

1 Title: Development and implementation of an integrated preclinical atherosclerosis
2 database

3
4 Short title: Preclinical atherosclerosis database

5
6 Authors: Rachel Xiang^{1*}, Yihua Wang^{1*}, Megan M. Shuey², Brigett Carvajal¹, Quinn S.
7 Wells^{2,3,4#}, Joshua A. Beckman^{4#} and Iris Z. Jaffe^{1#}

8
9 Affiliations:

10 1. Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
11 2. Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN
12 3. Department of Biomedical Informatics, Vanderbilt University Medical Center,
13 Nashville, TN
14 4. Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville,
15 TN

16
17 * Authors contributed equally to this manuscript
18 # Drs. Wells, Jaffe, and Beckman contributed equally to this work as co-senior authors

19
20 Address correspondence to:

21 Iris Z. Jaffe, M.D. Ph.D.
22 Tufts Medical Center
23 800 Washington Street, Box 80
24 Boston, MA, 02111
25 Phone: 617-636-0620
26 Fax: 617-636-1441
27 Email: iris.jaffe@tuftsmedicine.org

28
29
30

31 **Abstract**

32 Background: Basic scientists have used preclinical animal models to explore
33 mechanisms driving human diseases for decades, resulting in thousands of
34 publications, each supporting causative inferences. Despite substantial advances in the
35 mechanistic construct of disease, there has been limited translation from individual
36 studies to advances in clinical care. An integrated approach to these individual studies
37 has the potential to improve translational success.

38

39 Methods: Using atherosclerosis as a test case, we extracted data from the two most
40 common mouse models of atherosclerosis (ApoE and LDLR knockout). We restricted
41 analyses to manuscripts published in two well-established journals, *Arteriosclerosis,*
42 *Thrombosis, and Vascular Biology* and *Circulation*, as of query in 2021. Predefined
43 variables including experimental conditions, intervention and outcomes were extracted
44 from each publication to produce a preclinical atherosclerosis database.

45

46 Results: Extracted data include animal sex, diet, intervention type and distinct plaque
47 pathologies (size, inflammation, lipid content). Procedures are provided to standardize
48 data extraction, attribute interventions to specific genes and transform the database for
49 use with available transcriptomics software. The database integrates hundreds of
50 genes, each directly tested *in vivo* for causation in a murine atherosclerosis model. The
51 database is provided to allow the research community to perform integrated analyses
52 that reflect the global impact of decades of atherosclerosis investigation.

53

54 Conclusions: Future database uses include interrogation of sub-datasets associated
55 with distinct plaque pathologies, cell-type or sex. We provide the methods and software
56 needed to apply this approach to the extensive repository of peer-reviewed data utilizing
57 preclinical models to interrogate mechanisms of diverse human diseases.

58 **Introduction**

59 For decades, basic scientists have used preclinical animal models to explore
60 mechanisms that may drive human diseases. The most commonly used preclinical
61 species is the murine model chosen for rapid breeding, small size, relatively low cost,
62 and ease of genetic manipulation. As examples, there are 26 mouse heart failure
63 models,¹ 11 abdominal aortic aneurysm models,² as well as non-cardiovascular disease
64 mouse models to study Alzheimer's Disease (12 models),³ lung cancer (41 models)⁴
65 among many others.

66 Atherosclerosis, the vascular disease that causes myocardial infarction and stroke in
67 humans, is the leading cause of death worldwide. The two most common mouse
68 models of atherosclerosis are the apolipoprotein E (ApoE) and LDL receptor (LDLR)
69 knockout (KO) models.⁵ These mice develop atherosclerotic plaques with pathology that
70 mimics many aspects of the human disease, particularly when fed an atherogenic high
71 fat diet. Since the development of these models in the 1990s, over 10,000 manuscripts
72 have been published.⁶ Each manuscript typically examines the impact of at least one
73 individual perturbation on atherosclerosis parameters in the setting of KO of either ApoE
74 or LDLR, providing new insights into the molecular mechanisms driving atherogenesis.
75 Unlike human genetic analyses of genetic variants and atherosclerosis phenotypes that
76 can only show association, pharmacological and genetic KO studies in mouse models
77 compared to placebo or gene-intact controls, facilitates the evaluation of causal
78 relationships between specific interventions with atherosclerotic phenotypes. However,
79 this reductionist approach is not without limitations. Genetic KO models in mice, while
80 specific in targeting one gene, may perturb entire pathways leading to the ultimate
81 phenotype observed. Additionally, sequential studies that perturb individual genes may
82 be subject to redundancy, as multiple tested targets may converge on a common
83 disease mechanism. Moreover, gene deletion does not faithfully recapitulate complex
84 human genetics. Indeed, few individual targets identified from preclinical mouse
85 investigations have translated into novel therapies for human disease.⁵

86 The growing body of preclinical literature combined with the rapid advance of systems
87 biology methods presents the possibility of synthesizing large amounts of preclinical
88 information to identify biological pathways and master regulators which may have

