bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557737; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Transcriptomic signatures of Ap- and tau-induced neuronal
dysfunction reveal inflammatory processes at the core of Alzheimer’s
disease pathophysiology

Lazaro M. Sanchez-Rodriguez'??, Ahmed F. Khan'*3, Quadri Adewale!??, Gleb Bezgin'?3*,
Joseph Therriault!>*, Jaime Fernandez-Arias'?*, Stijn Servaes'>*, Nesrine Rahmouni'**, Cécile
Tissot">*, Jenna Stevenson'?*, Hongxiu Jiang!*?, Xiaogian Chai'*, Felix Carbonell®, Pedro Rosa-
Neto!>*, Yasser Iturria-Medina'**"

'Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada.
3Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada.

“McGill University Research Centre for Studies in Aging, Douglas Research Centre, Montreal,
Canada.

5Biospective Inc., Montreal, Canada.

“Corresponding author: YIM (yasser.iturriamedina@mcgill.ca)



mailto:yasser.iturriamedina@mcgill.ca
https://doi.org/10.1101/2023.09.15.557737
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557737; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Molecular mechanisms enabling pathology-induced neuronal dysfunction in Alzheimer’s disease
(AD) remain elusive. Here, we use mechanistic computational models to infer the combined
influence of PET-measured AP and tau burdens on fMRI-derived neuronal activity and to
subsequently identify the transcriptomic spatial correlates of AD pathophysiology. Our results
reveal overrepresented genes and biological processes that participate in synaptic degeneration and
interact with AP and tau deposits. Furthermore, we confirmed the central role of the immune
system and neuroinflammatory pathways within AD pathogenesis; microglia were significantly
enriched in the gene set associated with AP and tau synergistic influences on neuronal activity.
Lastly, our computational approach unveiled drug candidates with the potential to halt or reduce
the observed pathological effects on neuronal activity, including existing medication for cancer,
immune disorders, and cardiovascular diseases, many currently under clinical evaluation in AD.
Overall, these findings support the notion that the AD brain experiences functional changes

intricately associated with a diverse spectrum of molecular processes.
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Introduction

Alzheimer’s disease (AD) seems to be determined by multiple interacting molecular
elements and generalized dysfunction (Calabro et al., 2021; Iturria-Medina et al., 2022). Notably,
91% of all molecular pathways recorded in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) have been found to be associated with AD in at least 5 studies (Morgan et al., 2022). In
cell culture, animal and post-mortem research, mechanisms of neuroinflammation/immune
system, metabolism, cholinergic synapse, cancer, diabetes and chemokine signaling typically rank
high in associations with AD (Calabro et al., 2021; Morgan et al., 2022; Santiago & Potashkin, 2021).

However, these results may not fully capture disease progression in the living human organism.

Neuronal dysfunction in AD is associated with toxic protein accumulation, including
amyloid beta (AP) plaques and tau neurofibrillary tangles (NFTs) (Jack et al., 2018; Maestd et al.,
2021). PET-measured AP and tau aggregation in the brain serve to predict cognitive decline
(Chandra et al., 2019). In-vivo animal experiments and modeling approaches suggest that Ap and
tau also synergistically interact to impair neuronal (Maestu et al., 2021; Targa Dias Anastacio et
al., 2022; van Nifterick et al., 2022), with AP and tau pathologies likely prompting brain network
hyperactivity as the disease progresses (Busche & Hyman, 2020; Tok et al., 2022; Vossel et al., 2017).
Although these effects are consistent across the literature, limitations to concurrently measure
neuronal activity alterations, pathological severity, and molecular profiles in the living human
brain represent a major obstacle towards clarifying AD mechanisms (Gabitto et al., n.d.; Iturria-
Medina et al., 2022; Maestu et al., 2021; Nandi et al., 2022). Lacking definitive pathways to target,
the incomplete characterization of AD’s pathophysiology may have contributed to the limited
efficacy of some of the thus-far proposed therapeutics (Cummings et al., 2021; Iturria-Medina et

al., 2018). Increasing the understanding of the affected biological processes will also allow their
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early modification through healthy lifestyle choices and clinical monitoring, boosting disease
prevention (Silva et al., 2019; World Alzheimer Report 2022 — Life after Diagnosis: Navigating Treatment,

Care and Support, n.d.).

Integrative computational modeling of in-vivo human pathophysiological processes offers
a powerful alternative to circumvent experimental shortcomings in AD research (Adewale et al.,
2021; Carbonell et al., 2018; Deco et al., 2018; Iturria-Medina et al., 2021, 2022; Khan et al., 2022; Lenglos
et al., 2022; Sanchez-Rodriguez et al., 2018; Sotero & Trujillo-Barreto, 2008; Stefanovski et al., 2019). We
recently used personalized computational models to decode synergistic AP and tau effects on
neuronal excitability in AD progression (Sanchez-Rodriguez et al., 2023). This allowed us to
robustly infer in-vivo patient-specific values of neuronal excitability and describe their associations
with pathological severity, disease biomarkers (e.g., p-tau217, p-tau231) (Zetterberg & Blennow,
2021) and altered electroencephalographic indexes (Babiloni et al., 2013; Sanchez-Rodriguez et
al., 2018). The obtained AP and tau weights also predicted cognitive decline in the AD-related
cohort. However, the precise molecular pathways by which AD pathology impacts neuronal

excitability throughout the brain remain largely uncharacterized.

