuning parameters 6;,i = 1, ..., M , are introduced for regularization of
the LD matrices across the different populations 3°. For a fixed set of tuning parameters, the
above objective function can be solved using fast coordinate descent algorithms #¢ by iteratively
updating each element of B;,i = 1, ..., M (see the section of Obtain PROSPER solution in

Methods).

Reducing tuning parameters


https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.15.532652; this version posted September 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

available under aCC-BY-NC-ND 4.0 International license.

For the selection of tuning parameters, we assume we have access to individual-level data
across the different populations which are independent of underlying GWAS from which

summary statistics are generated. The above setting involves three sets of tuning parameters,

M(M-1)

{6311, (A, and {cy, 1, }1<i,<i,<m, totaling to the number of M + M + -

. As grid search
across many combinations of tuning parameter values can be computationally intensive, we
propose to reduce the search range by a series of steps. First, we use lassosum2 3° to analyze
GWAS summary statistics and tuning data from each ancestry population by itself and obtain
underlying values of optimal tuning parameters, (57, %) for i = 1, ..., M; if tuning data is only
available for the target population, the (52, 1) for non-target i can be optimized towards the
target population. For fitting PROSPER, we fix §; = 6 for i = 1, ..., M as these are essentially
used to regularize estimates of population-specific LD matrices. We note that the optimal

{2; 31, depend on sample sizes of underlying GWAS (Supplementary Figure 1), and thus should
not be arbitrarily assumed to be equal across all populations. Considering that the optimal
tuning parameters associated with the £; penalty function from the single-ancestry analyses
should reflect the characteristics of GWAS data, which includes underlying sparsity of effect
sizes and sample sizes, we propose to specify the £;-tuning parameters in PROSPER as 4; =
/'l/'l?, i.e. they are determined by the corresponding tuning parameters from the ancestry-
specific analysis except for the constant multiplicative factor A . Finally, for computational
feasibility, we further assume that effect sizes across all pairs of populations have a similar
degree of homogeneity and thus set all {¢; ;, }1<i,<i,<m t0 be equal to c. We will later discuss
this assumption and perform a sensitivity analysis in the Discussion section. By using the above

assumptions, the objective function to minimize with respectto 8;,i = 1, ..., M, becomes
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> BIR+50DB— 28T+ 2008+ D c|B - gt

l1 %)
1<isM 1<i,<i <M
where A and c are the only two tuning parameters needed for lasso penalty and genetic

similarity penalty, respectively.
Ensemble

Using an ensemble method to combine PRS has been shown to be promising in CT-type
methods as opposed to picking an optimal threshold 2237, In general, a specific form of the
penalty function, or equivalently a model for prior distribution in the Bayesian framework, may
not be able to adequately capture the complex nature of the underlying distribution of the
SNPs across diverse populations. We conjecture that when effect size distribution is likely to be
mis-specified, an ensemble method, which combines PRS across different values of tuning
parameters instead of choosing one optimal set, is likely to improve prediction. Therefore, as a
last step, we obtain the final PROSPER model using an ensemble method, super learning 47-%°,
implemented in the SuperLearner R package, to combine PRS generated from various tuning
parameter settings and optimized using tuning data from the target population. The super
learner we use here was based on three supervised learning algorithms, including lasso %!, ridge

42 and linear regression (see Methods).
Results

Methods comparison on simulated data
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We conducted simulation analyses on continuous traits under various genetic architectures 2
to evaluate the performance of different methods that can be categorized into five groups:
single-ancestry methods trained from target GWAS data (single-ancestry method), single-
ancestry methods trained from EUR GWAS data (EUR PRS based method), simple multi-ancestry
methods by weighting single-ancestry PRS (weighted PRS), recently published multi-ancestry
methods (existing multi-ancestry methods), and our proposed method, PROSPER. Single-
ancestry methods include CT %7, LDpred2 31, and lassosum?2 3°. Existing multi-ancestry methods
include PRS-CSx 3°> and CT-SLEB %2. The performance of the methods is evaluated by R?
measured on validation samples independent of training and tuning datasets. Analyses in this
and the following sections are restricted to a total of 2,586,434 SNPs, which are included in
either HapMap 3 (HM3) >0 or the Multi-Ethnic Genotyping Arrays (MEGA) chips array °%. LD
reference samples for all five ancestries, EUR, AFR, AMR, EAS, and SAS, in this and the following

sections, are from 1000 Genomes Project (Phase 3) >? (1000G).

The results (Figure 2, Supplementary Figure 2-6, Supplementary Table 1.1-1.5) show that
multi-ancestry methods generally exhibit superior performance compared to single-ancestry
methods. Weighted PRS generated from methods modeling LD (Ldpred2 and lassosum2) can
lead to a noticeable improvement in performance (green bars in Figure 2). Notably, PROSPER
shows robust performance uniformly across different scenarios. When the sample size of the
target non-EUR population is small (N¢q,g.; = 15K) (Figure 2a), PROSPER has comparable

performance with other multi-ancestry methods under a high degree of polygenicity (Poqusar =
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216  0.01). However, under the same sample size setting and lower polygenicity (Pequsar =

217 0.01and 5 x 10™%), PRS-CSx and CT-SLEB outperform PROSPER, with the margin of

218 improvement increasing as the strength of negative selection decreases (strong negative

219  selection in Figure 2a, mild strong negative selection in Supplementary Figure 2a, and no

220 negative selection in Supplementary Figure 3a). When the sample size of the target population
221 s large (N¢grger = 8O0K) (Figure 2b, and Supplementary Figure 2-5 b), PROSPER almost

222 uniformly outperforms all other methods, particularly for the AFR population.

