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Abstract 1 

Susceptibility artifacts (SAs), which are inevitable for modern diffusion brain MR images with 2 

single-shot echo planar imaging (EPI) protocols in wide large-scale neuroimaging datasets,  3 

severely hamper the accurate detection of the human brain white matter structure. While several 4 

conventional and deep-learning based distortion correction methods have been proposed, the 5 

correction quality and model generality of these approaches are still limited. Here, we proposed 6 

the SACNet, a flexible SAs correction (SAC) framework for brain diffusion MR images of various 7 

phase-encoding EPI protocols based on an unsupervised learning-based registration convolutional 8 

neural network. This method could generate smooth diffeomorphic warps with optional 9 

neuroanatomy guidance to correct both geometric and intensity distortions of SAs. By employing 10 

near 2000 brain scans covering neonatal, child, adult and traveling participants, our SACNet 11 

consistently demonstrates state-of-the-art correction performance and effectively eliminates SAs-12 

related multicenter effects compared with existing SAC methods. To facilitate the development of 13 

standard SAC tools for future neuroimaging studies, we also created easy-to-use command lines 14 

incorporating containerization techniques for quick user deployment. 15 

 16 

Keywords: diffusion MRI, deep learning, susceptibility artifact correction, diffeomorphic 17 

registration 18 

19 
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1. Introduction 1 

Diffusion MRI (dMRI) provides a unique opportunity to noninvasively detect human brain white 2 

matter (WM) in vivo (Hagmann, 2005; Lerch et al., 2017; Sporns et al., 2005), which is highly 3 

significant for modern neuroscience and clinical brain studies. To achieve high spatial resolution 4 

and diffusion angular resolution, dMRI sequences commonly employ the echo planar imaging (EPI) 5 

technique (Biswal et al., 1995; Turner et al., 1990; Warach et al., 1995), which has a fast imaging 6 

speed and has been widely employed in various large neuroimaging projects, such as UK Biobank 7 

(Littlejohns et al., 2020), the Human Connectome Project (HCP) (Glasser et al., 2013) and the 8 

Lifespan Human Connectome Project Development (HCP-D) (Somerville et al., 2018). However, 9 

EPI, especially single-shot EPI, is substantially affected by susceptibility artifacts (SAs), resulting 10 

in severe geometric and intensity distortions (Andersson et al., 2003; Jezzard and Balaban, 1995), 11 

which largely confound accurate measurements of brain WM from the microstructure level to the 12 

whole-brain connectome level (Tax et al., 2022). Moreover, recent evidence from multicenter 13 

datasets has shown that SAs lead to the largest inconsistency in brain connectivity measurements 14 

across scan centers (Yamashita et al., 2019). Thus, developing a high-quality susceptibility artifact 15 

correction (SAC) approach is still an ongoing task for dMR brain image processing. 16 

Many conventional methods for solving the SAC problem have been proposed. The most 17 

popular approaches generally use two frameworks: the field map method (single phase encoding, 18 

single-PE) and the inverse phase encoding (inverse-PE) based method. Both of them depend on 19 

specific EPI protocol designs. The field map approach requires an additional scan of raw magnetic 20 

field inhomogeneity (called field map) (Jezzard and Balaban, 1995; Reber et al., 1998). SAs are 21 

corrected by translating the field map into local voxel shifts. The inverse-PE approach relies on 22 

two PE-opposite EP images to capture complementary signals along inversed distortion directions 23 

(Andersson et al., 2003; Bowtell et al., 1994; Hédouin et al., 2017; Holland et al., 2010; Irfanoglu 24 

et al., 2015; Ruthotto et al., 2012). SAs are corrected by finding an ideal “middle” estimation 25 

between two inversed distorted images through iterative registration optimizations. The most 26 

recognized method of the inverse-PE approach is Topup in FSL software (Andersson et al., 2003), 27 

which presents a least-squares estimation of opposing undistorted images and shows better 28 

performance than the field map framework. However, these methods still suffer from common 29 

drawbacks, such as the narrow applicability that is restricted to specific sequence designs, limited 30 
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performance due to cumulative errors during iterative registration, and the rather long computation 1 

time.  2 

 Recently, new SAC methods utilizing convolutional neural networks (CNNs) have emerged 3 

and enabled faster and superior SAC performance than the traditional method for EPI sequences 4 

in various protocols. These methods can be mainly classified into two categories: supervised 5 

synthetic models (Hu et al., 2020; Ye et al., 2023) and unsupervised registration models (Duong et 6 

al., 2020b; Qiao and Shi, 2021; Zahneisen et al., 2020). The former models allow for SAC on 7 

single-PE images without field map. They employ additionally collected distortion-free brain 8 

images in specialized MRI protocols, such as point-spread-function (PSF)–encoded EP images, as 9 

training labels (Hu et al., 2020; Ye et al., 2023). Such supervised approaches largely depend on the 10 

feature distribution of training images (Fu et al., 2020) and thus are essentially limited when facing 11 

brain images with heterogeneous appearance, such as developmental brain scans or multicenter 12 

scans. The latter models are mainly designed for inverse-PE images (Duong et al., 2020b; Qiao 13 

and Shi, 2021; Zahneisen et al., 2020). This approach can obtain a common representation of 14 

spatial mapping between the inversed distorted brain images via the training process and thus can 15 

avoid individual iterative registrations (Balakrishnan et al., 2019). The unsupervised training 16 

process also brings high generalization ability, which is critical for robust SAC performance on 17 

various brain dMRI protocols. However, several limitations still exist for such models: 1) a 18 

compatible framework for both single- and inversed-PE type datasets is lacking, especially when 19 

facing multicenter datasets with different PE designs; 2) failure to ensure diffeomorphic 20 

transformations can lead to artificial warps during image registration; 3) prior neuroanatomical 21 

information from structural MR images is underestimated; and 4) the single-resolution strategy 22 

hampers model convergence.  23 

To fill these gaps, we proposed SACNet, an unsupervised learning-based registration method 24 

for SA correction with the following innovations: 25 

(i). We established a flexible mathematical correction framework for addressing the SAC 26 

problem in both inverse-PE and single-PE EPI protocols. 27 

(ii). We proposed a diffeomorphic preservation function by modifying the Woods-Saxon 28 

potential function to restrict the generated deformation fields within a diffeomorphic 29 

solver space. 30 
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(iii). We designed an intensity-irrelevant loss function that is suitable for both T1w and T2w 1 

brain images to introduce anatomical priors for recovering cortical morphological 2 

details in severely distorted brain areas. 3 

(iv). We devised coarse-to-fine (CTF) training and inference protocols to accelerate the 4 

learning process, leading to satisfactory model convergence. 5 

By employing 1954 dMRI brain scans covering neonatal, child and adult populations and 6 

traveling subjects from multiple centers, we found that the proposed SACNet approach robustly 7 

outperforms both conventional and deep-learning based methods in all datasets with significantly 8 

improved correction performance, reduced multicenter effects, and low computational costs. We 9 

integrated our models into a unified pipeline and released it online at 10 

https://github.com/RicardoZiTseng/SACNet. This paper is organized as follows. In Section 2, we 11 

describe the detailed design of our approach. In Section 3, we introduce the experimental settings, 12 

including datasets, evaluation metrics and baselines. In Section 4, we present the experimental 13 

results for various datasets. In Section 5, we discuss the conclusions based on the experimental 14 

results. 15 

2. Methods 16 

In this section, we first present an overview of our SACNet framework (Section 2.1, Fig. 1). Then, 17 

we introduce the network architecture used in SACNet and describe the details of the differentiable 18 

EPI warp module (Section 2.2), the mathematical optimization functions (Section 2.3), the 19 

formulated optimization model and its variants for different PE protocols (Section 2.4), and the 20 

CTF training and inference approach (Section 2.5). Finally, we describe the dMRI preprocessing 21 

pipeline for SACNet (Section 2.6). 22 

2.1. Overview 23 

The mathematical framework and a representative flowchart of SACNet are illustrated in Fig. 1A. 24 

We designed an integrated optimization function to solve the SAC problem, including a pairwise 25 

dissimilarity loss function ℒ𝑝𝑎𝑖𝑟, a Tikhonov regularization function ℒ𝑇𝑖𝑘 for estimating smooth 26 

inhomogeneity fields, a diffeomorphism preservation regularization function ℒ𝑑𝑖𝑓𝑓  for 27 

guaranteeing diffeomorphic inhomogeneity fields, and a prior neuroanatomical information loss 28 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡 for incorporating prior neuroanatomical information. This integrated optimization function 29 

could be transformed into simple versions to make SACNet compatible with different types of PE 30 
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protocols by adjusting hyperparameters. 1 

To implement this framework, we considered the approach for solving the SAC problem of 2 

an inverse-PE dataset (with T2w images as the neuroanatomical prior) as an example (Fig. 1B). 3 

Specifically, we employed Res-UNet to model the mapping from 𝐼𝑃𝐸1
 , 𝐼𝑃𝐸2

  and 𝐼𝑠𝑡𝑟𝑢𝑐𝑡  to 𝐵 : 4 

𝑓𝜃(𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡) = 𝐵 , in which 𝐼𝑃𝐸1
  and 𝐼𝑃𝐸2

  are the uncorrected image pair along the 5 

inverse-PE directions, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡  is the structural image rigidly registered to 𝐼𝑃𝐸1
  and 𝐼𝑃𝐸2

