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Abstract

Susceptibility artifacts (SAs), which are inevitable for modern diffusion brain MR images with
single-shot echo planar imaging (EPI) protocols in wide large-scale neuroimaging datasets,
severely hamper the accurate detection of the human brain white matter structure. While several
conventional and deep-learning based distortion correction methods have been proposed, the
correction quality and model generality of these approaches are still limited. Here, we proposed
the SACNet, a flexible SAs correction (SAC) framework for brain diffusion MR images of various
phase-encoding EPI protocols based on an unsupervised learning-based registration convolutional
neural network. This method could generate smooth diffeomorphic warps with optional
neuroanatomy guidance to correct both geometric and intensity distortions of SAs. By employing
near 2000 brain scans covering neonatal, child, adult and traveling participants, our SACNet
consistently demonstrates state-of-the-art correction performance and effectively eliminates SAs-
related multicenter effects compared with existing SAC methods. To facilitate the development of
standard SAC tools for future neuroimaging studies, we also created easy-to-use command lines

incorporating containerization techniques for quick user deployment.

Keywords: diffusion MRI, deep learning, susceptibility artifact correction, diffeomorphic

registration


https://doi.org/10.1101/2023.09.15.557874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557874; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

available under aCC-BY-NC-ND 4.0 International license.

1. Introduction

Diffusion MRI (dMRI) provides a unique opportunity to noninvasively detect human brain white
matter (WM) in vivo (Hagmann, 2005; Lerch et al., 2017; Sporns et al., 2005), which is highly
significant for modern neuroscience and clinical brain studies. To achieve high spatial resolution
and diffusion angular resolution, dMRI sequences commonly employ the echo planar imaging (EPI)
technique (Biswal et al., 1995; Turner et al., 1990; Warach et al., 1995), which has a fast imaging
speed and has been widely employed in various large neuroimaging projects, such as UK Biobank
(Littlejohns et al., 2020), the Human Connectome Project (HCP) (Glasser et al., 2013) and the
Lifespan Human Connectome Project Development (HCP-D) (Somerville et al., 2018). However,
EPI, especially single-shot EPI, is substantially affected by susceptibility artifacts (SAs), resulting
in severe geometric and intensity distortions (Andersson et al., 2003; Jezzard and Balaban, 1995),
which largely confound accurate measurements of brain WM from the microstructure level to the
whole-brain connectome level (Tax et al., 2022). Moreover, recent evidence from multicenter
datasets has shown that SAs lead to the largest inconsistency in brain connectivity measurements
across scan centers (Yamashita et al., 2019). Thus, developing a high-quality susceptibility artifact
correction (SAC) approach is still an ongoing task for dMR brain image processing.

Many conventional methods for solving the SAC problem have been proposed. The most
popular approaches generally use two frameworks: the field map method (single phase encoding,
single-PE) and the inverse phase encoding (inverse-PE) based method. Both of them depend on
specific EPI protocol designs. The field map approach requires an additional scan of raw magnetic
field inhomogeneity (called field map) (Jezzard and Balaban, 1995; Reber et al., 1998). SAs are
corrected by translating the field map into local voxel shifts. The inverse-PE approach relies on
two PE-opposite EP images to capture complementary signals along inversed distortion directions
(Andersson et al., 2003; Bowtell et al., 1994; Hédouin et al., 2017; Holland et al., 2010; Irfanoglu
et al., 2015; Ruthotto et al., 2012). SAs are corrected by finding an ideal “middle” estimation
between two inversed distorted images through iterative registration optimizations. The most
recognized method of the inverse-PE approach is Topup in FSL software (Andersson et al., 2003),
which presents a least-squares estimation of opposing undistorted images and shows better
performance than the field map framework. However, these methods still suffer from common

drawbacks, such as the narrow applicability that is restricted to specific sequence designs, limited
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performance due to cumulative errors during iterative registration, and the rather long computation
time.

Recently, new SAC methods utilizing convolutional neural networks (CNNs) have emerged
and enabled faster and superior SAC performance than the traditional method for EPI sequences
in various protocols. These methods can be mainly classified into two categories: supervised
synthetic models (Hu et al., 2020; Ye et al., 2023) and unsupervised registration models (Duong et
al., 2020b; Qiao and Shi, 2021; Zahneisen et al., 2020). The former models allow for SAC on
single-PE images without field map. They employ additionally collected distortion-free brain
images in specialized MRI protocols, such as point-spread-function (PSF)—encoded EP images, as
training labels (Hu et al., 2020; Ye et al., 2023). Such supervised approaches largely depend on the
feature distribution of training images (Fu et al., 2020) and thus are essentially limited when facing
brain images with heterogeneous appearance, such as developmental brain scans or multicenter
scans. The latter models are mainly designed for inverse-PE images (Duong et al., 2020b; Qiao
and Shi, 2021; Zahneisen et al., 2020). This approach can obtain a common representation of
spatial mapping between the inversed distorted brain images via the training process and thus can
avoid individual iterative registrations (Balakrishnan et al., 2019). The unsupervised training
process also brings high generalization ability, which is critical for robust SAC performance on
various brain dMRI protocols. However, several limitations still exist for such models: 1) a
compatible framework for both single- and inversed-PE type datasets is lacking, especially when
facing multicenter datasets with different PE designs; 2) failure to ensure diffeomorphic
transformations can lead to artificial warps during image registration; 3) prior neuroanatomical
information from structural MR images is underestimated; and 4) the single-resolution strategy
hampers model convergence.

To fill these gaps, we proposed SACNet, an unsupervised learning-based registration method
for SA correction with the following innovations:

().  We established a flexible mathematical correction framework for addressing the SAC
problem in both inverse-PE and single-PE EPI protocols.

(if).  We proposed a diffeomorphic preservation function by modifying the Woods-Saxon
potential function to restrict the generated deformation fields within a diffeomorphic

solver space.
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(iii).  We designed an intensity-irrelevant loss function that is suitable for both T1w and T2w
brain images to introduce anatomical priors for recovering cortical morphological
details in severely distorted brain areas.

(iv).  We devised coarse-to-fine (CTF) training and inference protocols to accelerate the
learning process, leading to satisfactory model convergence.

By employing 1954 dMRI brain scans covering neonatal, child and adult populations and
traveling subjects from multiple centers, we found that the proposed SACNet approach robustly
outperforms both conventional and deep-learning based methods in all datasets with significantly
improved correction performance, reduced multicenter effects, and low computational costs. We
integrated our models into a unified pipeline and released it online at

https://github.com/RicardoZiTseng/SACNet. This paper is organized as follows. In Section 2, we

describe the detailed design of our approach. In Section 3, we introduce the experimental settings,
including datasets, evaluation metrics and baselines. In Section 4, we present the experimental
results for various datasets. In Section 5, we discuss the conclusions based on the experimental

results.
2. Methods

In this section, we first present an overview of our SACNet framework (Section 2.1, Fig. 1). Then,
we introduce the network architecture used in SACNet and describe the details of the differentiable
EPI warp module (Section 2.2), the mathematical optimization functions (Section 2.3), the
formulated optimization model and its variants for different PE protocols (Section 2.4), and the
CTF training and inference approach (Section 2.5). Finally, we describe the dMRI preprocessing
pipeline for SACNet (Section 2.6).