223

224  We further compare the computational efficiency of PROSPER in comparison to PRS-CSx, the
225  state-of-the-art Bayesian method available for generating multi-ancestry PRS. We train PRS
226  models for the two methods using simulated data for chromosome 22 using a single core with
227  AMD EPYC 7702 64-Core Processors running at 2.0 GHz. We observe (Supplementary Table 2)
228  that PROSPER is 37 times faster than PRS-CSx (3.0 vs. 111.1 minutes) in a two-ancestry analysis
229 including AFR and EUR; and 88 times faster (6.8 vs. 595.8 minutes) in the analysis of all five
230  ancestries. The memory usage for PRS-CSx is about 2.8 times smaller than PROSPER (0.78 vs.
231  2.24 Gb in two-ancestry analysis, and 0.84 vs. 2.35 Gb in five-ancestry analysis).

232

233 23andMe data analysis

234

235  We applied various methods to GWAS summary statistics available from the 23andMe, Inc. to
236  predict two continuous traits, heart metabolic disease burden and height; as well as five binary

237  traits, any cardiovascular disease (any CVD), depression, migraine diagnosis, morning person,
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238  and sing back musical note (SBMN). The datasets are available for all five ancestries, African
239  American (AA), Latino, EAS, EUR, and SAS. The methods are tuned and validated on a set of
240 independent individuals of the corresponding ancestry from the 23andMe participant cohort
241  (see the section of Real data analysis in Methods for data description, and Supplementary
242  Table 3-4 for sample sizes used in training, tuning and validation).

243

244  From the analysis of two continuous traits (Figure 3 and Supplementary Table 5.1), we observe
245  that lassosum?2 and its related methods (EUR lassosum?2 and weighted lassosum?2) generally
246  perform better than CT and Ldpred2, and their related methods. On the basis of the advantage
247  of lassosum2, PROSPER further improves the performance, and for most of the settings,

248  outperforms all alternative methods, including PRS-CSx and CT-SLEB. PROSPER demonstrates
249  particularly remarkable improvement for both traits in AA and Latino (26.9 % relative

250 improvement in R? over the second-best method on average, yellow cells in Supplementary
251  Table 5.2) (first two panels in Figure 3a-b). For EAS and SAS, PROSPER is slightly better than
252  other methods, except for heart metabolic disease burden of SAS (the last panel in Figure 3a),
253  which has the smallest sample size (~20K).

254

255  The results from the analysis of the binary traits (Figure 4 and Supplementary Table 5.1) show
256  that PROSPER generally exhibits better performance (7.8% and 12.3% relative improvement in
257  logit-scale variance (see Methods) over CT-SLEB and PRS-CSx, respectively, averaged across
258  populations and traits) (blue and red cells, respectively, in Supplementary Table 5.2). A similar

259 trend is observed for the analyses of AA and Latino, where PROSPER usually has the best
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performance (first two panels in Figure 4a-e). In general, no single method can uniformly
outperform others. Weighted lassosum2 has outstanding performance for depression (Figure
4b), while PROSPER is superior for morning person (Figure 4d). PRS-CSx shows a slight
improvement in the analysis of migraine diagnosis for EAS populations (last second panel in
Figure 4c), and CT-SLEB performs the best in the analysis of any CVD for SAS population (last

panel in Figure 4a).

GLGC and AoU data analysis

Considering the uncommonly huge sample sizes from 23andMe, we further applied alternative
methods for the analysis of two other real datasets, GLGC and AoU. The GWAS summary
statistics from GLGC for four blood lipid traits, high-density lipoprotein (HDL), low-density
lipoprotein (LDL), log-transformed triglycerides (logTG), and total cholesterol (TC), are publicly
downloadable and available for all five ancestries, African/Admixed African, Hispanic, EAS, EUR,
and SAS (see Methods for data description, and Supplementary Table 3 for sample sizes).
Further, we generated GWAS summary statistics data from the AoU study for two
anthropometric traits, body mass index (BMI) and height, for individuals from three ancestries,
AFR, EUR, and Latino/Admixed American (see Methods for data description, and
Supplementary Table 3 for sample sizes). Both the blood lipid traits and anthropometric traits
have corresponding phenotype data available in the UKBB, which we use to perform tuning and
validation (see the section of Real data analysis in Methods for the ancestry composition, and

Supplementary Table 4 for sample sizes). Given the limited sample sizes of genetically inferred
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282  AMR ancestry individuals in UKBB, we do not report the performance of PRS on AMR

283  individuals in UKBB.

284

285  Results from analysis of four blood lipid traits (Figure 5 and Supplementary Table 6.1) from

286  GLGC and UKBB show that PRS generated by lasso-type methods substantially outperform

287  alternative methods. In particular, we observe that the weighted lassosum2 always

288  outperforms the other two weighted methods. Furthermore, our proposed method, PROSPER,
289  shows improvement over weighted lassosum?2 in both AFR and SAS (13.1% and 12.3% relative
290 improvement in R?, respectively, averaged across traits) (green and orange cells, respectively, in
291  Supplementary Table 6.2), but not in EAS. To investigate whether the additional gain from

292  PROSPER arises from modeling shared effects across populations or from combining PRS with
293  super learning, we further employ a super learning step for lassosum2 as a point of comparison.
294  The results (Supplementary Figure 6 and Supplementary Table 6.3) indicate that the additional
295  gain for EAS and SAS is likely derived from the joint modeling in PROSPER, whereas for AFR, the
296  super learning step in lassosum?2 has already yielded significant improvement. This aligns with
297  theintuition that AFR is more genetically distinct from other populations. Notably, PROSPER
298  outperforms PRS-CSx and CT-SLEB in most scenarios (34.2% and 37.7% relative improvement in
299  R? respectively, averaged across traits and ancestries) (blue and red cells, respectively, in

300 Supplementary Table 6.2), with the improvement being particularly remarkable for the AFR
301 population (Figure 5) in which PRS development tends to be the most challenging.