 , 𝐵  is the 6 

generated inhomogeneity field needed to remove SAs, and 𝜃 represents the network parameters. 7 

A differentiable EPI warp (DEW) module was designed to apply 𝐵 to remove the SAs in 𝐼𝑃𝐸1
 and 8 

𝐼𝑃𝐸2
 and obtain 𝐸𝑃𝐸1

 and 𝐸𝑃𝐸2
, which are the corrected images along the two PE directions. Finally, 9 

we combined 𝐸𝑃𝐸1
 and 𝐸𝑃𝐸2

 based on the geometric average to generate the final corrected image 10 

𝐸𝑓𝑖𝑛𝑎𝑙 . For faster and better training convergence, we designed CTF training and inference 11 

protocols, as shown in Fig. 1C. The two protocols utilize several identical networks for training 12 

and inference at multiple resolution levels. Starting from the second level, the initial 13 

inhomogeneity field is upsampled based on the field calculated in the previous level, and the next 14 

fields are estimated at progressively finer levels. 15 
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Fig. 1. The proposed mathematical framework and an implementation flowchart of SACNet. (A) The first row 1 

presents the integrated mathematical optimization function for solving the SAC problem, including a pairwise 2 

dissimilarity loss function ℒ𝑝𝑎𝑖𝑟, a Tikhonov regularization function ℒ𝑇𝑖𝑘, a diffeomorphism preservation 3 

regularization function ℒ𝑑𝑖𝑓𝑓, and a prior neuroanatomical information loss ℒ𝑠𝑡𝑟𝑢𝑐𝑡. The second row shows 4 

that the proposed optimization model could be transformed into two simpler models to make SACNet 5 

compatible with different types of PE protocols by adjusting the hyperparameters in the optimization function. 6 

(B) The example implementation framework of SACNet with inverse-PE b0 images and T2w images as inputs 7 

is shown. All input images were sent to Res-UNet to map the inhomogeneity field 𝐵 for correcting SAs. The 8 

solid line represents the data flow in the network, and the dashed line represents the participation in the loss 9 

function calculation. (C) The implementations of CTF SAC training and inference protocols for the model 10 

presented in (B). We used a series of identical networks to simulate the SAC process in the multiresolution 11 

schema. The blue part illustrates the optimization of network parameters during the training stage, and the 12 

green part illustrates the data flow during the inference stage. 13 

2.2. Res-UNet architecture and the differentiable EPI warp module 14 

We utilized the Res-UNet architecture to parameterize 𝑓𝜃. The Res-UNet model consisted of an 15 

encoder-decoder with skip connections linking the encoder and decoder paths, and residual blocks 16 

were used to construct the whole network architecture. The implementation details of Res-UNet 17 

are described in SI-4. 18 

Differentiable warping of raw EPI images was required to calculate the gradients during the 19 

backpropagation process. Thus, we designed a DEW module based on the spatial transformer 20 

network (Jaderberg et al., 2015) and simultaneously implemented geometry correction and 21 

intensity correction. Following the interpolator model described in previous studies (Andersson et 22 

al., 2003; Chang and Fitzpatrick, 1992; Holland et al., 2010; Studholme et al., 2000), the DEW 23 

module first resampled the given image 𝐼 with inhomogeneity field 𝐵 to remove geometry-related 24 

SAs and then multiplied the resampled 𝐼 with the Jacobian determinant of 𝐵 to remove intensity-25 

related SAs. The specific calculation procedure is described as follows. For each image 𝐼, we first 26 

computed the voxel location 𝒑′ = 𝒑 + 𝐵(𝒑)𝒗  for each voxel 𝒑  in image 𝐼 . Since the voxel 27 

intensity is defined at discrete integer locations and SAs only occur along the PE direction, we 28 

linearly interpolated the values for the left-right neighboring voxels along the PE direction 𝒗: 29 

𝐼(𝒑 + 𝐵(𝒑)𝒗) =
(𝒑 + 𝐵(𝒑) − 𝒑𝑙)𝒗

(𝒑𝑟 − 𝒑𝑙)𝒗
⋅ (𝐼(𝒑𝑟) − 𝐼(𝒑𝑙)) + 𝐼(𝒑𝑙), ∀𝒑 ∈ Ω (1) 30 

where 𝒑𝑟 and 𝒑𝑙 are the right and left neighbors of voxel 𝒑 along the PE direction 𝒗. Then, we 31 
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multiplied Eq. (1) by the Jacobian determinant of 𝑩 to redistribute the intensity as follows: 1 

𝐸(𝒑) = 𝐼 ⊚𝒗 𝐵(𝒑) = 𝐼(𝒑 + 𝐵(𝒑)𝒗) ⋅ 𝑐𝑙𝑎𝑚𝑝 ((1 + 𝜕𝒗𝐵(𝒑))) , ∀𝒑 ∈ Ω (2) 2 

where (1 + 𝜕𝒗𝐵(𝒑)) in Eq. (2) is the Jacobian determinant of the transformation 𝒑 → 𝒑 + 𝐵(𝒑)𝒗 3 

(see detailed derivation in SI-1), and 𝑐𝑙𝑎𝑚𝑝(𝑥) = 𝑚𝑎𝑥(𝑥, 0)  is used to prevent multiplication 4 

with a negative value. 5 

2.3. Optimization function construction 6 

For images with inverse-PE designs, the distorted image pair 𝐼𝑃𝐸1
 and 𝐼𝑃𝐸2

 is inversely affected by 7 

the same inhomogeneity field 𝐵  along the opposite directions 𝒗  and −𝒗  (Holland et al., 2010; 8 

Ruthotto et al., 2012); thus, the corrected images 𝐸𝑃𝐸1
  and 𝐸𝑃𝐸2

  were calculated as follows 9 

according to Eq. (2): 10 

{
𝐸𝑃𝐸1

(𝒑) = 𝐼𝑃𝐸1
⊚𝒗 𝐵(𝒑) = 𝐼𝑃𝐸1

(𝒑 + 𝐵(𝒑)𝒗) ⋅ 𝑐𝑙𝑎𝑚𝑝 ((1 + 𝜕𝒗𝐵(𝒑)))

𝐸𝑃𝐸2
(𝒑) = 𝐼𝑃𝐸2

⊚−𝒗 𝐵(𝒑) = 𝐼𝑃𝐸2
(𝒑 − 𝐵(𝒑)𝒗) ⋅ 𝑐𝑙𝑎𝑚𝑝 ((1 − 𝜕𝒗𝐵(𝒑))) 

, ∀𝒑 ∈ Ω (3) 11 

Theoretically, we can find one solution 𝐵∗  that leads to identical 𝐸𝑃𝐸1
  and 𝐸𝑃𝐸2

 ; thus, the 12 

optimization problem can be formulated as: 13 

𝐵∗ = arg min
𝐵

ℒ𝑝𝑎𝑖𝑟(𝐼𝑃𝐸1
⊚𝒗 𝐵, 𝐼𝑃𝐸2

⊚−𝒗 𝐵)

= arg min
𝐵

ℒ𝑝𝑎𝑖𝑟(𝐸𝑃𝐸1
, 𝐸𝑃𝐸2

)

= arg min
𝐵

1

|Ω|
∑ (𝐸𝑃𝐸1

(𝒑) − 𝐸𝑃𝐸2
(𝒑))

2

𝒑∈Ω

 (4)

 14 

where ℒ𝑝𝑎𝑖𝑟 adjusts the pairwise dissimilarity between the estimated 𝐸𝑃𝐸1
 and 𝐸𝑃𝐸2

. Notably, all 15 

image volumes are defined over a 3D spatial domain Ω ⊂ ℝ3, and |Ω| represents the number of 16 

elements in Ω. 17 

However, previous studies have noted that seeking 𝐵∗ by optimizing Eq. (4) generally leads 18 

to an ill-posed problem (Balakrishnan et al., 2019; Duong et al., 2020a; Ruthotto et al., 2012). 19 

Thus, in this paper, we introduced two regularization functions (ℒ𝑇𝑖𝑘 and ℒ𝑑𝑖𝑓𝑓) and one additional 20 

loss function (ℒ𝑠𝑡𝑟𝑢𝑐𝑡) to constrain 𝐵 and construct the optimization function for solving the SAC 21 

problem: 22 

𝐵∗ = arg min
𝐵

𝛼 ⋅ ℒ𝑝𝑎𝑖𝑟(𝐼𝑃𝐸1
⊚𝒗 𝐵, 𝐼𝑃𝐸2

⊚−𝒗 𝐵) + 𝛽 ⋅ ℒ𝑇𝑖𝑘(𝐵) + 𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵)23 

+ ℒ𝑠𝑡𝑟𝑢𝑐𝑡(𝐸𝑃𝐸1
, 𝐸𝑃𝐸2

, 𝐸𝑓𝑖𝑛𝑎𝑙, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝛾1, 𝛾2)  (5) 24 
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where 𝛼 , 𝛽 , 𝛿 , 𝛾1  and 𝛾2  are hyperparameters used to determine the contribution of each 1 

component in Eq. (5). In addition, ℒ𝑇𝑖𝑘 , ℒ𝑑𝑖𝑓𝑓 , and ℒ𝑠𝑡𝑟𝑢𝑐𝑡  denote the Tikhonov regularization 2 

function, diffeomorphism preservation regularization function and prior neuroanatomical 3 

information loss function, respectively, which are defined in the subsequent subsections. 4 

