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ABSTRACT

Despite decades of antibody research, it remains challenging to predict the specificity of an
antibody solely based on its sequence. Two major obstacles are the lack of appropriate models
and inaccessibility of datasets for model training. In this study, we curated a dataset of >5,000
influenza hemagglutinin (HA) antibodies by mining research publications and patents, which
revealed many distinct sequence features between antibodies to HA head and stem domains. We
then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for
sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM
captured key sequence motifs of HA stem antibodies. Additionally, by applying mBLM to HA
antibodies with unknown epitopes, we discovered and experimentally validated many HA stem
antibodies. Overall, this study not only advances our molecular understanding of antibody
response to influenza virus, but also provides an invaluable resource for applying deep learning

to antibody research.
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INTRODUCTION

Discovery and characterization of monoclonal antibodies are central to the understanding of
human immune response, as well as design of vaccines and therapeutics [1, 2]. As exemplified
by SARS-CoV-2 research in the past few years, antibody discovery has dramatically accelerated
due to the technological advancements in single-cell high-throughput screen [3] and paired B cell
receptor sequencing [4]. Nevertheless, epitope mapping remains a major bottleneck of antibody
characterization, which often involves the determination of individual antigen-antibody complex
structures using X-ray crystallography or cryogenic electron microscopy (cryo-EM). As a result,

there is a huge interest in developing methods for antibody specificity prediction.

Despite the huge diversity of human antibody repertoire with at least 10"® antibody sequences [5,
6], antibody responses from different individuals often utilize recurring sequence features to target
a given epitope [7-15]. This phenomenon is also known as convergent or public antibody
response. Traditionally, antibody specificity prediction has mainly relied on biophysical models
[16]. However, the observation of public antibody response suggests that antibody specificity
prediction can also be achieved by an orthogonal, data driven approach. Specifically, with a
sufficiently large sequence dataset of human antibodies that share a common epitope, a purely
sequence-based model can be trained to predict whether an antibody targets this given epitope

or not.

Recently, the application of natural language processing has revolutionized protein structure and
function prediction as well as protein design [17-23]. While several language models for
antibodies have also been developed [24-26], none of them enables antibody specificity prediction
to the best of our knowledge. One of the major barriers to developing a language model for
antibody specificity prediction is the lack of systematically assembled datasets for model training,

which would require both sequence and epitope information for individual antibodies. Although
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many studies have reported sequences of antibodies with known epitopes, such information is
often not centralized. Database such as CoV-AbDab, which documents the sequence and epitope
information for >10,000 antibodies to coronavirus [27], is absent for most pathogens including

influenza virus.

Hemagglutinin (HA) is the major antigen of influenza virus and has a hypervariable globular head
domain atop a highly conserved stem domain [28]. In this study, we manually curated 5,561
human antibodies to influenza hemagglutinin (HA) protein from research publications and patents.
Recurring sequence features among these HA antibodies were identified, many of which were
previously unknown. Using this dataset, we further developed a memory B cell language model
(mBLM) for antibody specificity prediction based on seven specificity categories, including HA
head and stem domains. Saliency map explanation of mBLM revealed that key binding motifs
were learned during specificity prediction. Moreover, we successfully applied mBLM to discover

HA stem antibodies with subsequent experimental validation.

RESULTS

A large-scale collection of influenza antibody information

We compiled a list of 5,561 human monoclonal antibodies to influenza HA from 60 research
publications and three patents (Table S1). Information on germline gene usage, sequence,
binding specificity (e.g. group 1, group 2, type A or B, etc.), epitope (head or stem), and donor
status (e.g., infected patient, vaccinee, etc.), if available, was collected for individual antibodies.
Among these antibodies, which were isolated from 132 different donors, 564 (10.1%) bind to the
globular head domain and 518 (9.3%) bind to the stem domain. Epitope information was not

available for the remaining 4,479 HA antibodies.

HA head and stem antibodies have distinct sequence features
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87  We first aimed to analyze this large dataset to examine the recurring sequence features of human
88 antibody responses to influenza HA. Our analysis captured previously known germline gene
89 preference for HA stem antibodies, such as IGHV1-69 [8, 29] and IGHD3-9 [7], as well as for HA
90 head antibodies, such as IGHV2-70 and IGHD4-17 (Figure 1A, Figure 1C, and Figure S1) [30].
91  Other recurring sequence features were also observed in our analysis, such as the enrichment of
92 IGKV3-11, IGKV3-15, and IGKV3-20 among HA stem antibodies, as well as IGKV1-33 and
93 IGLV3-9 among HA head antibodies (Figure 1B). In addition, our analysis discovered five public
94  clonotypes that target influenza type B HA (clonotypes 13, 16, 56, 89, and 117) that have not
95  been described previously to the best of our knowledge (Figure S2 and Table S1).
96
97  The high prevalence of IGHD4-17 among HA head antibodies stood out to us. It is known that the
98 second reading frame of IGHD4-17 encodes a YGD motif (Figure S3A) and can pair with IGHV2-
99 70 to form a multidonor antibody class targeting the receptor binding site in the HA head domain
100  [30]. However, our analysis here demonstrated that IGHD4-17 could pair with other IGHV genes
101  totarget diverse epitopes in the HA head domain (Figure S3B, Figure S4A, and Table S2). Most
102  of these antibodies contain an IGHD4-17-encoded YGD motif in the complementarity determining
103  region (CDR) H3 (Table S2). Consistently, CDR H3 with a YGD motif was observed in 12.8% of
104  the HA head antibodies, but only in 0.8% and 2.0% of the HA stem antibodies and all antibodies
105 from GenBank (Figure S4B and Table S3), respectively. These observations suggest the
106  versatility of the IGHD4-17-encoded YGD motif in targeting multiple epitopes in the HA head
107  domain, similar to the ability of IGHV3-53 to engage different epitopes in SARS-CoV-2 spike (S)
108 receptor-binding domain (RBD) [31, 32].
109
110  While the major antigenic sites in the HA head domain largely consist of hydrophilic and charged
111 amino acids [33-36], HA stem antibodies are known to commonly target a hydrophobic groove

