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Abstract 

Objectives:  

To perform long-read transcriptome and proteome profiling of pathogen-stimulated 
peripheral blood mononuclear cells (PBMCs) from healthy donors. We aim to discover new 
transcripts and protein isoforms expressed during immune responses to diverse pathogens. 
 

Methods:  

PBMCs were exposed to four microbial stimuli for 24 hours: the TLR4 ligand 
lipopolysaccharide (LPS), the TLR3 ligand Poly(I:C), heat-inactivated Staphylococcus aureus, 

Candida albicans, and RPMI medium as negative controls. Long-read sequencing (PacBio) of 
one donor and secretome proteomics and short-read sequencing of five donors were 
performed. IsoQuant was used for transcriptome construction, Metamorpheus/FlashLFQ for 
proteome analysis, and Illumina short-read 39-end mRNA sequencing for transcript 
quantification. 
 

Results: 

Long-read transcriptome profiling reveals the expression of novel sequences and isoform 
switching induced upon pathogen stimulation, including transcripts that are difficult to 
detect using traditional short-read sequencing. We observe widespread loss of intron 
retention as a common result of all pathogen stimulations. We highlight novel transcripts of 
NFKB1 and CASP1 that may indicate novel immunological mechanisms. In general, RNA 
expression differences did not result in differences in the amounts of secreted proteins. 
Interindividual differences in the proteome were larger than the differences between 
stimulated and unstimulated PBMCs. Clustering analysis of secreted proteins revealed a 
correlation between chemokine (receptor) expression on the RNA and protein levels in C. 

albicans- and Poly(I:C)-stimulated PBMCs. 
  

Conclusion: 

Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the 
potential of these methods to identify novel transcripts, revealing a more complex 
transcriptome landscape than previously appreciated.  
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Introduction 

Immune system responses within the context of an infection are shaped by the nature of 
the infection and by inter-individual variability, contributing to differential susceptibility to 
infections and to various diseases with an inflammatory component. Dynamic expression of 
transcripts and proteins in a range of cells responsible for the innate immune response is 
important to shape the first line of defense against a wide variety of pathogens1. Pattern 
recognition receptors (PRR) initiate acute inflammatory responses, activating signaling 
cascades that converge on various transcription factors. Multiple levels of regulation 
orchestrate the dynamic expression of transcripts and proteins, including transcriptional and 
post-transcriptional checkpoints such as mRNA splicing and protein translation. Examples of 
this include the regulatory role of alternative splicing of Toll-like receptors (TLR) and their 
downstream signaling factors2,3.  
 
Methods for investigating innate immune responses include in vitro stimulation of primary 
immune cells with pathogens or microbial components. These methods allow for specific 
investigation of host-pathogen interactions that shape the immune response elicited by 
specific cell types and have been under extensive investigation in research on the innate 
immune system4,5. Stimuli that are commonly used include molecules that stimulate a 
specific TLR, such as E. coli lipopolysaccharide (LPS) for TLR46, dsRNA mimicking Poly(I:C) for 
TLR37 and imidazoquinolines for TLR7/88. Stimulation is also often elicited by live or heat-
killed pathogens9,10, which stimulate at the same time a broader range of PRRs11,12. 
 
Transcriptome characterization is traditionally performed using short read RNA sequencing. 
These sequencing approaches are limited by their short read length (approximately 150-300 
bp), necessitating the computational reconstruction of whole transcripts and making 
detection of different transcripts of the same gene inaccurate. This limitation is especially 
pronounced in immune biology, where tight regulation of isoform expression has previously 
been described to play a major role in processes, such as the expression of multiple IL-32 
transcripts with different inflammatory potency13 and alternative splicing of CD45 in T cell 
activation14. Recent long-read sequencing approaches provide a more complete and 
accurate reflection of the transcriptome. Sequencing technologies provided by PacBio and 
Oxford Nanopore allow for the sequencing of mRNA (or cDNA) molecules from the ultimate 
39-end to the ultimate 59-end, which have given a more comprehensive view into the 
complexity of the transcriptome. A number of studies have indicated that the isoform 
landscape is much more complex than previously appreciated15317. Long-read mRNA 
sequencing has provided insight into regulatory mechanisms of immune responses, for 
instance in alternative splicing in macrophages18 , and allows for accurate sequencing of 
complex transcripts in immune cells19. Further work on cell-type specific long-read 
transcriptomes have shown preferential expression of transcripts in specific cell types20. 
 
The impact of the newly discovered transcripts as well as post-transcriptional processes can 
only be fully understood by observing the proteome. Many studies have characterized the 
transcriptomic landscape of the human immune response, but a multi-omics view of 
immunity is necessary as mRNA profiles are not enough to understand immune 
activation21,22. Transcript information can be leveraged to study the proteome, including 
identification of novel proteoforms resulting from alternative splicing. Proteoforms 
discovered by proteogenomics methodologies have already been found to have a role in 
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immunological processes, for instance in immune-regulating micropeptides23 and tumor 
neoantigen production24.  
 
Here, we stimulated peripheral blood mononuclear cells (PBMCs) with multiple microbial 
stimuli in vitro/ex vivo and performed long- and short-read RNA sequencing and secretome 
proteomics to gain insight into potential differences in immune response. We aim to 
provide insight into the immune transcriptome and proteome of immune cells during innate 
immune responses against a variety of pathogens.  
 

Material & methods 

Ex vivo PBMC experiments 

Venous blood was drawn from five healthy donors5 and collected in 10mL EDTA tubes. 
Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as described 
elsewhere25. In brief, PBMCs were obtained from blood by differential density centrifugation 
over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 dilution in PBS. Cells 
were washed twice in saline and re-suspended in serum-free cell culture medium (Roswell 
Park Memorial Institute (RPMI) 1640, Gibco) supplemented with 50 mg/mL gentamicin, 2 
mM L-glutamine and 1 mM pyruvate. Cells were counted using a particle counter 
(Beckmann Coulter, Woerden, The Netherlands) after which the concentration was adjusted 
to 5 × 106/mL. Ex vivo PBMC stimulations were performed with 5×105 cells/well in round-
bottom 96-well plates (Greiner Bio-One, Kremsmünster, Austria) for 24 hours at 37°C and 
5% carbon dioxide. Cells were treated with lipopolysaccharide (E. coli LPS, 10 ng/mL), 
Staphylococcus aureus (ATCC25923 heat-killed, 1×106/mL), TLR3 ligand Poly I:C (10 µg/mL), 
Candida albicans yeast (UC820 heat-killed, 1×106/mL), or left untreated in regular RPMI 
medium as normal control. After the incubation period of 24h and centrifugation, 
supernatants were collected and stored at -80°C until further processing. For the RNA 
isolation, cells were stored in 350 µL RNeasy Lysis Buffer (Qiagen, Rneasy Mini Kit, Cat nr. 
74104) at 280°C until further processing. 
 