89 greater potential as therapeutic targets. Such approaches would immediately add value
90 to the existing preclinical data, acquired over many decades at considerable cost, by
91 providing a synthesis of causal relationships associated with atherosclerosis
92 pathogenesis. The lack of a standardized method to aggregate preclinical data for
93 systems biology approaches prevents the full utilization of available peer-reviewed
94 investigator-generated data and represents an unmet gap in extracting the full insight
95 from this work. We recently developed a database structure and data extraction method
96 to integrate preclinical data for pathway and network analysis using atherosclerosis as a
97 test case. The novelty of this database construction and method of integration lies in the
98 potential for repurposing decades of preclinical investigations, each of which describe a
99 causal relationship between a single-gene perturbation and atherosclerotic plaque
100 endpoints. This approach has potential to uncover novel insights into mechanisms
101 driving atherosclerotic disease through integrated analysis and to enhance the
102 translational relevance of available preclinical investigations. Our described database
103 structure and methods may also be extended to any preclinical disease model for which
104 large amounts of data have been published.

105

106 **Methods and Results:**

107 **PubMed Query:**

108 To identify published atherosclerosis studies using the ApoE knockout (KO) and LDLR-
109 KO mouse models, the EndNote and PubMed databases were queried using the search
110 strategy summarized in the **Table**. Results from this search strategy in EndNote and
111 PubMed were combined, with duplicates removed, resulting in identification of more
112 than 6000 manuscripts from the ApoE query and over 4000 manuscripts from the LDLR
113 query (numbers change on weekly basis as new papers are published). For the proof-
114 of-concept study, we extracted all data published from 1995 (date of first publication of
115 ApoE-KO mouse) through 2020 in the journals *Arteriosclerosis, Thrombosis, and*
116 *Vascular Biology (ATVB)* and *Circulation*, a total of 1535 manuscripts (**Figure 1A**).
117 These journals were chosen for their rigorous peer-review process, large volumes of
118 papers published in the disease models of interest, and consistent publication of
119 atherosclerosis studies over the full time frame. This search method may be adapted to
120 the research interest or disease model of choice.

121 **Establishing Variables and Developing the Database Architecture:**

122 The Research Electronic Data Capture (REDCap) web application was used to build
123 and manage data extraction as it allows data entry by multiple users over time with the
124 ability to export a single integrated preclinical database. For manuscript identification
125 the PubMed identification (PMID) number, manuscript title, and year of publication were
126 recorded. To collect experimental design variables, the REDCap form utilized drop
127 down menus and text fields to collect the key data components including: mouse
128 atherosclerosis model (ApoE-KO or LDLR-KO), sex of the animals (male, female, both,
129 not indicated), duration of the study (number of weeks), and type of diet fed to the mice
130 (normal chow, high fat diet). Details regarding the experimental intervention used in
131 each study were collected including: the mode of perturbation (i.e., drug, siRNA, viral
132 transduction, genetic KO, cell-specific genetic KO), drug dosage, cell type of the genetic
133 KO (or whole body), NCBI gene symbol of the gene/protein impacted, and whether the
134 impact of the intervention on gene function was gain of function (i.e., transgenic

135 overexpression, activator drug) or loss of function (gene knockout, siRNA knock down, 136 inhibitor drug). Finally, data fields were included to collect information regarding the 137 impact of the experimental perturbation on atherosclerosis phenotypes. This included 138 the location where atherosclerotic plaque measurements were made (aorta and/or 139 aortic branch vessel (carotid, innominate, brachiocephalic)). Additionally, three 140 atherosclerosis plaque phenotypes were captured: atherosclerotic plaque size, plaque 141 inflammation, and plaque lipid content. Since the magnitude of changes in these 142 parameters are highly influenced by differences in experimental design (e.g., drug dose, 143 experiment duration, diet) and quantification methods (e.g., plaque burden along the 144 whole aorta verses plaque size in the aortic root or brachiocephalic artery), the impact 145 of each perturbation on each plaque variable was standardized by recording in the form 146 of the direction of the effect on atherosclerosis (increase = +1, decrease = -1, no 147 change = 0), rather than the magnitude. In cases where multiple results using different 148 experimental conditions were reported within a single manuscript (e.g., each sex 149 reported separately, two time points measured, a gene KO and a drug), each set of 150 outcomes was recorded as an independent REDCap record (**Figure 1B**). To distinguish 151 between multiple entries from the same manuscript, a suffix was appended to the 152 respective PMID (i.e., M, F for animal sex, #1, 2, 3 for different experimental conditions).

153 **Building an Integrated Mouse Preclinical Atherosclerosis Database:** Data were manually 154 extracted from each manuscript into one or more REDCap forms (**Figure 1**). The search 155 criteria identified 1,535 manuscripts (**Figure 1A, Supplemental Table 1**) from which 156 17% included multiple experiments resulting in a total of 1,849 total REDCap records 157 (**Figure 1B**).