2.1. Overview

The mathematical framework and a representative flowchart of SACNet are illustrated in Fig. 1A.
We designed an integrated optimization function to solve the SAC problem, including a pairwise
dissimilarity loss function £, 4;, a Tikhonov regularization function Lr;, for estimating smooth
inhomogeneity fields, a diffeomorphism preservation regularization function Lg;rf for
guaranteeing diffeomorphic inhomogeneity fields, and a prior neuroanatomical information loss
Ltruct for incorporating prior neuroanatomical information. This integrated optimization function

could be transformed into simple versions to make SACNet compatible with different types of PE
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protocols by adjusting hyperparameters.

To implement this framework, we considered the approach for solving the SAC problem of
an inverse-PE dataset (with T2w images as the neuroanatomical prior) as an example (Fig. 1B).
Specifically, we employed Res-UNet to model the mapping from Ipg, , Ipg, and [syce to B:
fo (IPEI, Ipg,, Istmct) = B, in which Ipg, and Ipg, are the uncorrected image pair along the
inverse-PE directions, It 18 the structural image rigidly registered to Ipg, and Ipg,, B is the
generated inhomogeneity field needed to remove SAs, and 0 represents the network parameters.
A differentiable EPI warp (DEW) module was designed to apply B to remove the SAs in Ipg, and
Ipg, and obtain Epg, and Epg,, which are the corrected images along the two PE directions. Finally,
we combined Epg, and Epg, based on the geometric average to generate the final corrected image
Efinq- For faster and better training convergence, we designed CTF training and inference

protocols, as shown in Fig. 1C. The two protocols utilize several identical networks for training
and inference at multiple resolution levels. Starting from the second level, the initial
inhomogeneity field is upsampled based on the field calculated in the previous level, and the next

fields are estimated at progressively finer levels.
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A. The Mathematical Framework for SAC problem
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Fig. 1. The proposed mathematical framework and an implementation flowchart of SACNet. (A) The first row
presents the integrated mathematical optimization function for solving the SAC problem, including a pairwise
dissimilarity loss function £y, a Tikhonov regularization function Lz, a diffeomorphism preservation
regularization function Lg;f, and a prior neuroanatomical information 10ss Lgyyc¢- The second row shows
that the proposed optimization model could be transformed into two simpler models to make SACNet
compatible with different types of PE protocols by adjusting the hyperparameters in the optimization function.
(B) The example implementation framework of SACNet with inverse-PE b0 images and T2w images as inputs
is shown. All input images were sent to Res-UNet to map the inhomogeneity field B for correcting SAs. The
solid line represents the data flow in the network, and the dashed line represents the participation in the loss
function calculation. (C) The implementations of CTF SAC training and inference protocols for the model
presented in (B). We used a series of identical networks to simulate the SAC process in the multiresolution
schema. The blue part illustrates the optimization of network parameters during the training stage, and the
green part illustrates the data flow during the inference stage.

2.2. Res-UNet architecture and the differentiable EPI warp module

We utilized the Res-UNet architecture to parameterize fy. The Res-UNet model consisted of an
encoder-decoder with skip connections linking the encoder and decoder paths, and residual blocks
were used to construct the whole network architecture. The implementation details of Res-UNet
are described in SI-4.

Differentiable warping of raw EPI images was required to calculate the gradients during the
backpropagation process. Thus, we designed a DEW module based on the spatial transformer
network (Jaderberg et al., 2015) and simultaneously implemented geometry correction and
intensity correction. Following the interpolator model described in previous studies (Andersson et
al., 2003; Chang and Fitzpatrick, 1992; Holland et al., 2010; Studholme et al., 2000), the DEW
module first resampled the given image I with inhomogeneity field B to remove geometry-related
SAs and then multiplied the resampled I with the Jacobian determinant of B to remove intensity-
related SAs. The specific calculation procedure is described as follows. For each image I, we first
computed the voxel location p’ = p + B(p)v for each voxel p in image I. Since the voxel
intensity is defined at discrete integer locations and SAs only occur along the PE direction, we

linearly interpolated the values for the left-right neighboring voxels along the PE direction v:

(» +B(p) —p)v
(pr — DDV

where p, and p, are the right and left neighbors of voxel p along the PE direction v. Then, we
8

I(p+B(p)v) = (I — 1)) +1(p), VpeQ )
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multiplied Eq. (1) by the Jacobian determinant of B to redistribute the intensity as follows:

E(p) =1®, B(p) = 1(p + B@p)v) - clamp (1 +9,B(p))), Vp€Q @)
where (1 + 8,B(p)) in Eq. (2) is the Jacobian determinant of the transformation p — p + B(p)v
(see detailed derivation in SI-1), and clamp(x) = max(x, 0) is used to prevent multiplication
with a negative value.

2.3. Optimization function construction
For images with inverse-PE designs, the distorted image pair Ipg, and Ipg, is inversely affected by
the same inhomogeneity field B along the opposite directions v and —v (Holland et al., 2010;
Ruthotto et al., 2012); thus, the corrected images Epg, and Epg, were calculated as follows
according to Eq. (2):
Epg, () = lpg, @y B(P) = Ips, (p + B(p)v) - clamp (1 + 3,B(p)))
Epg,(P) = Ipg, @y B(D) = Ipg,(p — B(p)v) - clamp (1 - 0,B(p)))

Theoretically, we can find one solution B* that leads to identical Epg, and Epg, ; thus, the

vpeQ (3)

optimization problem can be formulated as:
B* = arg mBin Lpair(IPEl ©y B, Ipg, @ B)

= arg rr}?in Lpair (EPEl' EPEz)

1 2
= arg mBln ﬁ ;2 (EPE1 (») - Epg, (p)) (4)

where L, ,;, adjusts the pairwise dissimilarity between the estimated Epg, and Epg,. Notably, all
image volumes are defined over a 3D spatial domain Q. © R3, and |Q]| represents the number of
elements in .

However, previous studies have noted that seeking B* by optimizing Eq. (4) generally leads
to an ill-posed problem (Balakrishnan et al., 2019; Duong et al., 2020a; Ruthotto et al., 2012).
Thus, in this paper, we introduced two regularization functions (L7, and Lg;sr) and one additional

loss function (Lgsy,c¢) to constrain B and construct the optimization function for solving the SAC

problem:

B =argmina - Loair(Ipg, @y B,Ipg, ©@_y B) + B - L1y (B) + & - Lgirs(B)

+ Lstruct (EPEl' EPEZ: Efinal' Istruct' Y1 Vz) (5)
9
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where a, f, §, y; and y, are hyperparameters used to determine the contribution of each
component in Eq. (5). In addition, Lz, Lgifr, and Ly denote the Tikhonov regularization
function, diffeomorphism preservation regularization function and prior neuroanatomical
information loss function, respectively, which are defined in the subsequent subsections.