2.3.1. Tikhonov regularization 5 

ℒ𝑇𝑖𝑘(𝐵) was used as a prior constraint on the smoothness of field 𝐵 using a Tikhonov regularizer 6 

based on the spatial gradient of 𝐵: 7 

ℒ𝑇𝑖𝑘(𝐵) =
1

|𝛺|
∑‖𝛻𝐵(𝒑)‖2

𝒑∈𝛺

(6) 8 

Following the implementations in (Balakrishnan et al., 2019), for 𝛻𝐵(𝒑) = (
𝜕𝐵(𝑝𝑥)

𝜕𝑥
,

𝜕𝐵(𝑝𝑦)

𝜕𝑦
,

𝜕𝐵(𝑝𝑧)

𝜕𝑧
), 9 

we approximated 
𝜕𝐵(𝑝𝑥)

𝜕𝑥
≈ 𝐵 ((𝑝𝑥 + 1, 𝑝𝑦, 𝑝𝑧)) − 𝐵 ((𝑝𝑥, 𝑝𝑦, 𝑝𝑧)) , and we used similar 10 

approximations for 
𝜕𝐵(𝑝𝑦)

𝜕𝑦
 and 

𝜕𝐵(𝑝𝑧)

𝜕𝑧
. 11 

2.3.2. Diffeomorphism preservation regularization 12 

To guarantee the diffeomorphism property of the inhomogeneity field, we proposed a 13 

diffeomorphism preservation regularization function by modifying a potential well function. 14 

Specifically, in terms of intensity, we expected that the signals of the voxels at the same position 15 

in 𝐸1 and 𝐸2 would both be positive, which requires the following: 16 

{
1 + 𝜕𝒗𝐵(𝒑) > 0

1 − 𝜕𝒗𝐵(𝒑) > 0
, ∀𝒑 ∈ Ω (7) 17 

This is equivalent to: 18 

−1 < 𝜕𝒗𝐵(𝒑) < 1, ∀𝒑 ∈ Ω (8) 19 

In terms of the geometry, we expected the relative positions of adjacent voxels to remain the same 20 

before and after resampling, which guarantees no folding areas during the transformation, as 21 

shown in Fig. 2A. For example, along the direction 𝒗 = (1,0,0), the displacements of point 𝒑0 =22 

(𝒑𝒙, 𝒑𝒚, 𝒑𝒛)  and its neighbor 𝒑+1 = (𝒑𝒙 + 1, 𝒑𝒚, 𝒑𝒛)  are 𝐵(𝒑0)𝒗  and 𝐵(𝒑+1)𝒗 , respectively. 23 

These displacements are similar along the direction −𝒗 = (−1,0,0) . To prevent the folding of 24 

space at point 𝑥 , the new spatial positions should 25 

follow:26 
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{
𝒑0 + 𝐵(𝒑0)𝒗 < 𝒑+1 + 𝐵(𝒑+1)𝒗

𝒑−1 − 𝐵(𝒑−1)𝒗 < 𝒑0 − 𝐵(𝒑0)𝒗
, ∀𝒑 ∈ Ω (9) 1 

We can also obtain Eq. (8) from Eq. (9). 2 

 To ensure that the generated field 𝐵  satisfies the constraint function shown in Eq. (8), we 3 

expected that when 𝜕𝑣𝐵(𝑝) approached -1 or 1, the loss function increased substantially, and when 4 

𝜕𝑣𝐵(𝑝) remained between -1 and 1, the loss function remained small. To this end, we designed the 5 

diffeomorphism preservation function (DPF) as follows: 6 

ℒ𝑑𝑖𝑓𝑓(𝐵) =
1

|Ω|
∑ 𝜙(𝜕𝑣𝐵(𝒑)) ∗ (𝜕𝒗𝐵(𝒑))

2

𝒑

(10) 7 

where 𝜙(⋅)  is the potential well function modified from the Woods-Saxon potential function 8 

widely used in nuclear physics (Erkol and Demiralp, 2007): 9 

𝜙(𝑥) = (1 −
1

1 + exp[(|𝑥| − 1)/𝜎]
) (11) 10 

where 𝜎 is a customized parameter. Fig. 2B shows the curves of 𝜙(𝑥) (the left subgraph) in terms 11 

of ∂𝐯𝐵(𝒑) and the derivative (the right subgraph) with respect to ∂𝐯𝐵(𝒑). The figure shows that 12 

the value of 𝜙(𝑥)  increases substantially as |𝜕𝑣𝐵(𝒑)| → 1 , which suggests that 𝜙(𝑥)  can 13 

sensitively suppress the voxels that do not obey the constraint defined in Eq. (8), thereby 14 

constraining the inhomogeneity field 𝐵  to a diffeomorphic space. Notably, (𝜕𝒗𝐵(𝒑))
2
  is 15 

multiplied by 𝜙(𝜕𝒗𝐵(𝒑)) to prevent the gradient from vanishing when 𝜕𝒗𝐵(𝒑) is larger than 1 or 16 

smaller than -1. We present the proof of the existence of a diffeomorphic inhomogeneity field 17 

calculated by SACNet in SI-2. 18 
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 1 

Fig. 2. Mathematical framework of the diffeomorphism preservation regularization. A) Illustration of spatial 2 

folding at location 𝑥 along opposite directions 𝒗 and −𝒗. Here, 𝑥 + 1 and 𝑥 − 1 denote the nearest neighbors 3 

of 𝑥, and we assume that 𝒗 = (1,0,0) and 𝐵 is an inhomogeneity field. (B) The left part shows the function 4 

value of 𝜙(𝑥) with different hyperparameters 𝜎 and the value in terms of 𝜕𝒗𝐵(𝒑). The right part shows the 5 

derivative of 𝜙(𝑥) with respect to 𝜕𝒗𝐵(𝒑). 6 

2.3.3. Prior neuroanatomical information loss 7 

Image noise caused by SAs hinders strict alignment of the b0 image pair, resulting in inaccurate 8 

estimation of the inhomogeneity field in severely distorted areas. To address this issue, we 9 

proposed a prior neuroanatomical information loss ℒ𝑠𝑡𝑟𝑢𝑐𝑡  to incorporate accurate prior 10 

neuroanatomical information. This approach has two main benefits. First, this loss regularizes the 11 

inhomogeneity field while preserving intricate neuroanatomical morphological details. Second, it 12 

provides an additional registration target when the b0 image pair is not available. 13 

 ℒ𝑠𝑡𝑟𝑢𝑐𝑡 consists of two parts: the overall shape structural similarity loss ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and the 14 

pairwise structural similarity loss ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 . Conceptually, ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙  ensures that the final 15 

corrected image 𝐸𝑓𝑖𝑛𝑎𝑙 is similar to the provided structural image 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, while ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 ensures 16 
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that the corrected images along each PE direction 𝐸𝑃𝐸1
 and 𝐸𝑃𝐸2

 are similar to 𝐼𝑠𝑡𝑟𝑢𝑐𝑡. Specifically, 1 

the proposed neuroanatomy prior loss is formulated as: 2 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡(𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝐵, 𝛾1, 𝛾2) = 𝛾1 ⋅ ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 + 𝛾2 ⋅ ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 (12) 3 

with 4 

ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ℒ𝑠𝑖𝑚(𝐸𝑓𝑖𝑛𝑎𝑙, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡) (13) 5 

and 6 

ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 = ℒ𝑠𝑖𝑚(𝐸𝑃𝐸1
, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡) + ℒ𝑠𝑖𝑚(𝐸𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡) (14) 7 

where 𝛾1  and 𝛾2  are two user-defined hyperparameters, and ℒ𝑠𝑖𝑚  in Eq. (13) and Eq. (14) 8 

represents a similarity metric. 9 

We anticipated that SACNet would not be limited to the MR modality of structural inputs. 10 

Therefore, instead of relying on absolute intensity-relevant similarity metrics, such as the mean 11 

square error (MSE) and local cross-correlation (LCC), we employed a gradient-based similarity 12 

metric, namely, the normalized gradient field (NGF), as ℒ𝑠𝑖𝑚. The NGF determines the geometric 13 

resemblance between any points in an image by computing local gradients; thus, this metric is 14 

independent of the absolute image intensity (Haber and Modersitzki, 2007). Let ∇𝑋𝒑  be the 15 

intensity change gradient at point 𝒑 ∈ Ω  in image 𝑋  and 𝜖  be a user-defined parameter that 16 

prevents divide-by-zero errors. Then, the NGF measure at any point 𝒑 in image 𝑋 can be defined 17 

as: 18 

∇̃𝑋(𝒑) =
∇𝑋(𝒑)

√‖∇𝑋(𝒑)‖2 + 𝜖2
(15) 19 

The difference between two images 𝑋 and 𝑌 can be measured by calculating the angles between 20 

the NGF vectors at all points in the image domain, which can be formulated as follows: 21 

ℒ𝑠𝑖𝑚(𝑋, 𝑌) =
1

|Ω|
∑(1 − 〈∇̃𝑋(𝒑), ∇̃𝑌(𝒑)〉)

