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Summary 

 

Spatial transcriptomics technologies enable the spatially resolved measurement of gene 

expression within a tissue specimen. With these technologies, researchers can investigate how 

cells organize into cellular niches which are defined as distinct regions in the tissue comprising a 

specific composition of cell types or phenotypes. While general-purpose software tools for the 

exploratory analysis of spatial transcriptomics data exist, there is a need for tools that specialize 

in the analysis of cellular organization into niches. This can further enhance the downstream 

application of these data towards drug target discovery, target validation, and biomarker 

development. We present Monkeybread: A Python toolkit for analyzing cellular organization and 

intercellular communication in single-cell resolution spatial transcriptomics data. We applied 

Monkeybread to a human melanoma sample to demonstrate its utility in identifying cellular niches 

with diverse immunogenic compositions in the tumor microenvironment. We found that these 

niches were differentially enriched for immunogenic and tolerogenic macrophage populations that 

could be correlated to T cell abundance. These findings highlight how Monkeybread can be used 

for revealing underlying biology of the tumor microenvironment, and in the future, for 

understanding the influence of these niches on response to available treatments and discovery 

of novel drug targets. 

 

Introduction 

 

Spatial transcriptomics technologies enable the measurement of gene expression while resolving 

the spatial locations of those measurements within the tissue specimen. With these methods, 

researchers can study how gene expression correlates with cellular organization and intercellular 

communication in the tissue microenvironment. To unleash their potential, a variety of software 
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tools have been developed to facilitate the analysis of the data they generate. Many of these tools 

address computational challenges inherent in the analysis of data generated by technologies that 

measure gene expression at the resolution of spatial spots that are locations in the tissue 

containing multiple cells (ranging from a few to tens of cells) from which a gene expression 

measurement was made (such as data generated by the 10x Visium platform). For example, tools 

have been developed to deconvolve the abundance of specific cell types within each spot 134 or 

to cluster spots in a spatially-aware manner 5,6.   

 

However, fewer tools address the challenges inherent to analyzing single-cell resolution spatial 

transcriptomics data, such as those generated by multiplexed error-robust fluorescence in situ 

hybridization (MERFISH), which often generates data from hundreds of thousands of spatially 

resolved individual cells. First, when visualizing the full tissue specimen, there often exist so many 

cells that it becomes difficult to visually discern distributions of cell types (especially rare cells) or 

gene expression patterns. Furthermore, while methods exist for identifying broad tissue regions 

using spatially aware clustering of gene expression profiles 537, except for SPIAT 8 (which is written 

in R), we are not aware of any tools for the Python ecosystem that identify cellular niches as 

defined by cells that cluster according to the composition of the user-defined cell types in their 

spatial neighborhoods. Understanding the spatial cellular niches that comprise the tissue 

microenvironment is essential for understanding basic physiology 9311 and disease 12314. Lastly, 

though some methods, such as squidpy 15, stLearn 16, Seurat 17, Giotto 18, and Voyager 7 provide 

broad functionality for analyzing spatial transcriptomics data, these methods are generalized to 

work on spatial data at both the spot-level and single-cell level but don9t address the 

aforementioned challenges by specializing in the analysis of cellular niches in single-cell 

resolution spatial data. 

 

In this work, we present Monkeybread: A Python toolkit that provides broad functionality for 

analyzing and visualizing cellular organization, cellular niches, and intercellular communication 

via ligand-receptor interactions. Monkeybread is designed to operate on spatial datasets stored 

in memory as AnnData objects, and thus, can be integrated into workflows that use scanpy 19, 

squidpy, or other tools in the scverse ecosystem 20. To provide a case-study into how 

Monkeybread can be used, we applied it to a human melanoma sample from Vizgen9s immuno-

oncology public data release 21. This analysis revealed cellular niches with diverse immunogenic 

repertoires in the tumor microenvironment (TME).  
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Results 

 

Monkeybread provides a suite of tools for exploring cellular organization and communication in 

single-cell spatial transcriptomics data  

 

