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ABSTRACT

Objective

The aim of this study was to make unstructured neuropathological data, located in the NeuroBioBank (NBB),

follow FAIR principles, and investigate the potential of Large Language Models (LLMs) in wrangling

unstructured neuropathological reports. By making the currently inconsistent and disparate data findable, our

overarching goal was to enhance research output and speed.

Materials and Methods

The NBB catalog currently includes information from medical records, interview results, and neuropathological

reports. These reports contain crucial information necessary for conducting in-depth analysis of NBB data but

have multiple formats that vary across sites and change over time. In this study we focused on a subset of donors

with Parkinson's Disease (PD). We developed a data model with combined Brain Region and Pathological

Findings data at its core.  This approach made it easier to build an extraction pipeline and was flexible enough

to convert resulting data to Common Data Elements (CDEs) used by the community.
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Results

This pilot study demonstrated the potential of LLMs in structuring unstructured neuropathological reports of PD

patients available in the NBB. The pipeline enabled successful extraction of microscopic and macroscopic

findings and staging information from pathology reports, with extraction quality comparable to results of manual

curation. To our knowledge, this is the first attempt to automatically standardize neuropathological information

at this scale. The collected data has the potential to serve as a valuable resource for PD researchers, bridging the

gap between clinical information and genetic data, thereby facilitating a more comprehensive understanding of

the disease.

INTRODUCTION

Effective data modeling of biological experiment data can have a major impact on downstream data usage,

accessibility, and significantly improve research output. Having a robust and sound data model allows FAIR

(Findability, Accessibility, Interoperability, and Reusability) data principles to be employed and provide major

benefits to research progress [1]. A recent cost-benefit analysis by the European commission on FAIR data

suggests that not using FAIR data principles costs the European economy approximately €10.2 billion per year

[2]. Thus, improving the quality of data models by applying these principles serves to save a considerable amount

of time and resources, further advancing research efforts.

With the advent of high-performance computing and artificial intelligence (AI), technologies such as natural

language processing (NLP) and large language models (LLMs) can be used to facilitate data FAIRification of

unstructured data [3,4]. LLMs such as OpenAI’s Generative Pre-trained Transformers (GPT) [5] can learn from

the statistical associations between words in large online text databases to produce human-like text outputs [4].

In the context of biomedical research, LLMs are currently being explored as a means to extract data, identify

patterns, and uncover insights that may have been previously hidden [6,7]. While the current gold-standard of

data curation is to perform manual curation, this process is time intensive and can introduce errors. Therefore,

LLMs may hold value in accelerating data curation and allowing FAIR data principles to be applied, ultimately

improving research efficiency.

The NIH-funded NeuroBioBank (NBB, https://neurobiobank.nih.gov/) was established in September 2013

as a national resource for investigators utilizing post-mortem human brain tissue and related biospecimens for

their research to understand conditions of the nervous system such as Alzheimer’s Disease (AD), Parkinson’s

Disease (PD), frontotemporal dementia (FTD), and many others. The overall goals of the NBB are to 1) increase

the availability of brain tissue from individuals affected and unaffected by brain disorders, 2) facilitate brain

tissue distribution and 3) provide a central resource of best practices and protocols to the research community.

Comprised of medical records, interview results, and neuropathological reports, the NBB catalog is an invaluable

source of data for researchers. The catalog has information on clinical diagnosis, medical history, as well as

results of whole genome sequencing. However, key pieces of data – specifically, the results of gross and

microscopic examination of brain samples exist primarily as unstructured notes, often in the form of PDF

pathological reports. The lack of standardization and inconsistent formats used across sites presents a significant

data accessibility challenge, which hinders effective data usability and ultimately, research output. Converting

these reports to a standardized format in accordance with FAIR principles would avoid duplicating efforts by

different groups to extract data, accelerating research progress. Standard representation of pathology data would
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provide researchers with powerful tools to understand the mechanisms underlying the development of various

pathologies, ultimately leading to improvements in the diagnostics and treatment of these debilitating conditions.