302
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303 The results from AoU and UKBB (Figure 6 and Supplementary Table 7.1) show that PROSPER
304 generates the most predictive PRS for the two analyzed anthropometric traits for the AFR

305 population. It appears that Bayesian and penalized regression methods that explicitly model LD
306 tend to outperform corresponding CT-type methods (CT, EUR CT, and weighted CT) which

307 excluded correlated SNPs. Among weighted methods, both Ldpred2 and lassosum2 show major
308 improvement over the corresponding CT method. Further, for both traits, PROSPER shows

309 remarkable improvement over the best of the weighted methods and the two other advanced
310 methods, PRS-CSx and CT-SLEB (91.3% and 76.5% relative improvement in R?, respectively,

311 averaged across the two traits) (blue and red cells, respectively, in Supplementary Table 7.2).

312
313 Discussion

314

315 Inthis article, we propose PROSPER as a powerful method that can jointly model GWAS

316  summary statistics from multiple ancestries by an ensemble of penalized regression models to
317 improve the performance of PRS across diverse populations. We show that PROSPER is a

318 uniquely promising method for generating powerful PRS in multi-ancestry settings through

319 extensive simulation studies, analysis of real datasets across a diverse type of complex traits,
320 and considering the most recent developments of alternative methods. Computationally, the
321  method is an order of magnitude faster compared to PRS-CSx 3>, an advanced Bayesian method,
322  and comparable to CT-SLEB 22, which derives the underlying PRS in closed forms. We have

323  packaged the algorithm into a command line tool based on the R programming language

324  (https://github.com/Jingning-Zhang/PROSPER).
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325

326 We compare PROSPER with a number of alternative simple and advanced methods using both
327 simulated and real datasets. The simulation results show that PROSPER generally outperforms
328  other existing multi-ancestry methods when the target sample size is large (Figure 2b).

329 However, when the sample size of the target population is small (Figure 2a), no method

330 performed uniformly the best. In this setting, when the degree of polygenicity is the lowest
331 (Pequsar = 5 X 107%), CT-SLEB outperforms other methods by a noticeable margin, and

332  PROSPER performs slightly worse than PRS-CSx. Simulations also show that in the scenario of a
333  highly polygenic trait (p.qusa; = 0.01), irrespective of sample size, both weighted lassosum2
334  and PROSPER tend to exhibit superiority compared to all other methods. In terms of

335 computational time, PROSPER is an order of magnitude faster than PRS-CSx in a five-ancestry
336  analysis. The memory usage for PRS-CSx is smaller than PROSPER, but both are acceptable

337 (Supplementary Table 2).

338

339  We observe that for the analysis of both continuous and binary traits using 23andMe Inc. data,
340 PROSPER demonstrates a substantial advantage over all other methods for the AA and Latino
341  populations, which have the largest sample sizes among all minority groups. The result is

342  consistent with the superior performance of PROSPER observed in simulation settings when the
343  sample size of the target population is large. However, it is worth noting that even for the two
344  other populations, EAS and SAS, which have much smaller sample sizes, PROSPER still performs
345 the best in half of the settings (the last two panels in Figure 3a-b and Figure 4a-e). For the

346  prediction of blood lipid traits, methods built upon the lasso penalty (lassosum2, weighted
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lassosum2, PROSPER) perform substantially better than all other alternative methods.
Intuitively, this might result from the robustness of the heavy-tail lasso penalty function in
dealing with large-effect loci that tend to be present for molecular traits, such as lipid levels
(Supplementary Table 8), and sometimes for complex traits as well. For the analysis of two
anthropometric traits using training data from AoU, we observe that methods that explicitly
model and account for LD differences (e.g. lassosum2, Ldpred2, and their corresponding
weighted methods) generally achieve higher predictive accuracy than CT-based methods which
discard correlated SNPs. In addition, we observe major improvement in PRS performance using
PROSPER over weighted lassosum?2 and all other existing multi-ancestry methods. The result is
consistent with what we have observed in simulation settings under extreme polygenic
architectures as expected for complex traits like height and BMI. In conclusion, our results show
that PROSPER is a promising method for handling complex traits of diverse genetic

architectures.

PROSPER, while showing promising results in our simulations and real data analyses, does have
several limitations. First, when the sample size for the training sample for a target population is
small, particularly for traits with low polygenicity, the method may not perform as well as some
of the other existing methods (Figure 2a). In this specific scenario where the number of true
causal variants is small, a potential reason for suboptimal performance of PROSPER is the bias
induced by lasso. This inspires future work of extending PROSPER to adaptive lasso >3 for
unbiased estimation and other forms of penalty functions for sparser solutions. Second, the use

of a super learning step in PROSPER can lead to poorer performance compared to weighted
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lassosum2 when the sample size for the tuning dataset is not adequately large. In the analysis
of lipid traits for EAS, for example, we observe lower predictive accuracy of PROSPER than
weighted lassosum?2 (the middle panel in Figure 5b and d). This can be attributed to overfitting
in the tuning sample, as the number of tuning samples of EAS origin in the UKBB is only ~1000,
while the number of PRSs combined in the super learning step is close to 500. In this scenario,
we suggest comparing the performance of the ensemble PRS with that without the ensemble
step, as the latter one might be more resilient to overfitting. We conducted simulation analyses
to further explore the ideal sample size for tuning (Supplementary Figure 7). Generally, a
tuning sample size within the range of 1000-3000 is adequate for continuous traits. Third, we
used a constant tuning parameter for the genetic similarity penalty, disregarding varying
genetic distances among populations 4. However, introducing additional tuning parameters
could result in both computational challenges and numerical instability. We have investigated
this by analyzing GLGC data (see Supplementary Table 9, and Methods), adding an extra tuning
parameter to accommodate adaptable distances between the AFR population and others.
Results indicate a disproportionate increase in computational load (5™ column in
Supplementary Table 9) relative to the marginal enhancement in predictive accuracy, and a
potential of instability and overfitting (gray cells in Supplementary Table 9). Lastly, the
framework is modeled on a standardized genotype scale characterized by strong negative
selection; however, there could be diverse genetic architectures in reality. To address this
limitation, models could be extended to varying degrees of negative selection by multiplied by

exponentiations of allele frequencies, as discussed in a previous paper 2.
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PROSPER and a number of other recent methods have been developed for modeling summary
statistics data across discrete populations typically defined by self-reported ancestry
information. Increasing sample size for reference sample sizes for various populations well-
matched with those providing training datasets can further enhance performance of PROSPER
and other methods that explicitly incorporates LD information into modeling. Further, there is
an emerging need to consider the underlying continuum of genetic diversity across populations
in both the development and implementational of PRS in diverse populations in the future >.
Towards this goal, a recent method called GAUDI °¢ has been proposed based on the fused
lasso penalty for developing PRS in admixed population using individual-level data. While
GAUDI shares similarities with PROSPER in terms of the use of the lasso-penalty function, the
two methods are distinct in terms of the specification of tuning parameters and use of the
ensemble step. Our model specification of PROSPER makes it easily amendable to handle
continuous genetic ancestry data, but further research is needed for scalable implementation

of the method with individual-level data and extensive empirical evaluations.