158 1. **Extractor Training and Quality Control:** Research staff were trained to follow an 159 established protocol to extract targeted information from each manuscript. 160 Training required completion of a training set consisting of 10-20 manuscripts 161 from which all variables were previously extracted into a master database and 162 used as the gold standard to verify accuracy. Training set results were compared 163 to the master and any discrepancies clarified with each trainee. The training was 164 repeated with additional sets of manuscripts until >98% concordance was 165 achieved. This training process was employed to achieve interrater reliability and

166 consistency during data extraction. Going forward after training, 5% of
167 manuscripts from the total continued to be extracted by two investigators to
168 address drift and further confirm and maintain consistency over time.

169 2. **Inclusion/Exclusion Criteria:** Records were excluded from further analysis if no
170 perturbation was performed (e.g., reviews, editorials, characterization) or if no
171 atherosclerosis phenotype was measured (see **Figure 1C** for specific exclusion
172 criteria). The preclinical atherosclerosis database comprised a total of 1,041
173 REDCap records after application of inclusion and exclusion criteria.

174 3. **Database Export:** The finalized REDCap database was exported in .csv format
175 and is available for download (see **Supplemental Database**). Within this
176 database, 97% of the records indicated an impact on plaque size, 63% on
177 inflammation, and 24% on plaque lipid content (**Figure 2A**). Many studies
178 measured multiple plaque phenotypes, with the most common being plaque size
179 and inflammation (44%) and an additional 16% measuring all three phenotypes.

180 **Post-export Data Processing for Integrated Analysis:** A broad array of software are
181 available, either freely or with a subscription, to investigate gene ontology, pathways,
182 networks, and biological functions that are statistically enriched in “omics” datasets.
183 Most were designed to input transcriptomic data in which changes in gene expression
184 between ≥ 2 conditions are available across many genes. The preclinical atherosclerosis
185 dataset was further processed to generate a file format that can be uploaded into such
186 analysis software as described below.

187 1. **Gene attribution:** Standardized methods were developed to attribute a specific
188 target gene to each perturbation in each published murine atherosclerosis study
189 (**Figure 1D**). For genetic KO models (60% of all records, **Figure 2B**) and
190 viral/siRNA knock down or overexpression studies (4% of all records), gene
191 attribution was self-evident, and the human NCBI gene symbol for the targeted
192 gene was attributed as causative. For drug studies, the gene symbol for the
193 intended drug target was used (e.g., if an angiotensin converting enzyme (ACE)
194 inhibitor was given to mice, then the ACE gene was attributed). This paradigm
195 was used despite the known limitation that drugs are not completely specific,

196 particularly at high doses. No NCBI gene was included in the pathway analysis
197 for 174 records (17% of records in the database) where there was no clear gene
198 target (i.e., dietary supplement, multi-targeted drug, deletion of a cell type,
199 expression of a non-native or fusion protein). The final dataset yielded 867
200 records, including 401 unique genes, in which a single gene perturbation was
201 identified that was associated with a change in at least one plaque parameter in
202 the ApoE-KO or LDLR-KO mouse model.

203 2. Data transformation for pathway analysis software: The original REDCap dataset
204 describes the impact of a gain or loss of function of a gene on plaque
205 measurement endpoints. To prepare our dataset for common pathway analysis
206 software compatibility, the data were converted into a change in gene expression
207 that would associate with a positive impact on each atherosclerosis
208 measurement. To do this, all atherosclerosis endpoint measurements were
209 converted to the positive direction, and values describing the direction of gene
210 regulation were converted accordingly. For example, if a drug KO (loss-of-
211 function) resulted in less inflamed plaques, then an increase in plaque
212 inflammation was expected with increased expression of the gene. These
213 transformations resulted in a dataset assigning each gene symbol to its predicted
214 direction of regulation given an increase for each plaque measurement (plaque
215 size, inflammation, lipid content). In this way, the transformed dataset was
216 analogous to the typical large gene expression datasets required for pathway
217 analysis software. An R script was developed to automatically convert the
218 REDCap exported file into a database that is compatible with pathway analysis
219 software, automating the post-export processing and transformation steps. The R
220 script is available in the **Supplemental Information** of this paper. This
221 transformation is not disease specific and can be applied to other databases
222 generated by this method.

223 Integrated Pre-clinical Atherosclerosis Dataset Description and Analysis Opportunities:

224 1. Atherosclerosis measurements (Figure 2A): Virtually all of the studies included in
225 the database (97%, 1,007/1,041), provided data on the impact of a perturbation

226 on atherosclerotic plaque size or burden. This provides a dataset sufficiently
227 large for pathway and network analysis to identify upstream regulators or global
228 processes and functions that may drive plaque development. In humans,
229 atherosclerotic plaques are generally asymptomatic until hemodynamically
230 significant or plaque erosion or rupture leads to acute thrombotic events, i.e.,
231 myocardial infarction and ischemic stroke. Human pathology studies show that
232 more inflamed plaques with higher lipid content are more vulnerable to rupture,
233 leading to adverse cardiovascular events.⁷ From our dataset, 658 (63%) of
234 records reported data on inflammation, allowing for distinct analyses to
235 understand what may drive inflammation in atherosclerosis, a process which may
236 be more likely to link to human outcomes data. Once a plaque ruptures, the pro-
237 thrombogenic, lipid laden core is exposed to blood and induces thrombosis. The
238 dataset includes only 249 records (24%) in which lipid content was measured,
239 extraction of additional manuscripts to produce a larger dataset is likely needed
240 to interrogate specific regulators of plaque lipid content.