2.3.1. Tikhonov regularization

Lrir(B) was used as a prior constraint on the smoothness of field B using a Tikhonov regularizer
based on the spatial gradient of B:

1
Lri(B) = 17 ) I7B@)IP? ©)

PEN

0B(px) 9B(py) aB(pz))

Following the implementations in (Balakrishnan et al., 2019), for VB(p) = ( x oy ' oz

we approximated % ~ B ((px + 1,py,pz)) - B ((px,py,pz)) , and we wused similar

9B(py) dB(pz)
3y and 5, -

approximations for
2.3.2. Diffeomorphism preservation regularization

To guarantee the diffeomorphism property of the inhomogeneity field, we proposed a
diffeomorphism preservation regularization function by modifying a potential well function.
Specifically, in terms of intensity, we expected that the signals of the voxels at the same position

in E; and E, would both be positive, which requires the following:

1+ 0,B(p) >0
{1 —a,B(p) >0 "PEL 7
This is equivalent to:
-1<0d,B(p) <1,VpeQ (8)

In terms of the geometry, we expected the relative positions of adjacent voxels to remain the same
before and after resampling, which guarantees no folding areas during the transformation, as
shown in Fig. 2A. For example, along the direction v = (1,0,0), the displacements of point p, =
(Px, Py, P;) and its neighbor p; = (px + 1,p,,p,) are B(po)v and B(p,1)v, respectively.
These displacements are similar along the direction —v = (—1,0,0). To prevent the folding of
space at point X , the new spatial positions should

follow:

10
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{po +B(Po)v <p41+ BV vpEQ 9

p_1— B(p_)v <po — B(py)v’

We can also obtain Eq. (8) from Eq. (9).
To ensure that the generated field B satisfies the constraint function shown in Eq. (8), we
expected that when d,,B(p) approached -1 or 1, the loss function increased substantially, and when
0,B (p) remained between -1 and 1, the loss function remained small. To this end, we designed the

diffeomorphism preservation function (DPF) as follows:
1 2
Laig(B) = 17 ) (2B @) * (3,5 ®)) (10)
P

where ¢(-) is the potential well function modified from the Woods-Saxon potential function

widely used in nuclear physics (Erkol and Demiralp, 2007):

=(1 ! 11
P = ( 1+ exp[(|x| - 1)/0]) 1

where o is a customized parameter. Fig. 2B shows the curves of ¢ (x) (the left subgraph) in terms
of 0yB(p) and the derivative (the right subgraph) with respect to d,B(p). The figure shows that
the value of ¢(x) increases substantially as |d,B(p)| = 1, which suggests that ¢(x) can
sensitively suppress the voxels that do not obey the constraint defined in Eq. (8), thereby

constraining the inhomogeneity field B to a diffeomorphic space. Notably, (61,B(p))2 is
multiplied by (j)((')vB(p)) to prevent the gradient from vanishing when d,,B(p) is larger than 1 or

smaller than -1. We present the proof of the existence of a diffeomorphic inhomogeneity field

calculated by SACNet in SI-2.

11
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Fig. 2. Mathematical framework of the diffeomorphism preservation regularization. A) Illustration of spatial
folding at location x along opposite directions v and —v. Here, x + 1 and x — 1 denote the nearest neighbors
of x, and we assume that v = (1,0,0) and B is an inhomogeneity field. (B) The left part shows the function
value of ¢(x) with different hyperparameters o and the value in terms of d,,B(p). The right part shows the
derivative of ¢ (x) with respect to d,B(p).

2.3.3. Prior neuroanatomical information loss
Image noise caused by SAs hinders strict alignment of the b0 image pair, resulting in inaccurate
estimation of the inhomogeneity field in severely distorted areas. To address this issue, we
proposed a prior neuroanatomical information loss Lg;c¢ to incorporate accurate prior
neuroanatomical information. This approach has two main benefits. First, this loss regularizes the
inhomogeneity field while preserving intricate neuroanatomical morphological details. Second, it
provides an additional registration target when the b0 image pair is not available.

Lgtruce consists of two parts: the overall shape structural similarity loss Lgtr_operqan and the

pairwise structural similarity 108s Lgsy_pqir . Conceptually, Loy _operqu €nsures that the final

corrected image Efngq; 1s similar to the provided structural image Isry e, While Lgpr_pgir €nsures

12
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that the corrected images along each PE direction Epg, and Epg, are similar to Is;, ;. Specifically,

the proposed neuroanatomy prior loss is formulated as:

Lstruct(IPElr Ipg, Lstructs B'Vp)’z) = Y1 Lstr—overau + V2 * Lstr—pair (12)

with
Lstr—overai = Lsim(Efinal' Istruct) (13)

and
Lstr—pair = Lsim(EPEl» Istruce) + Lsim(EPEzf Istruct) (14)

where y; and y, are two user-defined hyperparameters, and Lg;,, in Eq. (13) and Eq. (14)
represents a similarity metric.

We anticipated that SACNet would not be limited to the MR modality of structural inputs.
Therefore, instead of relying on absolute intensity-relevant similarity metrics, such as the mean
square error (MSE) and local cross-correlation (LCC), we employed a gradient-based similarity
metric, namely, the normalized gradient field (NGF), as L;,,. The NGF determines the geometric
resemblance between any points in an image by computing local gradients; thus, this metric is
independent of the absolute image intensity (Haber and Modersitzki, 2007). Let VX, be the
intensity change gradient at point p € ( in image X and € be a user-defined parameter that
prevents divide-by-zero errors. Then, the NGF measure at any point p in image X can be defined

as:

= VX(p)
VX () = (15)
P VX + e

The difference between two images X and Y can be measured by calculating the angles between

the NGF vectors at all points in the image domain, which can be formulated as follows:
1 = =~ 2
Lan®,Y) = 137 ) (1= X @), T ) (16)
PEQ

where (:,-) denotes the inner dot-product operation. The value of Lygr(X,Y) is positive, and the
smaller the value of L, (X,Y) is, the more similar the two images are.
2.4. The formulated optimization model and its variants
To handle the different imaging protocols in various existing neuroimaging datasets, the

optimization model formulated in Eq. (5) can be transformed into two different forms, as shown

13
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in Fig. 1A: a) When no structural images are available (image set {Ipg,, Ipg, }), the model can be
transformed to use Eq. (17) by setting y; and y, to 0, as illustrated in the first column in the second
row of Fig. 1A:

B* = arg mBin[a ’ Lpair(EPEl»EPEZ) + B Lomo(B) +6 - »Cdiff(B)] (17)
b) When only single-PE images are available (only one single-direction distorted image and one
structural image, with the image set {I, It }), the model can be transformed to use Eq. (18) by

setting a and Y, to 0, as illustrated in the third column in the second row of Fig. 1A:
B* = arg H}Bln[ﬁ : Lsmo (B) +6- Ldiff(B) +V1e Lsim(Efinal' Istruct)] (18)
In this situation, Ef;nq = I @y B denotes the image corrected based on the distorted image I

along the single-PE direction v. In addition, the potential well function in Eq. (11) can be

reformulated as:

=(1 ! 19
P(x) = ( 1+ exp[(—1— x)/a]) (19)

To use a neural network to predict the inhomogeneity field, the overall loss varies for the three

types of image sets {Ipg,, Ipg,, Istruct}> {1pE,» IpE,} and {I, Is¢ryce } for one subject as follows:

Leot, Upgy Ipgy Istruces B) = @ - Lpgir(Epg,s Epg,) + B+ Lomo(B)
+8 - Lairr(B) + Lstruce (Ipg,) Ipk, Istruce B V1, V2) (20)
Liot,Upg,s Ipg,, B) = a - Lpair(Epg,, Epg,) + B - Lsmo(B) + 6 - Laipr(B) (21)
Leot, (I Iseruce: B) = B+ Lomo(B) + 8+ Lairp(B) + v1 * Loim (Erinats Iseruct) (22)
2.5. Coarse-to-fine (CTF) SAC training and inference protocols

To improve the training process and prevent falling into local minima, we designed CTF training
and inference protocols for SACNet, as illustrated in Fig. 1C. The CTF training protocol aims to
train multiple networks at N scale levels, with each model estimating the residual inhomogeneity
field at the corresponding scale. Specifically, we first trained the network at the coarsest scale level
and then progressively trained the networks at the each subsequent scale level to solve the SAC
problem at finer scale levels. This training procedure was repeated until the model was trained at
the finest level. The CTF inference protocol aimed to generate the estimated inhomogeneity field
based on the training protocol using multiple trained networks. At each scale level s, we

downsampled the image set by 2V¥s~ times and upsampled the inhomogeneity field B¢~ 2 times.