RNA and protein isolation 

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according to 
the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was 
examined using the TapeStation HS D1000 (Agilent), and was found to be g7.5 for all 
samples.  Accurate determination of the RNA concentration was performed using the Qubit 
(ThermoFisher). 

 

We extracted the secretome of the 24 hour stimulated PBMCs. To 250 µl of supernatant, 
250 µl buffer containing 10% sodium dodecyl sulfate (SDS) and 100 mM triethylammonium 
bicarbonate (TEAB), pH 8.5 was added. Proteins were reduced by addition of 5 mM 
dithiothreitol and incubation for 30 minutes at 55ÚC and then alkylated by addition of 10 
mM iodoacetamide and incubation for 15 minutes at RT in the dark. Phosphoric acid was 
added to a final concentration of 1.2% and subsequently samples were diluted 7-fold with 
binding buffer containing 90% methanol in 100 mM TEAB, pH 7.55. The samples were 
loaded on a 96-well S-TrapTM plate (Protifi) in parts of 400 µl, placed on top of a deepwell 
plate, and centrifuged for 2 min at 1,500 x g at RT. After protein binding, the S-trapTM plate 
was washed three times by adding 200 µl binding buffer and centrifugation for 2 min at 
1,500 x g at RT. A new deepwell receiver plate was placed below the 96-well S-TrapTM plate 
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and 125 µl 50 mM TEAB containing 1 µg of trypsin was added for digestion overnight at 
37°C. Using centrifugation for 2 min at 1,500 x g, peptides were eluted in three times, first 
with 80 µl 50 mM TEAB, then with 80 µl 0.2% formic acid (FA) in water and finally with 80 µl 
0.2% FA in water/acetonitrile (can) (50/50, v/v). Eluted peptides were dried completely by 
vacuum centrifugation.  
 

Long-read library preparation and sequencing 

Libraries were generated using the Iso-Seq-Express-Template-Preparation protocol 
according to the manufacturer9s recommendations (PacBio, Menlo Parc, CA, USA). We 
followed the recommendation for 2-2.5kb libraries, using the 2.0 binding kit, on-plate 
loading concentrations of final IsoSeq libraries was 90pM (C. albicans, S. aureus, Poly(I:C), 
RPMI) and 100pM (LPS) respectively. We used a 30h movie time for sequencing.  
 
The five samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample underwent 
the same analysis procedure. First CCS1 v6.3.0 was run with min accuracy set to 0.9. IsoSeq 
lima v2.5.0 was run in IsoSeq mode as recommended. IsoSeq refine was run with 8--require-
polya9. The output of IsoSeq refine was used as input for IsoQuant v3.1.226 with GRCh38.p13 
v43 primary assembly from GENCODE. The settings were set for full length PacBio data, and 
quantification included ambiguous reads. In IsoQuant, transcripts were considered novel if 
their intron chains did not match intron chains found in GENCODE annotation version 39. 
Transcripts with fewer than 5 reads across all samples were excluded from further analyses 
(Supplemental table 1). 
 
We sought to validate the novel transcripts identified using long-read sequencing using 
FANTOM5 CAGE data of CD14 monocytes 
(https://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell.CAGEScan/CD14%
2b%20monocyte%20derived%20endothelial%20progenitor%20cells%2c%20donor1.NCig100
41.11229-116C5.hg19.GCTATA.clusters.bed.gz) that allows for the identification of 
transcripts with a matching TSS from this 59 sequencing data. Transcripts with novel 59 were 
considered to be supported with a CAGE peak if within 150 basepairs from the TSS.  
 

Short-read library preparation and sequencing 

RNA input was normalized to 200 ng for all samples/donors and libraries were generated 
using the QuantSeq 39 mRNA-Seq Library Prep Kit-FWD from Lexogen (Lexogen) in 
accordance with the manufacturers9 protocol. In order to ensure high quality libraries, two 
separate preparations were performed, limiting the number of samples to 30 per 
preparation. End-point PCR was performed with 19 3 22 cycles, as indicated by a 
quantitative PCR on a 1:10 aliquot of a subset of double stranded cDNA libraries. Accurate 
quantification and quality assessment of the generated libraries was performed using Qubit 
dsDNA High Sensitivity assay (Thermo Fisher Scientific) and Agilent 2200 TapeStation (High 
Sensitivity D1000 ScreenTape, Agilent). Molarity of individual libraries was calculated using 
the cDNA concentration (Qubit) and average fragment size (TapeStation). Safeguarding 
sufficient read-depth for each sample, libraries were split in two separate runs. In each run, 
the baseline RPMI condition across all donors and time-points was included, in turn allowing 
sequencing bias assessment. The cDNA libraries of 35 samples were pooled equimolarly to 
100 fmol. After a final dilution of both pools to a concentration of 4 nM, they were 
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sequenced on a NextSeq 500 instrument (Illumina) with a final loading concentration of 1.4 
pM.  
 
FastQC v0.11.5 (Babraham Bioinformatics) was used to assess the quality of the obtained 
sequencing data, followed by removal of adapter sequences and poly(A) tails by Trim 
Galore! V.0.4.4_dev (Babraham Bioinformatics) and Cutadapt v1.1827. Since QuantSeq reads 
only provide coverage of the 39 end of transcripts, we generated a set of transcripts 
representative of the full transcriptome by grouping transcripts based on unique 39 
sequences. Therefore, we separately mapped the filtered and trimmed reads to the long 
read transcriptome with Salmon v1.9.0 in mapping-based mode with decoys28. 
 

Differential expression analyses 

To measure differential gene expression from long-read RNA sequencing, low abundance 
genes were filtered using a 10 CPM threshold with the conorm package in python. 
Differentially expressed genes (DEGs) and transcripts were calculated for each condition 
versus control using the NOISeq R package29 from the abundances generated with isoquant. 
TMM normalization was chosen and q-value threshold for DE was set at 0.95.  
 
DEGs were generated from the salmon-mapped short-read RNA sequencing data using the 
samples from the same donor using NOISeq29. The two control samples (RPMI) per donor 
were treated as technical replicates. TMM normalization was chosen and q-value threshold 
for DE was set at 0.95. We validated the DEGs detected from long-read sequencing with 
those generate with the short-read data by comparing the linear correlation of the log2fold 
change values for each condition combination between both datasets using the lm() R 
function. 
 
The up- and downregulated DEGs per condition-control pair were analyzed for pathway 
enrichment separately using gProfiler29. We used Gene Ontology biological process and 
molecular function and TRANSFAC transcription factor motifs gene sets30,31. A term size filter 
of between 100-500 was used to generate the final enrichment profiles.  
 