Monkeybread enables investigations into how cells organize into cellular niches, here defined as 

regions within the tissue microenvironment comprising a specific composition of cell types or 

phenotypes. To do so, Monkeybread first selects the neighboring cells of each cell (those that fall 

within a pre-specified radius of each cell) and counts the number of cells of each cell type or 

phenotype to form an � × � neighborhoods matrix, �, where � is the number of cells and � is the 

number of cell type or phenotype labels. Element �, � represents the number of neighbors of cell � 
that are of cell type �.  To account for neighborhoods with differing numbers of cells, Monkeybread 

provides the option of normalizing these neighborhood counts by dividing each cell9s neighbor 

counts by its total number of neighbors. To account for the large differences in cell abundances 

between cell types, Monkeybread also provides the option of computing the z-scores of each 

neighborhood count (or normalized count), thus placing count values between cell types on similar 

scales. Finally, niches are computed by clustering the rows (corresponding to cells) of the 

normalized neighborhoods matrix. By default, Monkeybread uses the Leiden clustering algorithm 

22. 

 

Monkeybread provides a lightweight statistical test for testing enrichment of cellular colocalization 

between pairs of cell types (Figure S1). This test considers the following test statistic: for two cell 

types � and � under test, for each cell of type �, we find the distance to its nearest cell of type �.  

We then count the number of such shortest distances from cells of type � to type � that fall below 

some user-provided threshold distance �.  To test for significance, a permutation test is performed 

that generates a null distribution of the test statistic by permuting the spatial coordinates of non-

type � cells.  This test can optionally be run on cells within specific niches to condition the analysis 

on co-localization patterns explained by the organization of the tissue into cellular niches.  

 

When visualizing the full tissue specimen, there often exist so many cells that it becomes difficult 

to visually discern the spatial distribution of cells of a given cell type, especially rare cell types, or 

those expressing a given gene. Monkeybread provides functionality for visualizing and comparing 

the spatial density of cells with a specific cell type label or phenotype across the tissue. More 

specifically, Monkeybread uses kernel density estimation to visualize regions with a high 
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concentration of cells exhibiting rare or specific phenotypes (Methods). In addition, Monkeybread 

provides functions built atop scanpy for easily zooming in on specific regions of the tissue and 

sub-setting the data to the zoomed-in regions within the smaller field of view.  

 

Lastly, Monkeybread implements a lightweight statistical test developed by He et al. (2021) 23 for 

identifying intercellular communication via ligand-receptor binding (Methods; Figure S2).  This 

method is related to a spatial ligand-receptor co-expression test implemented in Giotto but here 

is implemented in Python. It differs from that implemented by Squidpy in that Squidpy9s uses 

CellPhoneDB 24, which does not consider spatial proximity between cell types. In addition to this 

test, Monkeybread provides a visualization tool, built atop matplotlib 25 and scanpy 19, that depicts 

which pairs of cells in the tissue may be communicating via a given ligand-receptor by drawing a 

line between each pair of neighboring cells of types � and � that are expressing the given ligand 

and receptor. These lines are colored according to the magnitude of their ligand-receptor co-

expression scores. This visualization tool enables the user to quickly see where in the tissue 

neighboring cells are co-expressing the ligand-receptor pair. 

 

Monkeybread identifies spatial regions enriched for immunogenic and tolerogenic macrophages 

in a human melanoma tumor  

 

We applied Monkeybread to a human melanoma sample from Vizgen9s immuno-oncology public 

data release 21 to study the cellular organization of the TME. First, we annotated the cells with 

both a coarse and granular set of cell type labels by first clustering the cells and manually cross-

referencing the genes expressed in each cluster with known marker genes (Figure 1a,b, S3-7; 

Methods). We examined the spatial distribution of the broad cell types using Monkeybread9s tool 

for visualizing cell spatial densities and found malignant cells occupying the core of the tumor 

surrounded by regions of dense stromal and immune cells (Figure 1.c).   

