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Abstract

Objectives:

To perform long-read transcriptome and proteome profiling of pathogen-stimulated
peripheral blood mononuclear cells (PBMCs) from healthy donors. We aim to discover new
transcripts and protein isoforms expressed during immune responses to diverse pathogens.

Methods:

PBMCs were exposed to four microbial stimuli for 24 hours: the TLR4 ligand
lipopolysaccharide (LPS), the TLR3 ligand Poly(l:C), heat-inactivated Staphylococcus aureus,
Candida albicans, and RPMI medium as negative controls. Long-read sequencing (PacBio) of
one donor and secretome proteomics and short-read sequencing of five donors were
performed. IsoQuant was used for transcriptome construction, Metamorpheus/FlashLFQ for
proteome analysis, and lllumina short-read 3’-end mRNA sequencing for transcript
guantification.

Results:

Long-read transcriptome profiling reveals the expression of novel sequences and isoform
switching induced upon pathogen stimulation, including transcripts that are difficult to
detect using traditional short-read sequencing. We observe widespread loss of intron
retention as a common result of all pathogen stimulations. We highlight novel transcripts of
NFKB1 and CASP1 that may indicate novel immunological mechanisms. In general, RNA
expression differences did not result in differences in the amounts of secreted proteins.
Interindividual differences in the proteome were larger than the differences between
stimulated and unstimulated PBMCs. Clustering analysis of secreted proteins revealed a
correlation between chemokine (receptor) expression on the RNA and protein levels in C.
albicans- and Poly(l:C)-stimulated PBMCs.

Conclusion:

Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the
potential of these methods to identify novel transcripts, revealing a more complex
transcriptome landscape than previously appreciated.
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Introduction

Immune system responses within the context of an infection are shaped by the nature of
the infection and by inter-individual variability, contributing to differential susceptibility to
infections and to various diseases with an inflammatory component. Dynamic expression of
transcripts and proteins in a range of cells responsible for the innate immune response is
important to shape the first line of defense against a wide variety of pathogens!. Pattern
recognition receptors (PRR) initiate acute inflammatory responses, activating signaling
cascades that converge on various transcription factors. Multiple levels of regulation
orchestrate the dynamic expression of transcripts and proteins, including transcriptional and
post-transcriptional checkpoints such as mRNA splicing and protein translation. Examples of
this include the regulatory role of alternative splicing of Toll-like receptors (TLR) and their
downstream signaling factors?3.

Methods for investigating innate immune responses include in vitro stimulation of primary
immune cells with pathogens or microbial components. These methods allow for specific
investigation of host-pathogen interactions that shape the immune response elicited by
specific cell types and have been under extensive investigation in research on the innate
immune system*>. Stimuli that are commonly used include molecules that stimulate a
specific TLR, such as E. coli lipopolysaccharide (LPS) for TLR4°, dsRNA mimicking Poly(l:C) for
TLR37 and imidazoquinolines for TLR7/88. Stimulation is also often elicited by live or heat-
killed pathogens®1°, which stimulate at the same time a broader range of PRRs12,

Transcriptome characterization is traditionally performed using short read RNA sequencing.
These sequencing approaches are limited by their short read length (approximately 150-300
bp), necessitating the computational reconstruction of whole transcripts and making
detection of different transcripts of the same gene inaccurate. This limitation is especially
pronounced in immune biology, where tight regulation of isoform expression has previously
been described to play a major role in processes, such as the expression of multiple 1L-32
transcripts with different inflammatory potency®? and alternative splicing of CD45 in T cell
activation!. Recent long-read sequencing approaches provide a more complete and
accurate reflection of the transcriptome. Sequencing technologies provided by PacBio and
Oxford Nanopore allow for the sequencing of mRNA (or cDNA) molecules from the ultimate
3’-end to the ultimate 5’-end, which have given a more comprehensive view into the
complexity of the transcriptome. A number of studies have indicated that the isoform
landscape is much more complex than previously appreciated!>~*’. Long-read mRNA
sequencing has provided insight into regulatory mechanisms of immune responses, for
instance in alternative splicing in macrophages?® , and allows for accurate sequencing of
complex transcripts in immune cells®®. Further work on cell-type specific long-read
transcriptomes have shown preferential expression of transcripts in specific cell types?°.

The impact of the newly discovered transcripts as well as post-transcriptional processes can
only be fully understood by observing the proteome. Many studies have characterized the
transcriptomic landscape of the human immune response, but a multi-omics view of
immunity is necessary as mRNA profiles are not enough to understand immune
activation?'?2, Transcript information can be leveraged to study the proteome, including
identification of novel proteoforms resulting from alternative splicing. Proteoforms
discovered by proteogenomics methodologies have already been found to have a role in
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immunological processes, for instance in immune-regulating micropeptides?® and tumor
neoantigen production?,

Here, we stimulated peripheral blood mononuclear cells (PBMCs) with multiple microbial
stimuli in vitro/ex vivo and performed long- and short-read RNA sequencing and secretome
proteomics to gain insight into potential differences in immune response. We aim to
provide insight into the immune transcriptome and proteome of immune cells during innate
immune responses against a variety of pathogens.

Material & methods

Ex vivo PBMC experiments

Venous blood was drawn from five healthy donors® and collected in 10mL EDTA tubes.
Isolation of peripheral blood mononuclear cells (PBMCs) was conducted as described
elsewhere®. In brief, PBMCs were obtained from blood by differential density centrifugation
over Ficoll gradient (Cytiva, Ficoll-Paque Plus, Sigma-Aldrich) after 1:1 dilution in PBS. Cells
were washed twice in saline and re-suspended in serum-free cell culture medium (Roswell
Park Memorial Institute (RPMI) 1640, Gibco) supplemented with 50 mg/mL gentamicin, 2
mM L-glutamine and 1 mM pyruvate. Cells were counted using a particle counter
(Beckmann Coulter, Woerden, The Netherlands) after which the concentration was adjusted
to 5 x 108/mL. Ex vivo PBMC stimulations were performed with 5x10° cells/well in round-
bottom 96-well plates (Greiner Bio-One, Kremsmiinster, Austria) for 24 hours at 37°C and
5% carbon dioxide. Cells were treated with lipopolysaccharide (E. coli LPS, 10 ng/mL),
Staphylococcus aureus (ATCC25923 heat-killed, 1x10%/mL), TLR3 ligand Poly I:C (10 pg/mL),
Candida albicans yeast (UC820 heat-killed, 1x10%/mL), or left untreated in regular RPMI
medium as normal control. After the incubation period of 24h and centrifugation,
supernatants were collected and stored at -80°C until further processing. For the RNA
isolation, cells were stored in 350 uL RNeasy Lysis Buffer (Qiagen, Rneasy Mini Kit, Cat nr.
74104) at -80°C until further processing.