14
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1 Then, we fed the downsampled image set into the network at the current level to obtain the residual
2 inhomogeneity field AB®) . The inhomogeneity field at the current level was calculated by
3 summing the upsampled field and the residual field. The pseudocodes for the training and inference

4  protocols are presented in Algorithms 1 and 2, respectively.

Algorithm 1. Coarse-to-fine SAC training protocol of SACNet, as depicted in Fig. 1C.

Input: Training datasets {D{}}¢,, validation dataset {D}}17,. For each subject’s image set, D' = {I} £ Dby, Lt )

Np: batch size, Ng: the number of scale levels. «®), ), yl(s), yz(s), §): the hyperparameters in Eq. (20) for scale level s. E: the number of epochs

for the network with scale level s.
Initialization: Initialize Ny network set F v, = {fgl,fgz, ...,ngs} for Ny scales. Set B©® = 0.

for s, < 1to Ng do
Set metric,,, = inf and initialize §cwrr) as g, if s is not equal to 1;

for e « 1 to EGewrr) do

Randomly select batches of training image sets {D{} of size Ny;

1
2
3
4. repeat
5
6 Downsample image set {D;} 2Vs=Seurr times for i = 1, ..., Ng;
7

Compute the inhomogeneity field {Bicurr—1 = SACNet_infer(Dé,{fgl, ---'fesmr_l}'Ns)} of the previous level for i =1, ..., Ng;

8. Upsample {B¥Scurr=1} 2 times for i = 1, ..., Ng;

9. Compute the estimated residual inhomogeneity field {AB Geurr)} by inputting {D/} into the current level’s network f p(seyrr) @ =
1, ..., Ng;

10. Compute the estimated inhomogeneity field of the current level {BiGcurn} by adding {Bi¢curr=D} and {AB{cwrn)} for i = 1, ..., Np;

11. Compute the loss Lt(jf“") according to Eq. (20) and use the Adam optimizer to update the model parameters 6 (Scurr):

12. until all training data have been selected

13, Compute the inhomogeneity field {(B', Efz,, Ebs,) = SACNet_infer (Di, {foy, . fa,,, } Ne )} fori = 1,..., Ny;

14. Compute the sum of the mean square error metric(® between Ef;, and Ej, fori = 1,..., Ng;

15. Set metric,,;, < metric® and save model parameters 6 Scurr) to @, if metric(® is smaller than metric,yin;

16. Unfreeze all previous levels’ model parameters if the model has been trained for Eeurr) /3 epochs at each scale level.

17. end for

18. Freeze the current model parameters 6 Scurr),

19. end for

Return: trained network set Fy v, = {fgl,fgz, ,ngS}.

Algorithm 2. Coarse-to-fine SAC inference protocol of SACNet, as depicted in Fig. 1C.

Input: image set D = {IPEl,IPEz, Imuct}; trained model set Fy.; = {fy,, fo,, .-, fp,}; and total number of scale levels Ns.

Initialization: set B = 0.

15
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1 function SACNet_infer(D, F,.g, Ng)

2 Npoaers = length(Fy);

3 for sgum < 110 Npyogers dO

4. Downsample image set {Ipz,, Ipg,, Istruce} 2" ~5ewrr times;

5 Upsample previous level’s estimated inhomogeneity field BSeurr=1 2 times;

6 Compute the estimated residual inhomogeneity field of the current level AB®Seurr) =

Fosuury (™™ @, BGeurr=D, [fewr) @_, Bloeurs=0), [Ceur) );

ruct

7. Compute the estimated inhomogeneity field of the current level BGeurr) = BScurr=1) 4 AB(Scurr);
8. end for

9. Compute the corrected images Epz, = Ipz, ®, BNmodets) and Epg, = lpp, @, BNmodels),

10. return BWmodels), Epp | Epp, .

11.  end function

Return: inhomogeneity field B¥modets) and corrected image pair E pE, and Epg, .

2.6. The whole dMRI preprocessing pipeline

We introduced a practical dMRI preprocessing pipeline by integrating SACNet with the Eddy tool
in FSL, which is available in our online code. The pipeline started by correcting for motion and
eddy current distortions in the dMRI volumes along each PE direction using the FSL Eddy tool.
Next, the structural (T1w and T2w) images, as well as all negative and positive PE scans, were
rigidly coregistered using the Flirt tool in FSL, with the first b0 image serving as the target. Then,
the aligned positive and negative b0 images were input into the trained model to estimate the
inhomogeneity field, which is subsequently used to remove SAs in all diffusion weighted images
(DWIs).

3. Experimental settings

3.1. Datasets

To comprehensively evaluate the SAC performance of our proposed approach, we considered
multiple existing large neuroimaging datasets that contain structural and dMRI scans across age
groups and acquisition protocols and assessed whether our approach could achieve state-of-the-art
performance, including 1) excellent performance based on adult brain images by randomly
selecting 380 adult inverse-PE dMR images from the HCP dataset (Glasser et al., 2013); 2)
excellent performance based on developmental brain images by employing 444 neonatal scans
from the Developing Human Connectome Project ({HCP) dataset (Makropoulos et al., 2018) and
1100 children and adolescent scans from the HCP-D dataset (Somerville et al., 2018) and the
Children School Functions and Brain Development Project in China (CBD) dataset (HCP-D: 644

scans, CBD: 456 scans); and 3) low multicenter effects with excellent SAC performance by
16
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adopting 30 scans of three healthy traveling subjects acquired at 10 scan sites from a multicenter
public dataset (Multicenter) (Tong et al., 2020). Notably, the CBD dataset was also used to examine
the SAC capability of SACNet based on single-PE data. The details of each dataset are listed in
Table 1, and the detailed preprocessing methods for each dataset are described in SI-3.

3.2. Implementation, evaluation, and statistical methods

The proposed method was implemented in Python using the PyTorch software library (Paszke et
al., 2019). Our model was trained and tested on a Linux workstation equipped with an Intel Xeon
Gold 6258R CPU and a 48 GB GTX Quadro RTX 8000 GPU. We employed the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of le-4 for optimization. The specific training and
inference configurations for each dataset are detailed in SI-3.

To quantitatively assess SAC performance for diffusion model fitting, we calculated several
metrics based on fractional anisotropy (FA). We did not employ b0 images for the estimation
because b0 images are unable to reflect correction quality in image volumes of diffusion weighting
directions. These metrics included the FA-based mean squared difference (FA-MSD) between
different PE directions, FA-based standard deviation (FA-STD) across multiple PE directions and
FA-based structural similarity (FA-SS, local cross-correlation between FA and structural images
(window size = 3)). To evaluate the diffeomorphism of the estimated inhomogeneity field, we
calculated the number of folding voxels (NFV). For the HCP, HCP-D and multicenter datasets, we
used the FA-MSD, FA-SS and NFV as evaluation indices. Since the dHCP dataset has four unique
PE directions and does not contain a suitable number of structural images, we chose the FA-STD
instead of the FA-SS as an evaluation index. For the CBD dataset, which has only one PE direction,
we chose only the FA-SS and NFV as quantitative evaluation indices. The detailed calculation of
these metrics is described in SI-5.