Isoform switching 

A first-pass isoform switching analysis was performed using swanvis v2.032. For a second-
pass isoform switching analysis, the resulting gene-level isoform switch p-values were 
imported into IsoformSwitchAnalyzeR v1.16.0 package in R33. Thresholds for isoform 
switching were set at 10 DPI (differential percent isoform use) and nominal p-value <0.05. 
Sequences corresponding to the significant isoform switches were analyzed with CPAT 
v1.2.434, hmmscan v3.3.2 with Pfam35, and SignalP536 as a part of the 
IsoformSwitchAnalyzeR package.  
 
Pathway analysis and gene network analysis of genes that were found to undergo isoform 
switching was performed in Cytoscape37. Default pathway analysis was performed, filtering 
for Gene Ontology Biological Process gene sets. An Enrichment Map was built from the 
enriched gene sets with a Jaccard similarity cutoff of 0.438.  
 
Genes found to undergo intron retention gains/losses and genes with domain gains/losses 
were separately analyzed using gProfiler. We used Gene Ontology Biological Process gene 
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sets with a with a term size filter between 100-500 genes. We separately analyzed genes 
with domain gains or losses were using dcGOR39. We used the gene ontology molecular 
function gene sets with a term size filter between 100-500 genes. 
 

LC-MS/MS analysis 

Peptides were re-dissolved in 20 µl loading solvent A (0.1% trifluoroacetic acid in 
water/acetonitrile) (98:2, v/v)) of which 4 µl was injected for LC-MS/MS analysis on an 
Ultimate 3000 RSLCnano system in-line connected to a Q Exactive HF mass spectrometer 
(Thermo). Trapping was performed at 10 ¿l/min for 4 min in loading solvent A on a 20 mm 
trapping column (made in-house, 100 ¿m internal diameter (I.D.), 5 ¿m beads, C18 Reprosil-
HD, Dr. Maisch, Germany).   The peptides were separated on a 250 mm Waters nanoEase 
M/Z HSS T3 Column, 100Å, 1.8 µm, 75 µm inner diameter (Waters Corporation) kept at a 
constant temperature of 45°C. Peptides were eluted by a non-linear gradient starting at 1% 
MS solvent B reaching 33% MS solvent B (0.1% formic acid (FA) in water/acetonitrile (2:8, 
v/v)) in 100 min, 55% MS solvent B (0.1% FA in water/acetonitrile (2:8, v/v)) in 135 min, 97% 
MS solvent B in 145 minutes followed by a 5-minute wash at 97% MS solvent B and re-
equilibration with MS solvent A (0.1% FA in water).  
 
The mass spectrometer was operated in data-dependent acquisition mode, automatically 
switching between MS and MS/MS acquisition for the 16 most abundant ion peaks per MS 
spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of 60,000 in 
the Orbitrap analyzer after accumulation to a target value of 3,000,000. The 16 most intense 
ions above a threshold value of 15,000 were isolated with a width of 1.5 m/z for 
fragmentation at a normalized collision energy of 28% after filling the trap at a target value 
of 100,000 for maximum 80 ms. MS/MS spectra (200-2000 m/z) were acquired at a 
resolution of 15,000 in the Orbitrap analyzer. 
 

Protein identification and quantification 

Two search databases were constructed; one database for proteoform detection and one 
database for quantification. The database used for sensitive detection of proteoforms was 
generated using a slightly adapted version of the Long Read Proteogenomics pipeline by 
Miller et al40. Since the pipeline uses a different long-read transcriptomics tool, small syntax 
adjustments were made to accommodate the use of Isoquant output. Additionally, a custom 
script was written to have Isoquant output mimic the required input format. The pipeline 
generated a GENCODE-PacBio hybrid database. The proteome from C. albicans (taxon ID 
5476) and S. aureus (taxon ID 1280) were downloaded from UniProt and added to the 
search database. The search database used for quantification was created by downloading 
the proteome from H. sapiens (taxon ID 9609), C. albicans (taxon ID 5476) and S. aureus 
(taxon ID 1280) from UniProt. Metamorpheus default contaminants were added to both 
search databases. Mass spectra were identified using Metamorpheus v1.0.041. 
Quantification was performed using FlashLFQ v 1.2.4.29442 with all five individuals set as 
biological replicates and the two control (RPMI) samples per individual set as technical 
replicates. The following options enabled: normalization, shared peptide quantification, 
Bayesian fold change analysis, and match between runs (Supplemental table 2). An adapted 
version of SQANTI protein was used to search for novel peptides in the Metamorpheus 
identifications. Enrichment of secreted proteins was determined using the predicted 
secreted proteins from Human protein atlas43 as reference. 
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Protein clustering 

FlashLFQ raw protein expression values originating from the quantification database search 
were first square root transformed. To normalize for donor effects, the mean protein 
expression value per gene/individual was subtracted from all the expression values from the 
same gene/individual. Then z-score normalization was performed across all individuals per 
gene. K-means clustering was then performed using the kmeans() function in R with seed 
#82 and default parameters. We found four clusters to optimally represent the data 
according to the elbow plots (Supplemental figure 1).  A heatmap was constructed with 
those clusters using the ComplexHeatmap package44. The proteins identifiers assigned to 
cluster #4 were converted to gene names and analyzed using gProfiler for enrichment 
analysis using both Gene Ontology Biological Process and Molecular Function gene sets. We 
further analyzed the protein found to form cluster 4 through a protein network analysis in 
Cytoscape37

. 

 

Data availability 

Raw PacBio sequencing data and transcriptome is available on EGA under accession number 
EGAS00001006779 https://ega-archive.org/search-results.php?query=EGAS00001006779. 
Raw QuantSeq sequencing data is available on EGA under accession number EGAXXXXXXXX. 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE45 partner repository with the dataset identifier PXD045237 and 
10.6019/PXD045237. Scripts used to generate the results described in this paper can be 
found at https://github.com/cmbi/host_pathogen_interactions. 
 

Results 

We stimulated PBMCs from five donors with four different microbial stimuli, mimicking 

bacterial (E. coli LPS, S. aureus), viral (Poly(I:C)) and fungal (C. albicans) infections. PBMCs 

were stimulated for 24 hours. RPMI incubation was used as a negative control (Figure 1A). 

To characterize full-length transcript structures, we performed long-read sequencing on 

PBMCs from one donor (Figure 1B). Additionally, shotgun proteomics data was generated 

from supernatants of the samples from all five donors. The proteomics data serves to 

corroborate differential gene/transcript expression and provide evidence of the protein-

coding potential of novel transcripts identified through long-read RNA sequencing (Figure 

1C). Short-read 39 sequencing data of all five donors was generated to validate differential 

gene expression data generated from long-read RNA sequencing (Figure 1D).  