RNA and protein isolation

RNA was isolated from the samples using the RNeasy RNA isolation kit (Qiagen) according to
the protocol supplied by the manufacturer. The RNA integrity of the isolated RNA was
examined using the TapeStation HS D1000 (Agilent), and was found to be >7.5 for all
samples. Accurate determination of the RNA concentration was performed using the Qubit
(ThermoFisher).

We extracted the secretome of the 24 hour stimulated PBMCs. To 250 pl of supernatant,
250 pl buffer containing 10% sodium dodecyl sulfate (SDS) and 100 mM triethylammonium
bicarbonate (TEAB), pH 8.5 was added. Proteins were reduced by addition of 5 mM
dithiothreitol and incubation for 30 minutes at 55°C and then alkylated by addition of 10
mM iodoacetamide and incubation for 15 minutes at RT in the dark. Phosphoric acid was
added to a final concentration of 1.2% and subsequently samples were diluted 7-fold with
binding buffer containing 90% methanol in 100 mM TEAB, pH 7.55. The samples were
loaded on a 96-well S-Trap™ plate (Protifi) in parts of 400 pl, placed on top of a deepwell
plate, and centrifuged for 2 min at 1,500 x g at RT. After protein binding, the S-trap™ plate
was washed three times by adding 200 ul binding buffer and centrifugation for 2 min at
1,500 x g at RT. A new deepwell receiver plate was placed below the 96-well S-Trap™ plate
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and 125 pl 50 mM TEAB containing 1 pg of trypsin was added for digestion overnight at
37°C. Using centrifugation for 2 min at 1,500 x g, peptides were eluted in three times, first
with 80 ul 50 mM TEAB, then with 80 ul 0.2% formic acid (FA) in water and finally with 80 pl
0.2% FA in water/acetonitrile (can) (50/50, v/v). Eluted peptides were dried completely by
vacuum centrifugation.

Long-read library preparation and sequencing

Libraries were generated using the Iso-Seq-Express-Template-Preparation protocol
according to the manufacturer’s recommendations (PacBio, Menlo Parc, CA, USA). We
followed the recommendation for 2-2.5kb libraries, using the 2.0 binding kit, on-plate
loading concentrations of final IsoSeq libraries was 90pM (C. albicans, S. aureus, Poly(l:C),
RPMI) and 100pM (LPS) respectively. We used a 30h movie time for sequencing.

The five samples were analyzed using the isoseq3 v3.4.0 pipeline. Each sample underwent
the same analysis procedure. First CCS1 v6.3.0 was run with min accuracy set to 0.9. IsoSeq
lima v2.5.0 was run in IsoSeq mode as recommended. IsoSeq refine was run with ‘--require-
polya’. The output of IsoSeq refine was used as input for IsoQuant v3.1.226 with GRCh38.p13
v43 primary assembly from GENCODE. The settings were set for full length PacBio data, and
quantification included ambiguous reads. In IsoQuant, transcripts were considered novel if
their intron chains did not match intron chains found in GENCODE annotation version 39.
Transcripts with fewer than 5 reads across all samples were excluded from further analyses
(Supplemental table 1).

We sought to validate the novel transcripts identified using long-read sequencing using
FANTOMS CAGE data of CD14 monocytes
(https://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.primary_cell. CAGEScan/CD14%
2b%20monocyte%20derived%20endothelial%20progenitor%20cells%2c%20donorl.NCig100
41.11229-116C5.hg19.GCTATA. clusters.bed.gz) that allows for the identification of
transcripts with a matching TSS from this 5’ sequencing data. Transcripts with novel 5" were
considered to be supported with a CAGE peak if within 150 basepairs from the TSS.

Short-read library preparation and sequencing

RNA input was normalized to 200 ng for all samples/donors and libraries were generated
using the QuantSeq 3’ mRNA-Seq Library Prep Kit-FWD from Lexogen (Lexogen) in
accordance with the manufacturers’ protocol. In order to ensure high quality libraries, two
separate preparations were performed, limiting the number of samples to 30 per
preparation. End-point PCR was performed with 19 — 22 cycles, as indicated by a
guantitative PCR on a 1:10 aliquot of a subset of double stranded cDNA libraries. Accurate
quantification and quality assessment of the generated libraries was performed using Qubit
dsDNA High Sensitivity assay (Thermo Fisher Scientific) and Agilent 2200 TapeStation (High
Sensitivity D1000 ScreenTape, Agilent). Molarity of individual libraries was calculated using
the cDNA concentration (Qubit) and average fragment size (TapeStation). Safeguarding
sufficient read-depth for each sample, libraries were split in two separate runs. In each run,
the baseline RPMI condition across all donors and time-points was included, in turn allowing
sequencing bias assessment. The cDNA libraries of 35 samples were pooled equimolarly to
100 fmol. After a final dilution of both pools to a concentration of 4 nM, they were
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sequenced on a NextSeq 500 instrument (lllumina) with a final loading concentration of 1.4
pM.

FastQC v0.11.5 (Babraham Bioinformatics) was used to assess the quality of the obtained
sequencing data, followed by removal of adapter sequences and poly(A) tails by Trim
Galore! V.0.4.4_dev (Babraham Bioinformatics) and Cutadapt v1.182%’. Since QuantSeq reads
only provide coverage of the 3’ end of transcripts, we generated a set of transcripts
representative of the full transcriptome by grouping transcripts based on unique 3’
sequences. Therefore, we separately mapped the filtered and trimmed reads to the long
read transcriptome with Salmon v1.9.0 in mapping-based mode with decoys?.

Differential expression analyses

To measure differential gene expression from long-read RNA sequencing, low abundance
genes were filtered using a 10 CPM threshold with the conorm package in python.
Differentially expressed genes (DEGs) and transcripts were calculated for each condition
versus control using the NOISeq R package?® from the abundances generated with isoquant.
TMM normalization was chosen and g-value threshold for DE was set at 0.95.

DEGs were generated from the salmon-mapped short-read RNA sequencing data using the
samples from the same donor using NOISeq?°. The two control samples (RPMI) per donor
were treated as technical replicates. TMM normalization was chosen and g-value threshold
for DE was set at 0.95. We validated the DEGs detected from long-read sequencing with
those generate with the short-read data by comparing the linear correlation of the log2fold
change values for each condition combination between both datasets using the Im() R
function.