241 2. **Modes of perturbation (Figure 2B):** Interrogation of the database reveals that
242 60% of records come from genetic knockout studies (40% whole body KO and
243 20% cell-specific KO). An additional 4% used siRNA or viral transduction to
244 knock down or overexpress a gene of interest, with drug administration (28%)
245 and other perturbations (7%) making up the rest of the database. Genetic KO
246 studies offer the greatest degree of precision and confidence in gene attribution,
247 as most murine KO studies provide molecular confirmation of the specificity of
248 gene deletion. Hence, a distinct analysis using only data from KO studies may
249 limit false attribution, and could be compared with the complete dataset to
250 determine whether this might have greater fidelity for translation. Cell-type
251 specific KO studies comprise 20% of the data collected, with increasing
252 frequency over time, as floxed mice and specific Cre recombinase driver mice
253 have become more commonly available. These include deletions specific to
254 myeloid cells, macrophages, T-cells, endothelial cells, smooth muscle, liver,
255 adipose and others. As the available data accumulates using these models, the

256 potential to perform cell-type specific pathway and network analysis for
257 atherosclerosis drivers will become a possibility.

258 3. **Animal Sex (Figure 2C):** Despite known sex differences in the prevalence and
259 impact of atherosclerosis in males versus females, our dataset reveals that sex-
260 differences are still rarely examined. Overall, 40% of the records provide results
261 in only male animals and 18% in only females. An addition 11% of studies mix
262 data from the two sexes and 14% do not indicate the sex of the animals used.
263 Hence over half of studies include only one sex and almost a quarter studies
264 provide no information about which sex may be impacted by the perturbation
265 studied. Only 8% of the studies provided data in both sexes. Those studies
266 yielded 16% of the records, as the results were extracted as separate records for
267 each sex, with some showing concordance and some discordance of the
268 outcome by sex. This finding could help explain some limitations in translation as
269 findings identified in only one sex in mice are tested in human trials that mix
270 participants of different genders. In addition to providing insights about research
271 practices with regards to sex as a biological variable, larger datasets of this type
272 would allow for sex-specific analyses to identify sex-specific pathways or
273 networks that might nominate precision medicine strategies leading to potential
274 for sex-specific therapeutic trials.

275

276 **Discussion**

277 In summary, we have developed a method to extract and integrate results from
278 hundreds to thousands of published manuscripts to generate an integrated preclinical
279 database (**Figure 3**). Using atherosclerosis as a test case, we extracted data from the
280 two most common mouse models of atherosclerosis (ApoE and LDLR KO models) to
281 produce a preclinical atherosclerosis database that integrates hundreds of genes, each
282 of which has been directly tested in vivo for causation in a murine atherosclerosis
283 model. The database provides substantial opportunities for integrated analysis to
284 identify pathways, networks, and upstream regulators that reflect the integrated impact
285 of decades of data. Using this database, we have already identified novel pathways and

286 networks associated with atherogenesis.⁸ By combining the integrated preclinical results
287 with clinical databases that link genetically predicted gene expression to human
288 atherosclerosis phenotypes, we recently demonstrated that pathway level analysis
289 yields greater correlation of genes with human atherosclerosis phenotypes than
290 individual genes tested in mice.⁸ We have also used this method to compare different
291 preclinical models and found that data extracted from ApoE-KO and LDLR-KO mouse
292 models converge on similar pathways, despite testing distinct genes, with no model
293 showing superiority. Future uses of the dataset include interrogation of sub-datasets
294 associated with distinct plaque pathologies, (inflammation, lipid content), cell-type
295 specific analysis, and sex-specific findings. Finally, we provide the methods and code
296 needed to apply this approach to the extensive repository of peer reviewed data already
297 published utilizing preclinical models to interrogate mechanisms of diverse human
298 diseases.

299 National Institutes of Health (NIH) support has resulted in the creation large amounts of
300 biomedical research data including quantitative and qualitative datasets from
301 fundamental research using model organisms, clinical, observational and
302 epidemiological studies. In June of 2018, NIH released its Strategic Plan for Data
303 Science. NIH defines data science as “the interdisciplinary field of inquiry in which
304 quantitative and analytical approaches, processes, and systems are developed and
305 used to extract knowledge and insights from increasingly large and/or complex sets of
306 data.”⁹ To accomplish its strategic plan, the NIH created the Big Data to Knowledge
307 program to maximize and accelerate the development of innovative and transformative
308 approaches for extant big data. Our work extends this opportunity to also include the
309 tens of thousands of fundamental preclinical model investigations already completed,
310 peer reviewed, and published by organizing that data into a dataset amenable to use
311 with data science approaches.