112 [37]. Consistently, the CDR H3 sequences of HA stem antibodies had significantly higher
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113  hydrophobicity than those of HA head antibodies (p = 0.001) (Figure 2A). Such difference was
114  more pronounced when we only considered the tip of the CDR H3, which locates in the center of
115 the CDR H3 sequence and is typically important for binding (p = 4e-12) (Figure 2B). In contrast,
116  the CDR H3 lengths of antibodies to HA head and stem domains did not differ significantly (p =
117  0.38) (Figure 2C). Overall, these analyses reveal distinct recurring sequence features between
118  HA head and stem antibodies.

119

120  Antibody specificity prediction using mBLM

121 Our previous work has shown that antibodies with different specificities can be distinguished using
122  a sequence-based machine learning model that has a simple architecture with one transformer
123  encoder for each CDR, followed by a multi-layered perceptron (“CDR encoders”) [15]. Here, we
124  postulated that a language model could offer better performance, given the recent success of
125  applying language models to predict protein structures and functions [17-23]. Specifically, we
126  aimed to pre-train a memory B cell language model (mBLM) to learn the intrinsic “grammar” of
127  functional antibodies, and to subsequently distinguished between HA head and stem antibodies,
128  as well as antibodies to other antigens.

129

130  Briefly, mBLM was pre-trained to predict masked amino acid residues in the context of paired
131 heavy and light chain antibody sequences, using a total of 253,808 unique paired antibody
132  sequences from GenBank [38] and Observed Antibody Space [39] (see Methods). For antibody
133  specificity prediction, mBLM was fine-tuned by using the final-layer embeddings of the pre-trained
134 mBLM, followed by a multi-head self-attention block and a multi-layer perceptron (MLP) block
135  (Figure 3A). Our prediction was based on seven specificity categories, namely influenza HA head,
136 influenza HA stem, HIV, SARS-CoV-2 S NTD, SARS-CoV-2 S RBD, SARS-CoV-2 S S2, and
137  others (none of the above). Since many antibodies in these specificity categories did not have

138 light chain sequence available, only heavy chain sequences were used for specificity prediction
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139 (see Methods). Of note, the highest pairwise sequence identity between the test and training sets
140 was 80%. In other words, the pairwise sequence identity between individual antibody sequences
141 in the test set and the training set was at least 20% (i.e. 26 amino acids). As indicated by the
142  confusion matrix analysis and F1 score, mBLM had a decent performance on the test set (Figure
143  3B-C). The F1 score on the test set was 0.75 for mBLM, but only 0.49 for CDR encoders (Figure
144  3C). The performance of mBLM, which had 41 million parameters, was also slightly better than
145  the pre-trained general protein language model ESM2 with 650 million parameters (F1 score on
146  the test set = 0.74) [18]. This result demonstrates that mBLM is an efficient model for antibody
147  specificity prediction.

148

149 mBLM learned the sequence features of HA stem antibodies

150  Next, we aimed to understand what mBLM had learned for antibody specificity prediction. Recent
151  advancements in the field of computer vision have employed Gradient-Weighted Class Activation
152  Maps (Grad-CAMs) on CNN-based architectures to identify the determinants for classification
153  decisions [40, 41]. Here, Grad-CAM was adopted to analyze the fine-tuned mBLM by quantifying
154  the importance of individual amino acid residues for antibody specificity prediction. Our result
155 indicates that residues with high importance, as indicated by the saliency score, were enriched in
156  the CDRs (Figure 4A).

