

1
2 **An explainable language model for antibody specificity prediction**
3 **using curated influenza hemagglutinin antibodies**
4

5 Yiquan Wang^{1,*}, Huibin Lv^{1,2*}, Ruipeng Lei¹, Yuen-Hei Yeung^{1,3,4}, Ivana R. Shen¹, Danbi Choi¹,
6 Qi Wen Teo^{1,2}, Timothy J.C. Tan⁵, Akshita B. Gopal¹, Xin Chen⁵, Claire S. Graham¹,
7 Nicholas C. Wu^{1,2,5,6,§}

8
9 ¹ Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

10 ² Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana,
11 IL 61801, USA

12 ³ Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801,
13 USA

14 ⁴ Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR,
15 China

16 ⁵ Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign,
17 Urbana, IL 61801, USA

18 ⁶ Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801,
19 USA

20 * These authors contributed equally to this work

21 § To whom correspondence may be addressed. Email: nicwu@illinois.edu (N.C.W.)

22 ABSTRACT

23 Despite decades of antibody research, it remains challenging to predict the specificity of an
24 antibody solely based on its sequence. Two major obstacles are the lack of appropriate models
25 and inaccessibility of datasets for model training. In this study, we curated a dataset of >5,000
26 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which
27 revealed many distinct sequence features between antibodies to HA head and stem domains. We
28 then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for
29 sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM
30 captured key sequence motifs of HA stem antibodies. Additionally, by applying mBLM to HA
31 antibodies with unknown epitopes, we discovered and experimentally validated many HA stem
32 antibodies. Overall, this study not only advances our molecular understanding of antibody
33 response to influenza virus, but also provides an invaluable resource for applying deep learning
34 to antibody research.

35 **INTRODUCTION**

36 Discovery and characterization of monoclonal antibodies are central to the understanding of
37 human immune response, as well as design of vaccines and therapeutics [1, 2]. As exemplified
38 by SARS-CoV-2 research in the past few years, antibody discovery has dramatically accelerated
39 due to the technological advancements in single-cell high-throughput screen [3] and paired B cell
40 receptor sequencing [4]. Nevertheless, epitope mapping remains a major bottleneck of antibody
41 characterization, which often involves the determination of individual antigen-antibody complex
42 structures using X-ray crystallography or cryogenic electron microscopy (cryo-EM). As a result,
43 there is a huge interest in developing methods for antibody specificity prediction.

44

45 Despite the huge diversity of human antibody repertoire with at least 10^{15} antibody sequences [5,
46 6], antibody responses from different individuals often utilize recurring sequence features to target
47 a given epitope [7-15]. This phenomenon is also known as convergent or public antibody
48 response. Traditionally, antibody specificity prediction has mainly relied on biophysical models
49 [16]. However, the observation of public antibody response suggests that antibody specificity
50 prediction can also be achieved by an orthogonal, data driven approach. Specifically, with a
51 sufficiently large sequence dataset of human antibodies that share a common epitope, a purely
52 sequence-based model can be trained to predict whether an antibody targets this given epitope
53 or not.

54

55 Recently, the application of natural language processing has revolutionized protein structure and
56 function prediction as well as protein design [17-23]. While several language models for
57 antibodies have also been developed [24-26], none of them enables antibody specificity prediction
58 to the best of our knowledge. One of the major barriers to developing a language model for
59 antibody specificity prediction is the lack of systematically assembled datasets for model training,
60 which would require both sequence and epitope information for individual antibodies. Although

61 many studies have reported sequences of antibodies with known epitopes, such information is
62 often not centralized. Database such as CoV-AbDab, which documents the sequence and epitope
63 information for >10,000 antibodies to coronavirus [27], is absent for most pathogens including
64 influenza virus.

65

66 Hemagglutinin (HA) is the major antigen of influenza virus and has a hypervariable globular head
67 domain atop a highly conserved stem domain [28]. In this study, we manually curated 5,561
68 human antibodies to influenza hemagglutinin (HA) protein from research publications and patents.
69 Recurring sequence features among these HA antibodies were identified, many of which were
70 previously unknown. Using this dataset, we further developed a memory B cell language model
71 (mBLM) for antibody specificity prediction based on seven specificity categories, including HA
72 head and stem domains. Saliency map explanation of mBLM revealed that key binding motifs
73 were learned during specificity prediction. Moreover, we successfully applied mBLM to discover
74 HA stem antibodies with subsequent experimental validation.

75

76 **RESULTS**

77 **A large-scale collection of influenza antibody information**

78 We compiled a list of 5,561 human monoclonal antibodies to influenza HA from 60 research
79 publications and three patents (**Table S1**). Information on germline gene usage, sequence,
80 binding specificity (e.g. group 1, group 2, type A or B, etc.), epitope (head or stem), and donor
81 status (e.g., infected patient, vaccinee, etc.), if available, was collected for individual antibodies.
82 Among these antibodies, which were isolated from 132 different donors, 564 (10.1%) bind to the
83 globular head domain and 518 (9.3%) bind to the stem domain. Epitope information was not
84 available for the remaining 4,479 HA antibodies.

85

86 **HA head and stem antibodies have distinct sequence features**

87 We first aimed to analyze this large dataset to examine the recurring sequence features of human
88 antibody responses to influenza HA. Our analysis captured previously known germline gene
89 preference for HA stem antibodies, such as IGHV1-69 [8, 29] and IGHD3-9 [7], as well as for HA
90 head antibodies, such as IGHV2-70 and IGHD4-17 (**Figure 1A, Figure 1C, and Figure S1**) [30].
91 Other recurring sequence features were also observed in our analysis, such as the enrichment of
92 IGKV3-11, IGKV3-15, and IGKV3-20 among HA stem antibodies, as well as IGKV1-33 and
93 IGLV3-9 among HA head antibodies (**Figure 1B**). In addition, our analysis discovered five public
94 clonotypes that target influenza type B HA (clonotypes 13, 16, 56, 89, and 117) that have not
95 been described previously to the best of our knowledge (**Figure S2 and Table S1**).
96

97 The high prevalence of IGHD4-17 among HA head antibodies stood out to us. It is known that the
98 second reading frame of IGHD4-17 encodes a YGD motif (**Figure S3A**) and can pair with IGHV2-
99 70 to form a multidonor antibody class targeting the receptor binding site in the HA head domain
100 [30]. However, our analysis here demonstrated that IGHD4-17 could pair with other IGHV genes
101 to target diverse epitopes in the HA head domain (**Figure S3B, Figure S4A, and Table S2**). Most
102 of these antibodies contain an IGHD4-17-encoded YGD motif in the complementarity determining
103 region (CDR) H3 (**Table S2**). Consistently, CDR H3 with a YGD motif was observed in 12.8% of
104 the HA head antibodies, but only in 0.8% and 2.0% of the HA stem antibodies and all antibodies
105 from GenBank (**Figure S4B and Table S3**), respectively. These observations suggest the
106 versatility of the IGHD4-17-encoded YGD motif in targeting multiple epitopes in the HA head
107 domain, similar to the ability of IGHV3-53 to engage different epitopes in SARS-CoV-2 spike (S)
108 receptor-binding domain (RBD) [31, 32].
109

110 While the major antigenic sites in the HA head domain largely consist of hydrophilic and charged
111 amino acids [33-36], HA stem antibodies are known to commonly target a hydrophobic groove
112 [37]. Consistently, the CDR H3 sequences of HA stem antibodies had significantly higher

113 hydrophobicity than those of HA head antibodies ($p = 0.001$) (**Figure 2A**). Such difference was
114 more pronounced when we only considered the tip of the CDR H3, which locates in the center of
115 the CDR H3 sequence and is typically important for binding ($p = 4e-12$) (**Figure 2B**). In contrast,
116 the CDR H3 lengths of antibodies to HA head and stem domains did not differ significantly ($p =$
117 0.38) (**Figure 2C**). Overall, these analyses reveal distinct recurring sequence features between
118 HA head and stem antibodies.

119

120 **Antibody specificity prediction using mBLM**

121 Our previous work has shown that antibodies with different specificities can be distinguished using
122 a sequence-based machine learning model that has a simple architecture with one transformer
123 encoder for each CDR, followed by a multi-layered perceptron (“CDR encoders”) [15]. Here, we
124 postulated that a language model could offer better performance, given the recent success of
125 applying language models to predict protein structures and functions [17-23]. Specifically, we
126 aimed to pre-train a memory B cell language model (mBLM) to learn the intrinsic “grammar” of
127 functional antibodies, and to subsequently distinguish between HA head and stem antibodies,
128 as well as antibodies to other antigens.

129

130 Briefly, mBLM was pre-trained to predict masked amino acid residues in the context of paired
131 heavy and light chain antibody sequences, using a total of 253,808 unique paired antibody
132 sequences from GenBank [38] and Observed Antibody Space [39] (**see Methods**). For antibody
133 specificity prediction, mBLM was fine-tuned by using the final-layer embeddings of the pre-trained
134 mBLM, followed by a multi-head self-attention block and a multi-layer perceptron (MLP) block
135 (**Figure 3A**). Our prediction was based on seven specificity categories, namely influenza HA head,
136 influenza HA stem, HIV, SARS-CoV-2 S NTD, SARS-CoV-2 S RBD, SARS-CoV-2 S S2, and
137 others (none of the above). Since many antibodies in these specificity categories did not have
138 light chain sequence available, only heavy chain sequences were used for specificity prediction

139 (see Methods). Of note, the highest pairwise sequence identity between the test and training sets
140 was 80%. In other words, the pairwise sequence identity between individual antibody sequences
141 in the test set and the training set was at least 20% (i.e. 26 amino acids). As indicated by the
142 confusion matrix analysis and F1 score, mBLM had a decent performance on the test set (Figure
143 3B-C). The F1 score on the test set was 0.75 for mBLM, but only 0.49 for CDR encoders (Figure
144 3C). The performance of mBLM, which had 41 million parameters, was also slightly better than
145 the pre-trained general protein language model ESM2 with 650 million parameters (F1 score on
146 the test set = 0.74) [18]. This result demonstrates that mBLM is an efficient model for antibody
147 specificity prediction.

148

149 **mBLM learned the sequence features of HA stem antibodies**

150 Next, we aimed to understand what mBLM had learned for antibody specificity prediction. Recent
151 advancements in the field of computer vision have employed Gradient-Weighted Class Activation
152 Maps (Grad-CAMs) on CNN-based architectures to identify the determinants for classification
153 decisions [40, 41]. Here, Grad-CAM was adopted to analyze the fine-tuned mBLM by quantifying
154 the importance of individual amino acid residues for antibody specificity prediction. Our result
155 indicates that residues with high importance, as indicated by the saliency score, were enriched in
156 the CDRs (Figure 4A).