In this study, we aimed to describe the biological underpinnings of neuronal activity
alterations in AD's pathophysiology. First, we utilize generative brain models to estimate the
combined spatiotemporal influence of AP and tau (measured via PET) on neuronal activity
(measured through fMRI biomarkers) for cognitively unimpaired and AD participants. Second, we
use whole-brain transcriptomics to identify genes with spatial expressions predicting the regional
neuronal activity effects of AP, tau and their synergistic interaction, respectively. We examine this
evidence in the context of the biological mechanisms that may be associated with AD’s

development. This analysis results in a clear and consistent AB+tau — neuronal-activity molecular
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profile, with both distinctive mechanisms and processes shared with diseases such as infection,
cancer and retinal conditions. Major associations with immune system, cell communication and
developmental mechanisms exist, driven by the synergistic interaction of AP and tau. Third, we
detect the cell types that are most likely related to neuronal activity alterations by the causal
combined roles of AP and tau pathologies, observing a predominant role of microglia. Fourth, we
identify potential pharmacological interventions repurposing existing drugs to modify the diseased
biological processes. Collectively, our computational experiments demonstrate the complexity of
the disease and characterize its diverse biological affectations profile. This comprehensive
computational approach discovers fundamental in-vivo disease mechanics to target with advanced

therapeutics.

Results

Neuronal activity alteration patterns in AD reveal molecular disease signatures

We obtained in-vivo structural and functional MRI, AP and tau-PET and clinical
evaluations for 47 cognitively unimpaired (CU) and 16 AD participants (Supplementary File 1—
table 1) from the Translational Biomarkers in Aging and Dementia cohort (TRIAD,

https://triad.tnl-mcgill.com/). In addition, we processed bulk transcriptomic data for the whole

adult human brain from the Allen Human Brain Atlas (AHBA) (Adewale et al., 2021; Allen
Human Brain Atlas, 2013). We used a personalized computational model to decode the causal
spatial influence of AP, tau and their combined synergistic interaction on neuronal activity
(modeled as the regional multiplication of the AP and tau burdens, AP-tau) (Sanchez-Rodriguez et
al., 2023) —see Figure 1. For each AD and CU subject in the TRIAD database, we assumed that

neuronal excitability across the brain regions was potentially influenced by the local AP and tau
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accumulations. These alterations spatiotemporally transmit through intra- regional and cortico-
cortical connections (derived from diffusion MRI). The in silico pathophysiological excitatory and
inhibitory activities (Wilson & Cowan, 1972) were transformed into blood-oxygen-level-dependent
(BOLD) signals (Sotero & Trujillo-Barreto, 2007; Valdes-Sosa et al., 2009) and fitted to the subject’s
real BOLD signal content in the physiologically-relevant neuronal activity range (0.01-0.08 Hz)
(Yang et al., 2018). Subsequently, we identified distinctive spatial AP, tau and Af-tau neuronal
activity alterations patterns via statistical evaluation of their induced neuronal excitability

perturbations in the AD vs CU groups.

We aimed to determine the genes from the human transcriptome whose spatial expressions
predict the regional neuronal activity effects by each pathophysiological factor. For this purpose,
we computed 99% bootstrap confidence intervals (99CI) for the brain-wide correlations between
the AP, tau and AP-tau spatial patterns and the expression of each gene in the AHBA transcriptome.
We-identified 756, 650 and 1987 genes, respectively, in the AP, tau and Ap-tau-associated gene
sets (99CI did not include zero). The lists, provided in Supplementary File 2, include several genes
that might affect AD risk (Calabro et al., 2021). For instance, the microglial activation modulator
CD33 (Sialic Acid-Binding Ig-Like Lectin 3) is one of the top-ranked genetic factors identified in
AD genome-wide association studies (Zhao, 2019). Gene ADAMIO (o disintegrin and
metalloproteinase domain-containing protein 10) plays a critical role in cleavage of the amyloid
precursor protein (APP) (Calabro et al., 2021). SNCA (synuclein A) is essential for presynaptic
signaling and membrane transport and participates in NFT formation and AP deposits (Calabro et
al., 2021). Finally, the protein encoded by the gene CLU (clusterin) inhibits A fibrils formation
(Calabro et al., 2021). As reported in the next subsections, the AP, tau and AB-tau molecular

associates of AD pathogenesis were further investigated in terms of overrepresented biological
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mechanisms, cellular types associated with brain-wide functional affectations and repositioned

drug candidates with potential therapeutic benefit.
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Figure 1. Methodological approach for determining the molecular mechanisms associated

with AP and tau-induced neuronal dysfunction in AD. (A) For each participant, neuronal

excitability within a brain region depends on the combined AP and tau accumulations. Simulated

excitatory and inhibitory activities are transformed into BOLD signals. The most-likely in-vivo

subject-specific AP and tau effects are obtained through maximizing the similarity with the

participant’s real fMRI across regions. (B) Statistical comparison of the obtained regional A, tau

and A-tau contributions to pathophysiological neuronal activity between the AD and CU groups
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yields spatial alterations patterns by each of these disease factors (the higher the statistic, the more
different the groups are). Next, we investigate spatial correlations with neurotypical whole-brain
transcriptomics (99% bootstrap confidence intervals) and obtain the genes which expressions
predict the regional neuronal activity effects by AP, tau and AP-tau. (C) The sets of AP, tau and
Ap-tau molecular associates serve to study enriched biological processes (molecular pathways
from multiple gene ontologies being overrepresented in these gene lists) (Zhou et al., 2019), brain
cell-types (the AP, tau and AP-tau gene sets having higher expression for a particular cell type than
what is expected by chance) (Skene & Grant, 2016) and prospective repositioned pharmacological
agents to halt or reduce AD-affected processes (by comparing the gene sets to databases of ranked

gene lists for drug-induced gene expression changes) (Evangelista et al., 2022).

Immune and cell communication processes relate to AD pathology-induced neuronal

dysfunction

Despite the moderate isolated influence of single molecules, multifactorial and complex
disorders like AD are more recently approached in terms of comprehensive biological processes
expressing the disease’s signatures (Calabro et al., 2021; Iturria-Medina et al., 2022; Morgan et
al., 2022). We proceeded to compare the three neuronal activity alterations-associated gene sets to
ontology terms from various sources in Metascape (Zhou et al., 2019), detecting the molecular
pathways that are significantly overrepresented in the combination of such genetic signatures
(Methods, Statistical Analyses, Supplementary File 3). The top 20 enriched functional clusters that
were retrieved, together with the gene lists where the pathways were found statistically significant

(hypergeometric tests, FDR-corrected, g< 0.05) are shown in Figure 2A. Supplementary File 1—
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table 2 presents the AP+tau — neuronal-activity genes that are consistently involved (95%

percentile) within the top statistically significant identified biological pathways.