312 Mouse models of atherosclerosis, particularly genetic knockouts, have provided a
313 robust platform for interrogation of the mechanisms of disease. More than 10,000
314 manuscripts where either apolipoprotein E (ApoE) or the low-density lipoprotein
315 receptor (LDLR) have been knocked out (KO) have been published.¹⁰⁻¹² The benefit of
316 these mice is the routine development of atherosclerotic plaque that resemble those in

317 humans, particularly when fed a western or high-fat diet.¹³ These mouse platforms have
318 permitted the testing of dietary, genetic, environmental, and pharmacological
319 perturbations in a stable genetic background. Moreover, there is evidence that coronary
320 artery disease pathways derived from human genome-wide association studies (GWAS)
321 show a strong overlap with mouse GWAS for atherosclerosis.¹⁴ Leveraging these
322 models, thousands of studies have implicated individual interventions as directly
323 modulating development, progression, and severity of atherosclerosis in mice.

324 The potency of a single genetic knockout facilitates disease mechanism evaluation but
325 has some notable limitations. By design, mouse investigations interrogate single targets
326 at specific time points, with a specific diet, and, commonly, with only a single sex
327 investigated. Using ApoE and LDLR KO models, the exploration of varying diets, drug
328 interventions and gene perturbations on atherosclerosis plaque size, inflammation, and
329 lipid content have yielded a series of insights that have advanced the understanding of
330 atherogenesis, but primarily through singular advances variably incorporated by the
331 community into an inchoate aggregate. For complex, multigenic disorders that involve
332 large numbers of genes, current single-study approaches have not facilitated a smooth
333 integration into a model network of contributing genetic factors. As a result, the
334 relevance of animal models for common human disorders has been questioned, largely
335 based on the modest track record of drug targets developed from animal models that
336 show efficacy in humans.¹⁵⁻¹⁸ The Preclinical Science Integration and Translation
337 (PRESCIANT) method coalesces all investigations from a series of single observations
338 to consideration of the totality of work.⁸

339 The creation of this novel dataset builds on the mission outlined by the NIH. First, we
340 seek to maximize the extraction of information from data already created, vetted by
341 reviewers, and published in scientific journals. This upcycling demonstrates that the
342 value of the work in advancing discovery need not end soon after publication. Second,
343 although we focused on atherosclerosis, the fundamental methods of our database
344 creation may be applied to any disease with preclinical modeling. The report of our
345 search terms, the depositing of our dataset, and the instructions for generating files
346 amenable to assessment of distilled data using available data analysis software and
347 pipelines, provide a roadmap for use by others. Finally, our published work⁸ shows one

348 method by which these data can be translated to humans, using human databases
349 linking genetics to clinical phenotypes. We anticipate the use of data like these may
350 spark other uses to further enhance the information recovery from completed work.

351

352 **Conclusion**

353 The extension of “big data” methods to fundamental, basic science investigation
354 provides an additional avenue of exploration, discovery, and capitalization of completed
355 scientific experimentation. Our method of extracting and integrating published preclinical
356 data highlights the value of each individual study through holistic interrogation of the
357 body of work. We believe that this tool may help to bridge the current gap between
358 preclinical model exploration and human disease and treatment.

359

360 **Acknowledgments**

361 None

362

363 **Sources of Funding**

364 This work was supported by grants from the National Institutes of Health (NIH R01HL095590 to
365 I.Z.J., R01HL131977 to J.A.B.) and the American Heart Association (18SFRN33960373 to
366 J.A.B., 17SFRN33520017 to QSW). M.M.S. was supported by the National Institutes of Health
367 (K12HD043483).

368

369 **Disclosures**

370 JAB: Consulting: Janssen, JanOne, Novartis. Grant funding: Bristol Myers Squibb. IZJ:
371 Consulting: Boehringer Ingelheim. All other authors have nothing to disclose.

References

1. Noll NA, Lal H, Merryman WD. Mouse Models of Heart Failure with Preserved or Reduced Ejection Fraction. *Am J Pathol*. 2020;190:1596-1608. doi: 10.1016/j.ajpath.2020.04.006
2. Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. *Br J Pharmacol*. 2022;179:792-810. doi: 10.1111/bph.15260
3. Yokoyama M, Kobayashi H, Tatsumi L, Tomita T. Mouse Models of Alzheimer's Disease. *Front Mol Neurosci*. 2022;15:912995. doi: 10.3389/fnmol.2022.912995
4. de Seranno S, Meuwissen R. Progress and applications of mouse models for human lung cancer. *Eur Respir J*. 2010;35:426-443. doi: 10.1183/09031936.00124709
5. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. *Nature*. 2011;473:317-325. doi: 10.1038/nature10146
6. Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, Garcia-Cardena G, Lusis AJ, Owens AP, 3rd, Rosenfeld ME, Virmani R, et al. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. *Arterioscler Thromb Vasc Biol*. 2017;37:e131-e157. doi: 10.1161/ATV.0000000000000062
7. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. *J Intern Med*. 2015;278:483-493. doi: 10.1111/joim.12406
8. Shuey MM, Xiang RR, Moss ME, Carvajal BV, Wang Y, Camarda N, Fabbri D, Rahman P, Ramsey J, Stepanian A, et al. Systems Approach to Integrating Preclinical Apolipoprotein E-Knockout Investigations Reveals Novel Etiologic Pathways and Master Atherosclerosis Network in Humans. *Arterioscler Thromb Vasc Biol*. 2022;42:35-48. doi: 10.1161/ATVBAHA.121.317071
9. Health Nlo. NIH Strategic Plan for Data Science. https://datascience.nih.gov/sites/default/files/NIH_Strategic_Plan_for_Data_Science_Final_508.pdf. Accessed 2023.
10. Maeda N. Development of apolipoprotein E-deficient mice. *Arterioscler Thromb Vasc Biol*. 2011;31:1957-1962. doi: 10.1161/ATVBAHA.110.220574
11. Plump AS, Smith JD, Hayek T, Aalto-Setala K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. *Cell*. 1992;71:343-353. doi: 10.1016/0092-8674(92)90362-g

12. Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. *Science*. 1992;258:468-471. doi: 10.1126/science.1411543
13. Emini Veseli B, Perrotta P, De Meyer GRA, Roth L, Van der Donck C, Martinet W, De Meyer GRY. Animal models of atherosclerosis. *Eur J Pharmacol*. 2017;816:3-13. doi: 10.1016/j.ejphar.2017.05.010
14. von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis. *Cell Metab*. 2017;25:248-261. doi: 10.1016/j.cmet.2016.11.001
15. Richmond A, Su Y. Mouse xenograft models vs GEM models for human cancer therapeutics. *Dis Model Mech*. 2008;1:78-82. doi: 10.1242/dmm.000976
16. Perrin S. Preclinical research: Make mouse studies work. *Nature*. 2014;507:423-425. doi: 10.1038/507423a
17. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. *Am J Transl Res*. 2014;6:114-118.
18. Greek R, Hansen LA. Questions regarding the predictive value of one evolved complex adaptive system for a second: exemplified by the SOD1 mouse. *Prog Biophys Mol Biol*. 2013;113:231-253. doi: 10.1016/j.pbiomolbio.2013.06.002

Figure Legends

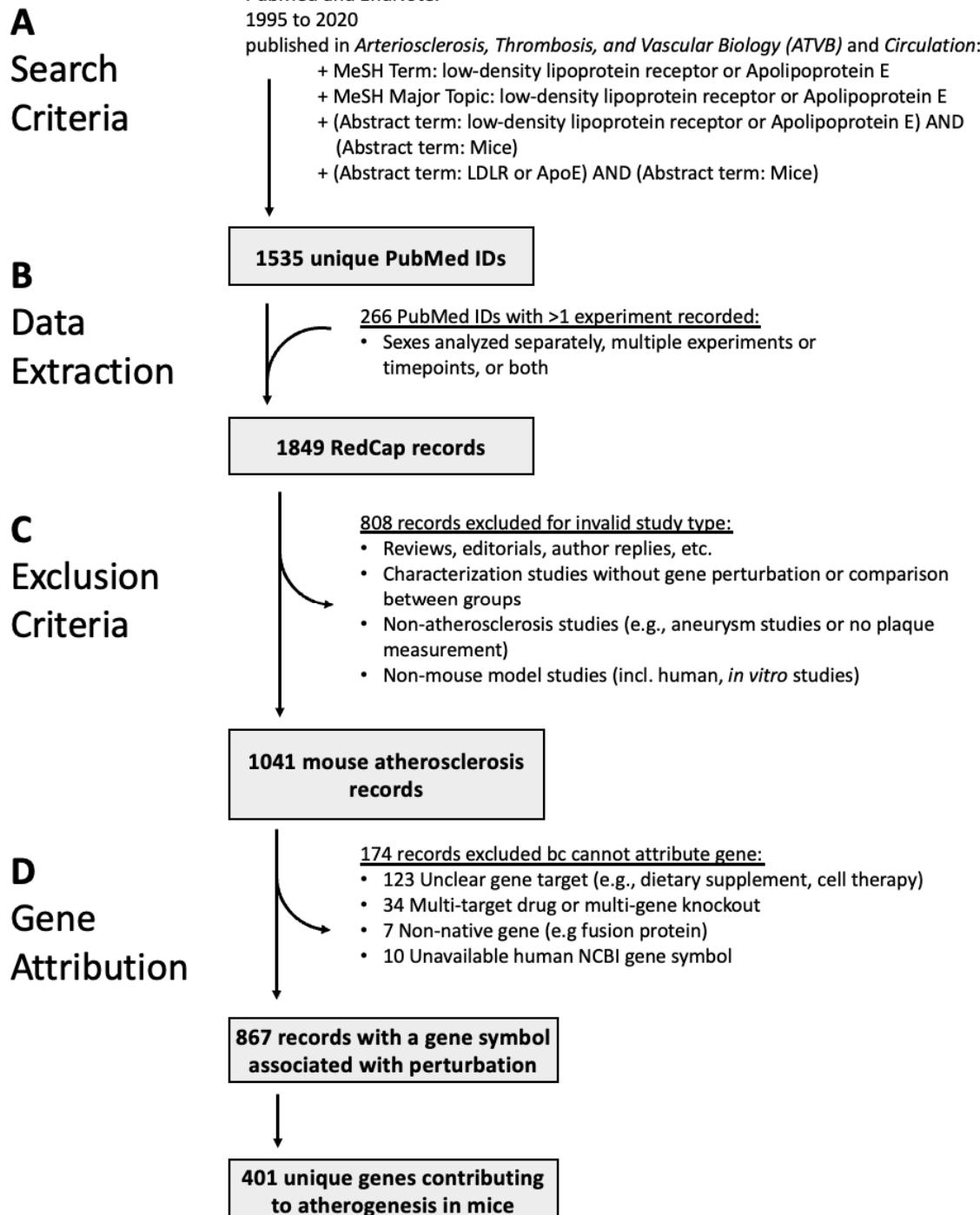
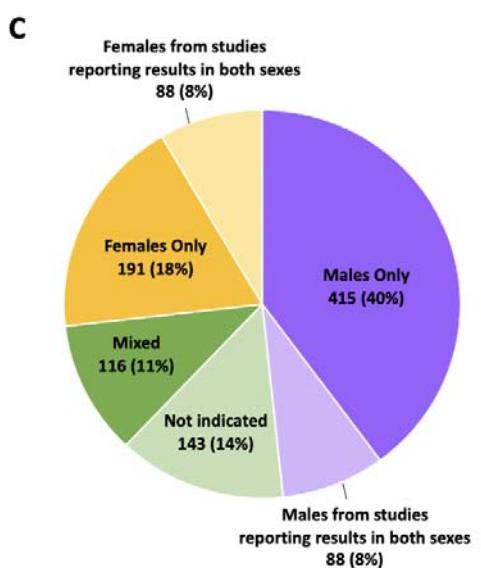
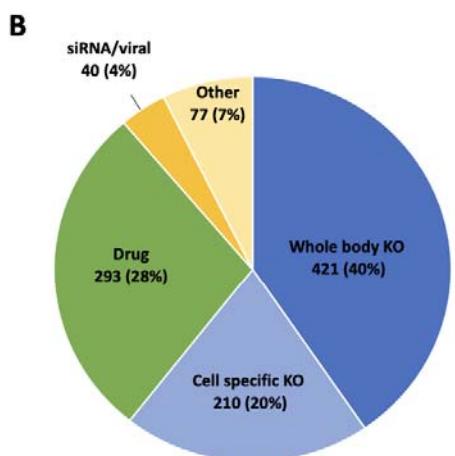
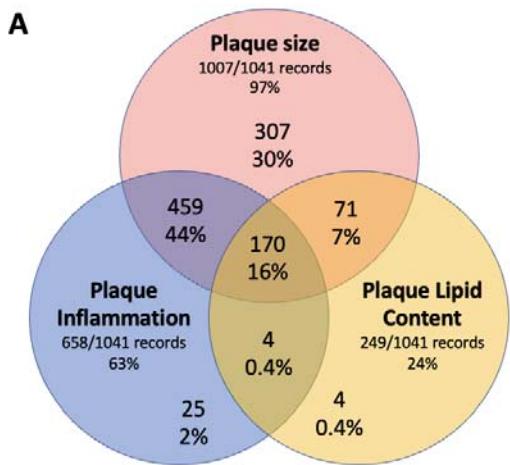

Figure 1. Flow diagram of database development from manuscript identification to identification of gene attribution. The first step of the process is **A)** the identification of manuscripts from two journals using predefined search criteria. Next, **B)** data is extracted from the 1535 manuscripts to identify specific experimental designs, interventions, and outcomes. Manuscripts that included more than one experimental design and outcome pairing were uploaded as separate RedCap records that