157

158 Based on the saliency score pattern, we further identified six clusters of HA stem antibodies.
159 These clusters captured several known sequence features of HA stem antibodies. For example,
160 most antibodies in cluster 3 are encoded by IGHD3-9 (Figure 4B), which is known to be enriched
161 among HA stem antibodies (Figure 1C) [7]. Among IGHD3-9 antibodies in cluster 3, we observed
162 an FxWL motif in the CDR H3 with high saliency score (Figure 4C). As described previously,
163 many IGHD3-9 antibodies are featured by a LxYFxWL motif in the CDR H3 [7]. Therefore, our
164 result indicates that the fine-tuned mBLM partially learned a known CDR H3 motif for predicting

165 HA stem antibodies. Other known sequence features of HA stem antibodies were also learned by
166 mBLM, including IGHV1-18 with a QxxV motif in the CDR H3 (**Figure S5A-B**) [42], IGHV1-69 with
167 Y98 (**Figure S5A-D**) [8], and IGHV6-1 with an FGV motif in the CDR H3 (**Figure S5E-F**) [43].

168

169 When we projected the saliency score of individual residues on the structures, residues closer to
170 the epitope appeared to have a higher saliency score (**Figure 4D and Figure S5G-I**). Consistently,
171 through systematically analyzing 18 structures of HA stem antibodies [7, 29, 42, 44-54], we found
172 that the saliency score of individual residues in HA stem antibodies and their distance to HA
173 exhibited a moderate negative correlation (Spearman's rank correlation = -0.38, **Figure 4E**).
174 Together, our result indicates that the fine-tuned mBLM could identify residues that were critical
175 for binding and utilized them for specificity prediction, despite structural information was not used
176 for model training.

177

178 To gain additional insights into the learned features of mBLM, we analyzed the final-layer
179 embeddings of the pre-trained mBLM using t-SNE (t-distributed Stochastic Neighbor Embedding).
180 Specifically, heavy chain sequences in the training set for fine-tuning were projected into a two-
181 dimensional space according to the embeddings. The result showed clustering of antibodies that
182 belonged to the same V gene family (**Figure S6A**). Moreover, antibodies from the same specificity
183 category also tended to cluster together (**Figure S6B**). These observations demonstrated that
184 even during the pre-training step, mBLM partially learned the sequence features that were
185 determinants for antibody specificity, hence specificity prediction.

186

187 **Discovering HA stem antibodies using mBLM**

188 There are two non-overlapping epitopes in the HA stem, namely central stem epitope [44, 45] and
189 anchor stem epitope [55, 56]. A recent study has reported the isolation of 60 HA antibodies to the
190 central stem epitope, and 38 to the anchor stem epitope [57]. While these antibodies were not in

191 the HA antibody dataset that we assembled (**Table S1**), they provided an additional opportunity
192 to test the fine-tuned mBLM. Among the 60 antibodies to the central stem epitope, the fine-tuned
193 mBLM correctly predicted 67% (40/60) as HA stem antibodies (**Figure 5A**). In contrast, among
194 the 38 antibodies to the anchor stem epitope, only 8% (3/38) were predicted as HA stem
195 antibodies (**Figure 5A**). The poor performance of the fine-tuned mBLM on antibodies to anchor
196 stem epitope was likely due to lack of antibodies to anchor stem epitope in the dataset that we
197 assembled (**Table S1**). In fact, antibodies to anchor stem epitope have only been extensively
198 characterized two years ago [56]. These results suggest that HA stem antibodies correctly
199 predicted by mBLM would mostly target the central stem epitope.

200

201 Among the 5,561 HA antibodies in the dataset that we assembled (**Table S1**), 80% (4,479/5,561)
202 have unknown epitopes, of which 4,452 have heavy chain sequence information available.
203 Subsequently, we applied the fine-tuned mBLM to predict the specificities of these 4,452
204 antibodies. While 40% (1,769/4,452) were predicted as HA stem antibodies, only 3% (119/4,452)
205 were predicted as HA head antibodies (**Figure 5B**). HA head antibodies were expected to have
206 a much higher sequence diversity than HA stem antibodies, because the HA head domain has a
207 huge sequence diversity across influenza strains and subtypes, unlike the highly conserved HA
208 stem domain [28]. Consequently, the poor performance of the fine-tuned mBLM on HA head
209 antibodies was likely due to insufficient sequences of HA head antibodies in our training set.

210

211 To experimentally validate our prediction result, 18 antibodies that were predicted to target HA
212 stem were individually expressed and tested for binding to mini-HA, which is an HA stem-based
213 construct without the HA head domain [58]. Our enzyme-linked immunosorbent assay (ELISA)
214 result showed that 83% (15/18) could bind to mini-HA (**Figure 5C**). The remaining 3 antibodies
215 also exhibited binding to mini-HA when tested at a high concentration (**Figure S7A**). We further
216 selected one of the validated HA stem antibodies, 310-18A5, for additional characterization.

217 Biolayer interferometry indicated that 310-18A5 had a strong binding affinity against the HA from
218 H1N1 A/Solomon Island/3/2006 ($K_D = 0.2$ nM, **Figure S7B**) as well as mini-HA ($K_D = 1.0$ nM,
219 **Figure S7C**). Besides, 310-18A5 had neutralization activity against two antigenically distinct
220 H1N1 strains (**Figure S7D**). Consistently, cryo-EM analysis confirmed that 310-18A5 bound to
221 the HA stem domain (**Figure 5D-E and Table S4**). Overall, these results demonstrate that the
222 fine-tuned mBLM enables discovery of antibodies to known epitopes.

223

224 **DISCUSSION**

225 While influenza HA antibodies have been studied over decades, there has been a lack of effort to
226 summarize the information about these antibodies. In this study, we performed a large-scale
227 analysis of more than 5,000 influenza HA antibodies by mining research publications and patents.
228 Although many recurring sequence features of influenza HA antibodies have previously been
229 reported in individual studies [7, 8, 29, 30, 42, 43, 56], our results revealed additional ones that
230 have not been described to the best of our knowledge. For example, our study discovered the
231 enrichment of YGD motif in the CDR H3 of HA head antibodies as well as multiple public
232 clonotypes to influenza type B HA. We further developed a language model for antibody specificity
233 prediction, which was subsequently applied to discover HA stem antibodies. Overall, this work
234 not only advances the molecular understanding of influenza HA antibodies, but also provides an
235 important resource for the antibody research community (**Table S1**).

236

237 Discovering antibodies to a specific antigen of interest typically requires less efforts than epitope
238 mapping. Consistently, epitope information (head or stem) is available for only ~20% of HA
239 antibodies in our dataset. Nevertheless, we were able to utilize these ~20% of HA antibodies to
240 train mBLM to identify HA stem antibodies among the remaining ~80% with no epitope information.
241 This result demonstrates that mBLM can accelerate epitope mapping. Although our work here
242 applied mBLM to predict antibody specificity based on seven specificity categories, it can be fine-

243 tuned to extend to any specificities as long as sufficient and diverse antibody sequences with
244 such specificities are available. Given that many antibodies with different specificities have been
245 characterized in the literature, future generalization of mBLM to additional antibody specificities
246 will likely be achievable by extensive data mining (see discussion below). Besides, the continuous
247 improvement of the speed of antibody discovery and characterization will also be beneficial, if not
248 essential [3, 4].

249

250 The success of applying deep learning model to protein research can largely be attributed to the
251 presence of databases such as Protein Data Bank (PDB) [59], UniProt [60], UniRef [61], which
252 describe the sequence-structure-function relationships. Similarly, most, if not all, existing models
253 for antibody specificity prediction were trained using structural information of antibody-antigen
254 interactions in PDB [16]. Nevertheless, the epitopes of most antibodies in the literature are
255 mapped by non-structural approaches, such as competition or mutagenesis experiments [62].
256 These epitope mapping data, despite being obtained by non-structural approaches, are
257 tremendously useful for training a model for antibody specificity prediction as shown by our study
258 here. Consequently, future efforts should focus on establishing a centralized database that
259 describes the sequence-specificity relationship for antibodies, even for those without structural
260 information available. Such database will allow the power of deep learning models to be fully
261 harnessed in antibody research.

262

263 **ACKNOWLEDGEMENTS**

264 This work was supported by National Institutes of Health (NIH) DP2 AT011966 (N.C.W.), R01
265 AI167910 (N.C.W.), the Michelson Prizes for Human Immunology and Vaccine Research
266 (N.C.W.), and the Searle Scholars Program (N.C.W.). We thank Kristen Flatt at the UIUC
267 Materials Research Laboratory Central Research Facilities for assistance with cryo-EM
268 experiments, as well as Meng Yuan and Zongjun Mou for help discussion.

269

270 **AUTHOR CONTRIBUTIONS**

271 All authors conceived and designed the study. Y.W., H.L., and N.C.W. assembled the dataset.

272 Y.W., Y.H.Y., and N.C.W. performed data analysis. H.L., I.R.S., D.C., Q.W.T. T.J.C.T., A.B.G.

273 performed the antibody binding experiments. R.L., C.S.G., and X.C. purified the proteins and

274 performed the cryo-EM analysis. Y.W., H.L., R.L., and N.C.W. wrote the paper and all authors

275 reviewed and/or edited the paper.

276

277 **DECLARATION OF INTERESTS**

278 N.C.W. consults for HeliXon. The authors declare no other competing interests.

279

280 **FIGURE LEGENDS**

281 **Figure 1. Germline gene usages in influenza HA antibodies. (A)** The IGHV gene usage, **(B)**

282 IGK(L)V gene usage, and **(C)** IGHD gene usage in antibodies to HA head domain (orange) and

283 HA stem domain (blue). For comparison, germline gene usages of all antibodies from Genbank

284 are also shown (green). To avoid being confounded by B-cell clonal expansion, a single clonotype

285 from the same donor is considered as one antibody (**see Methods**).

286

287 **Figure 2. Hydrophobicity of CDR H3 sequences. (A-B)** The hydrophobicity scores of **(A)** CDR

288 H3 and **(B)** CDR H3 tip, as well as **(C)** the CDR H3 length are compared between antibodies to

289 HA head and HA stem domains. The p-values were computed by two-tailed Student's t-tests. For

290 the boxplot, the middle horizontal line represents the median. The lower and upper hinges

291 represent the first and third quartiles, respectively. The upper whisker extends to the highest data

292 point within 1.5x inter-quartile range (IQR) of the third quartile, whereas the lower whisker extends

293 to the lowest data point within 1.5x IQR of the first quartile. Each data point represents one

294 antibody. The horizontal dotted line indicates the mean among antibodies from Genbank.

295

296 **Figure 3. Antibody specificity prediction by memory B cell language model (mBLM). (A)**

297 Model architecture of mBLM is shown. Arrows indicate the information flow in the network from
298 the language model to antibody specificity prediction, with a final output of specificity class
299 probability. Resi Rep: residual level representation (i.e. the final-layer embeddings from pre-
300 trained mBLM). **(B)** Model performance of mBLM on the test set was evaluated by a normalized
301 confusion matrix. **(C)** The performance of different antibody specificity prediction models was
302 evaluated by F1 score, which represents the weighted harmonic mean of the precision and recall.
303 CDR encoders: our previous model using a transformer encoder to encode CDR sequences [15].
304 ESM2: a general protein language model [18].