2

𝒑∈Ω

(16) 22 

where 〈⋅,⋅〉 denotes the inner dot-product operation. The value of ℒNGF(𝑋, 𝑌) is positive, and the 23 

smaller the value of ℒsim(𝑋, 𝑌) is, the more similar the two images are. 24 

2.4. The formulated optimization model and its variants 25 

To handle the different imaging protocols in various existing neuroimaging datasets, the 26 

optimization model formulated in Eq. (5) can be transformed into two different forms, as shown 27 
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in Fig. 1A: a) When no structural images are available (image set {𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

}), the model can be 1 

transformed to use Eq. (17) by setting 𝛾1 and 𝛾2 to 0, as illustrated in the first column in the second 2 

row of Fig. 1A: 3 

𝐵∗ = arg min
𝐵

[𝛼 ⋅ ℒ𝑝𝑎𝑖𝑟(𝐸𝑃𝐸1
, 𝐸𝑃𝐸2

) + 𝛽 ⋅ ℒ𝑠𝑚𝑜(𝐵) + 𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵)] (17) 4 

b) When only single-PE images are available (only one single-direction distorted image and one 5 

structural image, with the image set {𝐼, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡}), the model can be transformed to use Eq. (18) by 6 

setting 𝛼 and 𝛾2 to 0, as illustrated in the third column in the second row of Fig. 1A: 7 

𝐵∗ = arg min
𝐵

[𝛽 ⋅ ℒ𝑠𝑚𝑜(𝐵) + 𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵) + 𝛾1 ⋅ ℒ𝑠𝑖𝑚(𝐸𝑓𝑖𝑛𝑎𝑙, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡)] (18) 8 

In this situation, 𝐸𝑓𝑖𝑛𝑎𝑙 = 𝐼 ⊚𝒗 𝐵  denotes the image corrected based on the distorted image 𝐼 9 

along the single-PE direction 𝒗 . In addition, the potential well function in Eq. (11) can be 10 

reformulated as: 11 

𝜙(𝑥) = (1 −
1

1 + exp[(−1 − 𝑥)/𝜎]
) (19) 12 

To use a neural network to predict the inhomogeneity field, the overall loss varies for the three 13 

types of image sets {𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡}, {𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

} and {𝐼, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡} for one subject as follows: 14 

ℒ𝑡𝑜𝑡1
(𝐼𝑃𝐸1

, 𝐼𝑃𝐸2
, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝐵) = 𝛼 ⋅ ℒ𝑝𝑎𝑖𝑟(𝐸𝑃𝐸1

, 𝐸𝑃𝐸2
) + 𝛽 ⋅ ℒ𝑠𝑚𝑜(𝐵)

+𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵) + ℒ𝑠𝑡𝑟𝑢𝑐𝑡(𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝐵, 𝛾1, 𝛾2) (20)
 15 

ℒ𝑡𝑜𝑡2
(𝐼𝑃𝐸1

, 𝐼𝑃𝐸2
, 𝐵) = 𝛼 ⋅ ℒ𝑝𝑎𝑖𝑟(𝐸𝑃𝐸1

, 𝐸𝑃𝐸2
) + 𝛽 ⋅ ℒ𝑠𝑚𝑜(𝐵) + 𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵) (21) 16 

ℒ𝑡𝑜𝑡3
(𝐼, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡, 𝐵) = 𝛽 ⋅ ℒ𝑠𝑚𝑜(𝐵) + 𝛿 ⋅ ℒ𝑑𝑖𝑓𝑓(𝐵) + 𝛾1 ⋅ ℒ𝑠𝑖𝑚(𝐸𝑓𝑖𝑛𝑎𝑙 , 𝐼𝑠𝑡𝑟𝑢𝑐𝑡) (22) 17 

2.5. Coarse-to-fine (CTF) SAC training and inference protocols 18 

To improve the training process and prevent falling into local minima, we designed CTF training 19 

and inference protocols for SACNet, as illustrated in Fig. 1C. The CTF training protocol aims to 20 

train multiple networks at 𝑁𝑠 scale levels, with each model estimating the residual inhomogeneity 21 

field at the corresponding scale. Specifically, we first trained the network at the coarsest scale level 22 

and then progressively trained the networks at the each subsequent scale level to solve the SAC 23 

problem at finer scale levels. This training procedure was repeated until the model was trained at 24 

the finest level. The CTF inference protocol aimed to generate the estimated inhomogeneity field 25 

based on the training protocol using multiple trained networks. At each scale level 𝑠 , we 26 

downsampled the image set by 2𝑁𝑠−𝑠 times and upsampled the inhomogeneity field 𝐵(𝑠−1) 2 times. 27 
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Then, we fed the downsampled image set into the network at the current level to obtain the residual 1 

inhomogeneity field Δ𝐵(𝑠) . The inhomogeneity field at the current level was calculated by 2 

summing the upsampled field and the residual field. The pseudocodes for the training and inference 3 

protocols are presented in Algorithms 1 and 2, respectively. 4 

Algorithm 1. Coarse-to-fine SAC training protocol of SACNet, as depicted in Fig. 1C. 

Input: Training datasets {𝐷𝑡
𝑖}

𝑖=1
𝑁𝑡 , validation dataset {𝐷𝑣

𝑖 }
𝑖=1
𝑁𝑣 . For each subject’s image set, 𝐷𝑖 = {𝐼𝑃𝐸1

𝑖 , 𝐼𝑃𝐸2
𝑖 , 𝐼𝑠𝑡𝑟𝑢𝑐𝑡

𝑖 }. 

𝑁𝐵: batch size, 𝑁𝑆: the number of scale levels. 𝛼(𝑠), 𝛽(𝑠), 𝛾1
(𝑠)

, 𝛾2
(𝑠)

, 𝛿(𝑠): the hyperparameters in Eq. (20) for scale level 𝑠. 𝐸(𝑠): the number of epochs 

for the network with scale level 𝑠. 

Initialization: Initialize 𝑁𝑆 network set 𝐹1:𝑁𝑆
= {𝑓𝜃1

, 𝑓𝜃2
, … , 𝑓𝜃𝑁𝑆

} for 𝑁𝑆 scales. Set 𝐵(0) = 𝟎. 

1. for 𝑠𝑐𝑢𝑟𝑟 ← 1 to 𝑁𝑆 do 

2.     Set 𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑖𝑛 = 𝑖𝑛𝑓 and initialize 𝜃(𝑠𝑐𝑢𝑟𝑟) as 𝜃𝑏𝑒𝑠𝑡 if 𝑠 is not equal to 1; 

3.     for 𝒆 ← 1 to 𝐸(𝑠𝑐𝑢𝑟𝑟) do 

4.         repeat 

5.             Randomly select batches of training image sets {𝐷𝑡
𝑖} of size 𝑁𝐵; 

6.             Downsample image set {𝐷𝑡
𝑖} 2𝑁𝑠−𝑠𝑐𝑢𝑟𝑟 times for 𝑖 = 1, … , 𝑁𝐵; 

7.             Compute the inhomogeneity field {𝐵𝑖(𝑠𝑐𝑢𝑟𝑟−1) = 𝑆𝐴𝐶𝑁𝑒𝑡_𝑖𝑛𝑓𝑒𝑟(𝐷𝑡
𝑖 , {𝑓𝜃1

, … , 𝑓𝜃𝑠𝑐𝑢𝑟𝑟−1
} , 𝑁𝑠)} of the previous level for 𝑖 = 1, … , 𝑁𝐵; 

8.             Upsample {𝐵𝑖(𝑠𝑐𝑢𝑟𝑟−1)} 2 times for 𝑖 = 1, … , 𝑁𝐵; 

9.             Compute the estimated residual inhomogeneity field {Δ𝐵𝑖(𝑠𝑐𝑢𝑟𝑟)} by inputting {𝐷𝑡
𝑖} into the current level’s network 𝑓𝜃(𝑠𝑐𝑢𝑟𝑟) 𝑖 =

1, … , 𝑁𝐵; 

10.             Compute the estimated inhomogeneity field of the current level {𝐵𝑖(𝑠𝑐𝑢𝑟𝑟)} by adding {𝐵𝑖(𝑠𝑐𝑢𝑟𝑟−1)} and {Δ𝐵𝑖(𝑠𝑐𝑢𝑟𝑟)} for 𝑖 = 1, … , 𝑁𝐵; 

11.             Compute the loss ℒ𝑡𝑜𝑡
(𝑠𝑐𝑢𝑟𝑟)

 according to Eq. (20) and use the Adam optimizer to update the model parameters 𝜃(𝑠𝑐𝑢𝑟𝑟); 

12.         until all training data have been selected 

13.         Compute the inhomogeneity field {(𝐵𝑖 , 𝐸𝑃𝐸1
𝑖 , 𝐸𝑃𝐸2

𝑖 ) = 𝑆𝐴𝐶𝑁𝑒𝑡_𝑖𝑛𝑓𝑒𝑟 (𝐷𝑣
𝑖 , {𝑓𝜃1

, … , 𝑓𝜃𝑠𝑐𝑢𝑟𝑟
} , 𝑁𝑠)} for 𝑖 = 1, … , 𝑁𝐵; 

14.         Compute the sum of the mean square error 𝑚𝑒𝑡𝑟𝑖𝑐(𝑒) between 𝐸𝑃𝐸1
𝑖  and 𝐸𝑃𝐸2

𝑖  for 𝑖 = 1, … , 𝑁𝐵; 

15.         Set 𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑖𝑛 ← 𝑚𝑒𝑡𝑟𝑖𝑐(𝑒) and save model parameters 𝜃(𝑠𝑐𝑢𝑟𝑟) to 𝜃𝑏𝑒𝑠𝑡 if 𝑚𝑒𝑡𝑟𝑖𝑐(𝑒) is smaller than 𝑚𝑒𝑡𝑟𝑖𝑐𝑚𝑖𝑛; 

16.         Unfreeze all previous levels’ model parameters if the model has been trained for 𝐸(𝑠𝑐𝑢𝑟𝑟)/3 epochs at each scale level. 