The up- and downregulated DEGs per condition-control pair were analyzed for pathway
enrichment separately using gProfiler?®. We used Gene Ontology biological process and
molecular function and TRANSFAC transcription factor motifs gene sets3%31, A term size filter
of between 100-500 was used to generate the final enrichment profiles.

Isoform switching

A first-pass isoform switching analysis was performed using swanvis v2.032. For a second-
pass isoform switching analysis, the resulting gene-level isoform switch p-values were
imported into IsoformSwitchAnalyzeR v1.16.0 package in R3. Thresholds for isoform
switching were set at 10 DPI (differential percent isoform use) and nominal p-value <0.05.
Sequences corresponding to the significant isoform switches were analyzed with CPAT
v1.2.4** hmmscan v3.3.2 with Pfam®, and SignalP53® as a part of the
IsoformSwitchAnalyzeR package.

Pathway analysis and gene network analysis of genes that were found to undergo isoform
switching was performed in Cytoscape®’. Default pathway analysis was performed, filtering
for Gene Ontology Biological Process gene sets. An Enrichment Map was built from the
enriched gene sets with a Jaccard similarity cutoff of 0.438,

Genes found to undergo intron retention gains/losses and genes with domain gains/losses
were separately analyzed using gProfiler. We used Gene Ontology Biological Process gene
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sets with a with a term size filter between 100-500 genes. We separately analyzed genes
with domain gains or losses were using dcGOR*. We used the gene ontology molecular
function gene sets with a term size filter between 100-500 genes.

LC-MS/MS analysis

Peptides were re-dissolved in 20 ul loading solvent A (0.1% trifluoroacetic acid in
water/acetonitrile) (98:2, v/v)) of which 4 ul was injected for LC-MS/MS analysis on an
Ultimate 3000 RSLCnano system in-line connected to a Q Exactive HF mass spectrometer
(Thermo). Trapping was performed at 10 pl/min for 4 min in loading solvent A on a 20 mm
trapping column (made in-house, 100 um internal diameter (1.D.), 5 um beads, C18 Reprosil-
HD, Dr. Maisch, Germany). The peptides were separated on a 250 mm Waters nanoEase
M/Z HSS T3 Column, 1004, 1.8 pm, 75 um inner diameter (Waters Corporation) kept at a
constant temperature of 45°C. Peptides were eluted by a non-linear gradient starting at 1%
MS solvent B reaching 33% MS solvent B (0.1% formic acid (FA) in water/acetonitrile (2:8,
v/v)) in 100 min, 55% MS solvent B (0.1% FA in water/acetonitrile (2:8, v/v)) in 135 min, 97%
MS solvent B in 145 minutes followed by a 5-minute wash at 97% MS solvent B and re-
equilibration with MS solvent A (0.1% FA in water).

The mass spectrometer was operated in data-dependent acquisition mode, automatically
switching between MS and MS/MS acquisition for the 16 most abundant ion peaks per MS
spectrum. Full-scan MS spectra (375-1500 m/z) were acquired at a resolution of 60,000 in
the Orbitrap analyzer after accumulation to a target value of 3,000,000. The 16 most intense
ions above a threshold value of 15,000 were isolated with a width of 1.5 m/z for
fragmentation at a normalized collision energy of 28% after filling the trap at a target value
of 100,000 for maximum 80 ms. MS/MS spectra (200-2000 m/z) were acquired at a
resolution of 15,000 in the Orbitrap analyzer.

Protein identification and quantification

Two search databases were constructed; one database for proteoform detection and one
database for quantification. The database used for sensitive detection of proteoforms was
generated using a slightly adapted version of the Long Read Proteogenomics pipeline by
Miller et al*. Since the pipeline uses a different long-read transcriptomics tool, small syntax
adjustments were made to accommodate the use of Isoquant output. Additionally, a custom
script was written to have Isoquant output mimic the required input format. The pipeline
generated a GENCODE-PacBio hybrid database. The proteome from C. albicans (taxon ID
5476) and S. aureus (taxon ID 1280) were downloaded from UniProt and added to the
search database. The search database used for quantification was created by downloading
the proteome from H. sapiens (taxon ID 9609), C. albicans (taxon ID 5476) and S. aureus
(taxon ID 1280) from UniProt. Metamorpheus default contaminants were added to both
search databases. Mass spectra were identified using Metamorpheus v1.0.0%%,
Quantification was performed using FlashLFQ v 1.2.4.294%? with all five individuals set as
biological replicates and the two control (RPMI) samples per individual set as technical
replicates. The following options enabled: normalization, shared peptide quantification,
Bayesian fold change analysis, and match between runs (Supplemental table 2). An adapted
version of SQANTI protein was used to search for novel peptides in the Metamorpheus
identifications. Enrichment of secreted proteins was determined using the predicted
secreted proteins from Human protein atlas*® as reference.
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Protein clustering

FlashLFQ raw protein expression values originating from the quantification database search
were first square root transformed. To normalize for donor effects, the mean protein
expression value per gene/individual was subtracted from all the expression values from the
same gene/individual. Then z-score normalization was performed across all individuals per
gene. K-means clustering was then performed using the kmeans() function in R with seed
#82 and default parameters. We found four clusters to optimally represent the data
according to the elbow plots (Supplemental figure 1). A heatmap was constructed with
those clusters using the ComplexHeatmap package®*. The proteins identifiers assigned to
cluster #4 were converted to gene names and analyzed using gProfiler for enrichment
analysis using both Gene Ontology Biological Process and Molecular Function gene sets. We
further analyzed the protein found to form cluster 4 through a protein network analysis in
Cytoscape®’.

Data availability

Raw PacBio sequencing data and transcriptome is available on EGA under accession number
EGAS00001006779 https://ega-archive.org/search-results.php?query=EGAS00001006779.
Raw QuantSeq sequencing data is available on EGA under accession number EGAXXXXXXXX.
The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE* partner repository with the dataset identifier PXD045237 and
10.6019/PXD045237. Scripts used to generate the results described in this paper can be
found at https://github.com/cmbi/host_pathogen_interactions.

Results

We stimulated PBMCs from five donors with four different microbial stimuli, mimicking
bacterial (E. coli LPS, S. aureus), viral (Poly(l:C)) and fungal (C. albicans) infections. PBMCs
were stimulated for 24 hours. RPMI incubation was used as a negative control (Figure 1A).
To characterize full-length transcript structures, we performed long-read sequencing on
PBMCs from one donor (Figure 1B). Additionally, shotgun proteomics data was generated
from supernatants of the samples from all five donors. The proteomics data serves to
corroborate differential gene/transcript expression and provide evidence of the protein-
coding potential of novel transcripts identified through long-read RNA sequencing (Figure
1C). Short-read 3’ sequencing data of all five donors was generated to validate differential
gene expression data generated from long-read RNA sequencing (Figure 1D).