Biological processes with a high genetic overlap are also visualized in a connected network
(Figure 2B) reflecting the relatedness of separate pathways (Zhou et al., 2019). In this manner, we
observe the clustering of various neuroinflammation and immune system pathways, i.e.,
inflammatory response biological processes connect with the positive regulation of immune
effector process, positive regulation of response to external stimulus, leukocyte activation (and its
regulation) pathways, given the high similarity of their enriched terms. Persistent chronic
inflammation, due to genetic and lifestyle factors, plays a key role at the onset and later progression
of neurodegeneration (Calabro et al., 2021; Newcombe et al., 2018). Notably, A and tau
accumulation can both trigger and be triggered by disbalanced inflammatory signals (Newcombe
et al., 2018). Another functional cluster consists of developmental processes (sensory organ
development, tissue morphogenesis, pattern specification process). Cell communication/transport
mechanisms that are fundamental to proper synaptic function and are implicated in AD
pathogenesis according to several reports (Gadhave et al., 2021) were also pinpointed among the
top enriched molecular processes in a major cluster (regulation of secretion, regulation of vesicle-
mediated transport, export from cell, signaling by GPCR). Figure 2 summarizes the
comprehensive view of the molecular mechanisms that associate with the causal combined roles

of A and tau pathologies on AD’s neuronal activity alterations.
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Figure 2. Neuroinflammation pathways emerge as major processes associated with Ap-tau
interactions. (A) Top 20 pathways clusters from multiple gene ontologies that are enriched in the
combined Af-, tau- and A-tau-associated gene sets (hypergeometric tests, q < 0.05, Benjamini-
Hochberg corrected). The representative biological processes (term with the lowest p-value within
a cluster) are used as labels. Additionally, the specific gene set(s) for which the pathways are
statistically significant have been indicated next to the bar graph. (B) Network plot showing the
intra-cluster and inter-cluster similarities among the obtained molecular processes. Each node
represents an enriched pathway. The network is colored by the cluster labels, which are written
next to each cluster. Major clusters include neuroinflammation and immune system processes (C1),

developmental pathways (C2) and cell communication mechanisms (C3).
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Additionally, we examined biological processes separately related to the AP, tau and
AP-tau gene sets. These results appear in Supplementary Files 4-6. Immune system pathways were
once again overrepresented in the AP-tau set, while developmental and synaptic processes were
enriched for APB’s molecular associates. Notably, some pathways that ranked lower in the
integrative analysis in Figure 2, had relevant associations with the tau-associated gene list (with
less elements than the AP and AP-tau molecular signatures). Amongst the enriched terms, several
supposedly tau-related processes (R. E. Bennett et al., 2018; Mandelkow & Mandelkow, 2011)
including cortical cytoskeleton organization, regulation of actin filament organization, blood

vessel development and post-translational protein phosphorylation appeared.

We also explored molecular associations with other diseases according to the genes
predicting the spatial neuronal activity combined A and tau effects. We determined which disease
pathways, curated in DisGeNET (Pifiero et al., 2017; Zhou et al., 2019), were enriched in our gene
sets (Supplementary File 1—figure 1, Supplementary Files 7-9). Notably, the obtained enriched
terms include several infection and immunological conditions (e.g., immunosuppression, Behcet
syndrome and lupus), certain cancers, and eye diseases, for the three considered sets of molecular
associates. Likewise, we retrieved emblematic AD phenotypical symptoms (D. A. Bennett et al.,
2013; Ghiso & Frangione, 2002) like memory impairment (enriched in both AP and tau signatures)
and amyloidosis (AP), further demonstrating that our approach unifying whole-brain
transcriptomics, molecular and functional neuroimaging, and personalized computer-simulated

neuronal activity reliably identifies affected biological mechanisms.

Pyramidal cells, interneurons and microglia are vulnerable to the AP, tau and Ap-tau

molecular associates
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Next, we hypothesized that the gene sets associated with each of the pathophysiological
neuronal activity patterns would be particularly enriched in distinct cell types. We performed a
bootstrapping-based cell type enrichment analysis on the Expression Weighted Celltype
Enrichment toolbox (Skene & Grant, 2016) and determined the statistical likelihood of brain cell
types being enriched compared to a background gene set (transcriptome obtained from the

somatosensory cortex and hippocampus CA1) (Figure 3).

We found strong evidence supporting pyramidal cells (q = 0.002 and 6 = 3.804, denotes
the number of standard deviations which the average expression of the gene list falls from the
bootstrapped mean) and endothelial-mural cells, the constituent of blood vessels (q = 0.008 and 6
= 2.950), as the cell types most enriched amongst the AP molecular associates. Previous
experiments (Koizumi et al., 2016) show impairment to cerebral blood vessels by extracellular
buildup of AP, while vascular dysfunction may promote AP accumulation in a detrimental
feedback loop. Pyramidal neurons, the most abundant neural cells in the cortex, are known to be a
preferential target for both AP and tau toxic deposits (Maestu et al., 2021). In consequence, we
would expect statistically significant overrepresentation in both cases. However, only interneurons
presented significant enrichment for the tau susceptibility genes, according to the bootstrapping
analysis (q = 0.021 and & = 2.834). Phosphorylated tau seems to accumulate early in hippocampal
interneurons of AD patients, impairing adult neurogenesis and circuital function (Xu et al., 2020;
Zheng et al., 2020). On the other hand, the AB-tau molecular signature had significant microglial
expression (q < 0.001 and 6 = 10.425). To our knowledge, functional AP and tau interactions have
never been studied in the context of genetic cell enrichment although analyses of the disease’s
polygenic post-mortem expression have also found damage to microglia (Galatro et al., 2017;

Newcombe et al., 2018).
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Our observations will necessitate further validation to fully comprehend the causal cell-
specific synergistic effects of AP and tau. For this purpose, a brain-wide multimodal cell type atlas
of AD could be available from The Seattle Alzheimer’s Disease Cell Atlas (SEA-AD) consortium
in the future (Gabitto et al., n.d.). Different pathophysiological mechanisms may determine

specific cellular vulnerability patterns.