were specific to the specific experimental variables. From the 1849 records, **C)** 808 (43.7%) were excluded due to identification as an invalid study type, including: a review, editorial, non-murine study, or other criteria. Finally, in **D)** the intervention strategies are attributed to specific genes, example: results corresponding to administration of an angiotensin converting enzyme (ACE) inhibitor would be attributed to the Ace gene.

Figure 2. Breakdown of database descriptors based on specific outcomes, intervention type, and sex-specific experimental design. **A)** Demonstrates the number of records in the database that studied plaque size, inflammation, or lipid content as an outcome, as well as those that studied multiple outcomes, e.g. 170 (16%) studied all three. **B)** The number of studies that utilized a specific intervention type including: whole body or cell-specific KO, drug, siRNA/viral, or other. **C)** The number of studies in the database that used only one murine model sex to complete experiments as well as those for whom sex was not indicated (143 studies (14%)).




Figure 3. Diagram of the process of database collection, variable extraction, and development with the goal of using the outputs for integrated analyses. We demonstrate the step-wise approach for the development of a database for mouse models for disease with the goals of these variables being used for future integrated analyses such as pathway and network discovery. This diagram demonstrates the approach used in our example for two murine models of atherosclerosis (ApoE and Ldlr), however, the same logic and variable extraction processing can be applied to other models of disease.