 

Long read transcriptomes of both control and pathogen-stimulated conditions show novelty 

Sequences detected using long-read sequencing were categorized in terms of novelty 
according to their intron chains. Transcripts are divided into three categories that 
encompass reference transcripts (GENCODE), novel in catalog (transcripts that contain 
annotated introns) and transcripts that are novel not in catalog (containing unannotated 
introns) (Figure 2A). We identified a total of 37,312 unique transcript sequences from 
11,872 genes across all samples. The majority of transcripts were in protein coding genes 
(Supplemental figure 2A) including ~10% immune-related genes (Supplemental figure 2B). 
We found 47.4% of detected transcripts to be novel, while these accounted for only 20.3% 
of the total reads (Figure 2B). The distribution of reads per novel transcript was similar to 
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that of known transcripts with a slight skew towards lower abundance (supplemental figure 
3A). Exon elongations were the most observed feature distinguishing novel from known 
transcripts, occurring in nearly a third of the novel transcripts found in RPMI. This was 
similar for the stimulated conditions (Figure 2C, Supplementary figure 3B). The percentage 
of novel transcripts and transcript deviations were similar for all conditions (Figure 2D). To 
corroborate the existence of novel transcripts, we analyzed FANTOM5 CAGE peaks in the 
vicinity of the transcription start sites for novel transcripts with novel 59 ends. We found 
8,233 (51.3%) novel 59 end transcripts across all conditions to be supported by a CAGE peaks 
from unstimulated human monocytes (within 150 nucleotides)46. 
 
Principal component analysis of the expression levels for each transcript indicated that 
stimulated conditions were more similar to each other than to RPMI. S. aureus and C. 

albicans were most similar to each other (Figure 2F). Genes and transcripts expressed were 
similar in the stimulated conditions with average Jaccard similarity indices of 0.9 and 0.82 
for genes and transcripts, respectively (Figure 2G). Novel transcripts had similar Jaccard 
indices to each other than for known transcripts (not shown). Differential expression 
analysis yielded an average of 949 differentially expressed genes and 2,076 differentially 
expressed transcripts per condition (Supplemental figure 4, supplemental table 3-4).  
 
We validated the differentially expressed genes through 39 transcript counting (QuantSeq)47. 
We gathered a set of representative transcripts based on sequence differences at the 39 end 
of transcripts (29,760 transcripts, 79.8% of total) and investigated the correlation of 
differential expression in the long-read sequencing data with the separately generated short 
read dataset of the same donor. The differentially expressed genes that overlapped 
between both datasets correlate well (R2 0.62-0.81). Best matching pairs of stimulated 
conditions between the short- and long-read confirmed the concordance of both 
sequencing approaches (Supplemental figure 5, Supplemental table 5).  
 

Pathogen stimuli display upregulation of different pathways 

Differential gene expression analysis using the long-read sequencing data resulted in a total 
of 1,733 genes that were differentially expressed in stimulated condition compared to 
control. We performed pathway analysis for each condition using gProfiler48 (Supplemental 
table 6). By overlapping the gene sets enriched in each of the four conditions, we discerned 
biological processes/functions specific to certain pathogen-stimulated conditions. There are 
a lot of constants in host response regardless of the pathogen, and indeed the largest set of 
pathways was in the overlap between all stimulus conditions (211 pathways, Figure 3A).This 
set has an enrichment of genes involved in type II interferon (IFN-³) responses. Genes 
involved in tertiary and specific granules, which play a role in the defense against pathogens 
were found to be enriched among upregulated genes in all conditions. Surprisingly, we also 
find these and related gene sets to be enriched among downregulated genes as a result of S. 

aureus and Poly(I:C) stimulation, potentially a result of the regulation of the inflammatory 
response. Further gene sets included the response to molecules of bacterial origin (including 
LPS), innate immune response signaling such as PRR signaling, antigen processing and 
presentation and IL-1 production (Figure 3B).  
 
Some pathogen-stimulated conditions had more enriched pathways in common than others. 
There was a notable overlap of 131 gene sets enriched in C. albicans-, S. aureus- and 
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Poly(I:C)-stimulated conditions. Some of these were common to the set overlapping 
between all conditions, such as interferon responses. The LPS-excluding set showed 
particular enrichment related to viral processes such as the defense against viruses, 
regulation of the viral lifecycle, likely due to interferon-stimulated gene expression, such as 
STAT1, OAS1/3, OASL and IFIH1. Also, transcription factor binding matches (TRANSFAC) such 
as IRF-2, 5, 8 and 9 were enriched, reflecting downstream signaling through various 
signaling pathways leading to the regulation of the production of interferons and immune 
cell development (Figure 3C)49. 
 
LPS and Poly(I:C) were the 2 stimuli with the most enriched pathways unique to a single 
stimulus. For 55 gene sets unique to LPS, there was a downregulation of T cell receptor 
signaling, in part due to the downregulation of CD4 expression, which has previously been 
described as a result of endogenous production of TNF-³ and IL-1´ as a result of LPS 
stimulation50. We further found an upregulation of gene sets involved in metabolic 
processes such as oxidoreductase complexes and cellular responses to oxygen, possibly 
reflecting metabolic changes previously described to occur in immune cells such as 
monocytes upon LPS stimulation51. Furthermore, there was an upregulation of genes 
involved in humoral immune responses (figure 3D). For 53 gene sets enriched uniquely in 
Poly(I:C), we found functions including viral gene expression, apoptosis related signaling 
(regulation of cysteine-type endopeptidase activity) and B-cell related gene sets such as 
increased antibody levels and BCR signaling. Finally, there was an enrichment of MHC class II 
antigen presentation (Figure 3E). 
 

Isoform switches highlight transcriptome differences between condition and control  

Isoform switching (IS) genes are defined by a change (increase/decrease) of expression of a 
particular transcript isoform as measured by percent of total reads for a gene. In different 
samples/conditions, a particular transcript isoform may comprise a different isoform 
fraction (dIF) value for a given gene. Here, a change of at least 10% (0.10 dIF) in control and 
the opposite change (decrease/increase) of expression of a different transcript isoform in 
the same gene of at least 10% in the pathogen-stimulated condition is an IS.  
 
A total of 999 IS were detected in 398 genes. Nearly half (N=192, 48.2%) of these IS genes 
were unique to their respective stimulus conditions, while 10.3% were found in all 
conditions (N=41) (Figure 4A, supplemental table 7-8). The majority of genes demonstrating 
IS were not differentially expressed in their respective conditions (327 genes; 77%). Most 
genes that were found to undergo IS displayed only one IS instance (Supplemental figure 
6A). Pathway analysis of genes undergoing IS were enriched for gene sets involved in 
metabolic processes, mRNA splicing, protein transport and catabolism. Furthermore, 
immune and stress-related pathways such as MHC type I antigen processing and transport 
through vesicles, inflammasomes, oxidative stress and apoptosis were found to be 
represented in genes undergoing IS (Figure 4B, supplemental tables 9-13).  
 