157

158 Based on the saliency score pattern, we further identified six clusters of HA stem antibodies.
159  These clusters captured several known sequence features of HA stem antibodies. For example,
160  most antibodies in cluster 3 are encoded by IGHD3-9 (Figure 4B), which is known to be enriched
161  among HA stem antibodies (Figure 1C) [7]. Among IGHD3-9 antibodies in cluster 3, we observed
162 an FxXWL motif in the CDR H3 with high saliency score (Figure 4C). As described previously,
163  many IGHD3-9 antibodies are featured by a LxXYFxWL motif in the CDR H3 [7]. Therefore, our

164  result indicates that the fine-tuned mBLM partially learned a known CDR H3 motif for predicting
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165 HA stem antibodies. Other known sequence features of HA stem antibodies were also learned by
166  mBLM, including IGHV1-18 with a QxxV motif in the CDR H3 (Figure S5A-B) [42], IGHV1-69 with
167 Y98 (Figure S5A-D) [8], and IGHV6-1 with an FGV motif in the CDR H3 (Figure S5E-F) [43].
168

169  When we projected the saliency score of individual residues on the structures, residues closer to
170  the epitope appeared to have a higher saliency score (Figure 4D and Figure S5G-I). Consistently,
171 through systematically analyzing 18 structures of HA stem antibodies [7, 29, 42, 44-54], we found
172  that the saliency score of individual residues in HA stem antibodies and their distance to HA
173  exhibited a moderate negative correlation (Spearman’s rank correlation = -0.38, Figure 4E).
174  Together, our result indicates that the fine-tuned mBLM could identify residues that were critical
175  for binding and utilized them for specificity prediction, despite structural information was not used
176  for model training.

177

178 To gain additional insights into the learned features of mBLM, we analyzed the final-layer
179  embeddings of the pre-trained mBLM using t-SNE (t-distributed Stochastic Neighbor Embedding).
180  Specifically, heavy chain sequences in the training set for fine-tuning were projected into a two-
181  dimensional space according to the embeddings. The result showed clustering of antibodies that
182  belonged to the same V gene family (Figure S6A). Moreover, antibodies from the same specificity
183  category also tended to cluster together (Figure S6B). These observations demonstrated that
184  even during the pre-training step, mBLM partially learned the sequence features that were
185 determinants for antibody specificity, hence specificity prediction.

186

187 Discovering HA stem antibodies using mBLM

188  There are two non-overlapping epitopes in the HA stem, namely central stem epitope [44, 45] and
189  anchor stem epitope [55, 56]. A recent study has reported the isolation of 60 HA antibodies to the

190 central stem epitope, and 38 to the anchor stem epitope [57]. While these antibodies were not in
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191  the HA antibody dataset that we assembled (Table S1), they provided an additional opportunity
192  to test the fine-tuned mBLM. Among the 60 antibodies to the central stem epitope, the fine-tuned
193  mBLM correctly predicted 67% (40/60) as HA stem antibodies (Figure 5A). In contrast, among
194 the 38 antibodies to the anchor stem epitope, only 8% (3/38) were predicted as HA stem
195 antibodies (Figure 5A). The poor performance of the fine-tuned mBLM on antibodies to anchor
196  stem epitope was likely due to lack of antibodies to anchor stem epitope in the dataset that we
197 assembled (Table S1). In fact, antibodies to anchor stem epitope have only been extensively
198 characterized two years ago [56]. These results suggest that HA stem antibodies correctly
199  predicted by mBLM would mostly target the central stem epitope.

200

201  Among the 5,561 HA antibodies in the dataset that we assembled (Table S1), 80% (4,479/5,561)
202 have unknown epitopes, of which 4,452 have heavy chain sequence information available.
203  Subsequently, we applied the fine-tuned mBLM to predict the specificities of these 4,452
204  antibodies. While 40% (1,769/4,452) were predicted as HA stem antibodies, only 3% (119/4,452)
205 were predicted as HA head antibodies (Figure 5B). HA head antibodies were expected to have
206  a much higher sequence diversity than HA stem antibodies, because the HA head domain has a
207  huge sequence diversity across influenza strains and subtypes, unlike the highly conserved HA
208 stem domain [28]. Consequently, the poor performance of the fine-tuned mBLM on HA head
209 antibodies was likely due to insufficient sequences of HA head antibodies in our training set.

210

211 To experimentally validate our prediction result, 18 antibodies that were predicted to target HA
212 stem were individually expressed and tested for binding to mini-HA, which is an HA stem-based
213  construct without the HA head domain [58]. Our enzyme-linked immunosorbent assay (ELISA)
214 result showed that 83% (15/18) could bind to mini-HA (Figure 5C). The remaining 3 antibodies
215  also exhibited binding to mini-HA when tested at a high concentration (Figure S7A). We further

216 selected one of the validated HA stem antibodies, 310-18A5, for additional characterization.
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217  Biolayer interferometry indicated that 310-18A5 had a strong binding affinity against the HA from
218  H1N1 A/Solomon lIsland/3/2006 (Ko = 0.2 nM, Figure S7B) as well as mini-HA (Kp = 1.0 nM,
219  Figure S7C). Besides, 310-18A5 had neutralization activity against two antigenically distinct
220  H1N1 strains (Figure S7D). Consistently, cryo-EM analysis confirmed that 310-18A5 bound to
221 the HA stem domain (Figure 5D-E and Table S4). Overall, these results demonstrate that the
222  fine-tuned mBLM enables discovery of antibodies to known epitopes.