 

Within the monocyte/macrophage compartment, we identified three distinct populations (Figure 

1d). The first displayed a putatively immunogenic phenotype as indicated by high expression of 

CXCL9, CXCL10, and CXCL11 26. The second displayed markers commonly associated with a 

tolerogenic, M2-like phenotype (CD163 and MRC1) as well as other genes associated with 

immune suppression (C1QC and IL10) 27,28. A final population expressed SPP1, which has also 

been associated with immune suppression and poor clinical outcome (Figure 1.e) 29.  
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To further understand the immunological role of these macrophage populations, we compared 

their transcriptional profiles to macrophages differentiated from PBMC-derived monocytes in vitro 

under three conditions: M1-like macrophages were developed in vitro through polarization of 

human monocytes by IFNg and TLR4 stimulation. This population is considered to have anti-tumor 

functions including release of proinflammatory cytokines, phagocytosis, and ability to cross-

present extracellular antigens produced by dying tumor cells to activate CD8 T cells 30. Second, 

M2-like macrophages were developed in vitro through intensive IL4 stimulation of monocytes. M2 

macrophages are known to promote many pro-tumorigenic processes such as angiogenesis, 

immune suppression, hypoxia induction, tumor cell proliferation, and metastasis 31. Lastly, we 

deployed a third population that represents a better in vitro model for tumor associated 

macrophages (TAM), developed under conditions more closely resembling the TME 32. We 

performed bulk RNA-seq on these three populations and performed differential expression (DE) 

analysis between the M1-derived population and the M2-derived population as well as between 

the M1-derived and TAM-derived populations (Methods; Table S1). We found 134 genes higher 

in M1 vs. M2 and 144 genes higher in M1 vs. TAM (adj. p < 0.05). We took the intersection of 

these two gene sets to derive an M1-signature consisting of 101 genes that we used to score the 

in vivo macrophages (Methods). Similarly, we found 80 genes higher in the M2 vs. M1 populations 

and 78 genes higher in the TAM vs. M1 populations (adj. p < 0.05).  We took the union of these 

two genes sets to derive an M2/TAM-signature comprising 100 genes that we used to score the 

in vivo macrophages. Overall, we observed high expression of the M1-signature in the CXCL9-

high macrophages and high M2 and TAM signatures in the CD163-high and SPP1-high 

macrophages (Figure 1.f,g). In summary, these results support the immunogenic function of the 

CXCL9-high and tolerogenic function of the CD163-high and SPP1-high macrophages in the 

tumor microenvironment.  

 

Next, we examined the spatial distribution of these three macrophage populations using 

Monkeybread9s kernel density estimation tool and found that these cells occupy distinct regions 

within the tissue (Figure 1.h).  Interestingly, the CXCL9-high and CD163-high populations were 

concentrated in regions with higher immune cell abundance (immune <hot= regions) and in regions 

surrounding the tumor. In contrast, the SPP1-high macrophages were found in regions with fewer 

immune cells (immune <cold= regions) and mostly found within the tumor in regions of dense 

malignant cells.  Although the gene expression signatures of the CD163-high and SPP1-high 

macrophages indicate a suppressive function, their distinct spatial distribution indicates that they 

are playing further differentiated roles in the TME. 
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We then used Monkeybread to identify distinct cellular niches of immune cells in the tumor 

microenvironment (Figure 2.a). These niches included both immunologically cold (Niches 1 and 

10) and hot niches (all remaining niches; Figure 2.b). Niche 7 was enriched for CXCL9-high 

macrophages, Niches 0 and 10 for CD163-high macrophages, and Niche 1 for SPP1-high 

macrophages. Niche 7 contained a higher enrichment of diverse immune cells than Niches 0, 1, 

and 10. We then examined the mean expression in immune cells within each niche of a ten-gene 

interferon-gamma related signature that has been shown to correlate with response to 

immunotherapy 33 (Fig. 2.c). Niche 7 displayed high overall expression of genes in this signature 

while Niche 10 displayed markedly low expression. Moreover, Niches 0 and 10 (the CD163-high 

enriched niches) displayed marked lower levels of IFNG than the other niches. Together, these 

results indicate that Niche 7, and in turn CXCL9-high macrophages, have an immunogenic role 

whereas CD163-high macrophages may have a suppressive role in the TME.  