We used the paired t test on these quantitative metrics for statistical comparisons between
different methods. The detailed results of the statistical analysis are summarized in SI-7.

3.3. Baselines

We adopted conventional and deep-learning based approaches that have demonstrated excellent
performance as baseline models. For inverse-PE datasets, we compared SACNet with the FSL
Topup (Andersson et al., 2003) and S-Net (Duong et al., 2020b) approaches. For the single-PE
datasets, we compared SACNet with the Fieldmap method included in FSL software and a widely

17
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10
11

adopted deep-learning image registration baseline, namely, VoxelMorph (Balakrishnan et al.,

2019). Notably, we constrained the deformation field along the PE direction in VoxelMorph.

To evaluate the effectiveness of prior neuroanatomical information, we considered three

variants of SACNet by inputting only paired b0 images (SACNet(wos)) or inputting structural

images with or without paired b0 images (SACNet(T1w) for T1w image input and SACNet(T2w)

for T2w image input). All three variants were evaluated based on the HCP and HCP-D datasets.

For the dHCP dataset, we only trained SACNet(wos) and SACNet(T2w), as T1w images were not

acquired for some neonates. For the CBD datasets, we only trained SACNet(T1w) and

SACNet(T2w) without paired b0 image inputs since these datasets do not include paired b0 images.
For the multicenter dataset, we only trained SACNet(wos) and SACNet(T1w), as this dataset
includes only T1w structural images.
Dataset HCP HCP-D dHCP CBD Multicenter
Number of 380 644 444 456 30
Scans
Manufacturer Siemens Siemens Philips Siemens Siemens
Platform Customized Prisma Achieva Prisma Prisma
Skyra
Magnetic
Field Strength 3.0 3.0 3.0 3.0 3.0
[Tesla]
Diffusion
Weighted
Image
Phase
Encoding RL, LR AP, PA RL, LR, AP, PA AP, PA
. . PA
Direction
Echo Time 89.5 89.2 90 64 71
[ms]
Repetition 5520 3230 3800 7500 5400
Time [ms]
Image 145x174x145  140x140x92  128x128x64 112x112x70 146x146x92
Dimension
R‘“-[jgggl]‘m 125%125x1.25  1.5x1.5x1.5  1.17x1.17x1.5 2x2x2 1.5%1.5x1.5
Structural
Image
. 1.8/3.6/5.4/7.2
Echo Time  2.14 (TIw)/565 (T1w)/564 156 (T2w)  2.98 (T1w)/564 (T2w) 2.9 (Tlw)
[ms] (T2w)
(T2w)
.. 2400 2500
?ﬁgzt‘[i‘n‘g (T1w)/3200 (T1w)/3200 1200 (T2w) 2530 ggg/ 3200 5000 (T1w)
(T2w) (T2w)
Image 260%311x260 208%300%320 290%290%203 256%224%192 176x240%256
Dimension (T1w, T2w) (Tlw, T2w) (T2w) (T1w)/320%320%256 (T1w)

18
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(T2w)
Resolution 0.7x0.7%0.7 0.8x0.8x0.8  0.5x0.5%0.5 bl x1 1.2x1x1
[mm’] (T1w, T2w) (T1w, T2w) (T2w) (le)/(%;(;jx()j (T1w)
1 Table 1. The acquisition parameter details of each dataset. RL, LR, AP and PA denote the right-left, left-right,
2 anterior-posterior and posterior-anterior phase-encoding directions, respectively.
3 4. Results

4 4.1, Performance on the inverse-PE adult dataset

5  We first used brain scans with inverse-PE protocols in the HCP dataset (300 of 380 subjects were

6  used for training, 40 for validation and 40 for testing) to test our model. We visualized the corrected

7 b0 images and corresponding FA maps (first and second row, Fig. 3A) and calculated the FA-based

8  structural similarity map across the whole brain (third row, Fig. 3A) of different SAC approaches.

9  Our SACNet models demonstrated better correction quality, particularly in the frontal cortex, than
10 Topup and S-Net. Further quantitative comparisons showed that the SACNet(T1lw) and
11 SACNet(T2w) models exhibited significantly better performance in terms of both the FA-MSD
12 (all t<-3.678 and all p<0.001, paired t test) and FA-SS (all t=3.716 and all p<0.001, paired t test)
13 metrics compared to the Topup and S-Net methods, with remarkable improvements of up to 15.9%
14 and 5.9%, respectively (Fig. 3B and Table 2). Furthermore, compared with the SACNet(wos)
15 model without structural images, the SACNet(Tlw) and SACNet(T2w) models achieved
16  significantly lower FA-MSD (all t<-19.455 and all p<0.001, paired t test) and higher FA-SS (all
17 t215.775 and all p<0.001, paired t test) values, indicating the necessity of introducing the prior
18  neuroanatomical information loss component. Finally, our approach showed substantial reductions
19  in the NFV metric (from 1533.8 for Topup and 756.9 for S-Net to only 15.2 for SACNet(T2w),

20 Table 2). More detailed statistical comparisons are shown in Supplementary Table S1.

Structural Topup S-Net SACNet(wos) SACNet(Tiw) SACNet(T2w) 2 X
A Image Correction Correction Correction Correction Correction B FA-MSD FA-SS
0.040- T
+
| 0.350
0.0354 ¢
| 0.3251 I
o| K9 Be
r 0.0304 03004~ J

0.275

£

~-),..

0.025 .
= opu
I 0.250 vt Ry

0.75 + [ S-Net

-/> 0.020

0.50 0.225 4 i [ SACNet(wos)

0.25 [ SACNet(T1:
0.015- 0.200 I etT1w)

0.00 | = sAcNet(T2w)

21
22 Fig. 3. SAC performance based on the HCP dataset (A) The first and second rows of the first column present

19


https://doi.org/10.1101/2023.09.15.557874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557874; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 the T2w and T1w images, respectively. The other columns of the first, second and third rows present the
2 corrected b0 images, the corrected FA maps and the FA-SS maps (local cross-correlation with window size=3
3 between the FA map and the T1w image) for different correction methods, respectively. Warmer colors indicate
4 higher FA-SS values. (B) Boxplots of the FA-MSD and FA-SS values for each method. White circles indicate
5 mean values, and coral horizontal lines indicate median values.
Metrics
Method
FA-MSD (le-2) FA-SS NFV
Topup 2.304+0.180 0.304+0.022 1533.824+456.20
S-Net 2.353+0.377 0.314+0.026 756.98+374.07
SACNet(wos) 2.244+0.444 0.313+0.031 13.62+27.60
SACNet(T1w) 2.062+0.442 0.319+0.031 14.28+35.59
SACNet(T2w) 1.978+0.420 0.322+0.030 15.22+38.17
6  Table 2. The quantitative results based on the HCP dataset. Bold font denotes that the method performs the best
7 among the considered methods.
8 4.2. Performance on the inverse-PE developmental datasets
9  We further conducted experiments based on children’s brain scans. We randomly selected fMRI

10  and structural MR brain images from children in the HCP-D dataset (544 of 644 subjects were
11 used for training, 50 for validation and 50 for testing) and neonates in the dHCP dataset (364 of
12 444 subjects were used for training, 40 for validation and 40 for testing) to estimate the
13 performance of SACNet.