In this study, we investigated the potential of LLMs in unpacking unstructured neuropathological reports,

with a focus on a subset of patients with PD. The goal of this work was to provide a framework to improve

neuropathological findings, diagnosis, and staging. Our pilot consisted of 822 PD reports which spanned seven

different sites and utilized 15 different formats. Reports were first preprocessed and converted to HTML file

format, as they were provided in various formats. Information was then extracted from parsed reports using a

questionnaire-based method that employed few-shot learning using the gpt-3.5-turbo model [8]. The extracted

data was then combined, harmonized, and manually reviewed for accuracy.

MATERIALS AND METHODS

Source data

We used 822 PD reports generated from seven NBB sites: University of Maryland, University of Pittsburgh ,

National Institute of Mental Health (NIMH), University of Miami, Sepulveda, Harvard Brain Tissue Resource

Center, and Mount Sinai/Bronx VA Medical Center. This represents approximately 5% of the total number of

reports collected by the NBB. The sites provided reports in various file formats such as pdf, docx, or xlsx. Most

of the reports contained sections outlining the specimen received, neuropathological diagnosis, macroscopic and

microscopic pathological findings, and pathologist comments. Details and formats of the reports differed among

the sites: for some sites, such as Maryland and Sepulveda, pathology descriptions were provided as narratives

with sequential descriptions of findings. Other sites such as Harvard and Miami, grouped findings by brain

regions. Notably, the Mount Sinai site utilized an electronic system to capture information, significantly

streamlining the data collection process. In total, we compiled data from 822 neuropathological reports, spanning

a 32-year period from 1990 to 2022. Report selection was based on the presence of a PD clinical diagnosis. No

additional stratification based on age, gender, or disease stage was made, and all personally identifiable

information was redacted by NBB staff.

To facilitate the development of an automatic extraction pipeline, we classified reports based on their

formats and created a training set containing 65 reports, which included the most representative reports for each

site and format. These 65 reports were manually curated in consultation with the NBB working group and were

used as a "gold standard" to develop and improve the NLP pipeline.

Data preprocessing and parsing

Neuropathological reports in pdf file format were converted to HTML using the ABBYY FineReader Optical

Character Recognition (OCR) tool (https://pdf.abbyy.com/). Similarly, docx reports were converted to HTML

using the doc2html Python library (https://github.com/chadwickcole/doc2html). HTML was chosen as the target

file format because it preserved information about text styles, which was utilized to mark the beginning of report

sections. During preprocessing, the reports were split into sections such as gross pathology, microscopic

findings, diagnosis, and sample information. For the reports where tissue information was available, an

additional sub-rubric "tissue" was added. An output table was created containing report ID, section type, and

section content. The data preprocessing and parsing stage enabled the conversion and organization of
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neuropathological reports into a structured and machine-readable format, laying the foundation for subsequent

NLP pipeline development and data extraction.

Data model development

At the heart of the data model development, we focused on establishing a "region-finding-qualifier" triad. This

approach contrasts with many Common Data Elements (CDEs), where the combination of region and finding

represents an immutable data element. The rationale behind selecting the "region-finding-qualifier" triad

approach was twofold. First, it allowed us to perform named entity recognition on the region, finding, and

qualifier independently, which greatly facilitated the development of the NLP pipeline. Second, this approach

enabled us to deal with a variety of report styles and older reports that might not capture brain features or findings

according to modern standards.

To ensure consistency and standardization, we utilized external ontologies and controlled vocabularies for

the model attributes. These sources included the Allen Human Brain Atlas [9], Systematized Nomenclature of

Medicine (SNOMED) [10], National Cancer Institute Thesaurus (NCIT) [11], Disease Ontology (DOID) [12],

Medical Subject Headings (MeSH) [13], Federal Interagency Traumatic Brain Injury Research (FITBIR) CDEs

[14], and National Alzheimer's Coordinating Center (NACC) CDEs [15].