17.     end for 

18.     Freeze the current model parameters 𝜃(𝑠𝑐𝑢𝑟𝑟). 

19. end for 

Return: trained network set 𝐹1:𝑁𝑆
= {𝑓𝜃1

, 𝑓𝜃2
, … , 𝑓𝜃𝑁𝑆

}. 

 5 

Algorithm 2. Coarse-to-fine SAC inference protocol of SACNet, as depicted in Fig. 1C. 

Input: image set 𝐷 = {𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡}; trained model set 𝐹1:𝑠 = {𝑓𝜃1
, 𝑓𝜃2

, … , 𝑓𝜃𝑠
}; and total number of scale levels 𝑁𝑆. 

Initialization: set 𝐵(0) = 𝟎. 
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1. function 𝑆𝐴𝐶𝑁𝑒𝑡_𝑖𝑛𝑓𝑒𝑟(𝐷, 𝐹1:𝑠, 𝑁𝑆) 

2.     𝑁𝑚𝑜𝑑𝑒𝑙𝑠 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝐹1:𝑠); 

3.     for 𝑠𝑐𝑢𝑟𝑟 ← 1 to 𝑁𝑚𝑜𝑑𝑒𝑙𝑠 do 

4.         Downsample image set {𝐼𝑃𝐸1
, 𝐼𝑃𝐸2

, 𝐼𝑠𝑡𝑟𝑢𝑐𝑡} 2𝑁𝑠−𝑠𝑐𝑢𝑟𝑟 times; 

5.         Upsample previous level’s estimated inhomogeneity field 𝐵(𝑠𝑐𝑢𝑟𝑟−1) 2 times; 

6.         Compute the estimated residual inhomogeneity field of the current level Δ𝐵(𝑠𝑐𝑢𝑟𝑟) =

𝑓𝜃𝑠𝑐𝑢𝑟𝑟
(𝐼𝑃𝐸1

(𝑠𝑐𝑢𝑟𝑟)
⊚𝒗 𝐵(𝑠𝑐𝑢𝑟𝑟−1), 𝐼𝑃𝐸2

(𝑠𝑐𝑢𝑟𝑟)
⊚−𝒗 𝐵(𝑠𝑐𝑢𝑟𝑟−1), 𝐼𝑠𝑡𝑟𝑢𝑐𝑡

(𝑠𝑐𝑢𝑟𝑟)
 ); 

7.         Compute the estimated inhomogeneity field of the current level 𝐵(𝑠𝑐𝑢𝑟𝑟) = 𝐵(𝑠𝑐𝑢𝑟𝑟−1) + Δ𝐵(𝑠𝑐𝑢𝑟𝑟); 

8.     end for 

9.     Compute the corrected images 𝐸𝑃𝐸1
= 𝐼𝑃𝐸1

⊚𝒗 𝐵(𝑁𝑚𝑜𝑑𝑒𝑙𝑠) and 𝐸𝑃𝐸2
= 𝐼𝑃𝐸2

⊚−𝒗 𝐵(𝑁𝑚𝑜𝑑𝑒𝑙𝑠). 

10.     return 𝐵(𝑁𝑚𝑜𝑑𝑒𝑙𝑠), 𝐸𝑃𝐸1
, 𝐸𝑃𝐸2

. 

11. end function 

Return: inhomogeneity field 𝐵(𝑁𝑚𝑜𝑑𝑒𝑙𝑠) and corrected image pair 𝐸𝑃𝐸1
 and 𝐸𝑃𝐸2

. 

 1 

2.6. The whole dMRI preprocessing pipeline 2 

We introduced a practical dMRI preprocessing pipeline by integrating SACNet with the Eddy tool 3 

in FSL, which is available in our online code. The pipeline started by correcting for motion and 4 

eddy current distortions in the dMRI volumes along each PE direction using the FSL Eddy tool. 5 

Next, the structural (T1w and T2w) images, as well as all negative and positive PE scans, were 6 

rigidly coregistered using the Flirt tool in FSL, with the first b0 image serving as the target. Then, 7 

the aligned positive and negative b0 images were input into the trained model to estimate the 8 

inhomogeneity field, which is subsequently used to remove SAs in all diffusion weighted images 9 

(DWIs). 10 

3. Experimental settings 11 

3.1. Datasets 12 

To comprehensively evaluate the SAC performance of our proposed approach, we considered 13 

multiple existing large neuroimaging datasets that contain structural and dMRI scans across age 14 

groups and acquisition protocols and assessed whether our approach could achieve state-of-the-art 15 

performance, including 1) excellent performance based on adult brain images by randomly 16 

selecting 380 adult inverse-PE dMR images from the HCP dataset (Glasser et al., 2013); 2) 17 

excellent performance based on developmental brain images by employing 444 neonatal scans 18 

from the Developing Human Connectome Project (dHCP) dataset (Makropoulos et al., 2018) and 19 

1100 children and adolescent scans from the HCP-D dataset (Somerville et al., 2018) and the 20 

Children School Functions and Brain Development Project in China (CBD) dataset (HCP-D: 644 21 

scans, CBD: 456 scans); and 3) low multicenter effects with excellent SAC performance by 22 
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adopting 30 scans of three healthy traveling subjects acquired at 10 scan sites from a multicenter 1 

public dataset (Multicenter) (Tong et al., 2020). Notably, the CBD dataset was also used to examine 2 

the SAC capability of SACNet based on single-PE data. The details of each dataset are listed in 3 

Table 1, and the detailed preprocessing methods for each dataset are described in SI-3. 4 

3.2. Implementation, evaluation, and statistical methods 5 

The proposed method was implemented in Python using the PyTorch software library (Paszke et 6 

al., 2019). Our model was trained and tested on a Linux workstation equipped with an Intel Xeon 7 

Gold 6258R CPU and a 48 GB GTX Quadro RTX 8000 GPU. We employed the Adam optimizer 8 

(Kingma and Ba, 2014) with a learning rate of 1e-4 for optimization. The specific training and 9 

inference configurations for each dataset are detailed in SI-3. 10 

To quantitatively assess SAC performance for diffusion model fitting, we calculated several 11 

metrics based on fractional anisotropy (FA). We did not employ b0 images for the estimation 12 

because b0 images are unable to reflect correction quality in image volumes of diffusion weighting 13 

directions. These metrics included the FA-based mean squared difference (FA-MSD) between 14 

different PE directions, FA-based standard deviation (FA-STD) across multiple PE directions and 15 

FA-based structural similarity (FA-SS, local cross-correlation between FA and structural images 16 

(window size = 3)). To evaluate the diffeomorphism of the estimated inhomogeneity field, we 17 

calculated the number of folding voxels (NFV). For the HCP, HCP-D and multicenter datasets, we 18 

used the FA-MSD, FA-SS and NFV as evaluation indices. Since the dHCP dataset has four unique 19 

PE directions and does not contain a suitable number of structural images, we chose the FA-STD 20 

instead of the FA-SS as an evaluation index. For the CBD dataset, which has only one PE direction, 21 

we chose only the FA-SS and NFV as quantitative evaluation indices. The detailed calculation of 22 

these metrics is described in SI-5. 23 

We used the paired t test on these quantitative metrics for statistical comparisons between 24 

different methods. The detailed results of the statistical analysis are summarized in SI-7. 25 

3.3. Baselines 26 

We adopted conventional and deep-learning based approaches that have demonstrated excellent 27 

performance as baseline models. For inverse-PE datasets, we compared SACNet with the FSL 28 

Topup (Andersson et al., 2003) and S-Net (Duong et al., 2020b) approaches. For the single-PE 29 

datasets, we compared SACNet with the Fieldmap method included in FSL software and a widely 30 
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adopted deep-learning image registration baseline, namely, VoxelMorph (Balakrishnan et al., 1 

2019). Notably, we constrained the deformation field along the PE direction in VoxelMorph. 2 

To evaluate the effectiveness of prior neuroanatomical information, we considered three 3 

variants of SACNet by inputting only paired b0 images (SACNet(wos)) or inputting structural 4 

images with or without paired b0 images (SACNet(T1w) for T1w image input and SACNet(T2w) 5 

for T2w image input). All three variants were evaluated based on the HCP and HCP-D datasets. 6 

For the dHCP dataset, we only trained SACNet(wos) and SACNet(T2w), as T1w images were not 7 

acquired for some neonates. For the CBD datasets, we only trained SACNet(T1w) and 8 

SACNet(T2w) without paired b0 image inputs since these datasets do not include paired b0 images. 9 