Long read transcriptomes of both control and pathogen-stimulated conditions show novelty
Sequences detected using long-read sequencing were categorized in terms of novelty
according to their intron chains. Transcripts are divided into three categories that
encompass reference transcripts (GENCODE), novel in catalog (transcripts that contain
annotated introns) and transcripts that are novel not in catalog (containing unannotated
introns) (Figure 2A). We identified a total of 37,312 unique transcript sequences from
11,872 genes across all samples. The majority of transcripts were in protein coding genes
(Supplemental figure 2A) including ~10% immune-related genes (Supplemental figure 2B).
We found 47.4% of detected transcripts to be novel, while these accounted for only 20.3%
of the total reads (Figure 2B). The distribution of reads per novel transcript was similar to
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that of known transcripts with a slight skew towards lower abundance (supplemental figure
3A). Exon elongations were the most observed feature distinguishing novel from known
transcripts, occurring in nearly a third of the novel transcripts found in RPMI. This was
similar for the stimulated conditions (Figure 2C, Supplementary figure 3B). The percentage
of novel transcripts and transcript deviations were similar for all conditions (Figure 2D). To
corroborate the existence of novel transcripts, we analyzed FANTOMS5 CAGE peaks in the
vicinity of the transcription start sites for novel transcripts with novel 5" ends. We found
8,233 (51.3%) novel 5’ end transcripts across all conditions to be supported by a CAGE peaks
from unstimulated human monocytes (within 150 nucleotides)=.

Principal component analysis of the expression levels for each transcript indicated that
stimulated conditions were more similar to each other than to RPMI. S. aureus and C.
albicans were most similar to each other (Figure 2F). Genes and transcripts expressed were
similar in the stimulated conditions with average Jaccard similarity indices of 0.9 and 0.82
for genes and transcripts, respectively (Figure 2G). Novel transcripts had similar Jaccard
indices to each other than for known transcripts (not shown). Differential expression
analysis yielded an average of 949 differentially expressed genes and 2,076 differentially
expressed transcripts per condition (Supplemental figure 4, supplemental table 3-4).

We validated the differentially expressed genes through 3’ transcript counting (QuantSeq)*’.
We gathered a set of representative transcripts based on sequence differences at the 3’ end
of transcripts (29,760 transcripts, 79.8% of total) and investigated the correlation of
differential expression in the long-read sequencing data with the separately generated short
read dataset of the same donor. The differentially expressed genes that overlapped
between both datasets correlate well (R? 0.62-0.81). Best matching pairs of stimulated
conditions between the short- and long-read confirmed the concordance of both
sequencing approaches (Supplemental figure 5, Supplemental table 5).

Pathogen stimuli display upregulation of different pathways

Differential gene expression analysis using the long-read sequencing data resulted in a total
of 1,733 genes that were differentially expressed in stimulated condition compared to
control. We performed pathway analysis for each condition using gProfiler®® (Supplemental
table 6). By overlapping the gene sets enriched in each of the four conditions, we discerned
biological processes/functions specific to certain pathogen-stimulated conditions. There are
a lot of constants in host response regardless of the pathogen, and indeed the largest set of
pathways was in the overlap between all stimulus conditions (211 pathways, Figure 3A).This
set has an enrichment of genes involved in type Il interferon (IFN-y) responses. Genes
involved in tertiary and specific granules, which play a role in the defense against pathogens
were found to be enriched among upregulated genes in all conditions. Surprisingly, we also
find these and related gene sets to be enriched among downregulated genes as a result of S.
aureus and Poly(l:C) stimulation, potentially a result of the regulation of the inflammatory
response. Further gene sets included the response to molecules of bacterial origin (including
LPS), innate immune response signaling such as PRR signaling, antigen processing and
presentation and IL-1 production (Figure 3B).

Some pathogen-stimulated conditions had more enriched pathways in common than others.
There was a notable overlap of 131 gene sets enriched in C. albicans-, S. aureus- and
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Poly(l:C)-stimulated conditions. Some of these were common to the set overlapping
between all conditions, such as interferon responses. The LPS-excluding set showed
particular enrichment related to viral processes such as the defense against viruses,
regulation of the viral lifecycle, likely due to interferon-stimulated gene expression, such as
STAT1, OAS1/3, OASL and IFIH1. Also, transcription factor binding matches (TRANSFAC) such
as IRF-2, 5, 8 and 9 were enriched, reflecting downstream signaling through various
signaling pathways leading to the regulation of the production of interferons and immune
cell development (Figure 3C)*.

LPS and Poly(l:C) were the 2 stimuli with the most enriched pathways unique to a single
stimulus. For 55 gene sets unique to LPS, there was a downregulation of T cell receptor
signaling, in part due to the downregulation of CD4 expression, which has previously been
described as a result of endogenous production of TNF-a and IL-1p as a result of LPS
stimulation®°. We further found an upregulation of gene sets involved in metabolic
processes such as oxidoreductase complexes and cellular responses to oxygen, possibly
reflecting metabolic changes previously described to occur in immune cells such as
monocytes upon LPS stimulation®!. Furthermore, there was an upregulation of genes
involved in humoral immune responses (figure 3D). For 53 gene sets enriched uniquely in
Poly(l:C), we found functions including viral gene expression, apoptosis related signaling
(regulation of cysteine-type endopeptidase activity) and B-cell related gene sets such as
increased antibody levels and BCR signaling. Finally, there was an enrichment of MHC class Il
antigen presentation (Figure 3E).

Isoform switches highlight transcriptome differences between condition and control
Isoform switching (IS) genes are defined by a change (increase/decrease) of expression of a
particular transcript isoform as measured by percent of total reads for a gene. In different
samples/conditions, a particular transcript isoform may comprise a different isoform
fraction (dIF) value for a given gene. Here, a change of at least 10% (0.10 dIF) in control and
the opposite change (decrease/increase) of expression of a different transcript isoform in
the same gene of at least 10% in the pathogen-stimulated condition is an IS.

A total of 999 IS were detected in 398 genes. Nearly half (N=192, 48.2%) of these IS genes
were unique to their respective stimulus conditions, while 10.3% were found in all
conditions (N=41) (Figure 4A, supplemental table 7-8). The majority of genes demonstrating
IS were not differentially expressed in their respective conditions (327 genes; 77%). Most
genes that were found to undergo IS displayed only one IS instance (Supplemental figure
6A). Pathway analysis of genes undergoing IS were enriched for gene sets involved in
metabolic processes, mRNA splicing, protein transport and catabolism. Furthermore,
immune and stress-related pathways such as MHC type | antigen processing and transport
through vesicles, inflammasomes, oxidative stress and apoptosis were found to be
represented in genes undergoing IS (Figure 4B, supplemental tables 9-13).