14 For the HCP-D dataset, we observed that our approach obtained better correction quality at
15  cortical boundaries in the frontal gyrus than the Topup and S-Net methods (Fig. 4A). Further
16  quantitative analyses (Fig. 4B and Table 3) showed that SACNet(T1w) and SACNet(T2w)
17  significantly outperformed the Topup and S-Net methods in terms of the FA-MSD (all t<-15.174
18  and all p<0.001, paired t test) and FA-SS (all t>7.483 and all p<0.001, paired t test) metrics.
19  Furthermore, our approach greatly reduced the NFV metric (Table 3). Detailed statistical results
20  are presented in Supplementary Table S2.

21 For the dHCP dataset (Fig. 4C and 4D, Table 4), our SACNet(T2w) approach significantly
22 outperformed the Topup and S-Net methods in terms of both the FA-MSD (all t<-3.998 and all
23 p<0.001, paired t test) and FA-STD (all t<-4.098 and all p<0.001, paired t test) metrics. Detailed

24 statistical results are presented in Supplementary Table S3.
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Structural Topup S-Net SACNet{wos) SACNet(Tlw) SACNet(T2w)
A Image Correction Correction Correction Correction Correction B

FA-MSD FA-SS

0.0275
0.0250
0.02251
0.0200]
00175477
0.0150
0.01251

0.0100+

C D FA-MSD FA-STD
T2w Image Topup S-Net SACNet(wos) SACNet(T2w) 0016+ 0.0704 * L4 ’ |
Correction  Correction Correction  Correction 1
0.0144 ¢ y 0.0654
0.012 4 0.060
00104 I I
0.008 - 0050108 === Topup
0.045
0.006 4 [ S-Net
| 5] | 0040+ = SACNet(wos)
0.004+ Ij% 0.035 B SACNet(Tiw)
1 0002+~ 10030 "~ | [ SACNet(T2w)
2 Fig. 4. (A) The first and second rows of the first column present the T2w and T1w images, respectively. The
3 other columns of the first, second and third rows present the corrected b0 images, the corrected FA maps and
4 the FA-SS maps (local cross-correlation with window size=3 between the FA map and the T1w image) for
5  different correction methods, respectively. Warmer colors indicate higher FA-SS values. (B) Boxplots of the
6  FA-MSD and FA-SS values for each method based on the HCP-D dataset. (C) The first column presents T2w
7  images. The other columns of the first and second rows present the corrected FA maps along the LR-RL and
8  AP-PA directions for different correction methods, respectively. (D) Boxplots of the FA-MSD and FA-STD
9  values for each method based on the dHCP dataset. For the boxplots in (B) and (D), the white circles indicate
10 the mean values, and the coral horizontal lines indicate the median values.
Metrics
Method
FA-MSD (le-2) FA-SS NFV
Topup 1.698+0.151 0.431+£0.015 1615.00+536.43
S-Net 1.852+0.369 0.421+£0.015 1046.68+562.00
SACNet(wos) 1.459+0.314 0.434+0.016 1.44+10.08
SACNet(T1w) 1.285+0.252 0.443+0.014 7.28+18.56
SACNet(T2w) 1.265+0.248 0.443+0.014 6.74+22.89

11 Table 3. The quantitative results based on the HCP-D dataset. Bold font denotes that the method performed the

12 best among the considered methods.

Metrics

FA-MSD (le-2) FA-STD NFV (LR-RL) NFV (AP-PA)

Method
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Topup 0.729+0.262 0.047+0.007 1071.46+£1114.40 44.80+96.46

S-Net 0.522+0.208 0.042+0.007 99.32+74.93 176.24+89.54
SACNet(wos) 0.496+0.197 0.042+0.007 3.50+11.62 0.27+1.70
SACNet(T2w) 0.464+0.180 0.04110.007 3.41+8.48 0.10+0.62

1 Table 4. The quantitative results based on the dHCP dataset. Bold font denotes that the method performed the

2 best among the considered methods.
3 4.3. Performance on the single-PE developmental dataset
4  Next, we employed brain scans from a subset of the CBD project acquired from Peking University
5 (CBDP) (242 of 322 subjects were used for training, 40 for validation and 40 for testing) to
6 evaluate the performance of SACNet on single-PE developmental brain images. The visual
7  examination showed that our approach exhibited better correction quality in the frontal cortex than
8 the Fieldmap and VoxelMorph methods (Fig. 5A). Quantitatively, SACNet(T1w) and
9  SACNet(T2w) obtained significantly higher FA-SS values than FieldMap and VoxelMorph (all
10  t>5.581 and all p<0.001, paired t test).
11 To further evaluate the generalization performance of SACNet on single-PE images across
12 centers, we used another subset acquired from Beijing Huilongguan Hospital (CBDH) (all 134
13 subjects were used for testing the model trained with the CBDP subset). The quantitative results
14  were similar to what we observed with the CBDP subset (all t=9.698 and all p<0.001, paired t test),
15 indicating the robust generalization capability of SACNet with the single-PE developmental
16  dataset.
17 We did not show the NFV value of each method for the two subsets because all of them were
18  close to 0. Quantitative results are provided in Fig. 5B and Table 5. The detailed statistical results

19  are provided in Supplementary Table S4.

Structural No Correction Fieldmap VoxelMorph  SACNet(Tlw) SACNet(T2w)

Image Correction  Correction  Correction  Correction B FA-SS (CBDP) FA-SS (CBDH
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presents the T1w image. The other columns of the first, second and third rows present the corrected b0 images,
the corrected FA maps and the FA-SS maps (local cross-correlation with window size=3 between the FA map
and the T1w image) for different correction methods, respectively. Warmer colors indicate higher FA-SS
values. (B) Boxplots of the FA-SS values for each method based on the CBDP and CBDH subsets. The white

circles indicate the mean value, and the coral horizontal lines indicate the median value.

Datasets & Metrics (FA-SS)

Method
CBDP CBDH
No Correction 0.416+0.012 0.402+0.021
Fieldmap 0.445+0.011 0.430+0.023
VoxelMorph 0.427+0.010 0.414+0.020
SACNet(T1w) 0.454+0.010 0.442+0.021
SACNet(T2w) 0.447+0.011 0.434+0.022

Table 5. The quantitative results based on the CBD datasets. Bold font denotes that the method performed the

best among the considered methods.
4.4. Performance when using the multicenter traveling adult subjects with inverse-PE
dataset

Finally, we evaluated the performance of the SACNet models with a public multicenter dataset
that contains MR images from three traveling subjects collected over 10 sites. We first assessed
whether our model obtained excellent SA correction quality after fine-tuning using only a small
dataset (brain images of all subjects from the first site were used for model fine-tuning based on
the models trained with the HCP dataset; see detailed fine-tuning strategy in SI-6). The quantitative
comparisons presented in Fig. 6A and Table 6 show that the SACNet(T1w) approach significantly
outperformed the Topup and S-Net methods in terms of FA-MSD (all t<-10.433 and all p<0.001,
paired t test) and FA-SS (all t=3.149 and all p<0.004, paired t test). Detailed statistical results are
provided in Supplementary Table SS.