 

Next, we used Monkeybread to plot the distribution of the number of T cells that are neighbors of 

CXCL9-high, CD163-high, and SPP1-high macrophages. Consistent with the niche analysis, we 

found that the CXCL9-high macrophages are surrounded by the most T cells whereas SPP1-high 

macrophages are surrounded by the fewest (Figure 2.d). Next, we ran Monkeybread9s cell 

colocalization statistical test between all pairs of myeloid cell subtypes and all T cell subtypes. 

We found that CD163-high and SPP1-high macrophages only displayed enriched co-localization 

with T regulatory (Treg) cells and PDCD1-high CD8 T cells whereas CXCL9-high macrophages 

also colocalized with T follicular helper cells (Tfh) cells and unclassified CD8 T cells (Figure 2.e). 

These results were consistent with the niche analysis, which showed higher Tfh enrichment in 

Niche 7 than in Niches 0, 1, or 10. This is a highly relevant observation since Tfh cells have been 

shown to correlate with reduced tumor growth and improved survival in multiple solid tumors types 

34. Together these results further support that these macrophage populations play differing 

immunological roles within distinct niches in the TME.  

 

Lastly, we used Monkeybread to test for co-expression of the ligand receptor pairs 

CXCL9/CXCR3 and CXCL10/CXCR3 between all macrophages and their neighboring 

conventional T cells and found significant co-expression of CXCL9 and CXCR3 (p = 0.001) as 

well as between CXCL10 and CXCR3 (p=0.040). Using Monkeybread9s function to visualize this 

co-expression, we confirmed higher co-expression of CXCL9/CXCR3 in Niche 7, which is 
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enriched for CXCL9-high macrophages (Figure 2.f,g), compared to Niche 0, which is enriched for 

CD163-high macrophages (Figure 2.h,i).  

 

Discussion 

 

We present Monkeybread: A Python toolkit to facilitate the analysis of single-cell resolution spatial 

transcriptomics data enabling investigators to explore how cells organize into cellular niches in 

the tissue microenvironment. Monkeybread operates on data represented as AnnData objects 

and thus, can be integrated into analyses that utilize scanpy, squidpy, and other tools in the 

scverse ecosystem. We used Monkeybread to explore the cellular organization in a spatial 

transcriptomics dataset from a human melanoma tumor. This analysis demonstrated how 

Monkeybread can be integrated with scanpy, and other Python analysis packages, to explore the 

tissue microenvironment. Specifically, we identified three different macrophage populations with 

putatively different functional roles and, with Monkeybread, found these populations participate in 

distinct immunological cellular niches in the TME.  Altogether, we expect Monkeybread to be a 

useful complement to existing Python packages designed for the exploration of single-cell spatial 

transcriptomics data. 

 

Limitations of the study 

 

There are several avenues that would benefit from further investigation. First, Monkeybread9s 

computational workflow for identifying cellular niches requires the pre-specification of a clustering 

parameter that determines the number of clusters of cell type neighborhood profiles. Though 

methods have been proposed for selecting the number of clusters in single-cell transcriptomics 

data 35337, to our knowledge, no work has addressed the specific problem of determining the 

number of clusters to use when clustering cell type neighborhood profiles when identifying cellular 

niches. Nonetheless, general visualization tools for assessing cluster granularity, such as 

clustering trees 38, will be explored as additions to Monkeybread9s visualization toolkit. 

 

Second, Monkeybread only facilitates exploratory analysis of the gene expression matrix that is 

downstream of image processing, cell segmentation, and cell type annotation that are prerequisite 

steps in the analysis of imaging-based spatial assays. Errors in these steps may propagate into 

the analyses that Monkeybread can perform.  
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Third and finally, future work will entail extending the case-study, which focused on the analysis 

of a single melanoma tumor sample, to more datasets and tumor types. In this case study, we 

identified diverse cellular niches of immune cells in the tumor microenvironment and these niches 

were differentially enriched for immunogenic and tolerogenic macrophages. Future work will 

expand this analysis to more datasets with a focus on understanding the similarities and 

differences between immunological niches between tumors. 
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Methods 

 

Visualizing cell densities  

 