We sought to understand the molecular consequences of IS upon pathogen stimulation by
categorizing the differing features of the isoform pairs involved in the switch. Each of the IS
was annotated with one or more of the following predicted protein characteristics: change
in ORF length, ORF gain/loss, domain gain/loss, NMD sensitivity, intron retention (IR)
gain/loss, coding probability (ORF presence), and signal peptide gain/loss. These
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consequences are not independent and often multiple consequences could be attributed to
one IS (Supplemental figure 6B). We observed general IS trends on a genome-wide scale
(Supplemental figure 6C, supplemental table 14). Strikingly, we found intron retention loss
to be the most common consequence of IS in this dataset. Isoforms with retained introns
comprised a higher isoform fraction for genes in the control condition, while their respective
intron-excluding counterparts had a higher isoform fraction for genes in the pathogen-
stimulated conditions. Genes displaying loss of intron retention were enriched for pathways
involved in mRNA processing, including spliceosome-related gene sets, antigen processing
and IL-1 production (Supplemental figure 7). Intron retention has previously been described
as a regulatory mechanism of RNA processing, splicing, vesicle transport and type |
interferon production in the development of various immune cell types, including
macrophages®?>3, granulocytes®* and B cells>>°. Our findings support previously described
associations of intron retention losses in immune-related processes, and adds new genes
regulated by intron retention loss during immune responses (Supplemental figure 7,
supplemental table 15).

In addition, we found a higher proportion of transcripts to have domain gains than domain
losses. This could indicate, perhaps unsurprisingly, that stimulation by a pathogen causes a
gene to switch expression to a transcript isoform that codes for a protein with an extra
function. Other observed trends included longer ORFs and NMD insensitivity in transcript
isoforms induced by pathogen stimulation (Figure 4C).

Since the addition or loss of domains could directly reveal protein function changes, we
explored the IS that had this consequence type. We found that genes with domain gain/loss
(N=158, supplemental table 16) were enriched for involvement in various catabolic
processes. We also found enrichment of T cell activation genes, an effect previously
described as a functional consequence of CD8+ T cell co-stimulation®’. Other enriched gene
sets include leukocyte cell-cell adhesion and activation and general innate immune response
genes (Supplemental table 17). When looking more specifically at the molecular functions of
the gained domains themselves, we found an enrichment of domains with potassium
channel regulator activity, kinase- and transferase activity concerning phosphorus-
containing groups and nucleic acid binding. These results potentially indicate functional and
cell-type specific effects of domain gains as a result of IS in immune responses
(Supplemental figure 8, Supplemental table 18).

Novel transcripts play an important role in IS. Of the 999 IS, more than half (N=592) had at
least one novel transcript involved in the IS. In most cases (N=438), the switch was from a
novel transcript to a known transcript (Figure 4D, supplemental table 19). Compared to IS
cases where only known transcripts were involved, the IS consequences were more often
NMD insensitivity and intron retention loss (Figure 4E). Conversely, shorter ORFs, domain
losses and NMD sensitivity were more common effects when the IS was from a known to a
novel transcript isoform. In conclusion, the unstimulated condition is characterized by the
presence of many novel transcripts with retained introns, which are difficult to detect with
short read sequencing. Intron retention can be a mechanism to prepare a cell for fast action
after an immune stimulus, when splicing of the retained intron could quickly generate a
functional transcript with coding potential.
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A novel read-through transcript including CARD16 and CASP1

As an example of a remarkable finding with possible biological impact once validated, we
identified a read-through transcript that includes both CARD16 and CASP1 (Figure 5A). Read-
through transcripts involve transcription that extends beyond the normal polyadenylation
site (PAS), terminating at the PAS of an adjacent gene or other nearby locus®®. These
transcripts have been found to be expressed in specific circumstances, including malignancy
and infection®®°, This particular novel transcript has an extended 5’ UTR which spans
CARD16. This IS was annotated as an intron retention loss, as the novel transcript loses an
intronic region in its 3’ UTR (Figure 5B). Both the known and novel transcripts in this IS are
predicted to be coding (both 100%). CASP1 was found to be differentially expressed upon
Poly(l:C) stimulation (log2FC 1.73, p=0.049; Figure 5C). The isoform expression of the known
transcript was found to decrease upon Poly(l:C) stimulation, while the novel transcript was
found to increase (Figure 5D). This is further reflected in the isoform fraction, increasing
from 8.3% to 24.8%, while the known transcript decreased from 85.5% to 74.2% (Figure 5E).

CARD16 and CASP1 both have a function in proinflammatory IL-1f signaling, where CARD16
has been shown to play a role in CASP1 assembly, although there remains discussion on the
exact regulatory effect of CARD16 on this process %91, We have identified an IS specifically
for Poly(l:C) stimulation, where a novel transcript of CASP1 was found to harbor CARD16 in
its 5" UTR was upregulated upon stimulation. This finding could suggest a novel molecular
mechanism in IL-1B signaling, potentially through the regulation of CASP1 by its regulator
CARD16.

A novel coding transcript of NFKB1

We identified a novel NFKB1 transcript that demonstrated IS in all four conditions. This
novel transcript was shorter than the canonical transcripts (Figure 6A). Further analysis
revealed that the novel transcript start site was supported by multiple nearby CAGE peaks
(Figure 6B). Strikingly, this novel transcript lacks a part of its Rel homology domain, a
conserved domain responsible for functions such as dimerization and DNA binding (Figure
6C)®2. NFKB1 was not found to be significantly differentially expressed, although gene
expression was found to be higher in pathogen-stimulated condition compared to
unstimulated condition (only C. albicans shown, Figure 6D). The expression of the novel
transcript was found to increase upon pathogen stimulation (Figure 6E). This is reflected in
the isoform fraction, which increases from 23.5% to 50.7%, while the known transcript
decreases from 39.0% to 21.2% (Figure 5F).

NFKB1 plays a central role in immune responses, regulating the response to infections
through transcriptional activation®’. Furthermore, the Rel homology domain region is known
to harbor disease-causing variants responsible for common viable immunodeficiency
(CVID)®3, highlighting the importance of this domain in normal B cell function. This finding
could suggest a novel regulatory mechanism of NFKB1.