NLP pipeline and postprocessing

We utilized OpenAI GPT-3.5 model [8] as the primary LLM engine for our NLP pipeline development. No

additional fine-tuning was performed, and the standard settings were employed. All calls for gpt-3.5-turbo were

executed through the command line, as per the recommended guidelines using default model parameters

(temperature 1, top P 1, frequency penalty 0, presence penalty 0). We used python for data extraction and R for

data harmonization and QC.

Two approaches were adopted for data extraction from neuropathological reports. The first approach was

questionnaire-based, in which the input text was directly mapped to the data model through a series of questions

and coded answers. This method facilitated a structured approach to obtaining relevant information from the

reports.

The second approach focused on the direct extraction of tissue-finding-qualifier triads from the text.

However, this required a harmonization step, as the extracted tissue, finding, and qualifier terms were not directly

mapped to our data model. To address this challenge, we performed manual harmonization with the assistance

of an embedding-based classification technique, using the text-embedding-ada-002 model from OpenAI [16].

This approach allowed us to effectively categorize and map the raw extracted terms into a standardized format

compatible with our data model.

Evaluation metrics

To evaluate the quality of data extraction, we compared the results obtained from the automatic extraction

pipeline with the manually curated data ("gold standard") for the 65 selected reports. For macroscopic and

microscopic findings, we assessed the agreement between the lists of brain regions identified manually and those

extracted by the automatic pipeline. In cases where findings intersected, we compared the associated qualifiers.

For regions with mismatches, we sampled and analyzed regions that were present exclusively in either the
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manual curation or the pipeline extraction. Upon examining these differences, we found that not all discrepancies

were due to actual errors in the extraction process. Some variations could be attributed to ambiguities in the

reports or harmonization efforts during the manual curation process. For neuropathological staging information,

we compared the manually curated staging data with the staging information extracted by the automatic pipeline.

By conducting this thorough evaluation, we were able to assess the performance of the extraction pipeline

and identify areas for improvement.

RESULTS

Data model

Overview

In this study, we have developed a comprehensive data model to represent and capture the relevant information

from neuropathological reports. Key entities and attributes are shown on the Entity Relationship Diagram (ERD;

Figure 1). Full ERD and tabular description of all entities and attributes are provided in Supplementary

Information S1 and S2. The primary objective of this data model is to efficiently organize and store the extracted

data from the pathology reports, facilitating easy access and analysis for researchers. The data model comprises

several key entities, which are interconnected to represent the various aspects of the neuropathological findings.

At the core of the data model is the Neuropathological Evaluation entity, which serves as a central hub linking

the other entities. Additionally, this entity is connected to the Donor entity, enabling a clear association between

the evaluation results and the corresponding donor.

The Neuropathological Evaluation entity is further linked to four main sub-entities: Evaluation Summary,

Neuropathological Diagnosis, and Macroscopic and Microscopic Evaluations. The Evaluation Summary entity

encompasses the staging information (e.g., Braak and Del Tredici stage for PD [17], ABC score according to

NIA-AA 2012 consensus guidelines [18], and others [19–22]). The Neuropathological Diagnosis entity lists all

neuropathological diagnoses identified in the report, serving as a comprehensive catalog of the patient's

conditions.
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Figure 1 – Entity Relationship Diagram for Neuropathological data model. Key entities and attributes are shown. Relationships between

entities follow standard crow foot notation. Color scheme corresponds to conceptual subschemas: orange – donor conceptual subschema,

blue – biological specimen conceptual subschema, purple – case diagnosis conceptual subschema, green – pathology case conceptual

subschema. Attributes in bold are mandatory. PK – primary key, FK – foreign key, CV – attribute values taken from controlled

vocabulary.

The Macroscopic and Microscopic Evaluations entities capture the detailed findings from the gross and

microscopic examinations of the brain samples, respectively. These entities store both positive and negative

findings, ensuring a complete representation of the pathological landscape. They are essential for understanding

the specific pathological abnormalities present in the sample and their implications on the patient's condition.