223

224  DISCUSSION

225  While influenza HA antibodies have been studied over decades, there has been a lack of effort to
226  summarize the information about these antibodies. In this study, we performed a large-scale
227  analysis of more than 5,000 influenza HA antibodies by mining research publications and patents.
228  Although many recurring sequence features of influenza HA antibodies have previously been
229 reported in individual studies [7, 8, 29, 30, 42, 43, 56], our results revealed additional ones that
230 have not been described to the best of our knowledge. For example, our study discovered the
231 enrichment of YGD motif in the CDR H3 of HA head antibodies as well as multiple public
232  clonotypes to influenza type B HA. We further developed a language model for antibody specificity
233  prediction, which was subsequently applied to discover HA stem antibodies. Overall, this work
234  not only advances the molecular understanding of influenza HA antibodies, but also provides an
235 important resource for the antibody research community (Table S1).

236

237  Discovering antibodies to a specific antigen of interest typically requires less efforts than epitope
238 mapping. Consistently, epitope information (head or stem) is available for only ~20% of HA
239 antibodies in our dataset. Nevertheless, we were able to utilize these ~20% of HA antibodies to
240  train mBLM to identify HA stem antibodies among the remaining ~80% with no epitope information.
241 This result demonstrates that mBLM can accelerate epitope mapping. Although our work here

242  applied mBLM to predict antibody specificity based on seven specificity categories, it can be fine-
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243  tuned to extend to any specificities as long as sufficient and diverse antibody sequences with
244  such specificities are available. Given that many antibodies with different specificities have been
245  characterized in the literature, future generalization of mBLM to additional antibody specificities
246  will likely be achievable by extensive data mining (see discussion below). Besides, the continuous
247  improvement of the speed of antibody discovery and characterization will also be beneficial, if not
248  essential [3, 4].

249

250  The success of applying deep learning model to protein research can largely be attributed to the
251 presence of databases such as Protein Data Bank (PDB) [59], UniProt [60], UniRef [61], which
252  describe the sequence-structure-function relationships. Similarly, most, if not all, existing models
253 for antibody specificity prediction were trained using structural information of antibody-antigen
254  interactions in PDB [16]. Nevertheless, the epitopes of most antibodies in the literature are
255 mapped by non-structural approaches, such as competition or mutagenesis experiments [62].
256 These epitope mapping data, despite being obtained by non-structural approaches, are
257  tremendously useful for training a model for antibody specificity prediction as shown by our study
258 here. Consequently, future efforts should focus on establishing a centralized database that
259 describes the sequence-specificity relationship for antibodies, even for those without structural
260 information available. Such database will allow the power of deep learning models to be fully
261 harnessed in antibody research.

262
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280 FIGURE LEGENDS

281  Figure 1. Germline gene usages in influenza HA antibodies. (A) The IGHV gene usage, (B)
282  IGK(L)V gene usage, and (C) IGHD gene usage in antibodies to HA head domain (orange) and
283  HA stem domain (blue). For comparison, germline gene usages of all antibodies from Genbank
284  are also shown (green). To avoid being confounded by B-cell clonal expansion, a single clonotype
285 from the same donor is considered as one antibody (see Methods).

286

287  Figure 2. Hydrophobicity of CDR H3 sequences. (A-B) The hydrophobicity scores of (A) CDR
288 H3 and (B) CDR H3 tip, as well as (C) the CDR H3 length are compared between antibodies to
289 HA head and HA stem domains. The p-values were computed by two-tailed Student’s t-tests. For
290 the boxplot, the middle horizontal line represents the median. The lower and upper hinges
291 represent the first and third quartiles, respectively. The upper whisker extends to the highest data
292  point within 1.5x inter-quartile range (IQR) of the third quartile, whereas the lower whisker extends
293 to the lowest data point within 1.5x IQR of the first quartile. Each data point represents one

294  antibody. The horizontal dotted line indicates the mean among antibodies from Genbank.
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295

296 Figure 3. Antibody specificity prediction by memory B cell language model (mBLM). (A)
297  Model architecture of mBLM is shown. Arrows indicate the information flow in the network from
298 the language model to antibody specificity prediction, with a final output of specificity class
299  probability. Resi Rep: residual level representation (i.e. the final-layer embeddings from pre-
300 trained mBLM). (B) Model performance of mBLM on the test set was evaluated by a normalized
301  confusion matrix. (C) The performance of different antibody specificity prediction models was
302 evaluated by F1 score, which represents the weighted harmonic mean of the precision and recall.
303 CDR encoders: our previous model using a transformer encoder to encode CDR sequences [15].
304 ESMZ2: a general protein language model [18].