For the multicenter dataset, we only trained SACNet(wos) and SACNet(T1w), as this dataset 10 

includes only T1w structural images. 11 

Dataset HCP HCP-D dHCP CBD Multicenter 

Number of 

Scans 
380 644 444 456 30 

Manufacturer Siemens Siemens Philips Siemens Siemens 

Platform 
Customized 

Skyra 
Prisma Achieva Prisma Prisma 

Magnetic 

Field Strength 

[Tesla] 

3.0 3.0 3.0 3.0 3.0 

Diffusion 

Weighted 

Image 

     

Phase 

Encoding 

Direction 

RL, LR AP, PA 
RL, LR, AP, 

PA 
PA AP, PA 

Echo Time 

[ms] 
89.5 89.2 90 64 71 

Repetition 

Time [ms] 
5520 3230 3800 7500 5400 

Image 

Dimension 
145×174×145 140×140×92 128×128×64 112×112×70 146×146×92 

Resolution 

[mm3] 
1.25×1.25×1.25 1.5×1.5×1.5 1.17×1.17×1.5 2×2×2 1.5×1.5×1.5 

Structural 

Image 
     

Echo Time 

[ms] 

2.14 (T1w)/565 

(T2w) 

1.8/3.6/5.4/7.2 

(T1w)/564 

(T2w) 

156 (T2w) 2.98 (T1w)/564 (T2w) 2.9 (T1w) 

Repetition 

Time [ms] 

2400 

(T1w)/3200 

(T2w) 

2500 

(T1w)/3200 

(T2w) 

1200 (T2w) 
2530 (T1w)/3200 

(T2w) 
5000 (T1w) 

Image 

Dimension 

260×311×260 

(T1w, T2w) 

208×300×320 

(T1w, T2w) 

290×290×203 

(T2w) 

256×224×192 

(T1w)/320×320×256 

176×240×256 

(T1w) 
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(T2w) 

Resolution 

[mm3] 

0.7×0.7×0.7 

(T1w, T2w) 

0.8×0.8×0.8 

(T1w, T2w) 

0.5×0.5×0.5 

(T2w) 

1×1×1 

(T1w)/0.7×0.7×0.7 

(T2w) 

1.2×1×1 

(T1w) 

Table 1. The acquisition parameter details of each dataset. RL, LR, AP and PA denote the right-left, left-right, 1 

anterior-posterior and posterior-anterior phase-encoding directions, respectively. 2 

4. Results 3 

4.1. Performance on the inverse-PE adult dataset 4 

We first used brain scans with inverse-PE protocols in the HCP dataset (300 of 380 subjects were 5 

used for training, 40 for validation and 40 for testing) to test our model. We visualized the corrected 6 

b0 images and corresponding FA maps (first and second row, Fig. 3A) and calculated the FA-based 7 

structural similarity map across the whole brain (third row, Fig. 3A) of different SAC approaches. 8 

Our SACNet models demonstrated better correction quality, particularly in the frontal cortex, than 9 

Topup and S-Net. Further quantitative comparisons showed that the SACNet(T1w) and 10 

SACNet(T2w) models exhibited significantly better performance in terms of both the FA-MSD 11 

(all t≤-3.678 and all p<0.001, paired t test) and FA-SS (all t≥3.716 and all p<0.001, paired t test) 12 

metrics compared to the Topup and S-Net methods, with remarkable improvements of up to 15.9% 13 

and 5.9%, respectively (Fig. 3B and Table 2). Furthermore, compared with the SACNet(wos) 14 

model without structural images, the SACNet(T1w) and SACNet(T2w) models achieved 15 

significantly lower FA-MSD (all t≤-19.455 and all p<0.001, paired t test) and higher FA-SS (all 16 

t≥15.775 and all p<0.001, paired t test) values, indicating the necessity of introducing the prior 17 

neuroanatomical information loss component. Finally, our approach showed substantial reductions 18 

in the NFV metric (from 1533.8 for Topup and 756.9 for S-Net to only 15.2 for SACNet(T2w), 19 

Table 2). More detailed statistical comparisons are shown in Supplementary Table S1. 20 

 21 

Fig. 3. SAC performance based on the HCP dataset (A) The first and second rows of the first column present 22 
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the T2w and T1w images, respectively. The other columns of the first, second and third rows present the 1 

corrected b0 images, the corrected FA maps and the FA-SS maps (local cross-correlation with window size=3 2 

between the FA map and the T1w image) for different correction methods, respectively. Warmer colors indicate 3 

higher FA-SS values. (B) Boxplots of the FA-MSD and FA-SS values for each method. White circles indicate 4 

mean values, and coral horizontal lines indicate median values. 5 

Method 
Metrics 

FA-MSD (1e-2) FA-SS NFV 

Topup 2.304±0.180 0.304±0.022 1533.82±456.20 

S-Net 2.353±0.377 0.314±0.026 756.98±374.07 

SACNet(wos) 2.244±0.444 0.313±0.031 13.62±27.60 

SACNet(T1w) 2.062±0.442 0.319±0.031 14.28±35.59 

SACNet(T2w) 1.978±0.420 0.322±0.030 15.22±38.17 

Table 2. The quantitative results based on the HCP dataset. Bold font denotes that the method performs the best 6 

among the considered methods. 7 

4.2. Performance on the inverse-PE developmental datasets 8 

We further conducted experiments based on children’s brain scans. We randomly selected fMRI 9 

and structural MR brain images from children in the HCP-D dataset (544 of 644 subjects were 10 

used for training, 50 for validation and 50 for testing) and neonates in the dHCP dataset (364 of 11 

444 subjects were used for training, 40 for validation and 40 for testing) to estimate the 12 

performance of SACNet. 13 

For the HCP-D dataset, we observed that our approach obtained better correction quality at 14 

cortical boundaries in the frontal gyrus than the Topup and S-Net methods (Fig. 4A). Further 15 

quantitative analyses (Fig. 4B and Table 3) showed that SACNet(T1w) and SACNet(T2w) 16 

significantly outperformed the Topup and S-Net methods in terms of the FA-MSD (all t≤-15.174 17 

and all p<0.001, paired t test) and FA-SS (all t≥7.483 and all p<0.001, paired t test) metrics. 18 

Furthermore, our approach greatly reduced the NFV metric (Table 3). Detailed statistical results 19 

are presented in Supplementary Table S2. 20 

For the dHCP dataset (Fig. 4C and 4D, Table 4), our SACNet(T2w) approach significantly 21 

outperformed the Topup and S-Net methods in terms of both the FA-MSD (all t≤-3.998 and all 22 

p<0.001, paired t test) and FA-STD (all t≤-4.098 and all p<0.001, paired t test) metrics. Detailed 23 

statistical results are presented in Supplementary Table S3. 24 
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 1 

Fig. 4. (A) The first and second rows of the first column present the T2w and T1w images, respectively. The 2 

other columns of the first, second and third rows present the corrected b0 images, the corrected FA maps and 3 

the FA-SS maps (local cross-correlation with window size=3 between the FA map and the T1w image) for 4 

different correction methods, respectively. Warmer colors indicate higher FA-SS values. (B) Boxplots of the 5 

FA-MSD and FA-SS values for each method based on the HCP-D dataset. (C) The first column presents T2w 6 

images. The other columns of the first and second rows present the corrected FA maps along the LR-RL and 7 

AP-PA directions for different correction methods, respectively. (D) Boxplots of the FA-MSD and FA-STD 8 

values for each method based on the dHCP dataset. For the boxplots in (B) and (D), the white circles indicate 9 

the mean values, and the coral horizontal lines indicate the median values. 10 

Method 
Metrics 

FA-MSD (1e-2) FA-SS NFV 

Topup 1.698±0.151 0.431±0.015 1615.00±536.43 

S-Net 1.852±0.369 0.421±0.015 1046.68±562.00 

SACNet(wos) 1.459±0.314 0.434±0.016 1.44±10.08 

SACNet(T1w) 1.285±0.252 0.443±0.014 7.28±18.56 

SACNet(T2w) 1.265±0.248 0.443±0.014 6.74±22.89 

Table 3. The quantitative results based on the HCP-D dataset. Bold font denotes that the method performed the 11 

best among the considered methods. 12 

Method 
Metrics 

FA-MSD (1e-2) FA-STD NFV (LR-RL) NFV (AP-PA) 
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Topup 0.729±0.262 0.047±0.007 1071.46±1114.40 44.80±96.46 

S-Net 0.522±0.208 0.042±0.007 99.32±74.93 176.24±89.54 

SACNet(wos) 0.496±0.197 0.042±0.007 3.50±11.62 0.27±1.70 

SACNet(T2w) 0.464±0.180 0.041±0.007 3.41±8.48 0.10±0.62 

Table 4. The quantitative results based on the dHCP dataset. Bold font denotes that the method performed the 1 

best among the considered methods. 2 

4.3. Performance on the single-PE developmental dataset 3 

Next, we employed brain scans from a subset of the CBD project acquired from Peking University 4 