Data dictionary

To accurately capture the anatomic location of pathology findings, we utilized the Allen Human Brain Atlas

(AHBA) [9] as the foundation for our data model's representation of brain regions. The AHBA offers

comprehensive coverage of brain structures; however, certain adjustments and extensions were necessary to

address the specific needs of our study. Firstly, the AHBA does not encompass the vascular system. To address

this, we added major arteries to the data dictionary and provided corresponding links to external ontologies such

as MeSH [13] or UBERON [23]. Similarly, we included adjacent structures that are not part of the brain, such

as the skull and scalp, with appropriate links to external ontologies.

Another challenge we encountered was the presence of hyperspecific and hypospecific regions in the

neuropathological reports. Hyperspecific regions, such as the CA1/CA2 junction or calvarial dura, contain a

level of detail absent in the AHBA. Conversely, hypospecific regions, such as the visual cortex or olivary

nucleus, represent groups of brain regions that do not have a corresponding entity in the AHBA. In some cases,

the reports used terminology for brain regions that only exist for non-human species, such as the caudal

medullary velum (rat) or occipital gyrus (macaque). To address these issues, we added these regions to our data

dictionary and, where possible, provided links to external ontologies and parent regions.
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In instances where the report specified a particular part of a brain region, we captured this information using

a combination of “Region” and “Section/Directionality”. For example, posterior occipital cortex was mapped to

a combination of the occipital cortex region (AHBA id:3614) and posterior directionality. Lastly, we

acknowledged that many reports did not associate specific regions with certain findings. For example, reports

may mention finding in blood vessels, gray matter, or lesions, without indication of where exactly the finding is

located. To accommodate these cases, we included a "Non-localized Structure" attribute in our data model.

In the development of our data model, we aimed to effectively capture and represent macroscopic and

microscopic finding names and their associated qualifiers. Generally, finding names encompass descriptions of

the observation, such as calcification, atrophy, necrosis, or abnormal coloration, while qualifiers provide optional

details regarding severity, quantity, color, shape, and other properties of the findings. We used findings and

qualifiers from existing neuropathology CDEs such as those supplied by FITBIR and NACC and extended the

dictionary with information from reports. Our initial approach involved separating finding names and qualifiers

into basic repeating elements to reduce the number of distinct values in the dictionary and streamline data

extraction and harmonization. However, after consultations with the NBB working group, we made certain

exceptions. For example, instead of separating diffuse plaques into the finding plaque and the qualifier diffuse

we maintained it as a single finding. This decision was made to preserve the specificity and clarity of certain

findings.

The final data model comprised 183 macroscopic findings, 416 microscopic findings, and 333 qualifiers.

To ensure consistency and interoperability, we mapped the findings to established external ontologies, such as

SNOMED and NCIT whenever possible.

Data Extraction Pipeline

Overall description

The overall data extraction pipeline (Figure 2) involves six crucial steps. In the first step, the neuropathological

reports in pdf and docx file formats are converted into HTML file format, which efficiently preserves the styling

information. This conversion allows for easier parsing and extraction of relevant data in subsequent steps. In the

second step, the HTML documents are split into distinct sections, such as gross pathology, microscopic findings,

diagnosis, and sample information. For reports containing available tissue information, an additional subcategory

titled “tissue” is incorporated. An output table is generated, encompassing report ID, section type, and section

content, which serves as a structured representation of the data extracted from the reports.

The third step involves feeding the machine-readable data from the output table into the data extraction

process. Some information, such as brain weight, donor age, and sex, is already structured and can be effortlessly

extracted using pattern matching. To extract most of the other information, we employed two approaches: a

questionnaire-based method and a few-shot learning direct approach, both utilizing GPT-based models from

OpenAI. In the fourth step, all extracted information is combined and reshaped to create a unified dataset. This

dataset then undergoes a harmonization process in step five, where the data is mapped and aligned with the

developed data model specifically tailored for neuropathological conditions.