305

306 **Figure 4. Explanation of mBLM using saliency score. (A)** Saliency score for each residue in
307 individual HA stem antibodies was shown as a heatmap. Each row represents a single HA stem
308 antibody. X-axis represents the amino acid residue of the heavy chain. Regions corresponding to
309 CDR H1, H2, and H3 are indicated. For visualization purpose, only 50 HA stem antibodies are
310 shown. Six clusters of HA stem antibodies were identified using hierarchical clustering with Ward's
311 method. **(B)** IGHD gene usage among antibodies in cluster 3 is shown. **(C)** The saliency score of
312 each CDR H3 residue in IGHD3-9 antibodies within cluster 3 was analyzed. The frequency of
313 each amino acid for residues with a saliency score >0.5 is shown as a sequence logo. Arrows at
314 the bottom indicate the residues of interest. **(D)** Saliency scores are projected on to the structures
315 of four antibodies in cluster 3 (PDB 4KVN [49], PDB 5KAQ [42], PDB 8GV6 [54], and PDB 3ZTJ
316 [47]). The color scheme is same as that in panel A. **(E)** The relationship between saliency score
317 and distance to the antigen (i.e. HA stem) is shown as a scatter plot. Spearman's rank correlation
318 coefficient (ρ) is indicated. A total of 18 structures of HA stem antibodies in complex with HA were
319 analyzed (PDB 3FKU, 3GBN, 3SDY, 3ZTJ, 4FQI, 4KVN, 4NM8, 4R8W, 5JW3, 5KAN, 5KAQ,
320 5K9K, 5K9O, 5K9Q, 5WKO, 6E3H, 6NZ7, and 8GV6) [7, 29, 42, 44-54].

321

322 **Figure 5. Discovery of HA stem antibody by mBLM. (A-B)** mBLM was applied to predict the
323 specificity of **(A)** 60 antibodies to central stem epitope (left panel) and 38 to anchor stem epitope
324 (right panel) that were reported recently [57], as well as **(B)** 4,452 HA antibodies with unknown
325 epitopes (HA unk) in the dataset that we assembled. The fraction of antibodies that were predicted
326 to bind to HA stem domain (Predicted as HA stem), HA head domain (Predicted as HA head), or
327 to other antigens (Not predicted as HA) is shown. **(C)** Using ELISA, the binding of 18 HA unk
328 antibodies that were predicted as HA stem antibodies was tested against mini-HA, which is an H1
329 stem-based construct [58]. Four known HA stem antibodies (051-09 5A02, 051-09 5E03, 310-
330 18C3, and FI6v3) [47, 63, 64] were included as positive control. D2 H1-1/H3-1, which is a known
331 HA head antibody [65], was included as negative control. In this binding experiment, antibodies
332 were not purified from the supernatant and thus their concentrations were unknown. **(D)**
333 Representative 2D classes from cryo-EM analysis of 310-18A5 Fab in complex with H1N1
334 A/Solomon Islands/3/2006 (SI06) HA are shown. Cyan arrows point to the 310-18A5 Fabs. **(E)**
335 Cryo-EM 3D reconstruction of 310-18A5 Fab in complex with SI06 HA. Structural models of SI06
336 HA (PDB 6XSK) [66] and CR9114 (PDB 4FQH) [48] were docked into the 3D reconstruction.
337

338

METHODS

339 Collections of antibody information

340 Sequences of each human monoclonal antibody were from the original papers and/or NCBI
341 GenBank database (**Table S1 and Table S3**) [38]. For influenza HA antibodies, additional
342 information, including binding specificity, donor IDs and PDB codes, was collected from the
343 original papers (**Table S1**). Putative germline genes were identified by IgBLAST [67, 68]. Some
344 studies isolated antibodies from multiple donors, but the donor identity for each antibody was not
345 always clear. For example, some studies mixed B cells from multiple donors before isolating
346 individual B cell clones. Since the donor identity could not be distinguished among those

347 antibodies, we considered them from the same donor with “donors”, “vaccinees”, “patients”, or
348 “cohorts” as the suffix of the donor ID. In addition, although two studies by Andrews et al. [69, 70]
349 had shared donors from the same clinical trial (VRC 315, ClinicalTrials.gov identifier
350 NCT02206464), their antibody naming schemes were different. The IDs for these donors had a
351 prefix “315” as described in the first study [69]. While the prefixes of antibody names from the first
352 study matched the donor ID (e.g. antibody 315-02-1F07 was from donor 315-02) [69], some
353 antibody names from the second study did not (e.g. antibody name with prefix “20A-518-30”) [70].
354 As a result, we assigned the donor ID to the antibodies from the second study by CDR H3
355 clustering. For example, since all CDR H3 clusters that contained antibodies with prefix 20A-605-
356 30 also contained antibodies from 315-02, antibodies with prefix 20A-605-30 were assigned with
357 a donor ID of 315-02.

358

359 **Identification of public clonotype**

360 Using a deterministic clustering approach, CDR H3 sequences that had the same length and at
361 least 80% amino acid sequence identity were assigned to the same CDR H3 cluster. As a result,
362 CDR H3 of every antibody in a CDR H3 cluster would have >20% difference in amino acid
363 sequence identity with that of every antibody in another CDR H3 cluster. A clonotype was defined
364 as antibodies that shared the same IGHV/IGK(L)V genes with CDR H3s from the same CDR H3
365 cluster. A public clonotype was defined as a clonotype with antibodies from at least two donors.
366 The epitope of each public clonotype was defined by its members.

367

368 **Germline gene usage analysis**

369 To avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor
370 was considered as one antibody that represented the consensus sequence of the given clonotype.
371 While all antibodies within a clonotype had the same IGHV/IGK(L)V genes (see above), they may
372 not have the same IGHD gene, often due to ambiguity in IGHD-gene assignment by IgBlast. For

373 germline gene usage analysis, the most common IGHD gene within a clonotype from the same
374 donor was considered.

375

376 **Hydrophobic score of CDR H3**

377 The hydrophobic score for a CDR H3 with a length n was computed as follow:

$$378 \quad \text{Hydrophobic score} = -10 \times \frac{\sum_{i=1}^n WW(\text{amino acid}_i)}{n}$$

379 where WW represents the Wimley-White whole residue hydrophobicity scale [71] and amino acid_i
380 represents the amino acid at position i. A higher hydrophobic score represents higher
381 hydrophobicity. If the CDR H3 had an odd number of residues, the CDR H3 tip was defined as
382 the three residues at the center of the CDR H3 sequence. If the CDR H3 had an even number of
383 residues, the CDR H3 tip was defined as the four residues at the center of the CDR H3 sequence.
384 The hydrophobic score of CDR H3 tip was computed in the same manner as that of CDR H3. To
385 avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor is
386 considered as one antibody, in which the CDR H3 sequence represented the consensus among
387 all members in the given clonotype.

388

389 **Datasets for model pre-training**

390 A total of 267,871 paired antibody sequences from memory B cell sequencing data were
391 downloaded from Observed Antibody Space database (BType = Memory-B-Cells) [39]. In addition,
392 12,487 paired antibody sequences were downloaded from NCBI GenBank database [38]. These
393 antibody sequences were compiled into a single dataset and deduplicated by 95% sequence
394 identity threshold. The deduplicated dataset was then partitioned into training (n = 229,773),
395 validation (n = 15,375) and test sets (n = 8,660). The test set was generated by random sampling
396 with different levels of maximum sequence identity to the training set (50%, 60%, 70%, 80%, and
397 90%), allowing robust evaluation of model performance. Of note, 90% maximum sequence

398 identity indicated that none of the antibody sequences in the test set had >90% sequence identity
399 with any of the sequences in the training set. In other words, the highest pairwise sequence
400 identity between the test and training sets was 90%. To generate a balanced and robust training
401 set, we implemented an upsampling technique based on the IGK(L)V genes. Specifically, we
402 identified IGK(L)V genes with less than 5,000 counts and then performed random sampling to
403 augment the dataset, ensuring each of these IGK(L)V genes had precisely 5,000 sequences.
404 After upsampling, our training set had 467,018 paired antibody sequences. Of note, upsampling
405 only applied to the training set, but not the validation and test sets.

406

407 **Sequences of antibodies with known specificities for model fine-tuning**

408 Sequences of antibodies to “HA:Head” (influenza HA head) and “HA:Stem” (influenza HA stem)
409 were from the curated dataset in this present study. Sequences of antibodies to “S:NTD” (SARS-
410 CoV-2 spike NTD), “S:RBD” (SARS-CoV-2 spike RBD), and “S:S2” (SARS-CoV-2 spike S2) were
411 from our previous study [15]. Sequences of antibodies to “HIV” (human immunodeficiency virus)
412 and “Others” (none of the above) were collected from NCBI GenBank database [38]. Antibodies
413 to “HIV” were classified as those from GenBank with the word “HIV” in the “References” or
414 “Description” fields. Here, only heavy chain variable domain sequences were used for model fine-
415 tuning. We performed sequence clustering with varying sequence identity cutoff (50%, 60%, 70%,
416 80%, 90%, and 95%) using cd-hit (-M 32000 -d 0 -T 8 -n 5 -aL 0.8 -s 0.95 -uS 0.2 -sc 1 -sf 1) [72].
417 We observed that at a cutoff of 90% sequence identity, sequences of antibodies with different
418 specificities could be found within the same cluster, indicating that a stringent sequence identity
419 cutoff of >90% was needed for accurate specificity prediction by traditional sequence clustering
420 method. Based on this result, antibodies with unknown specificities, but shared >90% sequence
421 identity with any antibody that belonged to “HA:Head”, “HA:Stem”, “HIV”, “S:NTD”, “S:RBD”, or
422 “S:S2”, were discarded and not assigned to the “Others” category. Our final dataset for model
423 fine-tuning contained the heavy chain sequences from a total of 388 antibodies to “HA:Head”, 509

424 antibodies to “HA:Stem”, 6,995 antibodies to “HIV”, 399 antibodies to “S:NTD”, 4112 antibodies
425 to “S:RBD”, 682 antibodies to “S:S2”, and 15,043 antibodies to “Others”. This dataset was then
426 partitioned into training, validation and test sets, with an approximate ratio of 8:1:1. To test model
427 generalization, the test set was generated with a maximum sequence identity of 80% to the
428 training set. In other words, the pairwise sequence identity between individual antibody
429 sequences in the test set and the training set was at least 20% (i.e. 26 amino acids). We also
430 applied the upsampling technique to the training set to ensure the number of antibody sequences
431 in different specificity categories was balanced.