Monkeybread uses kernel density estimation to visualize the spatial distribution of cells that exhibit 

a certain phenotype of interest (e.g., T cells), which smooths out the discrete cell locations 

enabling easier visualization of regions with high or low density 39.  Specifically, let � * =! denote 

the spatial coordinates of a cell exhibiting the target phenotype. We assume that there exists an 

underlying probability distribution �(�)	over � that we seek to estimate via kernel density 

estimation. To visualize the concentration of cells across the tissue, we seek to color each cell by 

the value of this probability density function at its given coordinate. Let �"&�# * 	=! be the 

observed spatial coordinates in the data of the � cells that exhibit the target phenotype. Then, 

�(�) is estimated via, 
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�3(�) 6= 1
�7�(� 2 �$ , /)

#

$%"

 

where � is a Gaussian kernel with bandwidth parameter /, 

�(�, /) v 1
/:2� exp

2�!
/  

We then transform the kernel density estimates to fall between zero and one. Specifically, for cell 

�, its color intensity would be computed via  

intensityH�&I 6=
�3H�&I 2	min

$*[)]
�3(�$)

max
$*[)]

�3(�$) 2 min
$*[)]

�3(�$) 

 

where � is the total number of cells in the dataset and [�] are the set of integers from 1 to �. 

 

To speed up computation, Monkeybread provides the option to run grid-based approximation 40. 

Specifically, a grid is overlayed onto the spatial data and each cell is assigned to the grid space 

that it falls within. Let �", & , �+ be the partitioning of cells into � grid spaces and let �,! , & , �," *
	=! be the coordinates of their centroids. Because cells within the same grid share the same 

<collapsed= coordinates, the kernel density estimate for a given location requires iterating over all 

grid spaces rather than all cells: 

�3(�) 6= 1
�7|�$|�H� 2 �,# , /I

+

$%"

 

In the limit, as the grid becomes fine-grained enough such that each grid space contains a 

maximum of one cell, this approximation will converge on the true kernel density estimate. A 

further speedup is made by coloring each cell according to the kernel density estimate at its grid 

space9s centroid rather than its own coordinate 3 that is, the density estimate is calculated at each 

grid9s centroid and mapped back to each cell within that grid space. Lastly, to derive the color 

intensity used in the visualization, we transform these density values so that they fall between 

zero and one. Specifically, let �(�) be the function that maps each cell � to the grid space that it 

falls within. Then, for cell �, its color intensity is computed as 

intensityH�&I 6=
�3H�-(&)I 2	min

$*[)]
�3H�-($)I

max
$*[)]

�3H�-($)I 2 min
$*[)]

�3H�-($)I
 

where � is the total number of cells in the dataset.  
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Spatial ligand-receptor co-expression test 

 

Monkeybread implements the statistical test for spatial co-expression described by He et al. 

(2021) 23. To review, this test considers the following test statistic: for a given ligand, �, and 

receptor, �, and two cell types,	�  and �, under test, for each cell of type �, we first identify the 

neighboring cells of type �. We then compute the following ligand-receptor co-expression score: 

�(�, �) 6= 1
|���| 7 V�$,1�&,2

$,&*34$

	 

where ��� is the set of all pairs of neighboring cells between types � and �,  �$,1 is the expression 

of gene � in cell � (of cell type �), and �&,2 is the expression of gene � in cell � (of cell type �). 

Statistical significance of this score is assessed via a permutation test in which the pairings of 

neighboring cells are repeatedly permuted, and the test statistic is recalculated to form the null 

distribution.   

 

Preprocessing and cell type annotation 

 

The melanoma tumor dataset was downloaded from Vizgen9s website at https://vizgen.com/data-

release-program and preprocessed with scanpy. Specifically, cells with less than 10 transcript 

counts were filtered out of the dataset resulting in a total of 189,071 cells. Transcript counts were 

normalized via log	(�/� + 1) where � is the transcript count for a given gene in a given cell and � 
are the total transcript counts in that cell. Before clustering, PCA was performed with 50 

components and the k-nearest-neighbors (KNN) graph was computed on the principal 

components using k=15 neighbors. Cell types were annotated by first clustering the full set of 

cells using the Leiden clustering algorithm 22 on the KNN graph and then labeled according to 

their expression of known marker genes within each cluster (Figure S4). Clusters that expressed 

multiple marker genes (indicating potential heterogeneity with respect to their constituent cell 

types) were further sub-clustered and annotated (Figures S5-7).  