The final step consists of assessing the quality of the extracted data. Values are compared to both the data

model and manually curated data to ensure accuracy and consistency across the dataset. Any discrepancies or

issues identified during the quality assessment are addressed to refine the data extraction pipeline further.
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Figure 2 – Schematic representation of data extraction pipeline.

Direct approach for data extraction

The data extraction process adapted a direct approach of traditional Named Entity Recognition (NER)

techniques. Classical NER methods, such as N-gram phonetic search [24], perform optimally when dictionaries

are well-defined and comprehensive. However, in our case, we could not rely on the AHBA for region extraction,

as it did not encompass all the regions we intended to extract. Furthermore, the dictionary for findings was non-

existent, rendering NER tools unsuitable for extracting findings and qualifiers. Consequently, we employed

LLMs in the initial step of data extraction to identify all mentioned brain regions. To improve recall, region

extraction was executed twice, and tissue lists from both runs were consolidated. Subsequently, for each

mentioned tissue, LLMs extracted associated findings and qualifiers. We guided the model using a few-shot

learning approach, providing request and response examples to assist in handling complex or ambiguous cases.

Initially, the davinci-03 model was employed, which was not specifically fine-tuned for user requests. In

the final version, we used the gpt-3.5-turbo model. Since gpt-3.5-turbo was trained to respond to direct user

requests, we supplemented the prompts with explicit instructions regarding the desired output format. Examples

and the overall protocol can be found in Figure 3.
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Figure 3. Workflow for direct data extraction. The $ designates text that is dynamically substituted by the data from reports, or results

obtained on previous steps.

While the direct approach effectively captured information present in the reports, it necessitated subsequent

harmonization, as the LLM was not cognizant of specific dictionaries employed in later stages. Moreover, the

model did not consistently differentiate between finding names and qualifiers, resulting in discrepancies such as

Finding Name size decreased versus the combination of Finding Name size and Finding Qualifier decreased.

Therefore, a crucial harmonization step was essential to render the extracted information useful and consistent.

Nevertheless, the developed few-shot learning approach successfully navigated ambiguous information and the

absence of dictionaries, yielding semi-structured raw output that could be harmonized downstream.

Questionnaire-based approach for data extraction

The questionnaire-based approach emulates data abstraction by filling electronic forms. In this method, a series

of questions are posed to the text, with coded answers provided. The goal is not to extract every piece of data

but to focus on what is most important. We employed a similar approach where, instead of a human operator, it

was the LLM that answered the questions. Questions were derived from the NACC questionnaire, which covers

findings relevant to establishing diagnoses of AD and PD. In brief, the LLM was provided with instructions to

answer the questions, a context (specific section of the report), and the questions themselves. These instructions
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or questions could be direct (e.g., “Provide the whole brain weight, in grams.”) or dictionary-based (e.g., “What

is the severity of cerebral cortex atrophy?” with coded answer options). Answers to dictionary-based questions

were mapped directly to the data model, so no additional harmonization was required.

Figure 4. An example of a typical questionnaire prompt with responses and follow-up. Flowchart of the questions aimed to discriminate

between absence of information, negative findings, and positive findings.

Assessing data extraction quality for data extracted by the questionnaire revealed several failure modes.

First, the LLM was not able to discriminate between cases where the region was not mentioned and cases where

no abnormalities were found. Moreover, the LLM tended to deviate from direct answers and make conclusions

that were close but not exactly answering the questions. For example, when asked about the Braak & Del Tredici

stage of PD [17], the model sometimes attempted to interpret the extent of findings and give stage assessments,

rather than reporting that the stage was not mentioned (Figure 4). To address these issues, we modified the flow

of the questionnaire and added intermediate questions such as “Is X mentioned in the report? (0- No, 1- Yes)”,

“Is there evidence of X? (0- No, 1- Yes)”, and only then “What is the severity of X?”. This approach enabled us

to distinguish more precisely between present and absent findings and reduce hallucinations.