To conclude, we have proposed PROSPER, a statistically powerful and computationally scalable
method for generating multi-ancestry PRS using GWAS summary statistics and additional tuning
and validation datasets across diverse populations. While no method is uniformly powerful in
all settings, we show that PROSPER is the most robust among a large variety of recent methods
proposed across a wide variety of settings. As individual-level data from GWAS of diverse

populations becomes increasingly available, PROSPER and other methods will require additional
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412  considerations for incorporating continuous genetic ancestry information, both global and local,
413  into the underlying modeling framework.

414
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Code Availability

All codes for data analysis, including simulation and real data analysis, are posted through
GitHub at https://github.com/Jingning-Zhang/PROSPER _analysis and
https://github.com/andrewhaoyu/multi_ethnic/tree/master. Codes, scripts, reference data,

and toy example to perform PROSPER are publicly available at https://github.com/Jingning-

Zhang/PROSPER.

The majority of our statistical analysis was performed using R 3.6.1 and R 4.0.2, and R
packages ‘optparse’,’bigreadr’,’readr’,’stringr’, ‘caret’, ‘SuperLearner’, ‘glmnet’, ‘MASS’, ‘Rcpp’,
‘ReppArmadillo’, ‘inline’, ‘doMC’, ‘foreach’. We used PLINK2 for computing PRS available at

https://www.cog-genomics.org/plink/1.9/; https://www.cog-genomics.org/plink/2.0/

The PRS models in the analysis includes: CT performed by plink 1.9 available at

https://www.cog-genomics.org/plink/1.9/; Lassosum2 and LDpred2 performed by bigsnpr 1.8.1

available at https://github.com/privefl/bigsnpr; PRS-CSx performed by python 3.8.2 and scripts

available at https://github.com/getian107/PRScsx; CT-SLEB performed by codes available at

https://github.com/andrewhaoyu/CTSLEB.
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Data Availability
Simulated genotype data for 600K subjects from five ancestries:

https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/COXHAP

GWAS summary level statistics for five ancestries from GLGC:

http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry specific/

GWAS summary level statistics for three ancestries from AoU are available upon request.
GWAS summary statistics for the 23andMe discovery data set could be made available through
23andMe to qualified researchers under an agreement with 23andMe that protects the privacy

of the 23andMe participants. Please visit https://research.23andme.com/collaborate/#dataset-

access/ for more information and to apply to access the data. Participants provided informed
consent and volunteered to participate in the research online, under a protocol approved by
the external AAHRPP-accredited IRB, Ethical & Independent (E&I) Review Services. As of 2022,

E&I Review Services is part of Salus IRB (https://www.versiticlinicaltrials.org/salusirb).

GRCh37 and GRCh38 reference genome data from Phase-3 1000 Genome Project (1000G) is
available from https://www.internationalgenome.org/data.

Access to UKBB individual level data can be requested from
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.

Source data are provided with this paper.
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497 Online Methods

498

499  Data preparation and formatting in PROSPER. We match SNPs and their alleles in GWAS

500 summary statistics and genotypes of individuals for tuning and validation purposes to that in
501 1000G reference data (phase 3) 2. To simplify computing huge-dimensional LD matrix, we use
502  existing LD block information from EUR ?° to divide the whole genome, and assume the blocks
503 to be independent. We use PLINK1.9 7 with flag --r bin4 to compute the LD matrix within each
504  block in each ancestry for common SNPs (MAF>0.01) either in HM3 *° or the MEGA °1. For SNPs
505 not common in all populations, we only model them in the populations where they are

506 common; if a SNP is population-specific that is only common in one population, we model it
507 only using the lasso penalty without the genetic similarity penalty. The parameter path of the

508 tuning parameter A for the scale factor in lasso penalty is set to a sequence evenly spaced on a

max (|7ikl|) :
509 logarithmic scale from A™#* = min <1‘k";—0> to A™™ = 0.001 X A™@ which is set to

1<ism i
510 guarantee non-zero solutions, where 1;; is the GWAS summary statistics for the k-th SNP in the
511  i-th population, and /'l? is the underlying values of optimal tuning parameter A for the i-th
512  population. The parameter path for the tuning parameter c for the genetic similarity penalty is
513  set to a sequence evenly spaced on a quad-root scale from ¢™™ = 2 to ¢™a = 100, i.e.
514  seq(c™MA(1/4), c™3%A(1/4), length.out = 10)*4 using R command. For all analyses excluding
515 23andMe, the length of sequences of both parameters are set to be 10, while for the analysis of
516 23andMe, it is set to be 5 to reduce the computation workload caused by the confidential

517 requirements of the 23andMe dataset.
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518
519  Obtain PROSPER solution. For M populations, the objective function to minimize for p;-

520 dimentional vector of SNP effect, B;,i = 1,..., M, is

521 LBy, Br) = ) (BT (Ri+ 8:DF; — 267w + 22,1181
1<isM
Siqi Siqi
522 + Z Ci1i2 Bill z— Bizl 2

523  where R; is an estimate of p;-by-p; LD matrix based on a reference sample from the i-th