A
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Figure 3. Transcriptomic associates of AB- and tau-induced neuronal activity alterations
converge to neuro-vascular cellular compartments. Results of bootstrapping tests to evaluate
the probability of the AB-, tau- and Ap-tau-associated gene sets having higher expression for a
particular brain cell type than what is expected by chance. (A) Number of standard deviations from
the bootstrapped mean for every gene set and cell type. Non-white boxes indicate that the given
molecular associates’ expression in the specific cell type is, on average, higher than that of the
bootstrapped sets. (B) Statistically significant enrichment (q < 0.05, Benjamini-Hochberg

corrected).

Repurposed immunologic drugs could halt or reduce AD
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Finally, we examined whether existing drugs could be repurposed to temper AD’s observed
pathological effects. For this purpose, we computationally searched for chemical compounds with
well-described mechanisms of action maximally up or down regulating the expression of all the
genes in the AP+tau — neuronal-activity molecular profile, utilizing the webserver SigCom
LINCS (Evangelista et al., 2022). In Figure 4, we report the top statistically significant (q < 0.05)
candidate drugs for LOAD that have been FDA-approved for intended use elsewhere (accessed

through https:/pubchem.ncbi.nlm.nih.gov/ on May 10", 2023). The full list of compounds

retrieved from SigCom LINCS and additional details as doses and other experimental conditions
for drug mechanisms characterization can be found in Supplementary Files 10-11, while drug
indications and blood-brain barrier (BBB) permeabilities (Meng et al., 2021) of the top prospective
medications are provided in Supplementary File 12. In separate analyses, we also queried drug-
molecular targets interactions of the independent AP, tau and Ap-tau-associated gene sets

(Supplementary Files 13-18).

The chemical compounds interacting with LOAD’s spatial molecular associates and
potentially inducing therapeutic changes are, mostly, drugs used for the treatment of cancer and
immune system-related disorders. Common indications among these medications include
leukemia, lymphoma and breast cancer. In clinical research, prospective disease-modifying AD
drugs commonly target cancer pathways (Morgan et al., 2022). Computational drug repurposing
studies have similarly assessed the benefits of anti-cancer drugs. For example, a multi-omics study
identified interactions of afatinib, dasatinib, gefitinib and ponatinib with AD-affected genes (e.g.,
APP, SNCA) (Advani & Kumar, 2021). Among the top immunological drug candidates, the
immunosuppressant medication mycophenolic acid, indicated for prophylaxis of organ rejection,

has been reported to attenuate neuronal cell death (Ebrahimi et al., 2012); diclofenac could
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potentially associate with reduced AD risk and slower cognitive deterioration (Rivers-Auty et al.,
2020), while antiherpetic medication as famciclovir may also prevent AD incidence (Calabro et
al., 2021; Linard et al., 2022). Likewise, anti-inflammatory multiple sclerosis medication has
shown promise in AD mouse models for reversing all AP, tau and microglia pathologies, and
synaptic and cognitive dysfunction (Dionisio-Santos et al., 2021; LeBmann et al., 2023). It is worth
noticing that, in clinical trials, drugs with anti-inflammatories properties have not slowed cognitive
and/or functional decline (Howard et al., 2020; Melchiorri et al., 2023). One possible explanation
is that the thus-far tested agents interfere with microglia’s supportive function instead of
modulating its detrimental chronic activation effects (Howard et al., 2020; Melchiorri et al., 2023;
Rivers-Auty et al., 2020; Shen et al., 2018). At least 18 investigational drugs targeting
neuroinflammation currently undergo clinical assessment, including phase III trials (Melchiorri et

al., 2023; Reading et al., 2021).

Among the resting identified prospective candidates, cardiovascular drugs may lower the
incidence of dementia —apixaban (Bezabhe et al., 2022)— and delay progression in a mouse model
of AD -—verapimil (Ahmed et al., 2021). Additionally, docosahexaenoic acid (omega-3)
supplementation has been linked to reduced AD risks (Arellanes et al., 2020; Quinn et al., 2010).
Randomized trials finding interactions with APOE4 suggest that such AD carriers could also
potentially present favorable imaging and cognitive outcomes with high dose docosahexaenoic
acid supplementation treatments (Arellanes et al., 2020). On the other hand, retinopathy, glaucoma
and age-related macular degeneration are deemed prominent signs of AD pathology (Mirzaei et
al., 2020), functionally sharing affected molecular pathways (Supplementary File 1—figure 1,
Supplementary Files 7-9), which explains the appearance of visual impairments medication among

the top prospective drugs. Overall, our results signal possible therapeutic strategies to be tested in
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randomized controlled trials (RCTs) for the treatment and prevention of AD, bypassing the early

stages of drug design for compounds with known pharmacokinetic/pharmacodynamic properties.