305

306 Figure 4. Explanation of mBLM using saliency score. (A) Saliency score for each residue in
307 individual HA stem antibodies was shown as a heatmap. Each row represents a single HA stem
308 antibody. X-axis represents the amino acid residue of the heavy chain. Regions corresponding to
309 CDR H1, H2, and H3 are indicated. For visualization purpose, only 50 HA stem antibodies are
310  shown. Six clusters of HA stem antibodies were identified using hierarchical clustering with Ward's
311 method. (B) IGHD gene usage among antibodies in cluster 3 is shown. (C) The saliency score of
312  each CDR H3 residue in IGHD3-9 antibodies within cluster 3 was analyzed. The frequency of
313  each amino acid for residues with a saliency score >0.5 is shown as a sequence logo. Arrows at
314  the bottom indicate the residues of interest. (D) Saliency scores are projected on to the structures
315  of four antibodies in cluster 3 (PDB 4KVN [49], PDB 5KAQ [42], PDB 8GV6 [54], and PDB 3ZTJ
316  [47]). The color scheme is same as that in panel A. (E) The relationship between saliency score
317  and distance to the antigen (i.e. HA stem) is shown as a scatter plot. Spearman’s rank correlation
318  coefficient (p) is indicated. A total of 18 structures of HA stem antibodies in complex with HA were
319 analyzed (PDB 3FKU, 3GBN, 3SDY, 3ZTJ, 4FQI, 4KVN, 4NM8, 4R8W, 5JW3, 5KAN, 5KAQ,

320 5K9K, 5K90, 5K9Q, 5WKO, 6E3H, 6NZ7, and 8GV6) [7, 29, 42, 44-54].
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321

322  Figure 5. Discovery of HA stem antibody by mBLM. (A-B) mBLM was applied to predict the
323  specificity of (A) 60 antibodies to central stem epitope (left panel) and 38 to anchor stem epitope
324  (right panel) that were reported recently [57], as well as (B) 4,452 HA antibodies with unknown
325  epitopes (HA unk) in the dataset that we assembled. The fraction of antibodies that were predicted
326  to bind to HA stem domain (Predicted as HA stem), HA head domain (Predicted as HA head), or
327  to other antigens (Not predicted as HA) is shown. (C) Using ELISA, the binding of 18 HA unk
328  antibodies that were predicted as HA stem antibodies was tested against mini-HA, which is an H1
329 stem-based construct [58]. Four known HA stem antibodies (051-09 5A02, 051-09 5E03, 310-
330 18C3, and FI6v3) [47, 63, 64] were included as positive control. D2 H1-1/H3-1, which is a known
331 HA head antibody [65], was included as negative control. In this binding experiment, antibodies
332 were not purified from the supernatant and thus their concentrations were unknown. (D)
333 Representative 2D classes from cryo-EM analysis of 310-18A5 Fab in complex with H1N1
334  A/Solomon Islands/3/2006 (S106) HA are shown. Cyan arrows point to the 310-18A5 Fabs. (E)
335  Cryo-EM 3D reconstruction of 310-18A5 Fab in complex with SI06 HA. Structural models of SI06
336 HA (PDB 6XSK) [66] and CR9114 (PDB 4FQH) [48] were docked into the 3D reconstruction.
337

338 METHODS

339 Collections of antibody information

340 Sequences of each human monoclonal antibody were from the original papers and/or NCBI
341  GenBank database (Table S1 and Table S3) [38]. For influenza HA antibodies, additional
342 information, including binding specificity, donor IDs and PDB codes, was collected from the
343  original papers (Table S1). Putative germline genes were identified by IgBLAST [67, 68]. Some
344  studies isolated antibodies from multiple donors, but the donor identity for each antibody was not
345  always clear. For example, some studies mixed B cells from multiple donors before isolating

346 individual B cell clones. Since the donor identity could not be distinguished among those
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347  antibodies, we considered them from the same donor with “donors”, “vaccinees”, “patients”, or
348  “cohorts” as the suffix of the donor ID. In addition, although two studies by Andrews et al. [69, 70]
349 had shared donors from the same clinical trial (VRC 315, ClincialTrials.gov identifier
350 NCT02206464), their antibody naming schemes were different. The IDs for these donors had a
351 prefix “315” as described in the first study [69]. While the prefixes of antibody names from the first
352  study matched the donor ID (e.g. antibody 315-02-1F07 was from donor 315-02) [69], some
353  antibody names from the second study did not (e.g. antibody name with prefix “20A-518-30") [70].
354  As a result, we assigned the donor ID to the antibodies from the second study by CDR H3
355  clustering. For example, since all CDR H3 clusters that contained antibodies with prefix 20A-605-
356 30 also contained antibodies from 315-02, antibodies with prefix 20A-605-30 were assigned with
357  adonor ID of 315-02.

358

359 Identification of public clonotype

360 Using a deterministic clustering approach, CDR H3 sequences that had the same length and at
361 least 80% amino acid sequence identity were assigned to the same CDR H3 cluster. As a result,
362 CDR H3 of every antibody in a CDR H3 cluster would have >20% difference in amino acid
363  sequence identity with that of every antibody in another CDR H3 cluster. A clonotype was defined
364  as antibodies that shared the same IGHV/IGK(L)V genes with CDR H3s from the same CDR H3
365 cluster. A public clonotype was defined as a clonotype with antibodies from at least two donors.
366  The epitope of each public clonotype was defined by its members.