524  population, 1; is the p;-dimentional vector of GWAS summary statistics in the i-th population,
525 Bfliliz and ﬁfziliz denote the effect vectors for the SNPs shared across i;-th and i,-th

526  populations (the set of SNPs is denoted by s;_;,); 6;, 4; and ¢;,;, are tuning parameters as
527 defined in above sections.
528 This optimization can be solved using coordinate descent algorithms by iteratively updating

529 each element in the vectors. We take derivative for SNP k in i-th population, k = 1, ...,p;, i =

530 1,..,.M
dL(B4, ...,
531 (Bl Bm)
0Bk
olB:
532 =21+ 5i + Cii’ :Bik + 2}.1 |ﬁlk|
s 9B
i1'#i,1<i'sM

533 — 2| ry — Z RixkBix' + Z Cii'Bik
k'#k1<k’sp 1=i'sM,S.tKES; ;1

534  where B, denotes the SNP k in B;, 1 denotes the SNP k SNP in r;, and R; 7, denotes LD

535 between the SNP k and the SNP k' in R;.
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aL(ﬂlJ""Bm)

By solving T
ik

= 0 after the (t)-th iteration, we can get the updating rule for the (t +

1)-th iteration

B(t+1) _ sign(uy,) - max {0, [uy | — 4}
e 1+ 6; + Yisir<mstkes, , Cii!

where

t t
Ui = Tig — Z Ri,k'kﬁi(k)r + Z Cii’.Bi(';z

k'#k1<k’'sp 1=i’'<M,s.tKES; i1

Super learning. After getting PRSs for all populations under all tuning parameter settings, we
further apply super learning to combine them to be trained on the tuning samples to get the
final PROSPER model and tested on the validation samples. We use the function “SuperLearner”
implemented in the R package with the same name, and include three linear prediction
algorithms: lasso, ridge, and linear regression for continuous outcomes; and two prediction
algorithms: lasso and linear regression for binary outcomes. We did not include ridge for binary
outcomes due to the unavailability of ridge for binary outcomes in the function. For the
included algorithms which have parameters: (1) in lasso, we use 100 values in lambda path
calculated in the default setting in glmnet package; (2) in ridge, we use a lambda path of
sequence from 1 to 20 incrementing by 0.1. We use Area under the ROC curve (AUC) as the

objective function for binary outcomes and thus use the flag “method = method. AUC” in the

function.
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555  Existing PRS methods. We compare five groups of PRS methods. The first group is: single-

556 ancestry method, which contains commonly known single-ancestry methods, including CT,
557 LDpred2, and lassosum2, that are trained from the GWAS data from the target population. The
558 second group is: EUR PRS based method, which is the three above single-ancestry methods
559 trained from EUR GWAS data. The third group is: weighted PRS, which uses the weights

560 estimated from a linear regression to combine the PRSs estimated from the corresponding
561 single-ancestry method from all populations. The fourth group is: existing multi-ancestry

562 methods, which includes two recently published and well-performed multi-ancestry methods,
563  PRS-CSx and CT-SLEB. The last group is our proposed PROSPER. For all algorithms that have
564  tuning parameters or weights, the optimal ones are determined based on predictive R? or AUC
565  on tuning samples and finally evaluated on validation samples.

566 Below are detailed descriptions of the existing PRS methods used as comparisons in this

567  manuscript. In short, CT and CT-SLEB are methods that use less-dependent genetic variants
568  after a clumping step in models. LDpred2 and PRS-CSx are Bayesian methods that can account
569 for LD among genetic variants. Lassosum?2 and our proposed PROSPER are penalized regression
570 methods capable of modeling genome-wide genetic variants and fitting the model in a speedy
571  way. As for the three multi-ancestry methods, CT-SLEB and PRS-CSx model the cross-ancestry
572  genetic correlation using a multivariate Bayesian prior, while our proposed PROSPER uses a
573 ridge penalty to impose effect-size similarity across pairs of populations.

574  CTis implemented in our analysis by using r’-cutoff of 0.1 in the clumping step and then

575 thresholding by treating p-value-cutoff as a tuning parameter and being chosen from

576 5x107%1 x1077,5%x1077,1x107,..,5x 1071, 1.0.


https://doi.org/10.1101/2023.03.15.532652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.15.532652; this version posted September 17, 2023. The copyright holder for this preprint

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

LDpred2 is a PRS method that uses a spike-and-slab prior on GWAS summary statistics and
modeling LD across SNPs. We implement LDpred2 by the function “snp_Ildpred2_grid” in the R
package “bigsnpr”. The two tuning parameters in the algorithm include: the proportion of
causal SNPs, which is chosen from a sequence of length 17 that are evenly spaced on a
logarithmic scale from 10~* to 1; per-SNP heritability, which is chosen from 0.7, 1, or 1.4 times
the total heritability estimated by LD score regression divided by the number of causal SNPs.
We fix the additional “sparse” option (for truncating small effects to zero) to FALSE.
lassosum2 is a PRS method that uses lasso regression on GWAS summary statistics for a single
ancestry. We implement lassosum?2 by the function “snp_lassosum2” in the R package
“bigsnpr”. The two tuning parameters in the algorithm include: tuning parameter for the lasso
penalty, which is chosen from a sequence of length 20 that are evenly spaced on a logarithmic

scale from 0.01 X max (|7 |) to max (|r|); and regularization parameter for LD matrix, which
1<k<p 1<k<p

is chosen from a sequence of length 10 that are evenly spaced on a cube-root scale from 0.01
to 100, i.e. seq(0.01~(1/3), 100~(1/3), length.out = 10)*3 using R command.

EUR PRS are the PRSs trained from EUR GWAS using the above single-ancestry methods, CT,
LDpred2, and lassosumz2, that are then applied to individuals of the target population. There is
no need to perform tuning for them because the models have been tuned in EUR tuning
samples. When computing scores for EUR PRS based method, we exclude SNPs that are not
presented in the validation samples from the target population.