= cytara_birle mm levocabastine ©
=3 dasatlnl_b. =3 varenicline O IUP
e dau_norl_Jb!cm @ docosahexaenoic acid lDOW”
dinaciclib =3 nicergoline O
mm doxorubicin ©
B epirubicin Q@ @
BN ponatinib
vorinostat @ ® uP
""" afatinib 1 oown
Bl azacitidine @
mEm bosutinib
duvelisib =1 verapamil T uP
Em  gefitinib B apixaban lDOWN

O
rucaparib @
selumetinib @ O
mm thioguanine

EE mitoxantrone O

S = riluzole @) He

auranofin @)
BE mycophenolic acid ©
triptolide 0O I

== dlclo_fena(.: DOWN mE amisulpride © lnowm

= fr;mcw_lqwr o mm  estradiol
_filgotinib EE ramelteon

=1 isotretinoin

o niclosamide @®

== ritonavir

NN / Bl permeable/not permeable to the blood-brain barrier
@ isolated AR @ isolated tau @ isolated AB-tau

Figure 4. Top drug repositioning candidates to overcome the observed Af+tau — neuronal-
activity affectation profile. Reported are existing drugs which molecular interactions would
induce gene expression changes in the set of all AB-, tau- and Ap-tau-associated genes (Mann—
Whitney U test, q < 0.05, Benjamini-Hochberg corrected). The predicted chemical compounds

have been organized in major groups according to their drug use indications. All medications are
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FDA-cleared for either treatment of cancer, various immune system/infection/inflammatory
processes (“immune”), eye diseases, cardiovascular conditions, multiple or amyotrophic lateral
sclerosis or “other” disorders. The groups are further divided by whether the candidate drug up- or
down-regulates the genes linked to the neuronal activity alterations by AD. Additionally, blood-
brain barrier permeability, when this information was available, is specified next to the name of
the drug (red rectangles on the left). Drugs that could also target the separate AP, tau or Af-tau
molecular associates are identified with accordingly colored circles on the right of the compound’s

name, e.g., the chemical selumetinib may be used to attack AB- and AB-tau- associated gene sets.

Discussion

A cardinal problem of modern neuroscience is understanding brain disease to a degree that
enables effective therapeutic interventions. In AD, research has suggested a myriad of interacting
mechanisms with potential central contributions by AP and tau pathological deposits (Iturria-
Medina et al., 2018; Maestu et al., 2021; Newcombe et al., 2018; Sanchez-Rodriguez et al., 2023;
Therriault et al., 2022). We investigated combined neuronal activity alterations by AP and tau
pathologies in an AD patient cohort and mapped their relationship to molecular processes through
an integrative computational approach informed by in-vivo neuroimaging and whole-brain
transcriptomics. The estimation of the Af+tau — neuronal-activity molecular affectations profile

provides privileged insights into in-vivo human AD pathophysiology.

Several of the identified spatial molecular correlates from the human brain transcriptome
have been linked to AD in the past (Calabro et al., 2021). For example, the SNCA gene translates

into the presynaptic protein a-synuclein, which presents high concentration in the cerebrospinal
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fluid of mild cognitive impairment and AD patients and forms deposits that have been found in
the majority of autopsied AD brains (Twohig & Nielsen, 2019). Another possible AD genetic
modifier, clusterin, seems to enhance excitatory synaptic transmission while reducing AP
pathology (F. Chen et al., 2021). Gene RIPK?2 is a mediator of mitochondrial dysfunction in
oligodendrocytes and demyelination (Natarajan et al., 2013), SYK coordinates neuroprotective
microglial response to AP pathology (Ennerfelt et al., 2022) and ANXAI plays an important role
in controlling neuronal damage by immune responses (You et al., 2021). All these molecules are
central to the top overrepresented biological processes (Supplementary File 1—table 2) and the

overall AD in-vivo molecular signature.

Collectively, the enriched pathways within AD’s AB+tau — neuronal-activity molecular
profile might represent the biological processes that are most likely associated to diseased brain
function. We utilized the most comprehensive and robust resources for the analysis of the
discovered molecular profile (Evangelista et al., 2022; Skene & Grant, 2016; Zhou et al., 2019) —e.g.,
Metascape integrates major current biological databases including KEGG Pathway, GO Biological
Processes, WikiPathways and PANTHER Pathway. While our findings rely on the consulted
databases, we observed congruence across analyses and with the existing literature. We have
confirmed existing hypotheses regarding AD as a generalized condition (Calabro et al., 2021;
Morgan et al., 2022), although certain types of molecular pathways seem to play a fundamental
role in AD’s pathophysiology. Memory impairment and other hallmark AD signs including
amyloidosis and phosphorylation (D. A. Bennett et al., 2013; Ghiso & Frangione, 2002; Mandelkow &
Mandelkow, 2011), were overrepresented in AP and tau’s separate molecular associates of
pathophysiological neuronal activity. Most crucially, neuronal activity alterations by A, tau and

their synergistic interaction were consistently related to inflammation processes.
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In effect, the spatial molecular associates of the interaction between AP and tau pathologies
were more enriched for microglial expression than expected by chance. When activated, microglia
may trigger different processes that play a role in AD risk (Calabro et al., 2021; Kwon & Koh, 2020;
Shen et al., 2018). The M2 activated phenotype is believed to protect the brain versus chronic
neuroinflammation. The M1 phenotype, on the other hand, increases the secretion of pro-
inflammatory cytokines. Studies have suggested that prolonged, uncontrolled immune responses
cascade to modify physiological properties and the neuronal activity balance through interactions
with AP and tau (Calabrd et al., 2021; Kwon & Koh, 2020; Newcombe et al., 2018; Shen et al., 2018).
Our findings indicate that neuroinflammation also interplays with AP and tau synergistic effects,
which seems to be a key factor in AD’s pathophysiology (Busche & Hyman, 2020; Sanchez-Rodriguez
etal., 2023). The identification of a major cluster of immunological pathways within AD’s neuronal
activity molecular signatures warrants further investigation. In our previous work (Sanchez-
Rodriguez et al., 2023), we sought to decode possible neuroinflammatory influences (interacting
with AP and tau effects) to neuronal activity through personalized computational models.
However, only slight significant differences in the translocator protein microglial activation -PET
data existed between AD and CU subjects, underscoring broadly discussed limitations of PET
tracers being unspecific to inflammatory variants as the protective M2 and the deleterious M1,

which exacerbates the disease in late stages (Nutma et al., n.d.; Shen et al., 2018).