We sought to understand the molecular consequences of IS upon pathogen stimulation by 
categorizing the differing features of the isoform pairs involved in the switch. Each of the IS 
was annotated with one or more of the following predicted protein characteristics: change 
in ORF length, ORF gain/loss, domain gain/loss, NMD sensitivity, intron retention (IR) 
gain/loss, coding probability (ORF presence), and signal peptide gain/loss. These 
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consequences are not independent and often multiple consequences could be attributed to 
one IS (Supplemental figure 6B). We observed general IS trends on a genome-wide scale 
(Supplemental figure 6C, supplemental table 14). Strikingly, we found intron retention loss 
to be the most common consequence of IS in this dataset. Isoforms with retained introns 
comprised a higher isoform fraction for genes in the control condition, while their respective 
intron-excluding counterparts had a higher isoform fraction for genes in the pathogen-
stimulated conditions. Genes displaying loss of intron retention were enriched for pathways 
involved in mRNA processing, including spliceosome-related gene sets, antigen processing 
and IL-1 production (Supplemental figure 7). Intron retention has previously been described 
as a regulatory mechanism of RNA processing, splicing, vesicle transport and type I 
interferon production in the development of various immune cell types, including 
macrophages52,53, granulocytes54 and B cells55,56. Our findings support previously described 
associations of intron retention losses in immune-related processes, and adds new genes 
regulated by intron retention loss during immune responses (Supplemental figure 7, 
supplemental table 15).  
 
In addition, we found a higher proportion of transcripts to have domain gains than domain 
losses. This could indicate, perhaps unsurprisingly, that stimulation by a pathogen causes a 
gene to switch expression to a transcript isoform that codes for a protein with an extra 
function. Other observed trends included longer ORFs and NMD insensitivity in transcript 
isoforms induced by pathogen stimulation (Figure 4C).  
 
Since the addition or loss of domains could directly reveal protein function changes, we 
explored the IS that had this consequence type. We found that genes with domain gain/loss 
(N=158, supplemental table 16) were enriched for involvement in various catabolic 
processes. We also found enrichment of T cell activation genes, an effect previously 
described as a functional consequence of CD8+ T cell co-stimulation57. Other enriched gene 
sets include leukocyte cell-cell adhesion and activation and general innate immune response 
genes (Supplemental table 17). When looking more specifically at the molecular functions of 
the gained domains themselves, we found an enrichment of domains with potassium 
channel regulator activity, kinase- and transferase activity concerning phosphorus-
containing groups and nucleic acid binding. These results potentially indicate functional and 
cell-type specific effects of domain gains as a result of IS in immune responses 
(Supplemental figure 8, Supplemental table 18).  
 
Novel transcripts play an important role in IS. Of the 999 IS, more than half (N=592) had at 
least one novel transcript involved in the IS. In most cases (N=438), the switch was from a 
novel transcript to a known transcript (Figure 4D, supplemental table 19). Compared to IS 
cases where only known transcripts were involved, the IS consequences were more often 
NMD insensitivity and intron retention loss (Figure 4E). Conversely, shorter ORFs, domain 
losses and NMD sensitivity were more common effects when the IS was from a known to a 
novel transcript isoform. In conclusion, the unstimulated condition is characterized by the 
presence of many novel transcripts with retained introns, which are difficult to detect with 
short read sequencing. Intron retention can be a mechanism to prepare a cell for fast action 
after an immune stimulus, when splicing of the retained intron could quickly generate a 
functional transcript with coding potential.  
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A novel read-through transcript including CARD16 and CASP1 

As an example of a remarkable finding with possible biological impact once validated, we 
identified a read-through transcript that includes both CARD16 and CASP1 (Figure 5A). Read-
through transcripts involve transcription that extends beyond the normal polyadenylation 
site (PAS), terminating at the PAS of an adjacent gene or other nearby locus58. These 
transcripts have been found to be expressed in specific circumstances, including malignancy 
and infection58,59. This particular novel transcript has an extended 59 UTR which spans 
CARD16. This IS was annotated as an intron retention loss, as the novel transcript loses an 
intronic region in its 39 UTR (Figure 5B). Both the known and novel transcripts in this IS are 
predicted to be coding (both 100%). CASP1 was found to be differentially expressed upon 
Poly(I:C) stimulation (log2FC 1.73, p=0.049; Figure 5C). The isoform expression of the known 
transcript was found to decrease upon Poly(I:C) stimulation, while the novel transcript was 
found to increase (Figure 5D). This is further reflected in the isoform fraction, increasing 
from 8.3% to 24.8%, while the known transcript decreased from 85.5% to 74.2% (Figure 5E). 
 
CARD16 and CASP1 both have a function in proinflammatory IL-1´ signaling, where CARD16 
has been shown to play a role in CASP1 assembly, although there remains discussion on the 
exact regulatory effect of CARD16 on this process 60,61. We have identified an IS specifically 
for Poly(I:C) stimulation, where a novel transcript of CASP1 was found to harbor CARD16 in 
its 59 UTR was upregulated upon stimulation. This finding could suggest a novel molecular 
mechanism in IL-1´ signaling, potentially through the regulation of CASP1 by its regulator 
CARD16.  
 

A novel coding transcript of NFKB1 

We identified a novel NFKB1 transcript that demonstrated IS in all four conditions. This 
novel transcript was shorter than the canonical transcripts (Figure 6A). Further analysis 
revealed that the novel transcript start site was supported by multiple nearby CAGE peaks 
(Figure 6B). Strikingly, this novel transcript lacks a part of its Rel homology domain, a 
conserved domain responsible for functions such as dimerization and DNA binding (Figure 
6C)62. NFKB1 was not found to be significantly differentially expressed, although gene 
expression was found to be higher in pathogen-stimulated condition compared to 
unstimulated condition (only C. albicans shown, Figure 6D). The expression of the novel 
transcript was found to increase upon pathogen stimulation (Figure 6E). This is reflected in 
the isoform fraction, which increases from 23.5% to 50.7%, while the known transcript 
decreases from 39.0% to 21.2% (Figure 5F). 
 
NFKB1 plays a central role in immune responses, regulating the response to infections 
through transcriptional activation57. Furthermore, the Rel homology domain region is known 
to harbor disease-causing variants responsible for common viable immunodeficiency 
(CVID)63, highlighting the importance of this domain in normal B cell function. This finding 
could suggest a novel regulatory mechanism of NFKB1. 
 

Detecting secreted peptides 

We sought to obtain evidence of the protein-coding potential of novel transcripts found 
through long-read RNA sequencing. Mass spectrometry was performed for 30 secretome 
samples from five donors9 stimulated PBMCs, which includes the samples from the 
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individual for which long read RNA sequencing was performed (see methods). These include 
2 control samples and 1 of each 24-hour pathogen stimulation condition for each individual.  
 