Weighted PRS linearly combines the corresponding single-ancestry method trained from all
populations. The weights in the linear combination are estimated by a simple linear regression

in the tuning samples from the target population.
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PRS-CSx is a Bayesian multi-ancestry PRS method that jointly models GWAS summary statistics
and LD structures across multiple populations using a continuous shrinkage prior. It has a
further step to linearly combine the posterior effect-sizes estimates for EUR and the target
population using weights in a simple linear regression in the tuning samples from the target
population. We implement PRS-CSx using their python-based command line tool “PRS-CSx”. The
parameter phi was chosen from the default candidate values, 1, 102,10 *and 107°. Due to
the package restriction, the models are fitted with only HM3 SNPs.

CT-SLEB is a multi-ancestry PRS method that starts from clumping and thresholding, then uses
Empirical-Bayes (EB) method to estimate the coefficients of PRS, and finally combines PRS by a
super learning model. The three tuning parameters in the algorithm include: r’-cutoff and base
size of the clumping window size used in the clumping step, which are chosen from (0.01, 0.05,
0.1, 0.2, 0.5) and (50kb, 100kb), respectively; and p-value cutoffs for EUR and the target

population, which are chosen from 5 x 1078,5 x 10~7,5 x 107°,...,5 x 10! and 1.0.

Simulation analysis. The simulated data were generated as described in a previous paper 2.
The data were simulated under five assumed genetic architecture (as described in the legends
of Figure 2, Supplementary Figure 2-5) and three different degrees of polygenicity p.qusar =
0.01,0.001 and 5 x 10~%. The sample sizes for GWAS training data are assumed to be 15,000
and 80,000 for the four non-EUR target populations; and is fixed at 100,000 for the EUR
population. PRS generated from all methods are tuned in 10,000 samples, and then tested in

10,000 independent samples in each target population.
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621 Computational time and memory usage. The computational time and memory usage of

622  PROSPER and PRS-CSx are compared based on the analysis using simulated data on

623  chromosome 22. The analysis starts from inputting all required data into the algorithms, such as
624  summary statistics and LD reference data, and ends with outputting the final PRS coefficients
625 from the algorithms. PROSPER requires an input of optimal parameters in single-ancestry

626  analysis, so we also include the step of running the single-ancestry analysis, lassosum. The

627  analyses are performed using a single core with AMD EPYC 7702 64-Core Processors running at
628 2.0 GHz. The reported results are averaged over 10 replicates. The sample size for training

629  GWAS summary statistics is 15,000 for non-EUR populations and 100,000 for EUR population.
630 The sample size for the tuning dataset is 10,000 for each population.

631

632  Real data analysis. Training GWAS summary statistics are from 23andMe, GLGC, and AoU.

633  Tuning and validation individual-level data are from 23andMe and UKBB. LD reference data are
634  from 1000G. Detailed descriptions of those datasets are listed below.

635 1000G Data. We used samples in five populations, AFR, AMR, EAS, EUR, and SAS from 1000
636  Genomes Project (Phase 3) >2. The components of the five populations are described in

637  https://useast.ensembl.org/Help/Faqg?id=532.

638 23andMe Data. We analyzed two continuous traits, heart metabolic disease burden and height;
639 and five binary traits, any CVD, depression, migraine diagnosis, morning person and SBMN,

640 using GWAS summary statistics obtained from 23andMe Inc.. The information of individuals
641 included in our analyses from the 23andMe participant cohort has consent and answered

642  surveys online according to the human subject protocol reviewed and approved by Ethical &
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643  Independent Review Services, a private institutional review board

644  (http://www.eandireview.com) as described in a previous paper 22. Data on the seven traits are

645 available for all five populations: AA, EAS, EUR, Latino, and SAS. The LD reference panels used
646  for the five populations, respectively, are unrelated individuals from 1000G of AFR, EAS, EUR,
647  AMR, and SAS origins. The tuning and validation are performed on a set of independent

648 individuals of the corresponding ancestry from 23andMe participant cohort. Please see

649  Supplementary Table 3 for training sample sizes and Supplementary Table 4 for tuning and
650 validation sample sizes. The details of the data, including genotyping, quality control,

651 imputation, removing related individuals, ancestry determination, and the preprocessing of
652  GWAS, are also described in the previous paper 22. For continuous traits, we evaluate PRS

653  performance by the predictive R? of the PRS for residualized trait values obtained from

654  regressing the traits on covariates. For binary traits, we evaluated PRS performance by the AUC
655 by using the roc.binary function in the R package RISCA version 1.0 *8. To compare the PRS
656 performance for two different methods, we used the relative increase of logit-scale variance.
657  The logit-scale variance of binary traits is converted from AUC by the formula 62 =

658 2¢1(AUC), where ¢ is the cumulative distribution function of the standard normal

659  distribution.

660 GLGC Data. We analyzed four blood lipid traits, LDL, HDL, logTG and TC, using GWAS summary
661  statistics computed without UKBB samples that are publicly available from GLGC

662  (http://csg.sph.umich.edu/willer/public/glgc-lipids2021/). Detailed information about the

663  design of the study, genotyping, quality control, and GWAS is described in Graham, S. E. et al.

664  (2021) 8. Data on the four traits are available for all five populations: admixed African or
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African, EAS, EUR, Hispanic, and SAS. The LD reference panels used for the five populations,
respectively, are unrelated individuals from 1000G of AFR, EAS, EUR, AMR, and SAS origins. The
tuning and validation are performed on UKBB individuals (as described below) from the same
reference ancestry label as the LD reference panel. Please see Supplementary Table 3 for
sample sizes and the number of SNPs included in the analysis. The cleaning and preprocessing
of the GWAS data are described in a previous paper %2.

AoU Data. We analyzed two anthropometric traits, BMI and height, using GWAS summary
statistics trained from AoU. The information of individuals included in our analyses has been
collected according to All of Us Research Program Operational Protocol

(https://allofus.nih.gov/sites/default/files/aou operational protocol v1.7 mar 2018.pdf).