 

In vitro differentiation of M1, M2, and TAM-like macrophages 

 

Healthy Donors PBMNCs were acquired and CD16 negative monocytes (M0) were isolated with 

the Miltenyi biotec kit, (#130-117-337) following the manufacturer9s instructions.  To develop 

polarized macrophages, monocytes were seeded on 100mm culture dishes with X-Vivo15 

media supplied with 5% human serum. To generate M1 macrophages, cells were cultured for 5 
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days under GM-CSF stimulation and then for 2 days with IFNg and given a final 18h touch of 

LPS treatment. M2-like macrophages were developed through 5 days of culture with M-CSF 

and further 48h treatment of IL-4 stimulation. TAM development was accomplished via a 

continuous 7-day of cell culture under the influence of M-CSF+IL4 and IL10. The medium was 

enriched with 20% tissue conditioned medium (TCM) medium as the required supplement. 

Through the last 48h of culture, TGFb stimulation was added to the culture medium as well. 

Medium change for the culture systems was administrated once during the 7 days of culture. 

Tissue conditioned medium (TCM) was generated from MDA MB-231 breast cancer cell line 

following the protocol described by Benner et al. (2019) 32. 

 

 

Bulk RNA-seq 

 

Cells derived from two patient donors were cultured in preparation for bulk RNA sequencing as 

described above, with four in vitro conditions per donor (monocyte control, M1 macrophages, M2 

macropages, and TAM). After harvesting and counting, 1 million cells were aliquoted per culture 

condition and centrifuged at 400g for 5 minutes. Pelleted cells were resuspended in 350 uL Buffer 

RLT (Qiagen) + 1% BME, and vortexed for 30 seconds to 1 minute to disrupt the cells. Lysates 

were then frozen at -80# and stored until ready to proceed with RNA isolation. 

Total RNA was isolated from cell lysates using the RNeasy Mini Kit (Qiagen) per the <Purification 

of Total RNA from Animal Cells using Spin Technology= section of the kit manual. An optional 

DNase I treatment was included and performed using the RNase-Free DNase Set (Qiagen). Total 

RNA concentration was evaluated by RNA HS Qubit (ThermoFisher), followed by RNA 

ScreenTape (Agilent) to assess RNA quality. All RNA samples were of sufficient concentration 

and RNA Integrity (RIN) value to proceed with library construction.  

Bulk libraries were prepared using the NEBNext Ultra ii Directional RNA Library Prep for Illumina 

Kit (New England BioLabs) per Section 1 of the manufacturer9s protocol. 500ng of total RNA was 

used as input for each sample, and an rRNA depletion was performed using the NEBNext Poly(A) 

mRNA Magnetic Isolation Module (New England BioLabs). SPRIselect beads (Beckman Coulter) 

were used in place of NEB Sample Purification Beads for all purification steps. For the final 

enrichment PCR, bulk libraries were barcoded using the NEBNext Multiplex Oligos for Illumina 3 

96 Index Primers Kit (New England BioLabs) and amplified for 10 PCR cycles. 
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Bulk library quality was assessed by DNA HS Qubit assay (ThermoFisher) to measure library 

concentration, and by D5000 ScreenTape assay (Agilent) to evaluate library quality and size. All 

libraries were of sufficient concentration and quality to then prepare for sequencing. Library molar 

concentrations were more precisely determined by quantitative PCR (qPCR) using the KAPA 

Library Quantification Complete Kit 3 Universal (Roche). Based on calculated molar 

concentrations, bulk libraries were individually diluted to 20 nM and pooled equally by volume for 

sequencing. 