Detecting secreted peptides

We sought to obtain evidence of the protein-coding potential of novel transcripts found
through long-read RNA sequencing. Mass spectrometry was performed for 30 secretome
samples from five donors’ stimulated PBMCs, which includes the samples from the
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individual for which long read RNA sequencing was performed (see methods). These include
2 control samples and 1 of each 24-hour pathogen stimulation condition for each individual.

We designed a search database comprising all proteins that we suspected could be in the
sample. This includes the GENCODE human proteome, the proteomes of the pathogens
used, as well as ORFs derived from novel transcripts found using long-read RNA sequencing.
Novel transcripts do not always correspond to novel ORFs; 32% of the novel transcripts had
an ORF that was present in the GENCODE reference database (Supplemental Figure 9). In
the collection of 30 samples, a total of 38,703 peptides from 15,964 proteins were
identified. We found 404 (7.37%) of identified proteins were known to be secreted
according to the human protein atlas, which constitutes a significant enrichment (OR=2.12,
p=3.88x102, Fisher’s exact test). We did not detect microbial proteins in the samples. Many
of the novel ORFs predicted from the transcriptome have high similarity to GENCODE ORFs,
resulting in a small number of novel peptides that could uniquely identify these. After
rigorous filtering, we were unable to confidently identify peptides that mapped uniquely to
the predicted novel ORFs.

Wider deviations in expression in the secretome

To assess whether differences in transcript expression resulted in differences in the
amounts of secreted proteins, we performed a label-free quantification of the proteins in
the cells’ supernatants. Using PCA, we found that a large portion of variation in the
proteome was explained by inter-individual differences and that these differences were
larger than the differences induced by the immune stimuli (Supplemental figure 10).

We found a total of 418 differentially expressed proteins (DEPs) between the stimuli and
control when controlling for individual variation. Differential protein expression was not
equally distributed between stimuli with over a third (N=131) of the differentially expressed
genes unique to Poly(l:C) stimulation (Supplemental figure 11A). With the exception of the
S. aureus condition, more proteins were significantly downregulated than significantly
upregulated in the secretome (Supplemental figure 11, supplemental table 20). We found
few overlapping proteins per condition, which could indicate either a high specificity in
response to different pathogens or a lack of protein secretion in a subset of samples.

To determine which explanation is more likely, we visualized the specific (groups of)
proteins associated with response stemming from the stimuli. We clustered protein
expression values normalized by individual and stimulus (Figure 7A, supplemental table 21).
The clustering revealed a separation between poly(l:C) samples and the rest of the stimuli.
C. albicans showed a large overlap with poly(l:C) in the protein expression profiles. Some C.
albicans samples were grouped with poly(l:C) samples, which confirms the results from the
differential protein expression analysis (13 common DEPs, supplemental figure 10A). Other
stimulus conditions could not reliably be separated from RPMI.

We identified a cluster of proteins that are highly expressed in Poly(1:C) and C. albicans
(cluster 4, figure 7A). This group of proteins is enriched for genes with functions in leukocyte
migration and chemotaxis, exemplified by neutrophil migration. We identified further
enrichments of gene sets involved in the response to IL-1, humoral antimicrobial response,
and cellular responses to LPS and type Il interferons. Analysis of the molecular functions of
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these genes indicated an enrichment of cytokine activity and receptor binding, GPCR
receptor binding and various catalytic functions, likely due to immune cell differentiation
and immune responses involving the degradation of extracellular matrix proteins during
immune cell migration®* (figure 7B, supplemental table 22). We further assessed the
proteins in cluster 4 through a gene network analysis (Figure 7C, Supplemental table 23-24).
Of the 84 proteins in this network, 61 were differentially expressed on the protein level
(72.6%, any condition). Of these DEPs, 18 are involved in cytokine signaling (29.5%), of
which 13 genes are chemokines (71.2%). A high proportion of proteins are found in the
extracellular region (n=47, 77.0%), for instance through secretion in granules. The biological
functions of the DEPs in cluster 4 reflect those found for the complete set of proteins in
cluster 4, mainly corresponding to pathways associated with functions in neutrophil
migration and chemotaxis (supplemental table 25). As these pathways are not necessarily
specific to these two stimuli, this may indicate Poly(I:C) and C. Albicans may be more
effective at eliciting differential protein secretion or have less delay in secretion compared
to the other stimuli.

Comparison with RNA expression

As established earlier, a multi-omics approach is currently the best way to understand the
human immune response. Correlation between the RNA and protein levels, or lack thereof,
can provide important clues about the host response to pathogens. To assess the
correlation of differential gene and protein expression levels, we assessed the concordance
of differential expression on the RNA and protein level. This metric corresponds to the
percentage of genes for which differential expression on both levels matched in
directionality (out of all genes where DE was observed on both levels) (Figure 7D,
supplemental table 26).

We observed an overall poor concordance of directionality and fold change of expression
levels at the RNA and protein levels in the different stimulus conditions, with the exception
of C. albicans with 73% overall concordance. We overlaid the genes in group 4 from our
clustering analysis with the genes found to be DE on both RNA and protein levels. There was
an overrepresentation of the genes in this cluster in the total group of dual-level DE genes
(OR=6.99, p=4.813e-16). Further analysis of concordant differential expression matches
arising from proteins in cluster 4 (triangles in figure 7D), we observed high concordance in
the genes induced by C. albicans and/or Poly(l:C). Directionality concordance for Poly(l:C)
and C. albicans for genes in in cluster 4 was significantly higher than overall directionality
concordance (p=0.0313 Poly(l:C), p=0.0003 C. albicans, Fisher’s test one-tailed). The cluster
4 proteins in the LPS and S. aureus conditions are in the lower right quadrant, indicating that
the increase of RNA translated into a decrease of secreted proteins for these genes (Figure
7D).

We hypothesized in the IS analysis that a major regulatory mechanism in the host response
to pathogens was the loss of intron retention for rapid protein generation. We cross-
referenced the secreted proteins to support this conjecture. By overlapping upregulated
isoforms from intron retention loss events, we found 20 cases from 7 genes (Supplemental
table 27). Of these genes, 2 were upregulated on the protein level, supporting our
hypothesis. The genes were GZMB and B2M, which are important immune-regulatory genes
that are both secreted®®®. Considering the remaining 5 genes that were downregulated on
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the protein level, however, this is not convincing evidence that intron retention loss in
general provides a rapid increase of protein production.

Discussion

The identification of novel transcripts and subsequent production of additional protein
isoforms could help identify molecular mechanisms that play a role in various biological
processes, including immune responses. Various immune system processes have previously
been found to be regulated by alternative splicing 7% 8 70 Immune responses display
significant inter-individual differences. Donor-specific effects such as sex and ancestry have
been shown to significantly influence the transcriptome. Previous studies have further
shown the impact of QTLs in the heritability of cytokine production capacity>’™’3. However,
the effect of these processes on host defense mechanisms against pathogens, together with
the large inter-individual differences in transcription and protein expression remain to be
elucidated.