Quality Assessment

Overall quality assessment results

To assess the quality of data extraction, we compared the data extracted from 65 reports by the pipeline to the

data extracted through manual curation. For macroscopic and microscopic findings, we evaluated the agreement

between the lists of brain regions identified manually and those extracted by the automatic pipeline. In cases

where findings intersected, we compared the associated qualifiers. For regions with mismatches, we sampled
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and analyzed regions that were exclusively present in either the manual curation or pipeline extraction. For

neuropathological staging information, we compared the manually curated staging data with the staging data

extracted by the automatic pipeline. Overall metrics are reported in Table 1.

Table 1. Overall QC metrics for Macroscopic and Microscopic evaluation (comparison of sets of regions) and

Evaluation summary (comparison of staging information). C and P denote information extracted by Curation

and Pipeline respectively. C∩P denotes records intersection of sets of records, C∪P denotes union of sets.

Jaccard Index

(accuracy)
Sensitivity Precision

(C+P) / (C,P) (C+P) / C (C+P) / P

Macroscopic evaluation 64.6% 83.6% 73.9%

Microscopic evaluation 55.9% 76.5% 67.5%

Evaluation summary 64.6% 71.9% 86.4%

To further characterize problems with data extraction, we sampled up to 10 mismatches of both types (data

present in manual curation only, data present in pipeline extraction only) for every site for regions in macroscopic

evaluations. Mismatches were categorized based on the type of problem: issues with pipeline data extraction,

issues with manual curation, or issues with harmonization. Then, types of issues were identified (Table 2).

Table 2 – Breakdown of comparison between manually extracted data and data extracted by pipeline by category

for macroscopic evaluation. Error percentage is estimated from sampling of up to 20 mismatching records per

site (10 records with curation only, 10 records with pipeline only region).

Category Description Estimated %

Match Results of curation matches results of the pipeline 64.6%

Pipeline issues Any issues due to incorrect or imprecise data extraction by

pipeline. This includes the following sub-categories:

9.9%

Pipeline errors Information was extracted by pipeline incorrectly 3.7%

Pipeline recovery Brain regions are present in report but were not extracted by

the pipeline

2.5%

Pipeline precision Regions were extracted by pipeline with insufficient precision 1.9%

Pipeline

missing/normal

Findings were extracted by pipeline as normal, but were

missing in report or vice versa

1.9%

Curation issues Any issues due to incorrect or imprecise data extraction by

curators. This includes the following sub-categories:

9.6%

Curation recovery Brain regions are present in report but were not extracted by

curators

5.2%

Curation precision Regions were extracted by curators with insufficient precision 4.4%
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Harmonization

issues

Mismatch due to information being extracted in different

ways, or mapped to different terms

15.8%

Issues with the pipeline data extraction comprised 9.9% of the total amount of problems. In 9.6% of cases,

information extracted by the pipeline was more accurate than information produced by curators. Additionally,

15.8% of mismatches were due to issues with harmonization, where both curation and pipeline approaches

produced results that could be considered valid – the same data was interpreted in different ways. This analysis

suggests that the total accuracy of data extraction for macroscopic findings surpasses 74.2% (the number of

matching records plus the number of issues due to curation problems).

Pipeline data extraction drawback

We identified four types of pipeline errors. The most frequent cases involved incorrect data extraction (3.7%).

In many instances, these errors resulted from the incorrect extraction of context. For example, the LLM

accurately identifies “cerebral hemisphere” as one of the brain regions mentioned in the following extract:

“Coronal sections of the left hemisphere at the anterior frontal, striatal, and lentiform-thalamic-substantia

nigra levels, and the midpons-cerebellum are examined. There is no softening, discoloration, hemorrhage, mass,

or other lesion. Moderate cortical atrophy is seen in the frontal and temporal lobes.”