367

368 Germline gene usage analysis

369 To avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor
370 was considered as one antibody that represented the consensus sequence of the given clonotype.
371 While all antibodies within a clonotype had the same IGHV/IGK(L)V genes (see above), they may

372  not have the same IGHD gene, often due to ambiguity in IGHD-gene assignment by IgBlast. For
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373  germline gene usage analysis, the most common IGHD gene within a clonotype from the same
374  donor was considered.

375

376  Hydrophobic score of CDR H3

377  The hydrophobic score for a CDR H3 with a length n was computed as follow:

™1 WW (amino ocid;)

378 Hydrophobic score = —10 X -

379  where WW represents the Wimley-White whole residue hydrophobicity scale [71] and amino acidi
380 represents the amino acid at position i. A higher hydrophobic score represents higher
381  hydrophobicity. If the CDR H3 had an odd number of residues, the CDR H3 tip was defined as
382  the three residues at the center of the CDR H3 sequence. If the CDR H3 had an even number of
383  residues, the CDR H3 tip was defined as the four residues at the center of the CDR H3 sequence.
384  The hydrophobic score of CDR H3 tip was computed in the same manner as that of CDR H3. To
385 avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor is
386  considered as one antibody, in which the CDR H3 sequence represented the consensus among
387  all members in the given clonotype.

388

389 Datasets for model pre-training

390 A total of 267,871 paired antibody sequences from memory B cell sequencing data were
391  downloaded from Observed Antibody Space database (BType = Memory-B-Cells) [39]. In addition,
392 12,487 paired antibody sequences were downloaded from NCBI GenBank database [38]. These
393 antibody sequences were compiled into a single dataset and deduplicated by 95% sequence
394  identity threshold. The deduplicated dataset was then partitioned into training (n = 229,773),
395  validation (n = 15,375) and test sets (n = 8,660). The test set was generated by random sampling
396  with different levels of maximum sequence identity to the training set (50%, 60%, 70%, 80%, and

397  90%), allowing robust evaluation of model performance. Of note, 90% maximum sequence


https://doi.org/10.1101/2023.09.11.557288
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557288; this version posted September 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

398 identity indicated that none of the antibody sequences in the test set had >90% sequence identity
399 with any of the sequences in the training set. In other words, the highest pairwise sequence
400 identity between the test and training sets was 90%. To generate a balanced and robust training
401  set, we implemented an upsampling technique based on the IGK(L)V genes. Specifically, we
402 identified IGK(L)V genes with less than 5,000 counts and then performed random sampling to
403 augment the dataset, ensuring each of these IGK(L)V genes had precisely 5,000 sequences.
404  After upsampling, our training set had 467,018 paired antibody sequences. Of note, upsampling
405 only applied to the training set, but not the validation and test sets.

406

407 Sequences of antibodies with known specificities for model fine-tuning

408 Sequences of antibodies to “HA:Head” (influenza HA head) and “HA:Stem” (influenza HA stem)
409  were from the curated dataset in this present study. Sequences of antibodies to “S:NTD” (SARS-
410 CoV-2 spike NTD), “S:RBD” (SARS-CoV-2 spike RBD), and “S:S2” (SARS-CoV-2 spike S2) were
411  from our previous study [15]. Sequences of antibodies to “HIV” (human immunodeficiency virus)
412  and “Others” (none of the above) were collected from NCBI GenBank database [38]. Antibodies
413 to “HIV” were classified as those from GenBank with the word “HIV” in the “References” or
414  “Description” fields. Here, only heavy chain variable domain sequences were used for model fine-
415  tuning. We performed sequence clustering with varying sequence identity cutoff (50%, 60%, 70%,
416 80%, 90%, and 95%) using cd-hit (-M 32000-d0-T 8 -n 5 -aL 0.8 -s 0.95-uS 0.2 -sc 1 -sf 1) [72].
417  We observed that at a cutoff of 90% sequence identity, sequences of antibodies with different
418  specificities could be found within the same cluster, indicating that a stringent sequence identity
419  cutoff of >90% was needed for accurate specificity prediction by traditional sequence clustering
420 method. Based on this result, antibodies with unknown specificities, but shared >90% sequence
421 identity with any antibody that belonged to “HA:Head”, “HA:Stem”, “HIV”, “S:NTD”, “S:RBD”, or
422  “S:S2”, were discarded and not assigned to the “Others” category. Our final dataset for model

423 fine-tuning contained the heavy chain sequences from a total of 388 antibodies to “HA:Head”, 509
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424  antibodies to “HA:Stem”, 6,995 antibodies to “HIV”, 399 antibodies to “S:NTD”, 4112 antibodies
425 to “S:RBD”, 682 antibodies to “S:S2”, and 15,043 antibodies to “Others”. This dataset was then
426  partitioned into training, validation and test sets, with an approximate ratio of 8:1:1. To test model
427  generalization, the test set was generated with a maximum sequence identity of 80% to the
428 training set. In other words, the pairwise sequence identity between individual antibody
429  sequences in the test set and the training set was at least 20% (i.e. 26 amino acids). We also
430 applied the upsampling technique to the training set to ensure the number of antibody sequences
431 in different specificity categories was balanced.