Further improvements and clinical validation are necessary for implementing treatment
strategies stemming from computational modeling of neuropathological mechanisms (Iturria-
Medina et al., 2018; Maestud et al., 2021). The dataset utilized in this study was collected at a
specialist memory clinic that receives relatively young dementia patients. This highly specialized

setting may pose a limitation in terms of generalizability, although subjects diagnosed as “early-
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onset” and/or “familial” AD were excluded from the current analysis. Additionally, the percentage
of female subjects within the CU (AD) group was slightly higher (lower) than AD’s prevalence
among women, i.e., nearly two-thirds of the total number of cases (World Alzheimer Report 2022 —
Life after Diagnosis: Navigating Treatment, Care and Support, n.d.). Several factors contributed to this
disproportion including the availability of volunteers and whether the necessary imaging
modalities had been collected at the time of sample curation. Regarding the biophysical model for
neuronal activity alterations due to AD’s pathology, we considered perturbations to pyramidal
neurons only. Albeit a sound approximation given the pyramidal preponderance in the cortex
(Maestu et al., 2021) —and with local connections propagating alterations to inhibitory populations
as well (Wilson & Cowan, 1972)— this assumption could be relaxed by considering an inhibitory
influence model and re-estimating the relevant pathophysiological parameters. By doing so, we
may test hypotheses for inhibitory circuit impairment in AD (Maestua et al., 2021; Targa Dias
Anastacio et al., 2022; Zheng et al., 2020). Importantly, we focused the scope of this investigation
into AD mechanisms to influences by AP and tau only. The identified subject-specific AP and tau
neuronal activity alterations should be interpreted as their causal pathophysiological effects
disregarding other possible contributors, while the corresponding molecular associates
characterize biological events that, in general, coexist with such alterations. It is known that
additional factors as glial cell activity affect neuronal firing, even in healthy states (Targa Dias
Anastacio et al., 2022). Our personalized models are readily modifiable (Sanchez-Rodriguez et al.,
2023) to consider other pathological factors, provided that the corresponding brain imaging
modalities are available. Advanced causal computational models unifying neuroimaging and
omics exist (Adewale et al., 2021; Iturria-Medina et al., 2021, 2022; Khan et al., 2022; Lenglos et

al., 2022), although they have yet to tackle the generation of (pathophysiological) neuronal
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activity. In future work, we intend to expand the high-dimensionality, multimodal approaches
compiled within the in-house open-access NeuroPM-box software (Iturria-Medina et al., 2021)
with quantification tools for unveiling molecular mechanics of pathological influences on neuronal

activity.

The disease-oriented computational drug repurposing strategy that we present constitutes
an accelerated alternative to costly drug development for AD as preliminary safety and
bioavailability criteria are already established for the identified chemical compounds (Corbett et
al., 2012; Mullen et al., 2016; Petralia et al., 2022). In 2021, approximately 40% of Alzheimer’s
trials registered on ClinicalTrials.gov used repurposed existing medication (Cummings et al.,
2021). Previous studies have assessed the usefulness of several of our discovered candidate
pharmacological agents targeting affected AD pathways. Converging evidence indicates that
cancer treatment may be related to a decreased risk of AD due to a pathophysiological overlap
between both diseases, albeit a worsened cognition being in some studies linked to oncology drugs
(D. Chen et al., 2021; Frain et al., 2017; Plun-Favreau et al., 2010). The FDA-approved compound
dasatinib, for the treatment of chronic myeloid leukemia, has reduced tau pathology in mice
(Roberts et al., 2021) and is the subject of an ongoing clinical study evaluating its feasibility and
efficacy modulating AD’s progression in combination with the naturally derived anti-
inflammatory quercetin (Advani & Kumar, 2021; Gonzales et al., 2022). Blood cancers and
rheumatoid arthritis drugs with anti-inflammatory properties (from a pool of 80 FDA-approved
and clinically tested drugs) were already pinpointed as viable repositioned candidates to halt or
reduce AD affectations in a whole-brain transcriptomics machine learning approach (Rodriguez et
al., 2021). Here, we have delved into the molecular mechanisms linked to the synergistic, across-

brain pathologies’ in-vivo impact on neuronal activity and expanded the search for disease-
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modifying agents to the entire LINCS database (thousands of perturbagens at a variety of time

points, doses, and cell lines) (Evangelista et al., 2022; Xie et al., 2022).

Yet, more specialized implementations would also consider disease heterogeneity,
detecting sub-trajectories (Iturria-Medina et al., 2020, 2021) over the AD spectrum and obtaining
molecular affectation signatures for each of those phenotypes, thus likely increasing effectiveness
in RCTs. In the future, clinicians may target the patient’s unique pathological biomarkers with
combination therapies and pleiotropic drugs having universal disease modifying outcomes.
Computational drug repositioning may facilitate the process of bringing more effective AD therapy

into clinical practice.

Materials and Methods

Participants

Data was collected under the Translational Biomarkers in Aging and Dementia (TRIAD) cohort

(https://triad.tnl-mcgill.com/). The study was approved by the McGill University PET Working

Committee and the Douglas Mental Institute Research Ethics Boards and all participants gave
written consent. We selected baseline assessments for 47 “cognitively unimpaired” and 16
“Alzheimer’s disease” subjects (Supplementary File 1—table 1) according to clinical and
pathophysiological diagnoses. All subjects underwent T1-weighted structural MRI, resting-state
fMRI, AB (18F-NAV4694)- and tau (18F-MK-6240)- PET scans —see below, (Sanchez-Rodriguez
et al., 2023) and the provided references for processing details. The CU individuals were both AP

and tau-negative while the selected AD subjects presented positive AP status (as determined
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visually by consensus of two neurologists blinded to the diagnosis) and cortical tau involvement