The model then proceeds to extract the following context: Coronal sections of the left hemisphere at the

anterior frontal, striatal, and lentiform-thalamic-substantia nigra levels, and the midpons-cerebellum are

examined. Moderate cortical atrophy is seen in the frontal and temporal lobes.”, which is then converted into a

region, finding, and qualifier combination of “cerebral hemisphere, atrophy, moderate”. This is less precise than

the “frontal cortex, atrophy, moderate” extracted by curators.

In 2.5% of cases, the pipeline did not extract region information. Many of these errors occurred when the

tissue was correctly identified, but the pipeline had trouble producing results in the desired format. For example,

“The lateral cerebral ventricle is normal in size and shape.” Was incorrectly converted to “lateral cerebral

ventricle | normal size; normal shape | NA”. In the correct format, region/finding/qualifier triplets should be

separated by semicolons, and the correct output should look like “lateral cerebral ventricle | normal size | NA;

lateral cerebral ventricle | normal shape | NA”.

Imprecise extraction accounted for 1.9% of the pipeline extraction problems. Typical examples included

extraction of “cerebral cortex” without specifying the pathology location in more detail. In many cases, the

pipeline extracted both general regions (cerebral cortex) and specific regions (e.g., frontal cortex). Additionally,

some questions from the questionnaire asked about the presence of pathology in general regions and were

therefore mapped to these general areas. Moreover, the coded list of answers forced the LLM to perform qualifier

mapping. For instance, “minimal” was typically mapped to “mild”, whereas “mild to moderate” could be mapped

to either “mild” or “moderate,” without a systematic approach to the mapping process. Similarly, pathological

evaluations often contained ranges of stages (e.g., Braak II-III). The LLM randomly collapsed the range to one

of the stages.

Lastly, 1.9% of pipeline extraction problems stemmed from confusion between findings that were not

reported and cases where no abnormalities were found in specific regions. The LLM would easily become

confused when the report contained a full list of sections and tissues that were analyzed, assuming that if a tissue
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was reported but no abnormality was explicitly mentioned, the tissue was normal. Initially, the percentage of

these errors was much higher, so we had to remove the list of regions at the preprocessing stage whenever it was

possible to identify such a list using style markers or headers.

Harmonization issues and problems with manual curation

Harmonization issues accounted for the largest portion (15.8%) of mismatches between manually curated data

and data extracted by the pipeline. Common examples of these issues include discrepancies in naming general

regions. For instance, “cerebrum” is often interchanged with “cerebral hemispheres” by both the pipeline and

manual curation.

Another example illustrating the differing approaches between curators and the pipeline can be seen in cases

where a list of tissues is reported. For example, a report might contain the following information: “Neostriatum:

(caudate nucleus, putamen, and nucleus accumbens): Unremarkable.” Curators interpreted this as “neostriatum,

unremarkable,” whereas the pipeline extracted all four mentioned tissues separately (neostriatum, caudate

nucleus, putamen, and nucleus accumbens) and reported all of them as unremarkable.

In some cases, harmonization problems arose from instances where a finding or region could be represented

in different ways, such as “junction between cortex and white matter” versus a combination of “cortex” and

“white matter”, or “tonsillar herniation” versus a combination of “cerebellar tonsil” and “herniation”.

Lastly, a significant portion of mismatches (9.6%) could be attributed to either imprecise extraction by

curators (5.2%) or information not being extracted at all (4.4%). These issues are more prevalent for sites that

provide information-rich reports (e.g., Harvard and Miami), as the sheer amount of information in these reports

makes manual curation more prone to errors.
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DISCUSSION

In this study, we explored the capabilities of LLMs, such as GPT-based models, for data extraction from

neuropathological reports. The first step for successful data extraction involves building a flexible data model

that can accommodate a variety of data while facilitating extraction and subsequent harmonization. We achieved

this by centering our model on regions, findings, and qualifiers, each of which can be varied independently. This

approach deviates from the approach used to build CDEs, in which the central conceptual entity consists of

predefined sets of regions and findings. While the CDE approach is more suitable for standardizing crucial

information in electronic form, it is less flexible and less suitable for automated data extraction. Moreover,

different electronic systems may contain sets of CDEs which are not compatible. By deconstructing CDEs into

triads of regions, findings, and qualifiers, data becomes more flexible and can be easily converted, as

demonstrated in our approach where we merged data from electronic system used to capture information in

Mount Sinai with data extracted from pathology reports from other sites.