432

433 **Pre-trained memory B cell language model (mBLM)**

434 Masked Language Modeling (MLM)

435 Masked language modeling such as Bidirectional Encoder Representations from Transformers
436 (BERT) [73] has been shown as a powerful pretraining technique for language models, enabling
437 contextual information to be captured and generalized to various downstream tasks. Here, mBLM
438 was trained to predict the masked amino acids of input sequence based on surrounding context:

439

$$440 \quad \mathcal{L}_{MLM} = - \sum_{i \in M} \log p(x_i | x_{context})$$

441

442 where M represents a randomly generated mask that includes 15% of positions i in the sequence
443 x_i . The model was tasked with predicting the identity of the amino acids x_i in the mask from the
444 surrounding context $x_{context}$. Being trained to predict masked tokens, mBLM learned to
445 understand the relationships between amino acid residues in a sequence, leading to a robust and
446 effective language representations.

447

448 mBLM architecture

449 We adapted RoBERTa [74] as the basic model architecture, with the following hyperparameters:

450 Tokenizer: ESM2 [18]

451 Token length: 150

452 Number of Layers: 6

453 Number of Attention heads: 12

454 Embedding dimension: 768

455 Feed-Forward Hidden Size: 3072

456 Dropout: 0.1

457

458 *mBLM pre-training*

459 mBLM was pre-trained with a context size of 250 tokens, which represented the amino acid

460 sequences of both heavy and light chain variable domains. Since the total length of heavy chain

461 and light chain variable domains was generally less than 250 amino acids, separation tokens

462 were added in between. We adapted tokenizer from ESM2 [18], which converted amino acids into

463 numerical representations (a total of 33 tokens including special tokens like [MASK]). The model

464 was trained by masked language modeling (MLM) as described above. The model was optimized

465 using Adam with $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$, and a learning rate of 5e-05. The model was

466 trained using Huggingface transformers toolkit and efficiently distributed across one NVIDIA A100

467 and three NVIDIA RTX A5000. The entire pre-training process was completed within 24 hours,

468 showcasing the efficiency and scalability of our approach.

469

470 **Model fine-tuning for specificity prediction**

471 *Model details*

472 The final-layer embeddings from the pre-trained mBLM were extracted as the initial hidden state

473 for the specificity prediction model. This initial state was then fed through a multi-head self-

474 attention block and a multi-layer perceptron (MLP) block. An attention block was incorporated

475 between the mBLM embeddings and the MLP significantly to enhance model interpretability.
476 Within the attention block, the self-attention layer was followed by a layer normalization to
477 normalize the output. Subsequently, an adaptive average pooling was applied to the attended
478 representation to aggregate information across sequence dimension, resulting in a fixed size
479 tensor with a shape that was defined by batch size and hidden dimension. The flattened tensor
480 was then passed through the MLP block, comprising a series of fully connected layers, ReLU
481 activation functions, and dropout operations. These layers transformed the high-dimensional
482 representation to low-dimensional features. Finally, the output was passed through a fully
483 connected layer with seven output units, each represented one of the seven specificity categories.

484

485 *15-fold cross-validation*

486 To evaluate the robustness of our mBLM for specificity prediction, we employed a 15-fold cross-
487 validation approach for fine-tuning, specificity inference, and model explanation. We randomly
488 down/upsampled and split the data 15 times, resulting in a diverse set of sequences in each
489 iteration. Then, the model underwent 15 rounds of training and testing. For each iteration, model
490 performance was evaluated. The overall model performance was quantified as the average
491 across all iterations. The final predicted class represented the mode.

492

493 *mBLM fine-tuning*

494 The model was trained using the PyTorch Lightning framework using Adam optimizer with a
495 learning rate of 2e-05 and a batch size of 32. Early stopping was applied to monitor the validation
496 loss.

497

498 *ESM2 fine-tuning*

499 Similar to mBLM fine-tuning, the final representations of ESM2 model (33 layers and 650 million
500 parameters) were extracted as the initial hidden state for specificity prediction. This initial state

501 was then fed through the attention and MLP blocks. The model was trained using the PyTorch
502 Lightning framework using Adam optimizer with a learning rate of 1e-04 and a batch size 32. Early
503 stopping was applied to monitor the validation loss. The best model checkpoint was saved.

504

505 **Performance Metrics**

506 The fine-tuned model was evaluated using the average F1 score, which represents the weighted
507 harmonic mean of the precision and recall, as well as confusion matrix. The calculations were
508 conducted using sklearn metrics functions [75].

509

510 **Model Interpretation**

511 **Gradient-weighted Class Activation Mapping (Grad-CAM) analysis**

512 Grad-CAM, which is a class-discriminative localization technique that provides visual
513 explanations for predictions made by CNN-based models [40], was used to identify residues in a
514 protein sequence that are important for the prediction of a particular function [41]. To calculate
515 Grad-CAM, we first computed the importance weights α_i^c for the input sequence:

516

$$517 \quad \alpha_i^c = \frac{1}{D} \sum_{d \in D} \frac{\partial y^c}{\partial x_d^i}$$

518

519 where α_i^c represents the global average pooling over embedding dimension D for the importance
520 weights of residue i for predicting specificity class c . Then, the saliency map was obtained in a
521 residue space by generating the weighted forward activation maps A^i , followed by a *ReLU*
522 function:

523

$$524 \quad S_i^c = \text{ReLU}(\alpha_i^c A^i)$$

525

526 where S_i^c represents the relative importance (saliency score) of residue i to specificity class c .
527 The *ReLU* function ensured that only features with positive influence on the functional label were
528 preserved.

529

530 Saliency map clustering

531 We applied hierarchical clustering with Ward's method to perform saliency map clustering.
532 Euclidean distance was used to calculate the distance matrix that quantified the pairwise
533 dissimilarity between saliency maps. We then used the linkage function to define the hierarchical
534 relationships between the samples. Finally, clustered results were visualized using clustermap
535 function in seaborn [76].

536

537 Sequence logo analysis

538 To identify sequence features within each cluster, we employed a thresholding approach based
539 on the saliency scores. Specifically, for each cluster, we computed the frequency of each amino
540 acid for residues with a saliency score >0.5 . Then, sequence logos were generated by Logomaker
541 in Python [77].

542

543 Structural analysis of saliency score

544 For those HA stem antibodies with structural information available, the relationship between
545 saliency score of each residue and its minimum distance to HA was examined. Distance was
546 calculated using the application programming interface in PyMOL (Schrödinger).

547

548 **Mammalian cell culture**

549 HEK293T cells were cultured in Dulbecco's modified Eagle's medium (DMEM high glucose; Gibco)
550 supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco), 1% penicillin-
551 streptomycin (Gibco), and 1× GlutaMax (Gibco). Cell passaging was performed every 3 to 4 days

552 using 0.05% Trypsin-EDTA solution (Gibco). Expi293F cells were maintained in Expi293
553 Expression Medium (Thermo Fisher Scientific). Sf9 cells (*Spodoptera frugiperda* ovarian cells,
554 female, ATCC) were maintained in Sf-900 II SFM medium (Thermo Fisher Scientific).

555

556 **Expression and purification of mini-HA and HA**

557 The mini-HA #4900 [58] and H1N1 A/Solomon Island/3/2006 HA were fused with N-terminal gp67
558 signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site, trimerization
559 domain, and a 6xHis-tag, and then cloned into a customized baculovirus transfer vector [46].
560 Subsequently, recombinant bacmid DNA was generated using the Bac-to-Bac system (Thermo
561 Fisher Scientific) according to the manufacturer's instructions. Baculovirus was generated by
562 transfecting the purified bacmid DNA into adherent Sf9 cells using Cellfectin reagent (Thermo
563 Fisher Scientific) according to the manufacturer's instructions. The baculovirus was further
564 amplified by passaging in adherent Sf9 cells at a multiplicity of infection (MOI) of 1. Recombinant
565 mini-HA protein was expressed by infecting 1 L of suspension Sf9 cells at an MOI of 1. On day 3
566 post-infection, Sf9 cells were pelleted by centrifugation at 4000 $\times g$ for 25 min, and soluble
567 recombinant mini-HA and HA were purified from the supernatant by affinity chromatography using
568 Ni Sepharose excel resin (Cytiva) and then size exclusion chromatography using a HiLoad 16/100
569 Superdex 200 prep grade column (Cytiva) in 20 mM Tris-HCl pH 8.0, 100 mM NaCl. The purified
570 mini-HA protein was concentrated by Amicon spin filter (Millipore Sigma) and filtered by 0.22 μ m
571 centrifuge tube filters (Costar). Concentration of the protein was determined by nanodrop (Fisher
572 Scientific). Proteins were subsequent aliquoted, flash frozen by dry-ice ethanol mixture, and
573 stored at -80°C until used.

574

575 **Expression and purification of IgG**

576 The heavy and light chain genes of the obtained antibody were synthesized as eBlocks
577 (Integrated DNA Technologies), and then cloned into human IgG1 and human kappa or lambda

578 light chain expression vectors using Gibson assembly according to a previously described method
579 [78]. The plasmids were transiently co-transfected into HEK293T cells at a mass ratio of 2:1
580 (HC:LC) using Lipofectamine 2000 (Thermo Fisher Scientific). On day 3 post-transfection,
581 supernatant containing the IgG was collected for binding experiment. The expression of IgG was
582 confirmed by SDS-PAGE gel electrophoresis and Coomassie Blue R-250 staining. Selected IgGs
583 were purified using a CaptureSelect CH1-XL Pre-packed Column (Thermo Fisher Scientific).

584

585 **Expression and purification of Fab**

586 Fab heavy and light chains were cloned into phCMV3 vector. The plasmids were transiently co-
587 transfected into Expi293F cells at a mass ratio of 2:1 (HC:LC) using ExpiFectamine 293 Reagent
588 (Thermo Fisher Scientific). After transfection, the cell culture supernatant was collected at 6 days
589 post-transfection. The Fab was then purified using a CaptureSelect CH1-XL pre-packed column
590 (Thermo Fisher Scientific).

591

592 **Enzyme-linked immunosorbent assay (ELISA)**

593 Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were utilized and coated with 100 μ L of
594 recombinant proteins at a concentration of 1 μ g ml^{-1} in a 1 \times PBS solution. The coating process
595 was performed overnight at 4°C. On the following day, the ELISA plates were washed three times
596 with 1 \times PBS supplemented with 0.05% Tween 20, and then blocked using 200 μ L of 1 \times PBS with
597 5% non-fat milk powder for 2 hours at room temperature. After the blocking step, 100 μ L of IgGs
598 from the supernatant were added to each well and incubated for 2 hours at 37°C. The ELISA
599 plates were washed three times to remove any unbound IgGs. Next, the ELISA plates were
600 incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody (1:5000,
601 Invitrogen) for 1 hour at 37°C. Subsequently, the ELISA plates were washed five times using PBS
602 containing 0.05% Tween 20. Then, 100 μ L of 1-Step Ultra TMB-ELISA Substrate Solution
603 (Thermo Fisher Scientific) was added to each well. After 15 min incubation, 50 μ L of 2 M H₂SO₄

604 solution was added to each well. The absorbance of each well was measured at a wavelength of
605 450 nm using a Sunrise absorbance microplate reader (BioTek Synergy HTX Multimode Reader).