(Braak et al., 1995).
Image processing

MRI: Brain structural T1-weighted 3D images were acquired in sagittal plane for all subjects on a
3 T Siemens Magnetom scanner using a standard head coil with 1 mm isotropic resolution, TE =
2.96 ms, TR = 2300 ms, slice thickness = 1 mm, flip angle = 9 deg, FOV = 256 mm, 192 slices
per slab. The images were processed following a standard pipeline (Iturria-Medina et al., 2018)
including: non-uniformity correction using the N3 algorithm, segmentation into grey matter, white
matter and cerebrospinal fluid (CSF) probabilistic maps (SPM12, www.fil.ion.ucl.ac.uk/spm) and
standardization of grey matter segmentations to the MNI space (Evans et al., 1994) using the
DARTEL tool (Ashburner, 2007). The images were mapped to the Desikian-Killiany-Touriner
(DKT) (Klein & Tourville, 2012) atlas for grey matter segmentation. We selected 66 (bilateral)
cortical regions (Supplementary File 1—table 3) that do not present PET off-target binding (Vogel

et al., 2020).

fMRI: The resting-state fMRI acquisition parameters were: Siemens Magnetom Prisma, echo
planar imaging, 860 time points, TR = 681 ms, TE = 32.0 ms, flip angle = 50 deg, number of slices
= 54, slice thickness = 2.5 mm, spatial resolution = 2.5%2.5x2.5 mm?>, EPI factor = 88. We applied
a minimal processing pipeline (Iturria-Medina et al., 2018) including motion correction, spatial
normalization to the MNI space (Evans et al., 1994) and detrending. We then transformed the
signals for each voxel to the frequency domain and computed the ratio of the power in the low-
frequency range (0.01-0.08 Hz) to that of the entire BOLD frequency range (0-0.25 Hz), i.e., the

fractional amplitude of low-frequency fluctuations (fALFF) (Jia et al., 2019; Yang et al., 2018) —
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a proxy indicator with high sensibility to disease progression. The fALFF values were averaged

over all voxels belonging to a brain region to yield a single value per region.

Diffusion Weighted MRI (DW-MRI): Additionally, high angular resolution diffusion imaging
(HARDI) data was acquired for N = 128 cognitively unimpaired subjects in the Alzheimer's
Disease Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). The authors obtained approval from
the ADNI Data Sharing and Publications Committee for data use and publication, see documents

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI Data Use Agreement.pdf and

http://adni.loni.usc.edu/wp-content/uploads/how to apply/ADNI Manuscript Citations.pdf,

respectively (Iturria-Medina et al., 2018). For each diffusion scan, 46 separate images were
acquired, with 5 b0 images (no diffusion sensitization) and 41 diffusion-weighted images (b =
1000 s/mm?2). ADNI aligned all raw volumes to the average b0 image, corrected head motion and
eddy current distortions. By using a fully automated fiber tractography algorithm (Iturria-Medina
et al., 2007) and intravoxel fiber distribution reconstruction (Tournier et al., 2008), we built region-
to-region anatomical connection density matrices where each entry, Cj;,, reflects the fraction of the
region's surface involved in the axonal connection with respect to the total surface of both regions,
[ and k. Finally, we obtained a representative anatomical network by averaging all the subject-
specific connectivity matrices (Sanchez-Rodriguez et al., 2021). Additional details are available

in a previous publication where the data was processed and utilized (Iturria-Medina et al., 2018).

PET: Study participants had AB (‘®F-NAV4694) and tau (‘®F-MK-6240) PET imaging in a
Siemens high-resolution research tomograph. 'SF-NAV4694 images were acquired approximately
40-70 min after the intravenous bolus injection of the radiotracer and reconstructed using an

ordered subset expectation maximization (OSEM) algorithm on a 4D volume with three frames (3

x 600 s) (Therriault et al., 2021). ¥ F-MK-6240 PET scans of 20 min (4 x 300 s) were acquired at
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90-110 min post-injection (Pascoal et al., 2020). Images were corrected for attenuation, motion,
decay, dead time and random and scattered coincidences and, consequently, spatially normalized
to the MNI space using the linear and nonlinear registration parameters obtained for the
participants’ structural T1 images. '*F-MK-6240 images were meninges-striped in native space
before performing any transformations to minimize the influence of meningeal spillover.
Standardized Uptake Value Ratios (SUVR) for the DKT grey matter regions were calculated using

the cerebellar grey matter as the reference region (Iturria-Medina et al., 2018).
Estimating AP and tau-induced neuronal activity alterations

The subject-specific pathophysiological brain activity was computationally generated through
coupled Wilson-Cowan (WC) modules with regional firings mediated by AP plaques, tau tangles
and the interaction of AP and tau (modeled as the product of their across-brain deposition levels)
(Sanchez-Rodriguez et al., 2023). Each brain region was dynamically represented through coupled
excitatory and inhibitory neural masses (Daffertshofer & van Wijk, 2011; Gjorgjieva et al., 2016;
Meijer et al., 2015; van Nifterick et al., 2022; Wilson & Cowan, 1972). Unspecific local inputs
and cortico-cortical connections additionally stimulated the excitatory populations. The integration
of all inputs was achieved by means of a sigmoidal activation function. In our model, the region-
specific excitatory firing thresholds in these sigmoid functions depend on the regions’
accumulation of each pathological factor, an assumption based on findings suggesting neuronal
excitability changes due to AP and/or tau deposition and the much larger excitatory prevalence in
the cortex (Busche & Hyman, 2020; Maestu et al., 2021; Targa Dias Anastacio et al., 2022; Tok
et al., 2022; van Nifterick et al., 2022; Vossel et al., 2017). Simplistically, we wrote the effective
excitatory firing parameter of participant j at brain region k as linear fluctuations from the normal

baseline value (8,) due to the considered pathophysiological factors:
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Oi =00 + 6,7 - A\ + 077" - Taw; + 07T - A; - Tau, (1)

Where AB;rand Tau;) denote the SUVRs normalized to the [0,1] interval —to preserve the
dynamical properties of the desired solution—, BjAﬁ , HJ.Ta” and 9].‘4ﬁ T are the brain-wide
pathophysiological factor’s influences and each term (BjAB AP ks HJ-Ta“ -Tau;y, HJ.Aﬁ Ta . 4B ik

Tau; ) represents the overall factor’s contribution to neuronal activity in subject j’s region k.