This study has demonstrated the significant potential of LLMs in structuring unstructured neuropathological

reports. LLMs can handle ambiguous information and the absence of predefined dictionaries, which is essential

when dealing with diverse and complex data. The reasoning capabilities of LLMs make it possible to extract

complicated relationships and infer information that would be unreachable for standard methods. In certain cases

where the amount of information is overwhelming, LLMs outperform manual data extraction and retrieve

information more reliably.

Despite the benefits of LLMs, there are limitations to their application in data extraction from

neuropathological reports. For instance, LLMs may struggle to differentiate between cases where a region is not

mentioned and cases where no abnormalities were observed. Additionally, LLMs may inaccurately extract

context or become confused when dealing with complex report structures. These limitations can lead to

discrepancies between manually curated data and data extracted by the pipeline. Furthermore, LLMs may

occasionally deviate from direct answers or make conclusions that are close but not exactly answering the

questions.

The present study serves as a pilot effort, focusing on donors with PD, which represents less than 5% of the

total number of pathology reports in the NBB. Although a significant portion of donors with PD have other

comorbidities (e.g., AD and Cerebrovascular Disease), extending the pipeline to work with other patients would

necessitate modifications to both the data model and the extraction workflow. For instance, entities describing

brain tumors or specific findings related to traumatic brain injury could be incorporated into the model. The data

dictionary could be expanded to encompass findings more characteristic of other pathologies, and corresponding

evaluation staging information should be included. Moreover, certain sites (Pittsburgh and NIMH) were sparsely

represented in the PD datasets we examined, and integrating additional reports from these sites might require

modifications to the preprocessing algorithm. Additionally, the NACC questionnaire used in the data extraction

pipeline should be extended with questions relevant to all types of pathologies present in the broader population

of reports.

While the current data extraction approach achieved 74.2% accuracy and was comparable with manual

curation results, we suggest several avenues for further improvement and scaling up. The LLM used in this study,

GPT-3.5, has been superseded by a more powerful model, GPT-4 [25]. Another approach may involve fine-

tuning the LLM to better understand the specific domain of neuropathology and further adapting it to handle

complex and diverse data formats. Additionally, incorporating domain knowledge and expert feedback into the
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LLM training process could enhance the model’s ability to accurately interpret and extract information from

pathology reports.

A significant portion of time was devoted to manual harmonization of data and mapping from LLM output

to data dictionaries. For some attributes such as brain regions and qualifiers, we expect the harmonization efforts

to scale sub-linearly, as the current set of reports already covered a significant variety of values. Other attributes,

such as finding names, might still require substantial efforts to harmonize, as the data is dependent on the type

of pathology. LLMs and related NLP capabilities, such as using embeddings for mapping between information

provided by LLMs and predefined ontologies, might be employed to expedite the harmonization process.

CONCLUSIONS

In this study, we have developed a data model and data extraction pipeline that leverages LLMs to structure

unstructured neuropathological reports from the NBB, specifically focusing on PD donors. To our knowledge,

this is the first attempt to automatically standardize neuropathological information at this scale. The pipeline and

data model can be repurposed and extended to accommodate other pathological conditions, making it a versatile

tool for researchers. Furthermore, the collected data has the potential to serve as a valuable resource for PD

researchers, bridging the gap between clinical information and genetic data, and thereby facilitating a more

comprehensive understanding of the disease.
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SUPPORTING INFORMATION

S1 – Neurological Data Model – entities and attributes specification (in Excel file format)

S2 – Entity Relationship Diagram for Neurological Data Model
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