To test whether our model could reduce multicenter effects, we calculated the mean coefficient
of variation (CV) and regional intraclass correlation coefficient (ICC) of all corrected FA images
for each SAC model separately (detailed definitions of CV and ICC are presented in SI-5). Lower
CVs or higher ICCs represent smaller multicenter residuals. The SACNet(T1w) model obtained a
significantly lower CV in all subjects (all t<-12.674 and all p<0.001 for all subjects, paired t test)
than Topup and S-Net. Moreover, the SACNet(T1w) model obtained significantly higher ICCs in
the frontal, temporal, and occipital lobes (all t>18.059 and all p<0.001, paired t test) than Topup
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1 and S-Net. Notably, we found that SACNet(T1w) obtained significantly higher ICC values than
2 SACNet(wos) in the frontal (t=12.789, p<0.001, paired t test), temporal (t=6.806, p<0.001, paired
3 ttest), and subcortical (t=2.065, p=0.039, paired t test) areas, which indicated that the introduction
4  of prior neuroanatomical information in SAs correction is valuable for reducing the multicenter

5 effects. Detailed statistical results are provided in Supplementary Tables S6 and S7.

A B : , .
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0.020 *
35 4 35 4 35
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0.0 J J J —( Y
0.2 4 [ SACNet(wos)
6 Frontal Parietal Temporal Occipital Subcortical E— SACNet(T1w)
7  Fig. 6. (A) Boxplots of the FA-MSD and FA-SS values obtained by each SAC method in the multicenter
8  dataset. (B) Boxplot of the CV distribution for each method in three traveling subjects. (C) Boxplot of the ICC
9  distribution in each brain lobe for each method. For all the boxplots in (A), (B) and (C), the white circle
10 indicates the mean value, and the coral horizontal line indicates the median value.
Metrics
Method
FA-MSD (le-2) FA-SS NFV
Topup 1.703+0.123 0.421+0.008 9.80+9.23
S-Net 1.689+0.172 0.414+0.009 35.30+40.66
SACNet(wos) 1.490+0.185 0.423+0.010 0.00=0.00
SACNet(T1w) 1.483+0.175 0.425+0.010 0.27+0.57
11 Table 6. The quantitative results based on the multicenter dataset. Bold font denotes that the method performed
12 the best among the considered methods.
13 4.5. Ablation studies
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1 We separately assessed the effectiveness of the DEW module, DPF, CTF training and inference
2 protocols (Section 4.5.1) and each component loss in the prior neuroanatomical information loss
3 (Section 4.5.2) with ablation studies. The experiments were carried out based on the HCP dataset,
4  and the T2w images were employed as the prior neuroanatomical information.
5 4.5.1. Ablation studies on the DEW module, DPF and CTF protocols
6  The effects of different combinations of the three components are presented in Table 7. Without
7 the DEW module, the proposed method achieved the worst SAC performance, with the highest
8  FA-MSD and lowest FA-SS values. Without the DPF, the number of folding voxels increased, and
9  SAC performance decreased. Without the CTF protocols, SAC performance decreased, with
10  increased FA-MSD and decreased FA-SS values. Additionally, SACNet required approximately
11 24 hours for training without the CTF protocols and only required approximately 12 hours for
12 training with the CTF protocols.
13 4.5.2. Ablation studies on each component loss inLg;,, ¢
14 Lgycr contains the overall shape structural similarity 10ss Lg_ gperqu @and the pairwise structural
15  similarity l0ss Ls_pqir- Table 8 shows that the SAC performance of the model depended on each
16  component loss in Lg.,.. The best performance was achieved by leveraging both Lg;_ pperqn and
17 Lgtr—pair in the network optimization. Furthermore, Lty —operau and Lgiy_pqir both improved the

18  SAC performance independently.

Metrics
DEW DPF CTF
FA-MSD (le-2) FA-SS NFV
X v v 2.541+0.335 0.297+0.025 70.80+77.782
v X v 2.000+0.428 0.320+0.031 673.85+595.99
v v X 2.077+£0.429 0.321+0.029 18.70+33.28
v v v 1.978+0.420 0.322+0.030 15.224+38.17

19  Table 7. The quantitative results of the ablation study based on the use of the DEW module, DPF

20 and CTF protocols.
Metrics
Lstr—overall Lstr—pair
FA-MSD (le-2) FA-SS NFV
X X 2.244+0.444 0.313+0.031 13.62+27.60
X v 2.073+£0.439 0.318+0.031 13.904+37.33
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v X 2.032+0.417 0.320+0.030 20.60+42.06
v v 1.978+0.420 0.322+0.030 15.22+38.17

Table 8. The quantitative results of the ablation study of L.
4.6. Runtime analysis
Table 9 shows the running time for estimating the inhomogeneity field image of a single scan based
on each dataset for three SA correction methods: SACNet and two conventional methods,
Fieldmap and Topup. The results show that SACNet is significantly more efficient than the
conventional methods. These results indicate that SACNet has a significant advantage in
processing large-scale datasets due to its ultrafast computational speed compared to those of

conventional methods.

Method HCP HCP-D dHCP CBD Multicenter
Fieldmap — — — ~4 hours —
Topup 3061 1740 986 — 1320
SACNet (CPU) 3.87 3.57 1.30 0.89 3.22
SACNet (GPU) 2.17 1.52 0.73 0.46 1.30

Table 9. Running time (in seconds). “—"" denotes that there is no valid value.

5. Discussion and conclusion

We proposed an unsupervised multiscale convolutional registration network (SACNet) to remove
SAs in brain EPI images. This model could generate diffeomorphic inhomogeneity fields based on
either inverse-PE or single-PE images and employ prior neuroanatomical constraints from
additional T1w or T2w images. Extensive experiments on neonatal, child and adult brain dMR
images with different PE directions and PE numbers showed that our SACNet not only
outperformed most popular conventional correction methods, such as Topup and Fieldmap, but
also surpassed deep-learning based methods, such as S-Net and VoxelMorph. Furthermore, by a
fine-tuning strategy with few samples in a multicenter dataset with traveling subjects, our model
showed both better SAC performance and lower multicenter effects than the Topup and S-Net
approaches. Our model reduced the time to generate inhomogeneous field images from the tens of
minutes needed for conventional iterative approaches to a few seconds while maintaining state-of-
the-art SAC performance; this outcome shows the potential advantages of SACNet for integrating
multisite neuroimaging data in future brain development studies.