606

607 **Biolayer interferometry binding assay**

608 Binding assays were performed by biolayer interferometry (BLI) using an Octet Red96e
609 instrument (FortéBio) at room temperature as described previously [79]. Briefly, His-tagged mini-
610 HA proteins at 0.5 μ M in 1 \times kinetics buffer (1 \times PBS, pH 7.4, 0.01% w/v BSA and 0.002% v/v
611 Tween 20) were loaded onto anti-Penta-HIS (HIS1K) biosensors and incubated with the indicated
612 concentrations of Fabs. The assay consisted of five steps: (1) baseline: 60 s with 1 \times kinetics buffer;
613 (2) loading: 60 s with His-tagged mini-HA proteins; (3) baseline: 60 s with 1 \times kinetics buffer; (4)
614 association: 60 s with Fab samples; and (5) dissociation: 60 s with 1 \times kinetics buffer. For
615 estimating the exact K_D , a 1:1 binding model was used.

616

617 **Virus neutralization assay**

618 Madin-Darby canine kidney (MDCK) cells were seeded in a 96-well, flat-bottom cell culture plate
619 (Thermo Fisher). The next day, serially diluted monoclonal antibodies were mixed with an equal
620 volume of virus and incubated at 37°C for 1 hour. The antibody/virus mixture was then incubated
621 with the MDCK cells at 37°C after the cells were washed twice with PBS. Following a 1-hour
622 incubation, the antibody/virus mixture was replaced with Minimum Essential Medium (MEM)
623 supplemented with 25 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 1
624 μ g mL⁻¹ of Tosyl phenylalanyl chloromethyl ketone (TPCK)-trypsin. The plate was incubated at
625 37°C for 72 hours and the presence of virus was detected by hemagglutination assay. The results
626 were analyzed using Prism software (GraphPad).

627

628 **Cryogenic electron microscopy (cryo-EM) analysis**

629 To prepare cryoEM grid, an aliquot of 4 μ L purified protein at \sim 0.5 mg mL $^{-1}$ concentration with 7.5
630 μ M lauryl maltose neopentyl glycol (LMNG) was applied to a 200-mesh Quantifoil 2Um Cu grid
631 that was pre-treated with glow-discharge. Subsequently, the grid was blotted in a Vitrobot Mark
632 IV machine (force = 0, time = 3 seconds), and plunge-frozen in liquid ethane. The grid was then
633 loaded in a ThermoFisher Glacios microscope with a Volta Phase Plate and Falcon4 Direct
634 Electron Detector. Data collection was done with Smart EPU software. Images were recorded at
635 130,000 \times magnification, corresponding to a pixel size of 0.96 $\text{\AA}/\text{pix}$ at super-resolution mode of
636 the camera. A defocus range of -0.6 μm to -3 μm was set. A total dose of 52.76 e $^-/\text{\AA}^2$ of each
637 exposure was fractionated into 40 frames. CryoEM data processing was performed with
638 cryoSPARC v4.3.0 following regular single-particle procedures. The CryoEM experiment was
639 performed at the UIUC Materials Research Laboratory Central Research Facilities. Statistics are
640 provided in **Table S4**. Structure was visualized using UCSF ChimeraX v1.5 (UCSF).

641

642 **Data availability**

643 The cryoEM map of 310-18A5 Fab in complex with SI06 HA can be accessed at the Electron
644 Microscopy Data Bank (EMDB) using accession code EMD-41849.

645

646 **Model and code availability**

647 Custom python scripts for all analyses and model training have been deposited to:

648 https://github.com/nicwulab/HA_Abs.

649

650 **REFERENCES**

- 651 1. Graham BS, Gilman MSA, McLellan JS. Structure-based vaccine antigen design. *Annu Rev
652 Med.* 2019;70:91-104. Epub 2019/01/30. doi: 10.1146/annurev-med-121217-094234.
653 PubMed PMID: 30691364; PubMed Central PMCID: PMCPMC6936610.
- 654 2. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic
655 antibodies for the treatment of diseases. *J Biomed Sci.* 2020;27(1):1. Epub 2020/01/03. doi:

656 10.1186/s12929-019-0592-z. PubMed PMID: 31894001; PubMed Central PMCID:
657 PMCPMC6939334.

658 3. Winters A, McFadden K, Bergen J, Landas J, Berry KA, Gonzalez A, et al. Rapid single B
659 cell antibody discovery using nanopores and structured light. *mAbs*. 2019;11(6):1025-35.
660 Epub 2019/06/13. doi: 10.1080/19420862.2019.1624126. PubMed PMID: 31185801;
661 PubMed Central PMCID: PMCPMC6748590.

662 4. Curtis NC, Lee J. Beyond bulk single-chain sequencing: Getting at the whole receptor. *Curr*
663 *Opin Syst Biol*. 2020;24:93-9. Epub 2020/10/27. doi: 10.1016/j.coisb.2020.10.008. PubMed
664 PMID: 33102951; PubMed Central PMCID: PMCPMC7568503.

665 5. Briney B, Inderbitzin A, Joyce C, Burton DR. Commonality despite exceptional diversity in
666 the baseline human antibody repertoire. *Nature*. 2019;566(7744):393-7. Epub 2019/01/22.
667 doi: 10.1038/s41586-019-0879-y. PubMed PMID: 30664748; PubMed Central PMCID:
668 PMCPMC6411386.

669 6. Schroeder HW, Jr. Similarity and divergence in the development and expression of the
670 mouse and human antibody repertoires. *Dev Comp Immunol*. 2006;30(1-2):119-35. Epub
671 2005/08/09. doi: 10.1016/j.dci.2005.06.006. PubMed PMID: 16083957.

672 7. Wu NC, Yamayoshi S, Ito M, Uraki R, Kawaoka Y, Wilson IA. Recurring and adaptable
673 binding motifs in broadly neutralizing antibodies to influenza virus are encoded on the D3-9
674 segment of the Ig gene. *Cell Host Microbe*. 2018;24(4):569-78.e4. doi:
675 10.1016/j.chom.2018.09.010. PubMed PMID: 30308159.

676 8. Avnir Y, Tallarico AS, Zhu Q, Bennett AS, Connelly G, Sheehan J, et al. Molecular
677 signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies
678 against influenza A viruses. *PLoS Pathog*. 2014;10(5):e1004103. doi:
679 10.1371/journal.ppat.1004103. PubMed PMID: 24788925; PubMed Central PMCID:
680 PMCPMC4006906.

681 9. Zhou T, Lynch RM, Chen L, Acharya P, Wu X, Doria-Rose NA, et al. Structural repertoire of
682 HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors. *Cell*.
683 2015;161(6):1280-92. doi: 10.1016/j.cell.2015.05.007. PubMed PMID: 26004070; PubMed
684 Central PMCID: PMCPMC4683157.

685 10. Robbiani DF, Bozzacco L, Keeffe JR, Khouri R, Olsen PC, Gazumyan A, et al. Recurrent
686 potent human neutralizing antibodies to Zika virus in Brazil and Mexico. *Cell*.
687 2017;169(4):597-609.e11. Epub 2017/05/06. doi: 10.1016/j.cell.2017.04.024. PubMed
688 PMID: 28475892; PubMed Central PMCID: PMCPMC5492969.

689 11. Ehrhardt SA, Zehner M, Krahling V, Cohen-Dvashi H, Kreer C, Elad N, et al. Polyclonal and
690 convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. *Nat Med*.
691 2019;25(10):1589-600. Epub 2019/10/09. doi: 10.1038/s41591-019-0602-4. PubMed PMID:
692 31591605.

693 12. Cohen-Dvashi H, Zehner M, Ehrhardt S, Katz M, Elad N, Klein F, et al. Structural basis for a
694 convergent immune response against ebola virus. *Cell Host Microbe*. 2020;27(3):418-
695 27.e4. Epub 2020/02/16. doi: 10.1016/j.chom.2020.01.007. PubMed PMID: 32059794.

696 13. Chen EC, Gilchuk P, Zost SJ, Suryadevara N, Winkler ES, Cabel CR, et al. Convergent
697 antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated
698 individuals. *Cell Rep.* 2021;36(8):109604. Epub 2021/08/20. doi:
699 10.1016/j.celrep.2021.109604. PubMed PMID: 34411541; PubMed Central PMCID:
700 PMCPMC8352653.

701 14. Claireaux M, Caniels TG, de Gast M, Han J, Guerra D, Kerster G, et al. A public antibody
702 class recognizes an S2 epitope exposed on open conformations of SARS-CoV-2 spike. *Nat
703 Commun.* 2022;13(1):4539. Epub 2022/08/05. doi: 10.1038/s41467-022-32232-0. PubMed
704 PMID: 35927266; PubMed Central PMCID: PMCPMC9352689 patent application related to
705 this work filed by Amsterdam UMC (PCT/EP2021/062558, filed on 11 May 2021). The other
706 authors declare that they have no competing interests.

707 15. Wang Y, Yuan M, Lv H, Peng J, Wilson IA, Wu NC. A large-scale systematic survey reveals
708 recurring molecular features of public antibody responses to SARS-CoV-2. *Immunity.*
709 2022;55(6):1105-17.e4. Epub 2022/04/11. doi: 10.1016/j.jimmuni.2022.03.019. PubMed
710 PMID: 35397794; PubMed Central PMCID: PMCPMC8947961.

711 16. Cia G, Pucci F, Rooman M. Critical review of conformational B-cell epitope prediction
712 methods. *Brief Bioinform.* 2023;24(1):bbac567. Epub 2023/01/08. doi:
713 10.1093/bib/bbac567. PubMed PMID: 36611255.

714 17. Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, et al. Biological structure and function
715 emerge from scaling unsupervised learning to 250 million protein sequences. *Proc Natl
716 Acad Sci U S A.* 2021;118(15):e2016239118. Epub 2021/04/21. doi:
717 10.1073/pnas.2016239118. PubMed PMID: 33876751; PubMed Central PMCID:
718 PMCPMC8053943.

719 18. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-
720 level protein structure with a language model. *Science.* 2023;379(6637):1123-30. Epub
721 2023/03/18. doi: 10.1126/science.ade2574. PubMed PMID: 36927031.

722 19. Brandes N, Ofer D, Peleg Y, Rappoport N, Linial M. ProteinBERT: a universal deep-
723 learning model of protein sequence and function. *Bioinformatics.* 2022;38(8):2102-10. Epub
724 2022/01/13. doi: 10.1093/bioinformatics/btac020. PubMed PMID: 35020807; PubMed
725 Central PMCID: PMCPMC9386727.