We designed a search database comprising all proteins that we suspected could be in the 
sample. This includes the GENCODE human proteome, the proteomes of the pathogens 
used, as well as ORFs derived from novel transcripts found using long-read RNA sequencing. 
Novel transcripts do not always correspond to novel ORFs; 32% of the novel transcripts had 
an ORF that was present in the GENCODE reference database (Supplemental Figure 9). In 
the collection of 30 samples, a total of 38,703 peptides from 15,964 proteins were 
identified. We found 404 (7.37%) of identified proteins were known to be secreted 
according to the human protein atlas, which constitutes a significant enrichment (OR=2.12, 
p=3.88x10-21, Fisher9s exact test). We did not detect microbial proteins in the samples. Many 
of the novel ORFs predicted from the transcriptome have high similarity to GENCODE ORFs, 
resulting in a small number of novel peptides that could uniquely identify these. After 
rigorous filtering, we were unable to confidently identify peptides that mapped uniquely to 
the predicted novel ORFs.  
 

Wider deviations in expression in the secretome 

To assess whether differences in transcript expression resulted in differences in the 
amounts of secreted proteins, we performed a label-free quantification of the proteins in 
the cells9 supernatants. Using PCA, we found that a large portion of variation in the 
proteome was explained by inter-individual differences and that these differences were 
larger than the differences induced by the immune stimuli (Supplemental figure 10).  
 
We found a total of 418 differentially expressed proteins (DEPs) between the stimuli and 
control when controlling for individual variation. Differential protein expression was not 
equally distributed between stimuli with over a third (N=131) of the differentially expressed 
genes unique to Poly(I:C) stimulation (Supplemental figure 11A). With the exception of the 
S. aureus condition, more proteins were significantly downregulated than significantly 
upregulated in the secretome (Supplemental figure 11, supplemental table 20). We found 
few overlapping proteins per condition, which could indicate either a high specificity in 
response to different pathogens or a lack of protein secretion in a subset of samples. 
 
To determine which explanation is more likely, we visualized the specific (groups of) 
proteins associated with response stemming from the stimuli. We clustered protein 
expression values normalized by individual and stimulus (Figure 7A, supplemental table 21). 
The clustering revealed a separation between poly(I:C) samples and the rest of the stimuli. 
C. albicans showed a large overlap with poly(I:C) in the protein expression profiles. Some C. 

albicans samples were grouped with poly(I:C) samples, which confirms the results from the 
differential protein expression analysis (13 common DEPs, supplemental figure 10A). Other 
stimulus conditions could not reliably be separated from RPMI. 
 
We identified a cluster of proteins that are highly expressed in Poly(I:C) and C. albicans 

(cluster 4, figure 7A). This group of proteins is enriched for genes with functions in leukocyte 
migration and chemotaxis, exemplified by neutrophil migration. We identified further 
enrichments of gene sets involved in the response to IL-1, humoral antimicrobial response, 
and cellular responses to LPS and type II interferons. Analysis of the molecular functions of 
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these genes indicated an enrichment of cytokine activity and receptor binding, GPCR 
receptor binding and various catalytic functions, likely due to immune cell differentiation 
and immune responses involving the degradation of extracellular matrix proteins during 
immune cell migration64 (figure 7B, supplemental table 22). We further assessed the 
proteins in cluster 4 through a gene network analysis (Figure 7C, Supplemental table 23-24). 
Of the 84 proteins in this network, 61 were differentially expressed on the protein level 
(72.6%, any condition). Of these DEPs, 18 are involved in cytokine signaling (29.5%), of 
which 13 genes are chemokines (71.2%). A high proportion of proteins are found in the 
extracellular region (n=47, 77.0%), for instance through secretion in granules. The biological 
functions of the DEPs in cluster 4 reflect those found for the complete set of proteins in 
cluster 4, mainly corresponding to pathways associated with functions in neutrophil 
migration and chemotaxis (supplemental table 25). As these pathways are not necessarily 
specific to these two stimuli, this may indicate Poly(I:C) and C. Albicans may be more 
effective at eliciting differential protein secretion or have less delay in secretion compared 
to the other stimuli.  
 

Comparison with RNA expression 

As established earlier, a multi-omics approach is currently the best way to understand the 
human immune response. Correlation between the RNA and protein levels, or lack thereof, 
can provide important clues about the host response to pathogens. To assess the 
correlation of differential gene and protein expression levels, we assessed the concordance 
of differential expression on the RNA and protein level. This metric corresponds to the 
percentage of genes for which differential expression on both levels matched in 
directionality (out of all genes where DE was observed on both levels) (Figure 7D, 
supplemental table 26).  
 
We observed an overall poor concordance of directionality and fold change of expression 
levels at the RNA and protein levels in the different stimulus conditions, with the exception 
of C. albicans with 73% overall concordance. We overlaid the genes in group 4 from our 
clustering analysis with the genes found to be DE on both RNA and protein levels. There was 
an overrepresentation of the genes in this cluster in the total group of dual-level DE genes 
(OR=6.99, p=4.813e-16). Further analysis of concordant differential expression matches 
arising from proteins in cluster 4 (triangles in figure 7D), we observed high concordance in 
the genes induced by C. albicans and/or Poly(I:C). Directionality concordance for Poly(I:C) 
and C. albicans for genes in in cluster 4 was significantly higher than overall directionality 
concordance (p=0.0313 Poly(I:C), p=0.0003 C. albicans, Fisher9s test one-tailed). The cluster 
4 proteins in the LPS and S. aureus conditions are in the lower right quadrant, indicating that 
the increase of RNA translated into a decrease of secreted proteins for these genes (Figure 
7D). 
 
We hypothesized in the IS analysis that a major regulatory mechanism in the host response 
to pathogens was the loss of intron retention for rapid protein generation. We cross-
referenced the secreted proteins to support this conjecture. By overlapping upregulated 
isoforms from intron retention loss events, we found 20 cases from 7 genes (Supplemental 
table 27). Of these genes, 2 were upregulated on the protein level, supporting our 
hypothesis. The genes were GZMB and B2M, which are important immune-regulatory genes 
that are both secreted65,66. Considering the remaining 5 genes that were downregulated on 
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the protein level, however, this is not convincing evidence that intron retention loss in 
general provides a rapid increase of protein production. 
 

Discussion 

The identification of novel transcripts and subsequent production of additional protein 
isoforms could help identify molecular mechanisms that play a role in various biological 
processes, including immune responses. Various immune system processes have previously 
been found to be regulated by alternative splicing 67,68 69 70. Immune responses display 
significant inter-individual differences. Donor-specific effects such as sex and ancestry have 
been shown to significantly influence the transcriptome. Previous studies have further 
shown the impact of QTLs in the heritability of cytokine production capacity5,71373. However, 
the effect of these processes on host defense mechanisms against pathogens, together with 
the large inter-individual differences in transcription and protein expression remain to be 
elucidated.  
 