432

433  Pre-trained memory B cell language model (mBLM)

434 Masked Lanquage Modeling (MLM)

435 Masked language modeling such as Bidirectional Encoder Representations from Transformers
436 (BERT) [73] has been shown as a powerful pretraining technique for language models, enabling
437  contextual information to be captured and generalized to various downstream tasks. Here, mBLM

438  was trained to predict the masked amino acids of input sequence based on surrounding context:

439

440 Lyim = — 2 log p(x;| Xcontext)
ieM

441

442  where M represents a randomly generated mask that includes 15% of positions i in the sequence
443  x;. The model was tasked with predicting the identity of the amino acids x; in the mask from the
444  surrounding context x.,ntext - Being trained to predict masked tokens, mBLM learned to
445  understand the relationships between amino acid residues in a sequence, leading to a robust and
446  effective language representations.

447

448 mBLM architecture
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449  We adapted RoBERTa [74] as the basic model architecture, with the following hyperparameters:
450 Tokenizer: ESM2 [18]

451  Token length: 150

452  Number of Layers: 6

453  Number of Attention heads: 12

454  Embedding dimension: 768

455  Feed-Forward Hidden Size: 3072

456  Dropout: 0.1

457

458 mBLM pre-training

459 mBLM was pre-trained with a context size of 250 tokens, which represented the amino acid
460 sequences of both heavy and light chain variable domains. Since the total length of heavy chain
461 and light chain variable domains was generally less than 250 amino acids, separation tokens
462  were added in between. We adapted tokenizer from ESM2 [18], which converted amino acids into
463  numerical representations (a total of 33 tokens including special tokens like [MASK]). The model
464  was trained by masked language modeling (MLM) as described above. The model was optimized
465  using Adam with g1 = 0.9, B2 = 0.999, € = 10-8, and a learning rate of 5e-05. The model was
466 trained using Huggingface transformers toolkit and efficiently distributed across one NVIDIA A100
467  and three NVIDIA RTX A5000. The entire pre-training process was completed within 24 hours,
468 showcasing the efficiency and scalability of our approach.

469

470 Model fine-tuning for specificity prediction

471  Model details

472  The final-layer embeddings from the pre-trained mBLM were extracted as the initial hidden state
473  for the specificity prediction model. This initial state was then fed through a multi-head self-

474  attention block and a multi-layer perceptron (MLP) block. An attention block was incorporated
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475  between the mBLM embeddings and the MLP significantly to enhance model interpretability.
476  Within the attention block, the self-attention layer was followed by a layer normalization to
477 normalize the output. Subsequently, an adaptive average pooling was applied to the attended
478 representation to aggregate information across sequence dimension, resulting in a fixed size
479 tensor with a shape that was defined by batch size and hidden dimension. The flattened tensor
480 was then passed through the MLP block, comprising a series of fully connected layers, ReLU
481  activation functions, and dropout operations. These layers transformed the high-dimensional
482  representation to low-dimensional features. Finally, the output was passed through a fully
483  connected layer with seven output units, each represented one of the seven specificity categories.
484

485 15-fold cross-validation

486  To evaluate the robustness of our mBLM for specificity prediction, we employed a 15-fold cross-
487  validation approach for fine-tuning, specificity inference, and model explanation. We randomly
488 down/upsampled and split the data 15 times, resulting in a diverse set of sequences in each
489 iteration. Then, the model underwent 15 rounds of training and testing. For each iteration, model
490 performance was evaluated. The overall model performance was quantified as the average
491 across all iterations. The final predicted class represented the mode.

492

493 mBLM fine-tuning

494  The model was trained using the PyTorch Lightning framework using Adam optimizer with a
495 learning rate of 2e-05 and a batch size of 32. Early stopping was applied to monitor the validation
496  loss.

497

498 ESM2 fine-tuning

499  Similar to mBLM fine-tuning, the final representations of ESM2 model (33 layers and 650 million

500 parameters) were extracted as the initial hidden state for specificity prediction. This initial state
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501  was then fed through the attention and MLP blocks. The model was trained using the PyTorch
502  Lightning framework using Adam optimizer with a learning rate of 1e-04 and a batch size 32. Early
503 stopping was applied to monitor the validation loss. The best model checkpoint was saved.

504

505 Performance Metrics

506  The fine-tuned model was evaluated using the average F1 score, which represents the weighted
507  harmonic mean of the precision and recall, as well as confusion matrix. The calculations were
508 conducted using sklearn metrics functions [75].

509

510 Model Interpretation

511 Gradient-weighted Class Activation Mapping (Grad-CAM) analysis

512 Grad-CAM, which is a class-discriminative localization technique that provides visual
513  explanations for predictions made by CNN-based models [40], was used to identify residues in a
514  protein sequence that are important for the prediction of a particular function [41]. To calculate

515  Grad-CAM, we first computed the importance weights af for the input sequence:

516
1 < 9y°
517 a§=—2 Y
D ox}
deD
518

519  where af represents the global average pooling over embedding dimension D for the importance
520 weights of residue i for predicting specificity class c. Then, the saliency map was obtained in a
521 residue space by generating the weighted forward activation maps A!, followed by a ReLU
522  function:

523

524 Sf = ReLU(afAY)

525
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526  where S{ represents the relative importance (saliency score) of residue i to specificity class c.
527  The ReLU function ensured that only features with positive influence on the functional label were
528  preserved.