Figures

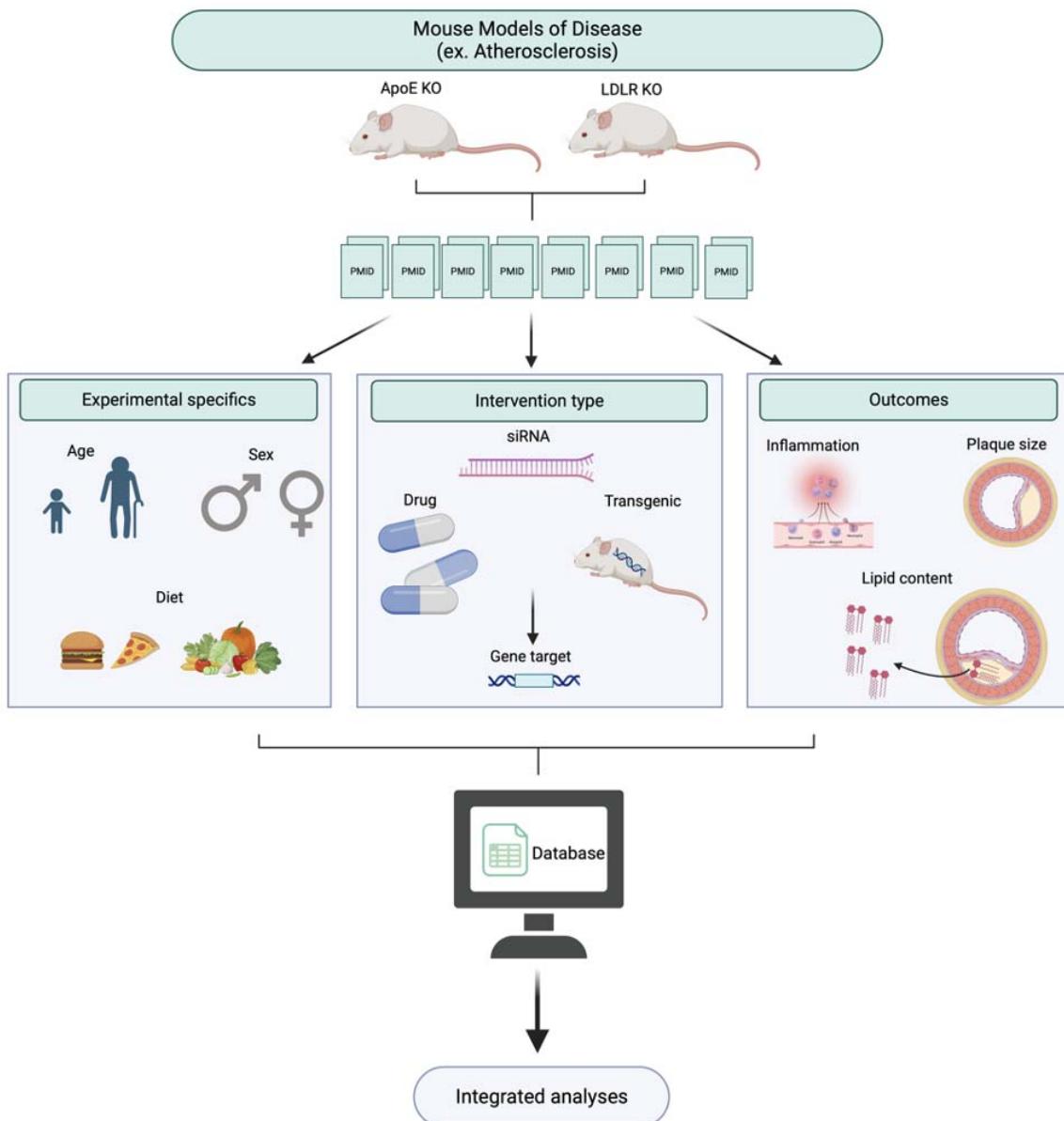

Figure 1.

Figure 2.

Figure 3.

Tables

Table: Search strategy within selected journals for models of choice

Steps					
	Search 1				
a.	Tool: EndNote	Keyword 1 (Mesh Term)	Keyword 2 (Mesh Term)	Keyword 3 (Abstract)	Keyword 4 (Abstract)
b.		Receptors	LDL or Apolipoproteins E	Mice	Aorta
c.		Receptors	LDL or Apolipoproteins E	Mice	Aortic
d.		Receptors	LDL or Apolipoproteins E	Mice	Carotid
e.		Receptors	LDL or Apolipoproteins E	Mice	Innominate
f.		Receptors	LDL or Apolipoproteins E	Mice	brachiocephalic
g.		Receptors	LDL or Apolipoproteins E	Mice	
				Ldlr or Apoe	Mice
h.	Elimination of duplicates from steps a to g	Group h		atherosclerosis	
		Group h		plaque	
i.	Removal of editorial and review articles				
	Search 2				
j.	Tool: PubMed webpage	Receptors	LDL or Apolipoproteins E	Mice	atherosclerosis
k.		Receptors	LDL or Apolipoproteins E	Mice	plaque
l.	Elimination of duplicates from steps j to k				
m.	Removal of editorial and review articles				
n.	Elimination of duplicates of i. and m. aggregate				