We have generated a long-read transcriptome of pathogen-challenged primary immune
cells (PBMCs) together with the secreted proteome to investigate mechanisms underlying
immune responses during infection. We described the accurate identification of known and
novel transcripts in both control and pathogen-challenged conditions. Of these transcripts,
we identified a subset that is differentially expressed as a result of pathogen stimulation,
which we validated by short read RNA sequencing data (including 4 additional individuals)
and publicly available CAGE data from neutrophils.

We examine isoform switching that occurred as a result of pathogen stimulation, insight
into transcripts that may play a role in pathogen responses. On a genome-wide level,
widespread intron retention losses were observed. Retained introns that rendered the
transcript unusable in the control condition were spliced out as a result of microbial
stimulation; a trend we observed in all conditions regardless of microbe. We postulate that
these are examples of unproductive splicing in unstimulated cells switching to productive
splicing after stimulation enabling fast production of proteins relevant for the immune
response. Genes that undergo intron retention loss mainly have functions in mRNA splicing
and processing and in immunity. Tissue- or cell-type specific unproductive splicing has been
widely observed as an autoregulatory process for mRNA splicing factors’#, which is
supported by our data in immune cells. A couple of pertinent examples have been
illustrated in greater detail. We identified an IS specific to the viral stimulus that involves a
novel read-through transcript of CASP1 and CARD16. We also found an instance of ISto a
novel NFKB1 transcript with a shortened DNA binding domain that was found in all four
conditions. Taken together, these results highlight the potential for long-read sequencing to
accurately resolve novel transcripts with potential relevance in immune responses, including
intron retention loss events that are generally difficult to detect using short-read
sequencing.

The extent to which conclusions can be drawn about immune response mechanisms is
limited by the low sample size for long-read sequencing. In this explorative study meant to
provide insights into the novel technical possibilities utilizing latest sequencing approaches,
we generated long-read sequencing data for only a single individual because of the
expensive nature of this technology in combination with the required sequencing depth and
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the number of conditions studied. This design did not allow us to investigate the inter-
individual differences in the transcriptome. Novel transcripts that were detected could thus
be specific to this individual. Future follow-up including the sequencing of more individuals
using accurate long-read sequencing methods and functional studies could provide
additional insight into the more general relevance of these transcripts in immune responses.
This study focused on the appraisal of the transcriptome and proteome in PBMCs, which
consist of multiple cell types. Use of freshly isolated PBMCs accurately represents the
complete immune cell population in the peripheral blood and allows for communication
between cell types during pathogen stimulation, thereby potentially giving an accurate
representation of this cell population in vivo. However, no information on cell type
specificity of transcripts is available. This could be resolved by recent developments in single
cell long-read sequencing’>.

The proteome, in contrast, was generated for all samples from all 5 individuals and
highlighted significant differences between the secretome of individual donors, before and
after response to immune stimuli. Concordance between the transcriptome and proteome
levels was high in Poly(l:C) and C. albicans, and lower in LPS and S. aureus. We found that
genes with high correlation on the RNA- and protein levels form a cluster of protein
expression, separating the former two stimuli from the latter. These proteins are enriched
for secreted immune-related proteins, indicating that pathogen stimulation successfully led
to secretion of relevant proteins. This would indicate that cells have responded faster to the
Poly(1:C) and C. albicans stimuli than to the LPS and S. aureus stimuli, because RNA and
protein were isolated simultaneously from our samples. Delay in protein production after
expression of an mRNA may partially explain the lack of correlation of differential
expression on RNA and protein level. This delay is presumably even longer in the secretome
as proteins need to be first produced and subsequently secreted’®.

We focused our study on the secretome to reduce the complexity of the protein mixture
analyzed, and to obtain better peptide coverage of the secreted proteins that play an
important role in immune signaling. However, this limited our view on the complete
proteome affected by immune stimuli. Also, there is the added complication that only a
small number of peptides exist that could discriminate between proteoforms. To detect the
proteoforms derived from our long-read sequencing data, much deeper shotgun proteomics
must be performed’’. These limitations are reasons why no evidence of novel transcripts
could be validated with the proteome.

Multi-omics approaches are a promising method to further our understanding of immune
responses. Our study scratches the surface of biological insight to be reaped from a
combination of multi-omics and long-read sequencing data and was hindered only by the
aforementioned limitations in the samples themselves. Removing these limitations will
undoubtedly result in deeper mechanistic understanding and will translate into better
outcomes for patients. Insights gained from this methodology can be used immediately in
rare disease diagnostics applications, such as the reannotation of variants using more
accurate reference transcriptomes for specific tissues’®, contributing to the development of
more personalized medicine.
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Figure legends

Figure 1: Experimental setup. A) Human peripheral blood mononuclear cells (PBMCs)
isolated from five donors were exposed to four different pathogenic stimuli and analyzed
after 24 hours. B) PacBio long read RNA-sequencing was performed on samples from one of
the five donors. Long-reads were used to estimate differential transcript expression and
isoform switching. C) The supernatant from all samples (all donors) was collected and
peptides were detected to quantify protein levels in the secretome. D) Short read RNA
sequencing (QuantSeq) was performed on all samples (all donors) and differential
expression estimates were compared to those measured in long-read sequencing.

Figure 2: Transcriptome novelty in the control condition and comparison between stimuli
transcriptomes in the five long-read samples. A) Transcript novelty categories. GENCODE
(blue) is the set of all known reference transcripts. Novel in catalog (orange) contains a
novel combination of annotated introns. Novel not in catalog (green) contains one or more
unannotated introns. B) Reads (top) and unique transcripts (bottom) of events in each pre-
defined transcript novelty category in RPMI. C) Novelty-inducing events occurring in the
RPMI transcriptome. D) Unique transcripts by novelty category for each of the stimulus
conditions. E) Unique transcripts by novelty category that remain at various transcript
abundance thresholds in the C. albicans condition. F) Transcriptomes of the samples plotted
on the first two principal components of PCA. G) Jaccard distances of genes (left) and known
transcripts (right) of the transcriptomes, not considering transcript abundance.