726 20. Bordin N, Dallago C, Heinzinger M, Kim S, Littmann M, Rauer C, et al. Novel machine
727 learning approaches revolutionize protein knowledge. *Trends Biochem Sci.* 2023;48(4):345-
728 59. Epub 2022/12/13. doi: 10.1016/j.tibs.2022.11.001. PubMed PMID: 36504138.

729 21. Ferruz N, Schmidt S, Hocker B. ProtGPT2 is a deep unsupervised language model for
730 protein design. *Nat Commun.* 2022;13(1):4348. Epub 2022/07/28. doi: 10.1038/s41467-
731 022-32007-7. PubMed PMID: 35896542; PubMed Central PMCID: PMCPMC9329459.

732 22. Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, et al. Large
733 language models generate functional protein sequences across diverse families. *Nat
734 Biotechnol.* 2023;41:1099-106. Epub 2023/01/27. doi: 10.1038/s41587-022-01618-2.
735 PubMed PMID: 36702895.

736 23. Chowdhury R, Bouatta N, Biswas S, Floristean C, Kharkar A, Roy K, et al. Single-sequence
737 protein structure prediction using a language model and deep learning. *Nat Biotechnol.*
738 2022;40(11):1617-23. Epub 2022/10/04. doi: 10.1038/s41587-022-01432-w. PubMed
739 PMID: 36192636.

740 24. Shuai RW, Ruffolo JA, Gray JJ. Generative language modeling for antibody design.
741 bioRxiv. 2022. doi: 10.1101/2021.12.13.472419.

742 25. Olsen TH, Moal IH, Deane CM. AbLang: an antibody language model for completing
743 antibody sequences. *Bioinform Adv.* 2022;2(1):vbac046. Epub 2023/01/27. doi:
744 10.1093/bioadv/vbac046. PubMed PMID: 36699403; PubMed Central PMCID:
745 PMCPMC9710568.

746 26. Hie BL, Shanker VR, Xu D, Bruun TUJ, Weidenbacher PA, Tang S, et al. Efficient evolution
747 of human antibodies from general protein language models. *Nat Biotechnol.* 2023. Epub
748 2023/04/25. doi: 10.1038/s41587-023-01763-2. PubMed PMID: 37095349.

749 27. Raybould MJ, Kovaltsuk A, Marks C, Deane CM. CoV-AbDab: the coronavirus antibody
750 database. *Bioinformatics.* 2021;37(5):734-5. Epub 2020/08/18. doi:
751 10.1093/bioinformatics/btaa739. PubMed PMID: 32805021; PubMed Central PMCID:
752 PMCPMC7558925.

753 28. Wu NC, Wilson IA. A perspective on the structural and functional constraints for immune
754 evasion: insights from influenza virus. *J Mol Biol.* 2017;429(17):2694-709. doi:
755 10.1016/j.jmb.2017.06.015. PubMed PMID: 28648617; PubMed Central PMCID:
756 PMCPMC5573227.

757 29. Lang S, Xie J, Zhu X, Wu NC, Lerner RA, Wilson IA. Antibody 27F3 broadly targets
758 influenza A group 1 and 2 hemagglutinins through a further variation in V_H 1-69 antibody
759 orientation on the HA stem. *Cell Rep.* 2017;20(12):2935-43. doi:
760 10.1016/j.celrep.2017.08.084. PubMed PMID: 28930686.

761 30. Cheung CS, Fruehwirth A, Paparoditis PCG, Shen CH, Foglierini M, Joyce MG, et al.
762 Identification and structure of a multidonor class of head-directed influenza-neutralizing
763 antibodies reveal the mechanism for its recurrent elicitation. *Cell Rep.* 2020;32(9):108088.
764 Epub 2020/09/03. doi: 10.1016/j.celrep.2020.108088. PubMed PMID: 32877670.

765 31. Wu NC, Yuan M, Liu H, Lee CD, Zhu X, Bangaru S, et al. An alternative binding mode of
766 IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain. *Cell Rep.*
767 2020;33(3):108274. Epub 2020/10/08. doi: 10.1016/j.celrep.2020.108274. PubMed PMID:
768 33027617; PubMed Central PMCID: PMCPMC7522650.

769 32. Yuan M, Liu H, Wu NC, Lee CD, Zhu X, Zhao F, et al. Structural basis of a shared antibody
770 response to SARS-CoV-2. *Science.* 2020;369(6507):1119-23. Epub 2020/07/15. doi:
771 10.1126/science.abd2321. PubMed PMID: 32661058; PubMed Central PMCID:
772 PMCPMC7402627.

773 33. Wiley DC, Wilson IA, Skehel JJ. Structural identification of the antibody-binding sites of
774 Hong Kong influenza haemagglutinin and their involvement in antigenic variation. *Nature.*
775 1981;289(5796):373-8. PubMed PMID: 6162101.

776 34. Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. The antigenic structure of the influenza
777 virus A/PR/8/34 hemagglutinin (H1 subtype). *Cell*. 1982;31(2 Pt 1):417-27. PubMed PMID:
778 6186384.

779 35. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, et
780 al. Mapping the antigenic and genetic evolution of influenza virus. *Science*.
781 2004;305(5682):371-6. doi: 10.1126/science.1097211. PubMed PMID: 15218094.

782 36. Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GC, Vervaet G, et al.
783 Substitutions near the receptor binding site determine major antigenic change during
784 influenza virus evolution. *Science*. 2013;342(6161):976-9. doi: 10.1126/science.1244730.
785 PubMed PMID: 24264991.

786 37. Wu NC, Wilson IA. Influenza hemagglutinin structures and antibody recognition. *Cold*
787 *Spring Harb Perspect Med*. 2020;10:a038778. Epub 2019/12/25. doi:
788 10.1101/cshperspect.a038778. PubMed PMID: 31871236.

789 38. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, et al. GenBank.
790 *Nucleic Acids Res*. 2013;41(Database issue):D36-D42. Epub 2012/11/30. doi:
791 10.1093/nar/gks1195. PubMed PMID: 23193287; PubMed Central PMCID:
792 PMCPMC3531190.

793 39. Kovaltsuk A, Leem J, Kelm S, Snowden J, C.M. D, Krawczyk K. Observed Antibody Space:
794 a resource for data mining next-generation sequencing of antibody repertoires. *J Immunol*.
795 2018;201:2502-9. PubMed PMID: 30217829.

796 40. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual
797 Explanations from Deep Networks via Gradient-based Localization. *arXiv e-prints* 2016. p.
798 arXiv:1610.02391.

799 41. Gligorijevic V, Renfrew PD, Koscielek T, Leman JK, Berenberg D, Vatanen T, et al.
800 Structure-based protein function prediction using graph convolutional networks. *Nat*
801 *Commun*. 2021;12(1):3168. Epub 2021/05/28. doi: 10.1038/s41467-021-23303-9. PubMed
802 PMID: 34039967; PubMed Central PMCID: PMCPMC8155034.

803 42. Joyce MG, Wheatley AK, Thomas PV, Chuang GY, Soto C, Bailer RT, et al. Vaccine-
804 induced antibodies that neutralize group 1 and group 2 influenza A viruses. *Cell*.
805 2016;166(3):609-23. doi: 10.1016/j.cell.2016.06.043. PubMed PMID: 27453470; PubMed
806 Central PMCID: PMCPMC4978566.

807 43. Wu NC, Andrews SF, Raab JE, O'Connell S, Schramm CA, Ding X, et al. Convergent
808 evolution in breadth of two $V_{H}6-1$ -encoded influenza antibody clonotypes from a single
809 donor. *Cell Host Microbe*. 2020;28:434-44. Epub 2020/07/04. doi:
810 10.1016/j.chom.2020.06.003. PubMed PMID: 32619441.

811 44. Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, et al. Structural and functional bases
812 for broad-spectrum neutralization of avian and human influenza A viruses. *Nat Struct Mol*
813 *Biol*. 2009;16(3):265-73. doi: 10.1038/nsmb.1566. PubMed PMID: 19234466; PubMed
814 Central PMCID: PMCPMC2692245.

815 45. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, et al. Antibody
816 recognition of a highly conserved influenza virus epitope. *Science*. 2009;324(5924):246-51.
817 doi: 10.1126/science.1171491. PubMed PMID: 19251591; PubMed Central PMCID:
818 PMCPMC2758658.

819 46. Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, et al. A highly
820 conserved neutralizing epitope on group 2 influenza A viruses. *Science*.
821 2011;333(6044):843-50. doi: 10.1126/science.1204839. PubMed PMID: 21737702;
822 PubMed Central PMCID: PMCPMC3210727.

823 47. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, et al. A neutralizing
824 antibody selected from plasma cells that binds to group 1 and group 2 influenza A
825 hemagglutinins. *Science*. 2011;333(6044):850-6. doi: 10.1126/science.1205669. PubMed
826 PMID: 21798894.

827 48. Dreyfus C, Laursen NS, Kwaks T, Zuidgeest D, Khayat R, Ekiert DC, et al. Highly
828 conserved protective epitopes on influenza B viruses. *Science*. 2012;337(6100):1343-8.
829 doi: 10.1126/science.1222908. PubMed PMID: 22878502; PubMed Central PMCID:
830 PMCPMC3538841.

831 49. Nakamura G, Chai N, Park S, Chiang N, Lin Z, Chiu H, et al. An in vivo human-plasmablast
832 enrichment technique allows rapid identification of therapeutic influenza A antibodies. *Cell*
833 *Host Microbe*. 2013;14(1):93-103. doi: 10.1016/j.chom.2013.06.004. PubMed PMID:
834 23870317.

835 50. Friesen RH, Lee PS, Stoop EJ, Hoffman RM, Ekiert DC, Bhabha G, et al. A common
836 solution to group 2 influenza virus neutralization. *Proc Natl Acad Sci U S A*.
837 2014;111(1):445-50. doi: 10.1073/pnas.1319058110. PubMed PMID: 24335589; PubMed
838 Central PMCID: PMCPMC3890827.

839 51. Wu Y, Cho M, Shore D, Song M, Choi J, Jiang T, et al. A potent broad-spectrum protective
840 human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A
841 virus. *Nat Commun*. 2015;6:7708. doi: 10.1038/ncomms8708. PubMed PMID: 26196962;
842 PubMed Central PMCID: PMCPMC4518248.

843 52. Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM, Benjamin E, et al. Structure and
844 function analysis of an antibody recognizing all influenza A subtypes. *Cell*. 2016;166(3):596-
845 608. doi: 10.1016/j.cell.2016.05.073. PubMed PMID: 27453466; PubMed Central PMCID:
846 PMCPMC4967455.

847 53. Matsuda K, Huang J, Zhou T, Sheng Z, Kang BH, Ishida E, et al. Prolonged evolution of the
848 memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. *Sci*
849 *Immunol*. 2019;4(34):eaau2710. Epub 2019/04/21. doi: 10.1126/sciimmunol.aau2710.
850 PubMed PMID: 31004012.