5.1. Applications to large-scale neuroimaging studies
26
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Recent brain neuroimaging investigations have entered the era of “big data” (Bethlehem et al.,
2022; Landhuis, 2017; Rutherford et al., 2022; Sejnowski et al., 2014; Xia and He, 2017) by
integrating tens of thousands of image scans acquired at multiple centers. We emphasize that our
SACNet approach is well suited for large-scale neuroimaging studies involving many individual
scans for several reasons. First, we provided a range of models that have been pretrained based on
diverse datasets with different ages and acquisition protocols, enabling users to fine-tune the
models with only a few images according to their needs and to achieve excellent SAC in their own
datasets (Section 4.4). Although recent cohort projects have used uniform EPI phase encoding
protocols, many legacy datasets were acquired with various EPI protocols or even no EPI artifact
correction sequences. Considering the high cost of acquiring human brain MR images, the
utilization of existing databases is highly valuable. Second, our SACNet model effectively reduced
the potential multicenter effects related to SAs (Section 4.3). Recent approaches for multicenter
effect correction in brain MR images have received much methodological attention. Our model
significantly reduced multicenter noise without using additional correction algorithms,
highlighting the necessity of considering SAs in multicenter correction frameworks. Notably, our
approach does not require correcting the multicenter effects in raw structural images, and further
incorporation with multicenter structural image harmonization algorithms (Tian et al., 2022) could
be attempted. Third, compared with conventional iterative optimization methods, SACNet can
process many images from multiple subjects at fast speeds due to its ultrafast inference time
(Section 4.6). Notably, SACNet does not require a large amount of CPU memory (approximately
3000 MB), making it convenient for batch processing in computing clusters. Fourth, we developed
a comprehensive dMRI preprocessing pipeline specifically for SACNet, which integrated the
output interface of SACNet with the input interface of existing dMRI postprocessing pipelines
(Glasser et al., 2013). Finally, compared with existing deep-learning based SAC methods, for
which only the developmental source code is available, we utilized the containerization technique
to integrate our software source code and development environment, making it easy for users to
deploy SACNet in their computational servers.

5.2. Effective network designs and integrated loss constraints in SACNet enable excellent

SAC performance

A common deep-learning based brain registration framework is insufficient for solving the SAC
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problem. Thus, we proposed several key designs to ensure the high quality of the generated
inhomogeneity field and carefully evaluated their effectiveness. First, the combination of the DEW
module and the DPF jointly enhanced the SAC capability of SACNet (first row vs. last row, second
row vs. last row in Table 7). The DEW module successfully removed SAs by multiplying the
Jacobian determinant of the inhomogeneity field with the geometric-corrected image, which
facilitated the convergence of the network. In addition, the DPF constrained the inhomogeneity
field in diffeomorphic space, thus reducing the number of invalid voxels (presented as negative
intensity values and folding patterns) included in the DEW calculation process during model
training and preventing overfitting of the network. Second, due to the severe SAs at temporal and
frontal cortical boundaries (especially at the temporal pole and orbitofrontal cortex), anatomical
morphologies within certain brain locations were barely conserved. Thus, it is imperative to
incorporate prior neuroanatomical information to obtain excellent correction results. Previous
methods that used structural images as additional inputs to the network were not sufficient to obtain
good morphological images since these methods only provide information features and do not
contribute to the loss function calculation (Hu et al., 2020; Schilling et al., 2020). To address this
issue, we carefully designed a prior neuroanatomical information loss function, Lz, that was
optimized for SAC by incorporating gradient-based information from structural images. This
function Lg;yyc¢ includes two components: Ly _pair a0d Lty operair- Lstr—pair Was used to align

the corrected image pair Epg, and Epg, to the structural image Ig¢c¢ In a pairwise manner (third

row vs. last row in Table 8), and Lgi)_pperqu Improved the overall structural alignment between
the final corrected image Efing; and Isipqy ¢ (s€cond row vs. last row in Table 8). Moreover, the
choice of an intensity-irrelevant structural metric, the NGF, allows users to use either T1w or T2w
images as input neuroanatomical information, thereby improving the compatibility of SACNet for
different types of clinical datasets. Third, the well-designed CTF training and inference protocols
adopted in SACNet accelerated the training process and improved model convergence (third row
vs. last row in Table 7), and similar strategies have been broadly deployed in conventional SAC
methods (Bhushan et al., 2015; Duong et al., 2020a; Irfanoglu et al., 2015; Ruthotto et al., 2012).
5.3. Comparison with deep-learning based methods

Previous studies have proposed several deep-learning based registration approaches to address the

SAC problem. For example, Bian et al. proposed correcting distortions by registering distorted b0
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images in a single-PE direction to T1w images through the VoxelMorph backbone by optimizing
the mutual information (MI) loss (Bian et al., 2023). However, this approach is limited to single-
PE type data and was not compared with other methods designed specifically for the SAC problem.
Duong et al. and Zahneisen et al. predicted inhomogeneity fields to remove SAs with 3D and 2D
CNN:ss, respectively (Duong et al., 2020b; Zahneisen et al., 2020). However, the performance of
these models is limited, as the models either ignore the intensity distortion problem or treat each
volume slice as an independent example for training, resulting in inadequate SAs correction or
inconsistent alignment between slices. Other methodological approaches for solving the SAC
problem have also been developed. Several studies have used image generation approaches for
SAC tasks. For example, Hu et al. and Ye et al. used high-resolution distortion-free point spread
function encoded EPI (PSF-EPI) data as undistorted ground truth data for CNN training (Hu et al.,
2020; Ye et al., 2023). Schilling et al. synthesized undistorted b0 images with U-Net or generative
adversarial networks (GANs) and then entered both the “synthesized” and “real” b0 images as
input into Topup to remove SAs (Schilling et al., 2020; Schilling et al., 2019). These supervised
approaches need ground truth images as learning targets, which largely depend on the feature
distribution of the training images. This may lead to difficulty when facing brain images with
heterogeneous appearance, such as those of neonatal brain scans. Moreover, when these
approaches are applied to a new neuroimaging dataset, acquiring undistorted images for fine-
tuning can often be a costly endeavor. In contrast to image generation-based methods,
unsupervised registration-based methods, such as our approach, require no ground truth labels.
Interestingly, Qiao et al. proposed the distortion correction network (DrCNet) by feeding fiber
orientation distribution (FOD) information into U-Net and successfully corrected residual
distortions that could not be eliminated by Topup (Qiao and Shi, 2021). Compared to DrCNet, our
SACNet method can be applied not only to dMRI data but also to fMR images. Moreover, the
performance of SACNet may be further enhanced by incorporating rich diffusion-based
information, such as DWIs and FODs, into the integrated loss function.

5.4. Limitations and future directions

Several issues in this study should be considered. First, although the additional neuroanatomy
priors improve the SAC performance of our SACNet, it may be worthwhile to explore the further

employment of white matter information from dMRI data itself (Irfanoglu et al., 2015; Qiao and
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Shi, 2021; Qiao et al., 2019). Second, the presence of other nonnegligible artifacts, such as eddy
current-induced distortions and intrasubject movements, in dMRI data should be acknowledged
(Andersson and Sotiropoulos, 2016). It would be interesting to develop a deep-learning based tool
in conjunction with SACNet to address these artifacts. Third, registration-based methods may
become unsatisfactory in 7T MR images due to severe signal loss issues. Given that the deep
generative model (DGM) has shown the ability to capture complex distributions of real 7T data
(Nie et al., 2018), combining the DGM with SACNet could be a promising approach. We hope
that SACNet can offer a general framework for SAC task in multicenter datasets with top-ranking
performance, robust output and efficient computational speed, which could facilitate a wide variety

of future brain studies using large-scale multicenter neuroimaging datasets.
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Data availability:

The datasets from the Human Connectome Project and the Lifespan Human Connectome Project
Development are available at https://www.humanconnectome.org. The dataset from the
Developing Human Connectome Project is available at https://www.developingconnectome.org.
The Multicenter dataset is available at https://doi.org/10.6084/m9.figshare.8851955.v6. Raw

imaging data is available from the corresponding authors upon reasonable request.

Code availability:

The source code that implements our software is available at
https://github.com/RicardoZiTseng/SACNet.
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