(CBDP) (242 of 322 subjects were used for training, 40 for validation and 40 for testing) to 5 

evaluate the performance of SACNet on single-PE developmental brain images. The visual 6 

examination showed that our approach exhibited better correction quality in the frontal cortex than 7 

the Fieldmap and VoxelMorph methods (Fig. 5A). Quantitatively, SACNet(T1w) and 8 

SACNet(T2w) obtained significantly higher FA-SS values than FieldMap and VoxelMorph (all 9 

t≥5.581 and all p<0.001, paired t test). 10 

 To further evaluate the generalization performance of SACNet on single-PE images across 11 

centers, we used another subset acquired from Beijing Huilongguan Hospital (CBDH) (all 134 12 

subjects were used for testing the model trained with the CBDP subset). The quantitative results 13 

were similar to what we observed with the CBDP subset (all t≥9.698 and all p<0.001, paired t test), 14 

indicating the robust generalization capability of SACNet with the single-PE developmental 15 

dataset. 16 

We did not show the NFV value of each method for the two subsets because all of them were 17 

close to 0. Quantitative results are provided in Fig. 5B and Table 5. The detailed statistical results 18 

are provided in Supplementary Table S4. 19 

 20 

Fig. 5. (A) The visualization results based on one of the subjects in the CBDP dataset. The first column 21 
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presents the T1w image. The other columns of the first, second and third rows present the corrected b0 images, 1 

the corrected FA maps and the FA-SS maps (local cross-correlation with window size=3 between the FA map 2 

and the T1w image) for different correction methods, respectively. Warmer colors indicate higher FA-SS 3 

values. (B) Boxplots of the FA-SS values for each method based on the CBDP and CBDH subsets. The white 4 

circles indicate the mean value, and the coral horizontal lines indicate the median value. 5 

Method 
Datasets & Metrics (FA-SS) 

CBDP CBDH 

No Correction 0.416±0.012 0.402±0.021 

Fieldmap 0.445±0.011 0.430±0.023 

VoxelMorph 0.427±0.010 0.414±0.020 

SACNet(T1w) 0.454±0.010 0.442±0.021 

SACNet(T2w) 0.447±0.011 0.434±0.022 

Table 5. The quantitative results based on the CBD datasets. Bold font denotes that the method performed the 6 

best among the considered methods. 7 

4.4. Performance when using the multicenter traveling adult subjects with inverse-PE 8 

dataset  9 

Finally, we evaluated the performance of the SACNet models with a public multicenter dataset 10 

that contains MR images from three traveling subjects collected over 10 sites. We first assessed 11 

whether our model obtained excellent SA correction quality after fine-tuning using only a small 12 

dataset (brain images of all subjects from the first site were used for model fine-tuning based on 13 

the models trained with the HCP dataset; see detailed fine-tuning strategy in SI-6). The quantitative 14 

comparisons presented in Fig. 6A and Table 6 show that the SACNet(T1w) approach significantly 15 

outperformed the Topup and S-Net methods in terms of FA-MSD (all t≤-10.433 and all p<0.001, 16 

paired t test) and FA-SS (all t≥3.149 and all p≤0.004, paired t test). Detailed statistical results are 17 

provided in Supplementary Table S5. 18 

To test whether our model could reduce multicenter effects, we calculated the mean coefficient 19 

of variation (CV) and regional intraclass correlation coefficient (ICC) of all corrected FA images 20 

for each SAC model separately (detailed definitions of CV and ICC are presented in SI-5). Lower 21 

CVs or higher ICCs represent smaller multicenter residuals. The SACNet(T1w) model obtained a 22 

significantly lower CV in all subjects (all t≤-12.674 and all p<0.001 for all subjects, paired t test) 23 

than Topup and S-Net. Moreover, the SACNet(T1w) model obtained significantly higher ICCs in 24 

the frontal, temporal, and occipital lobes (all t≥18.059 and all p<0.001, paired t test) than Topup 25 
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and S-Net. Notably, we found that SACNet(T1w) obtained significantly higher ICC values than 1 

SACNet(wos) in the frontal (t=12.789, p<0.001, paired t test), temporal (t=6.806, p<0.001, paired 2 

t test), and subcortical (t=2.065, p=0.039, paired t test) areas, which indicated that the introduction 3 

of prior neuroanatomical information in SAs correction is valuable for reducing the multicenter 4 

effects. Detailed statistical results are provided in Supplementary Tables S6 and S7. 5 

 6 

Fig. 6. (A) Boxplots of the FA-MSD and FA-SS values obtained by each SAC method in the multicenter 7 

dataset. (B) Boxplot of the CV distribution for each method in three traveling subjects. (C) Boxplot of the ICC 8 

distribution in each brain lobe for each method. For all the boxplots in (A), (B) and (C), the white circle 9 

indicates the mean value, and the coral horizontal line indicates the median value. 10 

Method 
Metrics 

FA-MSD (1e-2) FA-SS NFV 

Topup 1.703±0.123 0.421±0.008 9.80±9.23 

S-Net 1.689±0.172 0.414±0.009 35.30±40.66 

SACNet(wos) 1.490±0.185 0.423±0.010 0.00±0.00 

SACNet(T1w) 1.483±0.175 0.425±0.010 0.27±0.57 

Table 6. The quantitative results based on the multicenter dataset. Bold font denotes that the method performed 11 

the best among the considered methods. 12 

4.5. Ablation studies 13 
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We separately assessed the effectiveness of the DEW module, DPF, CTF training and inference 1 

protocols (Section 4.5.1) and each component loss in the prior neuroanatomical information loss 2 

(Section 4.5.2) with ablation studies. The experiments were carried out based on the HCP dataset, 3 

and the T2w images were employed as the prior neuroanatomical information. 4 

4.5.1. Ablation studies on the DEW module, DPF and CTF protocols 5 

The effects of different combinations of the three components are presented in Table 7. Without 6 

the DEW module, the proposed method achieved the worst SAC performance, with the highest 7 

FA-MSD and lowest FA-SS values. Without the DPF, the number of folding voxels increased, and 8 

SAC performance decreased. Without the CTF protocols, SAC performance decreased, with 9 

increased FA-MSD and decreased FA-SS values. Additionally, SACNet required approximately 10 

24 hours for training without the CTF protocols and only required approximately 12 hours for 11 

training with the CTF protocols. 12 

4.5.2. Ablation studies on each component loss in𝓛𝒔𝒕𝒓𝒖𝒄𝒕 13 

ℒ𝑠𝑡𝑟𝑢𝑐𝑡 contains the overall shape structural similarity loss ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and the pairwise structural 14 

similarity loss ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟. Table 8 shows that the SAC performance of the model depended on each 15 

component loss in ℒ𝑠𝑡𝑟. The best performance was achieved by leveraging both ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and 16 

ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 in the network optimization. Furthermore, ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 both improved the 17 

SAC performance independently. 18 

DEW DPF CTF 
Metrics 

FA-MSD (1e-2) FA-SS NFV 

✗ ✓ ✓ 2.541±0.335 0.297±0.025 70.80±77.782 

✓ ✗ ✓ 2.000±0.428 0.320±0.031 673.85±595.99 

✓ ✓ ✗ 2.077±0.429 0.321±0.029 18.70±33.28 

✓ ✓ ✓ 1.978±0.420 0.322±0.030 15.22±38.17 

Table 7. The quantitative results of the ablation study based on the use of the DEW module, DPF 19 

and CTF protocols. 20 

ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙  ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟  
Metrics 

FA-MSD (1e-2) FA-SS NFV 

✗ ✗ 2.244±0.444 0.313±0.031 13.62±27.60 

✗ ✓ 2.073±0.439 0.318±0.031 13.90±37.33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.15.557874doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.15.557874
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

 

✓ ✗ 2.032±0.417 0.320±0.030 20.60±42.06 

✓ ✓ 1.978±0.420 0.322±0.030 15.22±38.17 

Table 8. The quantitative results of the ablation study of 𝓛𝒔𝒕𝒓. 1 

4.6. Runtime analysis 2 

Table 9 shows the running time for estimating the inhomogeneity field image of a single scan based 3 

on each dataset for three SA correction methods: SACNet and two conventional methods, 4 

Fieldmap and Topup. The results show that SACNet is significantly more efficient than the 5 

conventional methods. These results indicate that SACNet has a significant advantage in 6 

processing large-scale datasets due to its ultrafast computational speed compared to those of 7 

conventional methods. 8 

Method HCP HCP-D dHCP CBD Multicenter 

Fieldmap — — — ~4 hours — 

Topup 3061 1740 986 — 1320 

SACNet (CPU) 3.87 3.57 1.30 0.89 3.22 

SACNet (GPU) 2.17 1.52 0.73 0.46 1.30 

Table 9. Running time (in seconds). “—” denotes that there is no valid value. 9 

5. Discussion and conclusion 10 

We proposed an unsupervised multiscale convolutional registration network (SACNet) to remove 11 

SAs in brain EPI images. This model could generate diffeomorphic inhomogeneity fields based on 12 

either inverse-PE or single-PE images and employ prior neuroanatomical constraints from 13 

additional T1w or T2w images. Extensive experiments on neonatal, child and adult brain dMR 14 

images with different PE directions and PE numbers showed that our SACNet not only 15 

outperformed most popular conventional correction methods, such as Topup and Fieldmap, but 16 

also surpassed deep-learning based methods, such as S-Net and VoxelMorph. Furthermore, by a 17 

fine-tuning strategy with few samples in a multicenter dataset with traveling subjects, our model 18 

showed both better SAC performance and lower multicenter effects than the Topup and S-Net 19 

approaches. Our model reduced the time to generate inhomogeneous field images from the tens of 20 

minutes needed for conventional iterative approaches to a few seconds while maintaining state-of-21 

the-art SAC performance; this outcome shows the potential advantages of SACNet for integrating 22 

multisite neuroimaging data in future brain development studies. 23 

5.1. Applications to large-scale neuroimaging studies 24 
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Recent brain neuroimaging investigations have entered the era of “big data” (Bethlehem et al., 1 