We have generated a long-read transcriptome of pathogen-challenged primary immune 
cells (PBMCs) together with the secreted proteome to investigate mechanisms underlying 
immune responses during infection. We described the accurate identification of known and 
novel transcripts in both control and pathogen-challenged conditions. Of these transcripts, 
we identified a subset that is differentially expressed as a result of pathogen stimulation, 
which we validated by short read RNA sequencing data (including 4 additional individuals) 
and publicly available CAGE data from neutrophils.  
 
We examine isoform switching that occurred as a result of pathogen stimulation, insight 
into transcripts that may play a role in pathogen responses. On a genome-wide level, 
widespread intron retention losses were observed. Retained introns that rendered the 
transcript unusable in the control condition were spliced out as a result of microbial 
stimulation; a trend we observed in all conditions regardless of microbe. We postulate that 
these are examples of unproductive splicing in unstimulated cells switching to productive 
splicing after stimulation enabling fast production of proteins relevant for the immune 
response. Genes that undergo intron retention loss mainly have functions in mRNA splicing 
and processing and in immunity. Tissue- or cell-type specific unproductive splicing has been 
widely observed as an autoregulatory process for mRNA splicing factors74, which is 
supported by our data in immune cells. A couple of pertinent examples have been 
illustrated in greater detail. We identified an IS specific to the viral stimulus that involves a 
novel read-through transcript of CASP1 and CARD16. We also found an instance of IS to a 
novel NFKB1 transcript with a shortened DNA binding domain that was found in all four 
conditions. Taken together, these results highlight the potential for long-read sequencing to 
accurately resolve novel transcripts with potential relevance in immune responses, including 
intron retention loss events that are generally difficult to detect using short-read 
sequencing. 
 
The extent to which conclusions can be drawn about immune response mechanisms is 
limited by the low sample size for long-read sequencing. In this explorative study meant to 
provide insights into the novel technical possibilities utilizing latest sequencing approaches, 
we generated long-read sequencing data for only a single individual because of the 
expensive nature of this technology in combination with the required sequencing depth and 
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the number of conditions studied. This design did not allow us to investigate the inter-
individual differences in the transcriptome. Novel transcripts that were detected could thus 
be specific to this individual. Future follow-up including the sequencing of more individuals 
using accurate long-read sequencing methods and functional studies could provide 
additional insight into the more general relevance of these transcripts in immune responses. 
This study focused on the appraisal of the transcriptome and proteome in PBMCs, which 
consist of multiple cell types. Use of freshly isolated PBMCs accurately represents the 
complete immune cell population in the peripheral blood and allows for communication 
between cell types during pathogen stimulation, thereby potentially giving an accurate 
representation of this cell population in vivo. However, no information on cell type 
specificity of transcripts is available. This could be resolved by recent developments in single 
cell long-read sequencing75.  
 
The proteome, in contrast, was generated for all samples from all 5 individuals and 
highlighted significant differences between the secretome of individual donors, before and 
after response to immune stimuli. Concordance between the transcriptome and proteome 
levels was high in Poly(I:C) and C. albicans, and lower in LPS and S. aureus. We found that 
genes with high correlation on the RNA- and protein levels form a cluster of protein 
expression, separating the former two stimuli from the latter. These proteins are enriched 
for secreted immune-related proteins, indicating that pathogen stimulation successfully led 
to secretion of relevant proteins. This would indicate that cells have responded faster to the 
Poly(I:C) and C. albicans stimuli than to the LPS and S. aureus stimuli, because RNA and 
protein were isolated simultaneously from our samples. Delay in protein production after 
expression of an mRNA may partially explain the lack of correlation of differential 
expression on RNA and protein level. This delay is presumably even longer in the secretome 
as proteins need to be first produced and subsequently secreted76. 
 
We focused our study on the secretome to reduce the complexity of the protein mixture 
analyzed, and to obtain better peptide coverage of the secreted proteins that play an 
important role in immune signaling. However, this limited our view on the complete 
proteome affected by immune stimuli. Also, there is the added complication that only a 
small number of peptides exist that could discriminate between proteoforms. To detect the 
proteoforms derived from our long-read sequencing data, much deeper shotgun proteomics 
must be performed77. These limitations are reasons why no evidence of novel transcripts 
could be validated with the proteome. 
 
Multi-omics approaches are a promising method to further our understanding of immune 
responses. Our study scratches the surface of biological insight to be reaped from a 
combination of multi-omics and long-read sequencing data and was hindered only by the 
aforementioned limitations in the samples themselves. Removing these limitations will 
undoubtedly result in deeper mechanistic understanding and will translate into better 
outcomes for patients. Insights gained from this methodology can be used immediately in 
rare disease diagnostics applications, such as the reannotation of variants using more 
accurate reference transcriptomes for specific tissues78, contributing to the development of 
more personalized medicine. 
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Figure legends 

 
Figure 1: Experimental setup. A) Human peripheral blood mononuclear cells (PBMCs) 
isolated from five donors were exposed to four different pathogenic stimuli and analyzed 
after 24 hours. B) PacBio long read RNA-sequencing was performed on samples from one of 
the five donors. Long-reads were used to estimate differential transcript expression and 
isoform switching. C) The supernatant from all samples (all donors) was collected and 
peptides were detected to quantify protein levels in the secretome. D) Short read RNA 
sequencing (QuantSeq) was performed on all samples (all donors) and differential 
expression estimates were compared to those measured in long-read sequencing. 
 
Figure 2: Transcriptome novelty in the control condition and comparison between stimuli 
transcriptomes in the five long-read samples. A) Transcript novelty categories. GENCODE 
(blue) is the set of all known reference transcripts. Novel in catalog (orange) contains a 
novel combination of annotated introns. Novel not in catalog (green) contains one or more 
unannotated introns. B) Reads (top) and unique transcripts (bottom) of events in each pre-
defined transcript novelty category in RPMI. C) Novelty-inducing events occurring in the 
RPMI transcriptome. D) Unique transcripts by novelty category for each of the stimulus 
conditions. E) Unique transcripts by novelty category that remain at various transcript 
abundance thresholds in the C. albicans condition. F) Transcriptomes of the samples plotted 
on the first two principal components of PCA. G) Jaccard distances of genes (left) and known 
transcripts (right) of the transcriptomes, not considering transcript abundance. 
 