851 54. Chen Y, Wang F, Yin L, Jiang H, Lu X, Bi Y, et al. Structural basis for a human broadly
852 neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes.
853 *Nat Commun*. 2022;13(1):7603. Epub 2022/12/10. doi: 10.1038/s41467-022-35236-y.
854 PubMed PMID: 36494358; PubMed Central PMCID: PMCPMC9734383.

855 55. Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, et al. Influenza hemagglutinin
856 membrane anchor. *Proc Natl Acad Sci U S A.* 2018;115(40):10112-7. Epub 2018/09/19.
857 doi: 10.1073/pnas.1810927115. PubMed PMID: 30224494; PubMed Central PMCID:
858 PMCPMC6176637.

859 56. Guthmiller JJ, Han J, Utset HA, Li L, Lan LY, Henry C, et al. Broadly neutralizing antibodies
860 target a haemagglutinin anchor epitope. *Nature.* 2022;602(7896):314-20. Epub 2021/12/24.
861 doi: 10.1038/s41586-021-04356-8. PubMed PMID: 34942633; PubMed Central PMCID:
862 PMCPMC8828479.

863 57. Andrews SF, Cominsky LY, Shimberg GD, Gillespie RA, Gorman J, Raab JE, et al. An
864 influenza H1 hemagglutinin stem-only immunogen elicits a broadly cross-reactive B cell
865 response in humans. *Sci Transl Med.* 2023;15(692):eade4976. Epub 2023/04/19. doi:
866 10.1126/scitranslmed.ade4976. PubMed PMID: 37075126.

867 58. Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RM, et al. A stable
868 trimeric influenza hemagglutinin stem as a broadly protective immunogen. *Science.*
869 2015;349(6254):1301-6. doi: 10.1126/science.aac7263. PubMed PMID: 26303961.

870 59. ww PDBc. Protein Data Bank: the single global archive for 3D macromolecular structure
871 data. *Nucleic Acids Res.* 2019;47(D1):D520-D8. Epub 2018/10/26. doi:
872 10.1093/nar/gky949. PubMed PMID: 30357364; PubMed Central PMCID:
873 PMCPMC6324056.

874 60. UniProt C. UniProt: the universal protein knowledgebase in 2021. *Nucleic Acids Res.*
875 2021;49(D1):D480-D9. Epub 2020/11/26. doi: 10.1093/nar/gkaa1100. PubMed PMID:
876 33237286; PubMed Central PMCID: PMCPMC7778908.

877 61. Suzek BE, Huang H, McGarvey P, Mazumder R, Wu CH. UniRef: comprehensive and non-
878 redundant UniProt reference clusters. *Bioinformatics.* 2007;23(10):1282-8. Epub
879 2007/03/24. doi: 10.1093/bioinformatics/btm098. PubMed PMID: 17379688.

880 62. Potocnakova L, Bhide M, Pulzova LB. An introduction to B-cell epitope mapping and in
881 silico epitope prediction. *J Immunol Res.* 2016;2016:6760830. Epub 2017/01/28. doi:
882 10.1155/2016/6760830. PubMed PMID: 28127568; PubMed Central PMCID:
883 PMCPMC5227168.

884 63. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, et al. Immune history
885 profoundly affects broadly protective B cell responses to influenza. *Sci Transl Med.*
886 2015;7(316):316ra192. doi: 10.1126/scitranslmed.aad0522. PubMed PMID: 26631631;
887 PubMed Central PMCID: PMCPMC4770855.

888 64. Whittle JR, Wheatley AK, Wu L, Lingwood D, Kanekiyo M, Ma SS, et al. Flow cytometry
889 reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple
890 Ig heavy-chain lineages. *J Virol.* 2014;88(8):4047-57. Epub 2014/02/07. doi:
891 10.1128/JVI.03422-13. PubMed PMID: 24501410; PubMed Central PMCID:
892 PMCPMC3993745.

893 65. McCarthy KR, Lee J, Watanabe A, Kuraoka M, Robinson-McCarthy LR, Georgiou G, et al.
894 A prevalent focused human antibody response to the influenza virus hemagglutinin head

895 interface. *mBio*. 2021;12(3):e0114421. Epub 2021/06/02. doi: 10.1128/mBio.01144-21.
896 PubMed PMID: 34060327; PubMed Central PMCID: PMCPMC8262862.

897 66. Moin SM, Boyington JC, Boyoglu-Barnum S, Gillespie RA, Cerutti G, Cheung CS, et al. Co-
898 immunization with hemagglutinin stem immunogens elicits cross-group neutralizing
899 antibodies and broad protection against influenza A viruses. *Immunity*. 2022;55(12):2405-
900 18.e7. Epub 2022/11/11. doi: 10.1016/j.immuni.2022.10.015. PubMed PMID: 36356572;
901 PubMed Central PMCID: PMCPMC9772109.

902 67. Ye J, Ma N, Madden TL, Ostell JM. IgBLAST: an immunoglobulin variable domain
903 sequence analysis tool. *Nucleic Acids Res.* 2013;41(Web Server issue):W34-W40. doi:
904 10.1093/nar/gkt382. PubMed PMID: 23671333; PubMed Central PMCID:
905 PMCPMC3692102.

906 68. Soto C, Finn JA, Willis JR, Day SB, Sinkovits RS, Jones T, et al. PyIR: a scalable wrapper
907 for processing billions of immunoglobulin and T cell receptor sequences using IgBLAST.
908 *BMC Bioinformatics*. 2020;21(1):314. Epub 2020/07/18. doi: 10.1186/s12859-020-03649-5.
909 PubMed PMID: 32677886; PubMed Central PMCID: PMCPMC7364545.

910 69. Andrews SF, Joyce MG, Chambers MJ, Gillespie RA, Kanekiyo M, Leung K, et al.
911 Preferential induction of cross-group influenza A hemagglutinin stem-specific memory B
912 cells after H7N9 immunization in humans. *Sci Immunol*. 2017;2(13):eaan2676. doi:
913 10.1126/sciimmunol.aan2676. PubMed PMID: 28783708.

914 70. Andrews SF, Chambers MJ, Schramm CA, Plyler J, Raab JE, Kanekiyo M, et al. Activation
915 dynamics and immunoglobulin evolution of pre-existing and newly generated human
916 memory B cell responses to influenza hemagglutinin. *Immunity*. 2019;51(2):398-410.e5.
917 Epub 2019/07/28. doi: 10.1016/j.immuni.2019.06.024. PubMed PMID: 31350180.

918 71. Wimley WC, White SH. Experimentally determined hydrophobicity scale for proteins at
919 membrane interfaces. *Nat Struct Biol*. 1996;3(10):842-8. Epub 1996/10/01. doi:
920 10.1038/nsb1096-842. PubMed PMID: 8836100.

921 72. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or
922 nucleotide sequences. *Bioinformatics*. 2006;22(13):1658-9. Epub 2006/05/30. doi:
923 10.1093/bioinformatics/btl158. PubMed PMID: 16731699.

924 73. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional
925 Transformers for Language Understanding. *arXiv*. 2018. doi: 10.48550/arXiv.1810.04805.

926 74. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoBERTa: A Robustly Optimized BERT
927 Pretraining Approach. *arXiv*. 2019. doi: 10.48550/arXiv.1907.11692.

928 75. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:
929 machine learning in Python. *J Mach Learn Res*. 2011;12(Oct):2825-30.

930 76. Waskom M. seaborn: statistical data visualization. *Journal of Open Source Software*.
931 2021;6(60):3021. doi: 10.21105/joss.03021.

932 77. Tareen A, Kinney JB. Logomaker: beautiful sequence logos in Python. *Bioinformatics*.
933 2020;36(7):2272-4. Epub 2019/12/11. doi: 10.1093/bioinformatics/btz921. PubMed PMID:
934 31821414; PubMed Central PMCID: PMC7141850.

935 78. Guthmiller JJ, Dugan HL, Neu KE, Lan LY, Wilson PC. An efficient method to generate
936 monoclonal antibodies from human B cells. *Methods Mol Biol.* 2019;1904:109-45. Epub
937 2018/12/13. doi: 10.1007/978-1-4939-8958-4_5. PubMed PMID: 30539468.

938 79. Wu NC, Grande G, Turner HL, Ward AB, Xie J, Lerner RA, et al. In vitro evolution of an
939 influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity.
940 *Nature Communications.* 2017;8(1):15371.
941