2022; Landhuis, 2017; Rutherford et al., 2022; Sejnowski et al., 2014; Xia and He, 2017) by 2 

integrating tens of thousands of image scans acquired at multiple centers. We emphasize that our 3 

SACNet approach is well suited for large-scale neuroimaging studies involving many individual 4 

scans for several reasons. First, we provided a range of models that have been pretrained based on 5 

diverse datasets with different ages and acquisition protocols, enabling users to fine-tune the 6 

models with only a few images according to their needs and to achieve excellent SAC in their own 7 

datasets (Section 4.4). Although recent cohort projects have used uniform EPI phase encoding 8 

protocols, many legacy datasets were acquired with various EPI protocols or even no EPI artifact 9 

correction sequences. Considering the high cost of acquiring human brain MR images, the 10 

utilization of existing databases is highly valuable. Second, our SACNet model effectively reduced 11 

the potential multicenter effects related to SAs (Section 4.3). Recent approaches for multicenter 12 

effect correction in brain MR images have received much methodological attention. Our model 13 

significantly reduced multicenter noise without using additional correction algorithms, 14 

highlighting the necessity of considering SAs in multicenter correction frameworks. Notably, our 15 

approach does not require correcting the multicenter effects in raw structural images, and further 16 

incorporation with multicenter structural image harmonization algorithms (Tian et al., 2022) could 17 

be attempted. Third, compared with conventional iterative optimization methods, SACNet can 18 

process many images from multiple subjects at fast speeds due to its ultrafast inference time 19 

(Section 4.6). Notably, SACNet does not require a large amount of CPU memory (approximately 20 

3000 MB), making it convenient for batch processing in computing clusters. Fourth, we developed 21 

a comprehensive dMRI preprocessing pipeline specifically for SACNet, which integrated the 22 

output interface of SACNet with the input interface of existing dMRI postprocessing pipelines 23 

(Glasser et al., 2013). Finally, compared with existing deep-learning based SAC methods, for 24 

which only the developmental source code is available, we utilized the containerization technique 25 

to integrate our software source code and development environment, making it easy for users to 26 

deploy SACNet in their computational servers. 27 

5.2. Effective network designs and integrated loss constraints in SACNet enable excellent 28 

SAC performance 29 

A common deep-learning based brain registration framework is insufficient for solving the SAC 30 
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problem. Thus, we proposed several key designs to ensure the high quality of the generated 1 

inhomogeneity field and carefully evaluated their effectiveness. First, the combination of the DEW 2 

module and the DPF jointly enhanced the SAC capability of SACNet (first row vs. last row, second 3 

row vs. last row in Table 7). The DEW module successfully removed SAs by multiplying the 4 

Jacobian determinant of the inhomogeneity field with the geometric-corrected image, which 5 

facilitated the convergence of the network. In addition, the DPF constrained the inhomogeneity 6 

field in diffeomorphic space, thus reducing the number of invalid voxels (presented as negative 7 

intensity values and folding patterns) included in the DEW calculation process during model 8 

training and preventing overfitting of the network. Second, due to the severe SAs at temporal and 9 

frontal cortical boundaries (especially at the temporal pole and orbitofrontal cortex), anatomical 10 

morphologies within certain brain locations were barely conserved. Thus, it is imperative to 11 

incorporate prior neuroanatomical information to obtain excellent correction results. Previous 12 

methods that used structural images as additional inputs to the network were not sufficient to obtain 13 

good morphological images since these methods only provide information features and do not 14 

contribute to the loss function calculation (Hu et al., 2020; Schilling et al., 2020). To address this 15 

issue, we carefully designed a prior neuroanatomical information loss function, ℒ𝑠𝑡𝑟𝑢𝑐𝑡, that was 16 

optimized for SAC by incorporating gradient-based information from structural images. This 17 

function ℒ𝑠𝑡𝑟𝑢𝑐𝑡 includes two components: ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 and ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙. ℒ𝑠𝑡𝑟−𝑝𝑎𝑖𝑟 was used to align 18 

the corrected image pair 𝐸𝑃𝐸1
 and 𝐸𝑃𝐸2

 to the structural image 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 in a pairwise manner (third 19 

row vs. last row in Table 8), and ℒ𝑠𝑡𝑟−𝑜𝑣𝑒𝑟𝑎𝑙𝑙 improved the overall structural alignment between 20 

the final corrected image 𝐸𝑓𝑖𝑛𝑎𝑙 and 𝐼𝑠𝑡𝑟𝑢𝑐𝑡 (second row vs. last row in Table 8). Moreover, the 21 

choice of an intensity-irrelevant structural metric, the NGF, allows users to use either T1w or T2w 22 

images as input neuroanatomical information, thereby improving the compatibility of SACNet for 23 

different types of clinical datasets. Third, the well-designed CTF training and inference protocols 24 

adopted in SACNet accelerated the training process and improved model convergence (third row 25 

vs. last row in Table 7), and similar strategies have been broadly deployed in conventional SAC 26 

methods (Bhushan et al., 2015; Duong et al., 2020a; Irfanoglu et al., 2015; Ruthotto et al., 2012). 27 

5.3. Comparison with deep-learning based methods 28 

Previous studies have proposed several deep-learning based registration approaches to address the 29 

SAC problem. For example, Bian et al. proposed correcting distortions by registering distorted b0 30 
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images in a single-PE direction to T1w images through the VoxelMorph backbone by optimizing 1 

the mutual information (MI) loss (Bian et al., 2023). However, this approach is limited to single-2 

PE type data and was not compared with other methods designed specifically for the SAC problem. 3 

Duong et al. and Zahneisen et al. predicted inhomogeneity fields to remove SAs with 3D and 2D 4 

CNNs, respectively (Duong et al., 2020b; Zahneisen et al., 2020). However, the performance of 5 

these models is limited, as the models either ignore the intensity distortion problem or treat each 6 

volume slice as an independent example for training, resulting in inadequate SAs correction or 7 

inconsistent alignment between slices. Other methodological approaches for solving the SAC 8 

problem have also been developed. Several studies have used image generation approaches for 9 

SAC tasks. For example, Hu et al. and Ye et al. used high-resolution distortion-free point spread 10 

function encoded EPI (PSF-EPI) data as undistorted ground truth data for CNN training (Hu et al., 11 

2020; Ye et al., 2023). Schilling et al. synthesized undistorted b0 images with U-Net or generative 12 

adversarial networks (GANs) and then entered both the “synthesized” and “real” b0 images as 13 

input into Topup to remove SAs (Schilling et al., 2020; Schilling et al., 2019). These supervised 14 

approaches need ground truth images as learning targets, which largely depend on the feature 15 

distribution of the training images. This may lead to difficulty when facing brain images with 16 

heterogeneous appearance, such as those of neonatal brain scans. Moreover, when these 17 

approaches are applied to a new neuroimaging dataset, acquiring undistorted images for fine-18 

tuning can often be a costly endeavor. In contrast to image generation-based methods, 19 

unsupervised registration-based methods, such as our approach, require no ground truth labels. 20 

Interestingly, Qiao et al. proposed the distortion correction network (DrCNet) by feeding fiber 21 

orientation distribution (FOD) information into U-Net and successfully corrected residual 22 

distortions that could not be eliminated by Topup (Qiao and Shi, 2021). Compared to DrCNet, our 23 

SACNet method can be applied not only to dMRI data but also to fMR images. Moreover, the 24 

performance of SACNet may be further enhanced by incorporating rich diffusion-based 25 

information, such as DWIs and FODs, into the integrated loss function. 26 

5.4. Limitations and future directions 27 

Several issues in this study should be considered. First, although the additional neuroanatomy 28 

priors improve the SAC performance of our SACNet, it may be worthwhile to explore the further 29 

employment of white matter information from dMRI data itself (Irfanoglu et al., 2015; Qiao and 30 
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Shi, 2021; Qiao et al., 2019). Second, the presence of other nonnegligible artifacts, such as eddy 1 

current-induced distortions and intrasubject movements, in dMRI data should be acknowledged 2 

(Andersson and Sotiropoulos, 2016). It would be interesting to develop a deep-learning based tool 3 

in conjunction with SACNet to address these artifacts. Third, registration-based methods may 4 

become unsatisfactory in 7T MR images due to severe signal loss issues. Given that the deep 5 

generative model (DGM) has shown the ability to capture complex distributions of real 7T data 6 

(Nie et al., 2018), combining the DGM with SACNet could be a promising approach. We hope 7 

that SACNet can offer a general framework for SAC task in multicenter datasets with top-ranking 8 

performance, robust output and efficient computational speed, which could facilitate a wide variety 9 

of future brain studies using large-scale multicenter neuroimaging datasets. 10 

 11 

  12 
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