Details of the data and GWAS summary statistics are previously described?2. Data for the two
traits are available for three ancestries: AFR, Latino/Admixed American, and EUR. The LD
reference panel used for the three populations, respectively, are 1000G unrelated individuals of
AFR, AMR, and EUR origins. The tuning and validation are performed using UKBB individuals (as
described below) from the same reference ancestry label as the LD reference panel. Please see
Supplementary Table 3 for sample sizes and the number of SNPs included in the analysis. The
cleaning and preprocessing of the GWAS data are described in a previous paper %2.

UKBB data. We used UKBB data only for tuning and validation purposes. The four blood lipid
traits and two anthropometric traits mentioned above have direct measurements in UKBB. The
ancestry label of UKBB individuals is determined by genetically predicted ancestry, which are
described in a previous paper 2. Tuning and validation are based on R? of the PRS regressed on

the residuals of the phenotypes adjusted by sex, age and PC1-10. Please see Supplementary
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Table 4 for sample sizes. We note that for PRS we tested in UKBB validation samples, we use
the ancestry labels in UKBB (AFR, AMR, EAS, EUR or SAS), instead of ancestry labels in the

GWAS training data, to report the R? in the figures, result, and discussion sections of this paper.

Extra tuning parameter for varying genetic distances. In the discussion, we investigated adding
an extra tuning parameter to accommodate adaptable distances between the AFR population
and others. Specifically, the pair-wise c;; follows the formula

_{ rxc ifiorj=AFR
“GT1 ¢ ifiandj # AFR

where r and c are tuning parameters; r takes values from 0.5, 1,1.5; and ¢ takes the same

sequence of candidate values as described in the first paragraph of Methods.
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Figure 1: Detailed flowchart of PROSPER. The analysis of M populations in PROSPER involves
three key steps: 1. Separate single-ancestry analysis for all populations i = 1, ..., M; 2. Joint
analysis across populations using penalized regression; 3. Ensemble regression. In step 1, the
training GWAS data is used to train lassosum2 models, and the tuning data is used to obtain the
optimal tuning parameters in a single-ancestry analysis. In step 2, the training GWAS and the
optimal tuning parameter values from step 1 are used to train the joint cross-population
penalized regression model, and obtain solution 8, .; for each 4 and c. In step 3, the tuning
data is used to train the super learning model for the ensemble of PRSs computed from the
solutions in step 2, PRS, .; = X, ;. The final PRS is computed as PRS = X(Z WA‘C‘iﬂ,—LC,i),
where w, . ; are the weights from the super learning model. Refer to the “Method Overview”
section in the main text for a full explanation of all notations in the flowchart.
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Figure 2: Performance comparison of alternative methods on simulated data generated with
different sample sizes and genetic architectures under strong negative selection and fixed
common-SNP heritability. Data are simulated for continuous phenotype under a strong
negative selection model and three different degrees of polygenicity (top panel: p.gusar = 0.01,
middle panel: p.g,sq = 0.001, and bottom panel: pogysqr = 5 X 10™%). Common SNP
heritability is fixed at 0.4 across all populations, and the correlations in effect sizes for share
SNPs between all pairs of populations is fixed at 0.8. The sample sizes for GWAS training data
are assumed to be (a) 15,000, and (b) 80,000 for the four non-EUR target populations; and is
fixed at 100,000 for the EUR population. PRS generated from all methods are tuned in 10,000
samples, and then tested in 10,000 independent samples in each target population. The PRS-
CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from
either HM3 or MEGA.
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Figure 3: Performance comparison of alternative methods for prediction of two continuous
traits in 23andMe. We analyzed two continuous traits, (a) heart metabolic disease burden and
(b) height. PRS are trained using 23andMe data that available for five populations: African
American, Latino, EAS, EUR, and SAS, and then tuned in an independent set of individuals from
23andMe of the corresponding ancestry. Performance is reported based on adjusted R?
accounting for sex, age and PC1-5 in a held-out validation sample of individuals from 23andMe
of the corresponding ancestry. The ratio of sample sizes for training, tuning and validation is
roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The PRS-CSx
package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from

either HM3 or MEGA.
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Figure 4: Performance comparison of alternative methods for prediction of five binary traits
in 23andMe. We analyzed five binary traits, (a) any CVD, (b) depression, (c) migraine diagnosis,
(d) morning person and (e) SBMN. PRS are trained using 23andMe data that available for five
populations: African American, Latino, EAS, EUR, and SAS, and then tuned in an independent
set of individuals from 23andMe of the corresponding ancestry. Performance is reported based
on adjusted AUC accounting for sex, age, PC1-5 in a held-out validation sample of individuals
from 23andMe of the corresponding ancestry. The ratio of sample sizes for training, tuning and
validation is roughly about 7:2:1, and detailed numbers are in Supplementary Table 3-4. The
PRS-CSx package is restricted to SNPs from HM3, whereas other alternative methods use SNPs
from either HM3 or MEGA.
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Figure 5: Performance comparison of alternative methods for prediction of four blood lipid
traits (GLGC-training and UKBB-tuning/validation). We analyzed four blood lipid traits, (a) HDL,
(b) LDL, (c) logTG and (d) TC. PRS are trained using GLGC data that available for five populations:
admixed African or African, East Asian, European, Hispanic, and South, and then tuned in
individuals from UKBB of the corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see the
section of Real data analysis in Methods for ancestry composition). Performance is reported
based on adjusted R? accounting for sex, age, PC1-10 in a held-out validation sample of
individuals from UKBB of the corresponding ancestry. Sample sizes for training, tuning and
validation data are in Supplementary Table 3-4. Results for AMR are not included due to the
small sample size of genetically inferred AMR ancestry individuals in UKBB. The PRS-CSx
package is restricted to SNPs from HM3, whereas other alternative methods use SNPs from
either HM3 or MEGA.
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Figure 6: Performance comparison of alternative methods for prediction of two
anthropometric traits (AoU-training and UKBB-tuning/validation). We analyzed two
anthropometric traits, (a) BMI and (b) height. PRS are trained using AoU data that are available
for three populations: African, Latino/Admixed American, and European and then tuned in
individuals from UKBB of the corresponding ancestry: AFR, AMR, and EUR (see the section of
Real data analysis in Methods for ancestry composition). Performance is reported based on
adjusted R? accounting for sex, age, PC1-10 in a held-out validation sample of individuals from
UKBB of the corresponding ancestry. Sample sizes for training, tuning and validation data are in
Supplementary Table 3-4. Results for AMR are not included due to the small sample size of
genetically inferred AMR ancestry individuals in UKBB. The number of SNPs analyzed in AoU
analyses is much smaller than other analyses because the GWAS from AoU is on array data only
(see Supplementary Table 3 for the number of SNPs). The PRS-CSx package is restricted to SNPs
from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA.
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Supplementary Figure 1: Optimal tuning parameter lambda in lasso. The simulation is
performed for design matrix with 1000 predictors (p = 1000), and 5% of them are randomly
selected to be causal. Correlation structure of those predictors is AR1 with p = 0.4. The total
heritability is simulated to be 0.2.
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89  Supplementary Figure 2: Performance of alternative methods on simulated data generated
90 with different sample sizes and different genetic architectures. Data are simulated for