Bulk libraries were submitted to Broad Institute Clinical Research Sequencing Platform for paired-

end sequencing on an Illumina NextSeq500 system. The sequencing parameters consisted of 25 

basepairs for Read 1, 50 basepairs for Read 2, and 8 basepairs for Index 1, with a target 

sequencing depth per sample of at least 20 million reads. Following sequencing, all raw data files 

were transferred to Immunitas servers for data analysis. 

 

Bulk RNA-seq Differential expression analysis 

 

The preprocessing steps were carried out using a Snakemake pipeline 41,42. Briefly, the raw 

FASTQ files were aligned using STAR (v2.7.10b) 43 to genome GRCh38.primary_assembly. 

genome.fa using annotation file gencode.v40.annotation.gtf  and the count matrix was generated 

by FeatureCounts (v2.0.1) 44. The raw counts were imported into DESeq2 45 (v1.36.0) in R (v4.2.1) 

and differential expression analysis was carried out following the standard procedure. Two 

differential expression analyses were performed to compute genes that were differentially 

expressed between M1-derived and M2-derived macrophages as well as between M1-derived 

and TAM-derived macrophages. 

 

Identification of cellular niches 

 

To generate cellular niches in the human melanoma tumor, we considered all immune cells and 

computed their normalized cell type neighborhood profiles using Monkeybread9s 

<neighborhoods_profile= function. All non-immune cells were labeled as <malignant/other=. We 

then computed the KNN graph using 100 nearest neighbors followed by clustering, via Leiden, 

with a resolution of 0.25. All clusters containing less than 300 cells were labeled as 

<malignant/other= whereas all remaining clusters were used as cellular niches for downstream 

analysis. This full pipeline is implemented in Monkeybread9s <cellular_niches= function.  
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Data and code availability 

 

Monkeybread is available as an open-source Python package on GitHub at 

https://github.com/immunitastx/monkeybread. Code used to perform the analysis of the human 

melanoma dataset is available at https://github.com/immunitastx/monkeybread-case-study.  

Gene expression data from the in vitro differentiated macrophages are available from the Gene 

Expression Omnibus (GEO: GSE243175). 
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Figure 1. Spatial distribution of macrophage populations in a human melanoma. (a) 

Annotated broad cell types and (b) granular cell types of cells in the human melanoma tumor 
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dataset. (c) Locations and densities of immune, malignant, and stromal cells. The density plots 

were generated with Monkeybread9s density visualization tool.  (d) UMAP plot of all annotated 

macrophages colored by their annotated subtype. (e) Mean normalized expression (with z-score 

transformation) of known tolerogenic and immunogenic marker genes within each macrophage 

subtype. (f) UMAP plot of macrophages colored by the aggregate expression score of genes 

found to be differentially expressed between in vitro differentiated M1-like macrophages versus 

in vitro differentiated M2 and TAM-like macrophages. Scores were computed with scanpy9s 

<score_genes= function. (g) Heatmap depicting the aggregate M1, M2, and TAM expression 

score in each macrophage subpopulation. Columns were standardized such that the maximum 

value was set equal to 1 and minimum value was set equal to zero. (h) Locations and densities 

of the annotated macrophage subpopulations. The density plots were generated with 

Monkeybread9s density visualization tool. 
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Figure 2. Analysis of cellular niches and intercellular communication in a human 

melanoma. (a) Immune cellular niches in a human melanoma tumor dataset identified by 
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Monkeybread. (b) Heatmap displaying the mean neighborhood enrichment scores for each cell 

type within each cellular niche. (c) Mean normalized expression (with z-score transformation) 

within each niche of a 10-gene interferon-response related signature from 33. (d) Distribution 

over the number of neighboring T cells (within a radius of 75 µm) surrounding each macrophage 

subtype. (e) Heatmap displaying the p-values from Monkeybread9s cell type colocalization test 

between all myeloid cell subtypes and T cell subtypes. (f) Plot generated by Monkeybread 

zooming in to a region annotated as Niche 7. (g) In this same region, Monkeybread was used to 

plot macrophage-T cell pairs co-expressing CXCL9 and CXCR3. (h,i) Similar plots to those 

shown in (f) and (g), but zooming in to a region annotated as Niche 0. 
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