Figure 3: Differential pathway analysis originating from differentially expressed genes on the
RNA level. A) Overlap between enriched pathways generated from the differentially
expressed genes from the four conditions. B) Selected pathways found to be enriched for all
conditions, C) three of the four conditions (Poly(l:C), C. albicans and S. aureus), D)
specifically for LPS and E) specifically for Poly(l:C).
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Figure 4: Isoform switching induced by pathogen stimulation. A) Overlap of isoform
switching genes between the four stimulus conditions. B) Pathway network analysis derived
from genes found to undergo isoform switching (IS) upon pathogen stimulation. Each
pathway is colored by p value, where a darker red indicates a lower p value. C) Proportions
of total IS events in each stimulated condition per IS consequence. D) Number of IS by
category of switch pairs. Categories are defined by involvement of novel transcripts in a
given IS. “Novel down” indicates that the isoform switched from a higher proportion of the
novel transcript in control to a higher proportion of a known transcript in the stimulus
condition. “Both known” indicates that the IS occurs between 2 reference transcripts. E)
Fraction of each transcript novelty combination per IS consequence. Normalized by total
number of IS events per novelty category.

Figure 5: A novel readthrough transcript of CASP1. A) USCS genome browser track of the
transcripts detected in the control condition (RPMI) and stimulated condition (Poly(l:C)). The
novel readthrough transcript containing both CASP1 and CARD16 is presented in light blue.
Known transcripts in in GENCODE are presented below. B) Representation of the domains in
the novel CASP1 transcript, indicating that CARD16 is entirely included in the 5 UTR of the
transcript. C) Gene and transcript expression and isoform fraction of the CASP1 transcripts
that were detected.

Figure 6: A novel transcript of NFKB1. A) UCSC genome browser track of the transcripts
detected in the control condition (RPMI) and stimulated conditions. The novel transcript is
presented in light blue. Known transcripts in GENCODE are presented below. B) Zoomed
view of the transcription start site of the novel transcript with CAGE peaks (monocyte) in
this region. C) Representation of the domains in the known and novel NFKB1 transcripts that
were detected. D) Gene and transcript expression and isoform fraction of the NFKB1
transcripts that were detected.

Figure 7: Protein expression in the secretome. A) Normalized protein expression detected
from five donors in the five conditions. Donors are denoted with numbers 1 through 5.
Clusters originating from kmeans clustering are shown in the heatmap. B) Gene ontology
Biological process (top) and molecular function (bottom) pathways of proteins found in
cluster 4. C) Clustering of genes found in cluster 4. Genes are found to be differentially
expressed on the protein level are in color, others greyed. D) Fold change of gene
differential expression versus fold change of protein DE for genes that were differentially
expressed on both levels, colored by stimulus. Triangle-shaped points correspond with
cluster 4 genes from A. Genes with concordant protein and RNA expression are in the upper
right and lower left quadrants.

Supplemental figures
Supplemental figure 1: Elbow plots using kmeans clustering. Elbow plots to determine the
optimal number of kmeans clusters to use for clustering of proteomics data.

Supplementary figure 2: Gene types where novel transcripts are found. A) Most common
categories of genes. B) Categorization by genes that are related to immunity
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Supplemental figure 3: Transcriptome trends in all conditions. A) TPM distribution for each
of the conditions measured. B) Ratios of novelty events in the transcriptome by condition.

Supplemental figure 4: Differential expression on the RNA level. A) Differentially expressed
genes. B) Differentially expressed transcripts.

Supplemental figure 5: Differential gene expression validation using short read sequencing
(QuantSeq). A) Correlation of DEGs of each condition between long- and short-read
sequencing. B) Correlation between long-and short-read sequencing when comparing each
condition to each other.

Supplemental figure 6: Overview of isoform switching. A) Number of isoform switches
occurring per gene. B) Max number of measured consequences per isoform switch. C) Total
number of each type of isoform switching consequence

Supplemental figure 7: Pathway analysis of genes affected by intron retention loss.
Enrichment was calculated using gProfiler using 304 intron retention loss isoform switches

from 145 genes.

Supplemental figure 8: Domains that were most frequently gained/lost. A) Domains gained.
B) Domains lost

Supplemental figure 9: Open reading frames resulting from novel transcripts and their
detectability. A) RNA vs predicted protein novelty. Color indicates RNA novelty category. X-
axis corresponds to unique transcripts. B) (Predicted) protein sequences that comprise the
full search database. C) Unique peptide sequences in the peptide search database by origin.
Multi-mapping indicates 2 or more possible origin categories.

Supplemental figure 10: Principal component analysis of peptide identifications on the
secretome of all samples. A) Colored by individuals 1-5. B) Colored by stimulus condition.

Supplemental figure 11: Differential expression on the secretome. A) Differentially expressed
proteins by condition. B) Differentially expressed protein volcano plots per condition.

Supplemental tables

Supplemental table 1: Transcript counts.

Supplemental table 2: Protein quantification.

Supplemental table 3: Differentially expressed genes.

Supplemental table 4: Differentially expressed transcripts.

Supplemental table 5: Correlation long-read and short-read Differentially expressed genes.

Supplemental table 6: Pathway enrichment of differentially expressed genes.
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Supplemental table 7: Consequences per isoform switch.
Supplemental table 8: Features per isoform switch.

Supplemental table 9: Nodes from the network analysis of genes undergoing isoform
switching. Generated using Cytoscape.

Supplemental table 10: Edges from the network analysis of genes undergoing isoform
switching. Generated using Cytoscape.

Supplemental table 11: Pathway analysis of genes undergoing isoform switching. Generated
using Cytoscape.

Supplemental table 12: Nodes from the enrichment map from genes undergoing isoform
switching. Generated using Cytoscape.

Supplemental table 13: Edges from the enrichment map from genes undergoing isoform
switching. Generated using Cytoscape.

Supplemental table 14: Enrichment of consequences of isoform switching.

Supplemental table 15: Pathway enrichment of genes affected by intron retention loss/gain
Supplemental table 16: Domain gains and losses.

Supplemental table 17: Pathway analysis of genes found to undergo domain gains or losses.

Supplemental table 18: Analysis of Gene Ontology molecular functions of domains gained or
lost using dcGOR.

Supplemental table 19: Transcript novelty combination counts per isoform switch
consequence.

Supplemental table 20: Differentially expressed proteins.
Supplemental table 21: Proteome heatmap expression values.
Supplemental table 22: Pathway analysis of proteins in cluster 4.

Supplemental table 23: Nodes from the network analysis of proteins found in cluster 4.
Generated using Cytoscape.

Supplemental table 24: Edges from the network analysis of proteins found in cluster 4.
Generated using Cytoscape.

Supplemental table 25: Pathway analysis of differentially expressed proteins found in cluster
4.
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Supplemental table 26: Correlation between differentially expressed genes and proteins.

Supplemental table 27: Proteome evidence for intron retentions.
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