91 continuous phenotype under a mild negative selection model and three different degrees of
92  polygenicity (top panel: p.qgusar = 0.01, middle panel: p.gusar = 0.001, and bottom panel:

93 Prausat = 5 X 107*). Common SNP heritability is fixed at 0.4 across all populations, and the

94  correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The
95 sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four
96 non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated

97  from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples
98 in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other
99  alternative methods use SNPs from either HM3 or MEGA.
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102  Supplementary Figure 3: Performance of alternative methods on simulated data generated
103  with different sample sizes and different genetic architectures. Data are simulated for

104  continuous phenotype under a no negative selection model and three different degrees of
105 polygenicity (top panel: p.gusar = 0.01, middle panel: p.gusair = 0.001, and bottom panel:
106  Pegusar = 5 X 107*). Common SNP heritability is fixed at 0.4 across all populations, and the
107  correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.8. The
108 sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the four
109 non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated
110 from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples
111  in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other
112  alternative methods use SNPs from either HM3 or MEGA.
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115  Supplementary Figure 4: Performance of alternative methods on simulated data generated
116  with different sample sizes and different genetic architectures. Data are simulated for

117  continuous phenotype under a strong negative selection model and three different degrees of
118  polygenicity (top panel: p.gusar = 0.01, middle panel: p.qusar = 0.001, and bottom panel:

119 Poqusar = 5 X 107%). Per-SNP heritability is assumed to be the same across all populations and
120  thus leads to the common SNP heritability value of 0.32, 0.21, 0.16, 0.19 and 0.17 for AFR, AMR,
121  EAS, EUR and SAS, respectively. The correlations in effect sizes for share SNPs between all pairs
122  of populations is fixed at 0.8. The sample sizes for GWAS training data are assumed to be (a)
123 15,000, and (b) 80,000 for the four non-EUR target populations; and is fixed at 100,000 for the
124  EUR population. PRS generated from all methods are tuned in 10,000 samples, and then tested
125 in 10,000 independent samples in each target population. The PRS-CSx package is restricted to
126  SNPs from HM3, whereas other alternative methods use SNPs from either HM3 or MEGA.
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128  Supplementary Figure 5: Performance of alternative methods on simulated data generated
129  with different sample sizes and different genetic architectures. Data are simulated for

130 continuous phenotype under a strong negative selection model and three different degrees of
131  polygenicity (top panel: p.gusar = 0.01, middle panel: p.qusar = 0.001, and bottom panel:

132 Poqusar = 5 X 107%). Per-SNP heritability is assumed to be the same across all populations, and
133 the correlations in effect sizes for share SNPs between all pairs of populations is fixed at 0.6.
134  The sample sizes for GWAS training data are assumed to be (a) 15,000, and (b) 80,000 for the
135  four non-EUR target populations; and is fixed at 100,000 for the EUR population. PRS generated
136  from all methods are tuned in 10,000 samples, and then tested in 10,000 independent samples
137  in each target population. The PRS-CSx package is restricted to SNPs from HM3, whereas other
138  alternative methods use SNPs from either HM3 or MEGA.
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141  Supplementary Figure 6: Performance comparison of lassosum2 (with super learning step)
142  and PROSPER for prediction of four blood lipid traits (GLGC-training and UKBB-

143  tuning/validation). We analyzed four blood lipid traits, (a) HDL, (b) LDL, (c) logTG and (d) TC.
144  PRS are trained using GLGC data that available for five populations: admixed African or African,
145  East Asian, European, Hispanic, and South, and then tuned in individuals from UKBB of the
146  corresponding ancestry: AFR, EAS, EUR, AMR, and SAS (see the section of Real data analysis in
147  Methods for ancestry composition). Performance is reported based on adjusted R? accounting
148  for sex, age, PC1-10 in a held-out validation sample of individuals from UKBB of the

149  corresponding ancestry. Sample sizes for training, tuning and validation data are in

150 Supplementary Table 3-4. Results for AMR are not included due to the small sample size of
151  genetically inferred AMR ancestry individuals in UKBB.
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155  Supplementary Figure 7: The relationship between tuning sample size and predictive R2. Data
156  are same as those in Figure 2, simulated under strong negative selection and three different
157  degrees of polygenicity, with a fixed common-SNP heritability at 0.4 across all populations, and
158 fixed genetic correlations at 0.8 between all pairs of populations. The sample sizes for GWAS
159  training data for the four non-EUR populations are assumed to be 15K, 45K, 80K, and 100K

160 (indicated by color), and are fixed at 100,000 for the EUR population. PRS is tuned with 5000,
161 3000, 1000, 500, 300, and 100 tuning samples, and then tested in 10,000 independent samples
162  in each target population.
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