Figure 3: Differential pathway analysis originating from differentially expressed genes on the 
RNA level. A) Overlap between enriched pathways generated from the differentially 
expressed genes from the four conditions. B) Selected pathways found to be enriched for all 
conditions, C) three of the four conditions (Poly(I:C), C. albicans and S. aureus), D) 
specifically for LPS and E) specifically for Poly(I:C).  
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Figure 4: Isoform switching induced by pathogen stimulation. A) Overlap of isoform 
switching genes between the four stimulus conditions. B) Pathway network analysis derived 
from genes found to undergo isoform switching (IS) upon pathogen stimulation. Each 
pathway is colored by p value, where a darker red indicates a lower p value. C) Proportions 
of total IS events in each stimulated condition per IS consequence. D) Number of IS by 
category of switch pairs. Categories are defined by involvement of novel transcripts in a 
given IS. <Novel down= indicates that the isoform switched from a higher proportion of the 
novel transcript in control to a higher proportion of a known transcript in the stimulus 
condition. <Both known= indicates that the IS occurs between 2 reference transcripts. E) 
Fraction of each transcript novelty combination per IS consequence. Normalized by total 
number of IS events per novelty category.  
 
Figure 5: A novel readthrough transcript of CASP1. A) USCS genome browser track of the 
transcripts detected in the control condition (RPMI) and stimulated condition (Poly(I:C)). The 
novel readthrough transcript containing both CASP1 and CARD16 is presented in light blue. 
Known transcripts in in GENCODE are presented below. B) Representation of the domains in 
the novel CASP1 transcript, indicating that CARD16 is entirely included in the 59 UTR of the 
transcript. C) Gene and transcript expression and isoform fraction of the CASP1 transcripts 
that were detected.   
 
Figure 6: A novel transcript of NFKB1. A) UCSC genome browser track of the transcripts 
detected in the control condition (RPMI) and stimulated conditions. The novel transcript is 
presented in light blue. Known transcripts in GENCODE are presented below. B) Zoomed 
view of the transcription start site of the novel transcript with CAGE peaks (monocyte) in 
this region. C) Representation of the domains in the known and novel NFKB1 transcripts that 
were detected. D) Gene and transcript expression and isoform fraction of the NFKB1 

transcripts that were detected.  
 
Figure 7: Protein expression in the secretome. A) Normalized protein expression detected 
from five donors in the five conditions. Donors are denoted with numbers 1 through 5. 
Clusters originating from kmeans clustering are shown in the heatmap. B) Gene ontology 
Biological process (top) and molecular function (bottom) pathways of proteins found in 
cluster 4. C) Clustering of genes found in cluster 4. Genes are found to be differentially 
expressed on the protein level are in color, others greyed. D) Fold change of gene 
differential expression versus fold change of protein DE for genes that were differentially 
expressed on both levels, colored by stimulus. Triangle-shaped points correspond with 
cluster 4 genes from A. Genes with concordant protein and RNA expression are in the upper 
right and lower left quadrants. 
 

Supplemental figures 

Supplemental figure 1: Elbow plots using kmeans clustering. Elbow plots to determine the 
optimal number of kmeans clusters to use for clustering of proteomics data. 
 
Supplementary figure 2: Gene types where novel transcripts are found. A) Most common 
categories of genes. B) Categorization by genes that are related to immunity 
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Supplemental figure 3: Transcriptome trends in all conditions. A) TPM distribution for each 
of the conditions measured. B) Ratios of novelty events in the transcriptome by condition. 
 
Supplemental figure 4: Differential expression on the RNA level. A) Differentially expressed 
genes. B) Differentially expressed transcripts. 
 

Supplemental figure 5: Differential gene expression validation using short read sequencing 

(QuantSeq). A) Correlation of DEGs of each condition between long- and short-read 
sequencing. B) Correlation between long-and short-read sequencing when comparing each 
condition to each other. 
 
Supplemental figure 6: Overview of isoform switching. A) Number of isoform switches 
occurring per gene. B) Max number of measured consequences per isoform switch. C) Total 
number of each type of isoform switching consequence 
 
Supplemental figure 7: Pathway analysis of genes affected by intron retention loss. 
Enrichment was calculated using gProfiler using 304 intron retention loss isoform switches 
from 145 genes. 
 
Supplemental figure 8: Domains that were most frequently gained/lost. A) Domains gained. 
B) Domains lost 
 
Supplemental figure 9: Open reading frames resulting from novel transcripts and their 

detectability. A) RNA vs predicted protein novelty. Color indicates RNA novelty category. X-
axis corresponds to unique transcripts. B) (Predicted) protein sequences that comprise the 
full search database. C) Unique peptide sequences in the peptide search database by origin. 
Multi-mapping indicates 2 or more possible origin categories. 
 
Supplemental figure 10: Principal component analysis of peptide identifications on the 

secretome of all samples. A) Colored by individuals 1-5. B) Colored by stimulus condition. 
 
Supplemental figure 11: Differential expression on the secretome. A) Differentially expressed 
proteins by condition. B) Differentially expressed protein volcano plots per condition. 
 

Supplemental tables 

 
Supplemental table 1: Transcript counts.  

 

Supplemental table 2: Protein quantification. 

 
Supplemental table 3: Differentially expressed genes. 

 

Supplemental table 4: Differentially expressed transcripts. 

 
Supplemental table 5: Correlation long-read and short-read Differentially expressed genes. 

 
Supplemental table 6: Pathway enrichment of differentially expressed genes. 
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Supplemental table 7: Consequences per isoform switch. 

 
Supplemental table 8: Features per isoform switch. 

 
Supplemental table 9: Nodes from the network analysis of genes undergoing isoform 

switching. Generated using Cytoscape. 
 
Supplemental table 10: Edges from the network analysis of genes undergoing isoform 

switching. Generated using Cytoscape. 
 
Supplemental table 11: Pathway analysis of genes undergoing isoform switching. Generated 
using Cytoscape. 
 
Supplemental table 12: Nodes from the enrichment map from genes undergoing isoform 

switching. Generated using Cytoscape.  
  
Supplemental table 13: Edges from the enrichment map from genes undergoing isoform 

switching. Generated using Cytoscape.  
Supplemental table 14: Enrichment of consequences of isoform switching.  
 
Supplemental table 15: Pathway enrichment of genes affected by intron retention loss/gain 

 
Supplemental table 16: Domain gains and losses.  

 
Supplemental table 17: Pathway analysis of genes found to undergo domain gains or losses. 

 
Supplemental table 18: Analysis of Gene Ontology molecular functions of domains gained or 

lost using dcGOR. 
 
Supplemental table 19: Transcript novelty combination counts per isoform switch 

consequence.  

 
Supplemental table 20: Differentially expressed proteins. 

 
Supplemental table 21: Proteome heatmap expression values. 
 
Supplemental table 22: Pathway analysis of proteins in cluster 4. 

 
Supplemental table 23: Nodes from the network analysis of proteins found in cluster 4. 

Generated using Cytoscape. 
 
Supplemental table 24: Edges from the network analysis of proteins found in cluster 4. 

Generated using Cytoscape. 
 
Supplemental table 25: Pathway analysis of differentially expressed proteins found in cluster 

4. 
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Supplemental table 26: Correlation between differentially expressed genes and proteins.  
 
Supplemental table 27: Proteome evidence for intron retentions. 
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