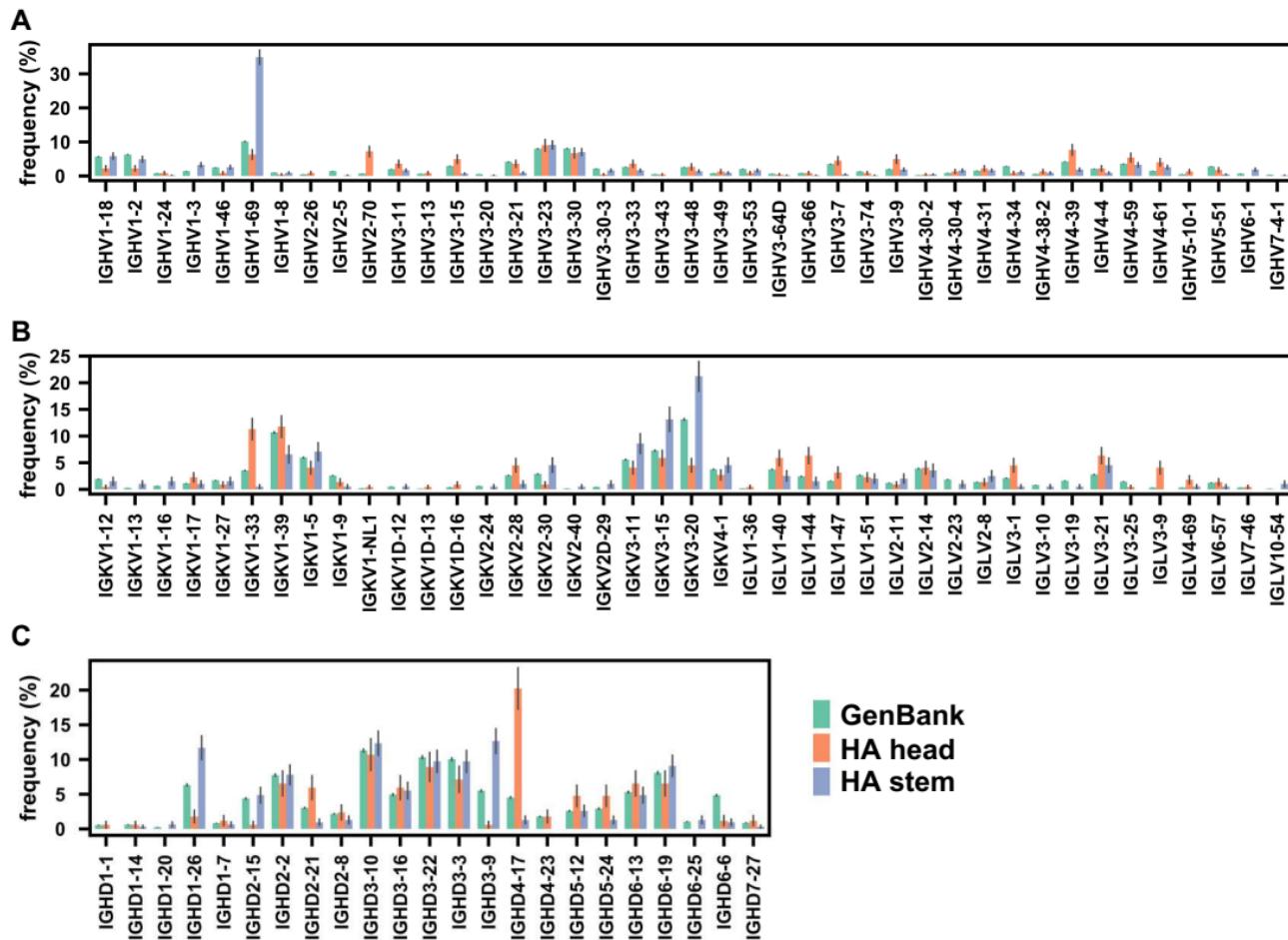
Figure 1

Figure 2

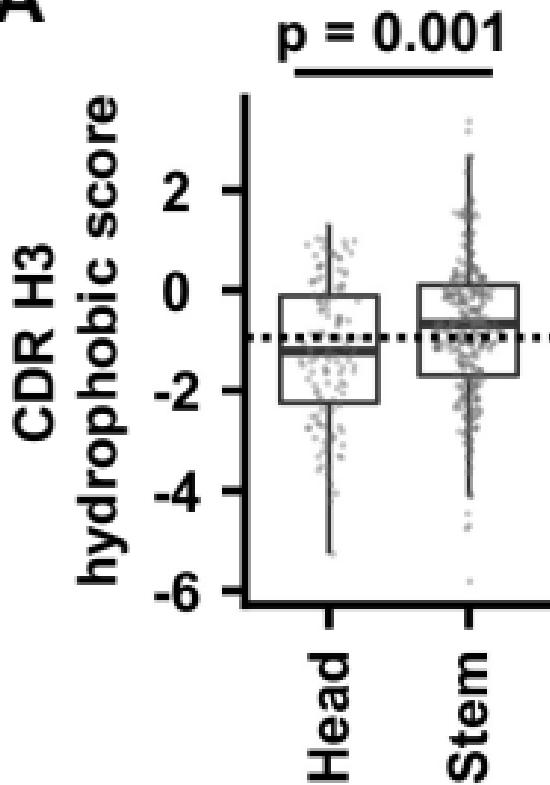
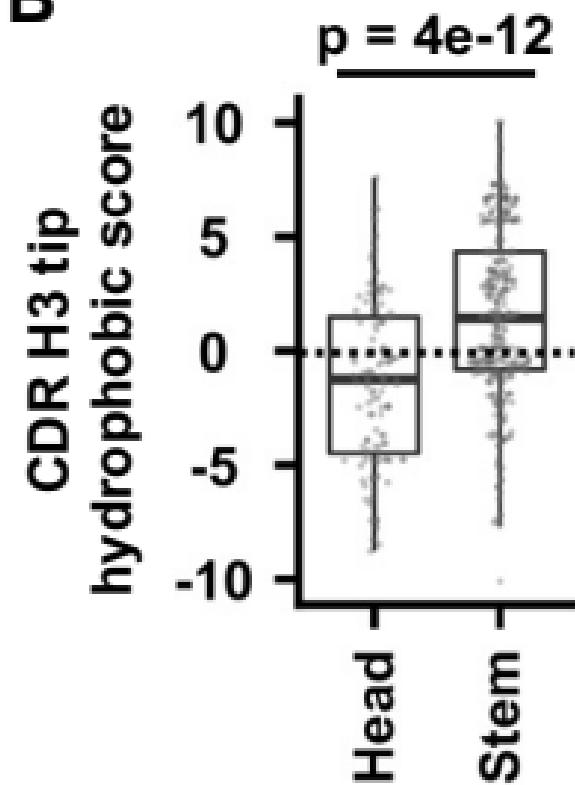
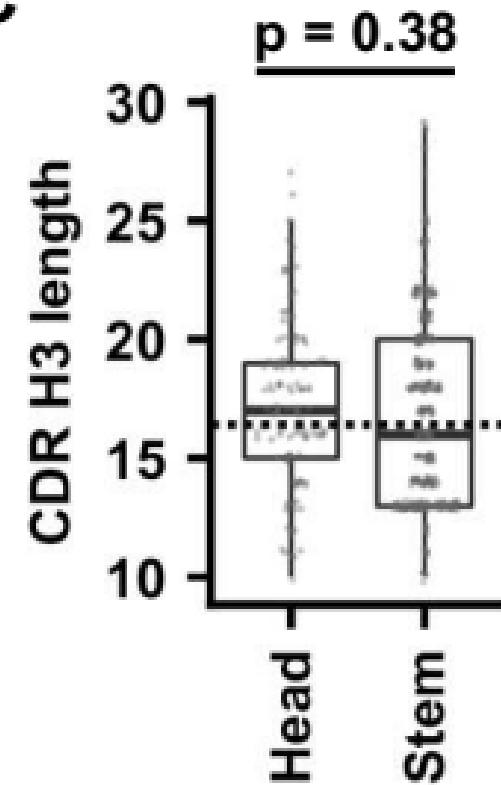
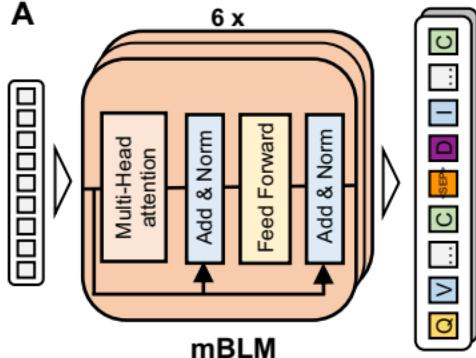
A**B****C**

Figure 3**A**

Resi Rep

Epitope prediction

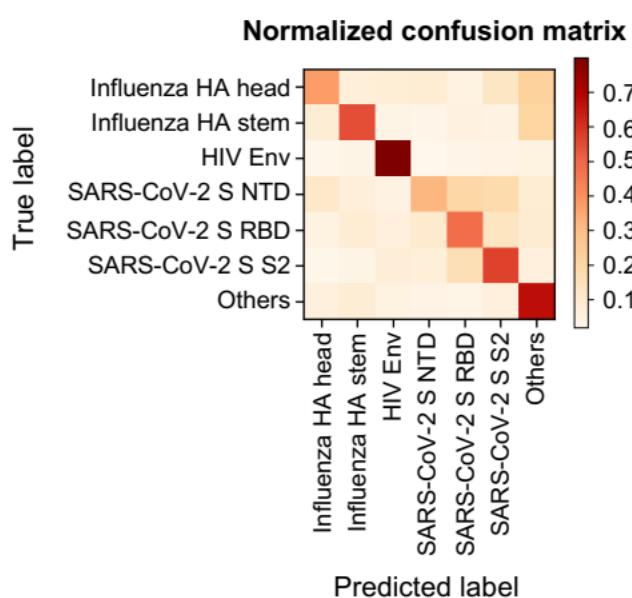
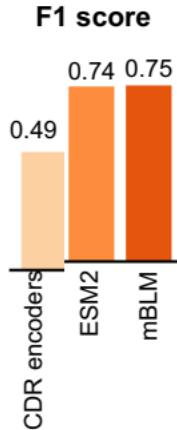
C**F1 score****B**

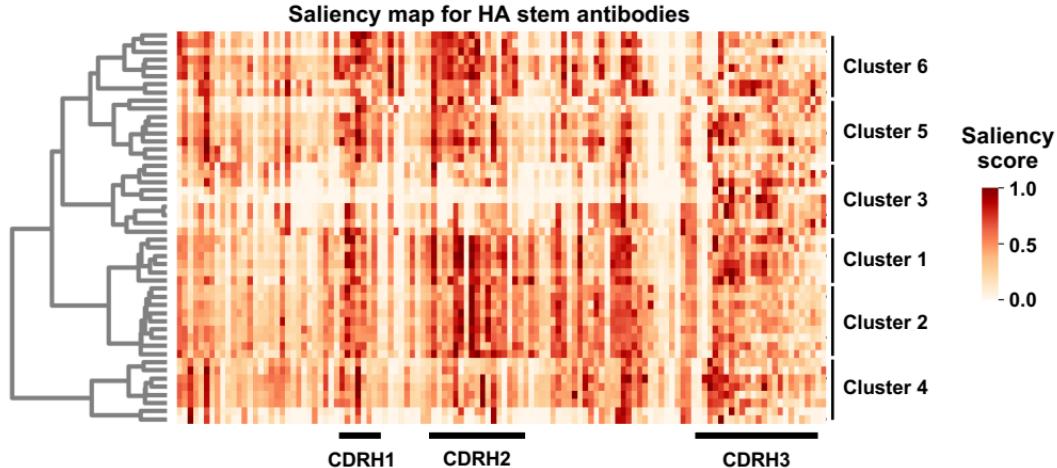
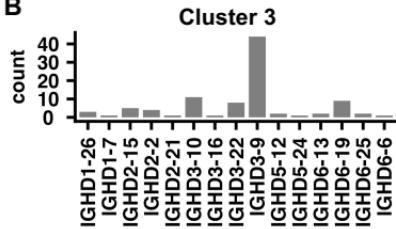
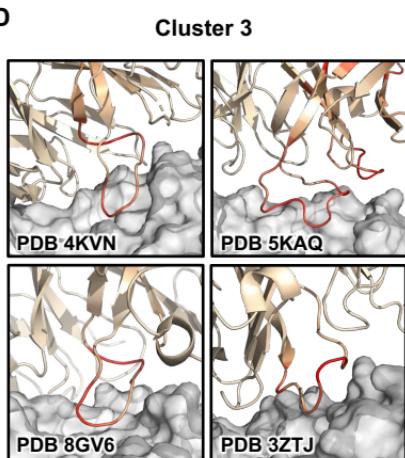
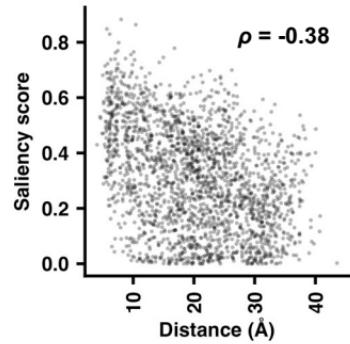
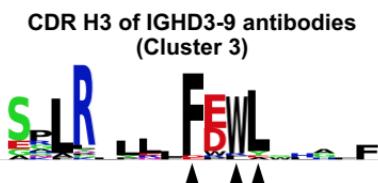
Figure 4**A****B****D****E****C**

Figure 5