To estimate these pathophysiological contributions, we simulated BOLD signals. The total action
potential arriving to the neuronal populations from other local and external populations (Logothetis
et al.,, 2001) underwent metabolic and hemodynamic transformations following Sotero et al.
(Sotero & Trujillo-Barreto, 2007, 2008; Valdes-Sosa et al., 2009) to generate the BOLD signal.
Then, the parameters maximizing the similarity between the real and simulated individual BOLD
signals indicators were obtained via surrogate optimization in MATLAB 2021b (The MathWorks
Inc., Natick, MA, USA). The full set of differential equations describing these biophysical
transformations and operations is provided in Appendix 1 and (Sanchez-Rodriguez et al., 2023).
The equations were solved with an explicit Runge-Kutta (4,5) method, ode45, and a timestep of

0.001s.

Having obtained the likely individual brain-wide influences due to each of the pathological factors
(AP, tau and AP-tau), across-brain mechanistic group differences (AD vs CU) were quantified via
the (non-parametric) rank sum test statistics. First, for each subject j and brain region, k, each
pathological factor’s perturbation to neuronal activity in subject j’s region k was normalized as

Q{acwr-factorj,k

0] Then, the across-regions vectors resulting from the statistical tests (AD vs CU)
jk—bo

quantified the A, tau and Ap-tau spatial influences on neuronal activity due to AD.
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Neurotypical gene expression profiles

Microarray mRNA expression data from six neurotypical adult brains was downloaded from the

Allen Institute (RRID:SCR_007416) website (http://www.brain-map.org). The data was

preprocessed by the Allen Institute to reduce the effects of bias due to batch effects (Allen Human
Brain Atlas, 2013). For each brain, there were 58,692 probes representing 20,267 unique genes.
For genes with multiple probes, Gaussian kernel regression (Gryglewski et al., 2018) was applied
to predict the mRNA intensity in each of the 3702 samples in MNI space (Evans et al., 1994) using
leave-one-out cross-validation. The probe with the highest prediction accuracy was chosen as the
representative probe for that gene. Gaussian kernel regression using mRNA values of proximal
regions also served to predict the gene expression for grey matter voxels without mRNA
expression intensity. Thus, the whole-brain gene expression data was obtained for the selected
20,267 probes/genes. Probes/genes described as “uncharacterized”, “similar to hypothetical
protein”, “pseudogene” were dropped, leaving 19,469. Finally, we calculated average gene

expression values for each region in the brain parcellation (Adewale et al., 2021).

Molecular associates of the AP, tau and Ap-tau spatial alterations to neuronal activity

We aimed to determine the genes with whole-brain expressions predicting the AP, tau and Af-tau
effects on neuronal activity. For each pathological factor, we evaluated monotonic relationships
between the corresponding neuronal activity spatial alterations patterns and the regional gene
expression values by computing Spearman correlations. We estimated 99% Spearman’s rho
confidence intervals with 100,000 bootstrapping resamples and retained the genes which
confidence limits did not include zero (significant correlation). The resulting sets of genes were

termed AP, tau and AB-tau molecular associates, respectively.
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Statistical analyses

We performed functional pathways enrichment analyses on Metascape (Zhou et al., 2019), a web-
based portal that integrates various independent biological databases (KEGG Pathway, GO
Biological Processes, Reactome Gene Sets, Canonical Pathways, CORUM, WikiPathways,
PANTHER Pathway, DisGeNET), using default specifications. Metascape identifies ontology
terms that are significantly over-represented in the input gene lists through hypergeometric tests
and the Benjamini-Hochberg p-value correction algorithm (g < 0.05). To avoid redundancy from
the reporting of multiple ontologies, Kappa similarities among all pairs of enriched terms are
computed. Then, the similarity matrix is hierarchically clustered, and a 0.3 threshold is applied.
The most significant (lowest p-value) term within each cluster is chosen to represent the cluster
(Zhou et al., 2019). Cell type enrichment was performed with the Expression Weighted Celltype
Enrichment toolbox (Skene & Grant, 2016). The probability of enrichment is determined as the
percentage of 100,000 random gene lists in a background set with lower average expression in
each cell type than in our gene lists. The background gene set is comprised of all genes with
orthologs between human and mice and its single-cell transcriptome data were sampled from the
mice somatosensory cortex and hippocampus CAl (Skene & Grant, 2016). Drug repurposing
alternatives were investigated on the webserver SigCom LINCS (Evangelista et al., 2022; Xie et
al., 2022). This search engine uses a database of ranked gene lists for drug-induced gene expression
changes. Similarity and statistical measures (p-values, Benjamini-Hochberg corrected, g < 0.05)
are computed using the Mann—Whitney U test: the average rank of the user-provided gene set in
each chemical perturbation’s gene list is compared to the average rank of a randomly selected gene

set (Evangelista et al., 2022; Xie et al., 2022).


https://doi.org/10.1101/2023.09.15.557737
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.15.557737; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Data availability

The data that support the findings of this study are available by submitting a data share request via

https://triad.tnl-mcgill.com/contact-us/. All the data collected under the TRIAD cohort is governed

by the policies set by the Research Ethics Board Office of the McGill University, Montreal and

the Douglas Research Center, Verdun.

Code availability

The code utilized in this article for the neuronal activity simulations and quantification of the
pathological effects will be freely available with publication at the Neuroinformatics for

Personalized Medicine lab’s website (NeuroPM, https://www.neuropm-lab.com/publication-

codes.html). Supplementary File 1—pseudocode 1 contains the algorithm’s overview.
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