529

530 Saliency map clustering

531 We applied hierarchical clustering with Ward's method to perform saliency map clustering.
532 Euclidean distance was used to calculate the distance matrix that quantified the pairwise
533 dissimilarity between saliency maps. We then used the linkage function to define the hierarchical
534 relationships between the samples. Finally, clustered results were visualized using clustermap
535  function in seaborn [76].

536

537 Sequence logo analysis

538 To identify sequence features within each cluster, we employed a thresholding approach based
539 on the saliency scores. Specifically, for each cluster, we computed the frequency of each amino
540  acid for residues with a saliency score >0.5. Then, sequence logos were generated by Logomaker
541 in Python [77].

542

543  Structural analysis of saliency score

544  For those HA stem antibodies with structural information available, the relationship between
545  saliency score of each residue and its minimum distance to HA was examined. Distance was
546  calculated using the application programming interface in PyMOL (Schrddinger).

547

548  Mammalian cell culture

549  HEK293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM high glucose; Gibco)
550 supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco), 1% penicillin-

551  streptomycin (Gibco), and 1x GlutaMax (Gibco). Cell passaging was performed every 3 to 4 days
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552  using 0.05% Trypsin-EDTA solution (Gibco). Expi293F cells were maintained in Expi293
553  Expression Medium (Thermo Fisher Scientific). Sf9 cells (Spodoptera frugiperda ovarian cells,
554  female, ATCC) were maintained in Sf-900 Il SFM medium (Thermo Fisher Scientific).

555

556  Expression and purification of mini-HA and HA

557  The mini-HA #4900 [58] and H1N1 A/Solomon Island/3/2006 HA were fused with N-terminal gp67
558 signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site, trimerization
559  domain, and a 6xHis-tag, and then cloned into a customized baculovirus transfer vector [46].
560  Subsequently, recombinant bacmid DNA was generated using the Bac-to-Bac system (Thermo
561  Fisher Scientific) according to the manufacturer’s instructions. Baculovirus was generated by
562 transfecting the purified bacmid DNA into adherent Sf9 cells using Cellfectin reagent (Thermo
563  Fisher Scientific) according to the manufacturer’s instructions. The baculovirus was further
564  amplified by passaging in adherent Sf9 cells at a multiplicity of infection (MOI) of 1. Recombinant
565  mini-HA protein was expressed by infecting 1 L of suspension Sf9 cells at an MOI of 1. On day 3
566  post-infection, Sf9 cells were pelleted by centrifugation at 4000 x g for 25 min, and soluble
567  recombinant mini-HA and HA were purified from the supernatant by affinity chromatography using
568  Ni Sepharose excel resin (Cytiva) and then size exclusion chromatography using a HiLoad 16/100
569  Superdex 200 prep grade column (Cytiva) in 20 mM Tris-HCI pH 8.0, 100 mM NaCl. The purified
570  mini-HA protein was concentrated by Amicon spin filter (Millipore Sigma) and filtered by 0.22 ym
571  centrifuge tube filters (Costar). Concentration of the protein was determined by nanodrop (Fisher
572  Scientific). Proteins were subsequent aliquoted, flash frozen by dry-ice ethanol mixture, and
573  stored at -80°C until used.

574

575 Expression and purification of IgG

576 The heavy and light chain genes of the obtained antibody were synthesized as eBlocks

577  (Integrated DNA Technologies), and then cloned into human IgG1 and human kappa or lambda
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578 light chain expression vectors using Gibson assembly according to a previously described method
579 [78]. The plasmids were transiently co-transfected into HEK293T cells at a mass ratio of 2:1
580 (HC:LC) using Lipofectamine 2000 (Thermo Fisher Scientific). On day 3 post-transfection,
581 supernatant containing the IgG was collected for binding experiment. The expression of IgG was
582  confirmed by SDS-PAGE gel electrophoresis and Coomassie Blue R-250 staining. Selected IgGs
583  were purified using a CaptureSelect CH1-XL Pre-packed Column (Thermo Fisher Scientific).
584

585 Expression and purification of Fab

586 Fab heavy and light chains were cloned into phCMV3 vector. The plasmids were transiently co-
587  transfected into Expi293F cells at a mass ratio of 2:1 (HC:LC) using ExpiFectamine 293 Reagent
588  (Thermo Fisher Scientific). After transfection, the cell culture supernatant was collected at 6 days
589  post-transfection. The Fab was then purified using a CaptureSelect CH1-XL pre-packed column
590 (Thermo Fisher Scientific).

591

592  Enzyme-linked immunosorbent assay (ELISA)

593  Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were utilized and coated with 100 pL of
594  recombinant proteins at a concentration of 1 ug mi” in a 1x PBS solution. The coating process
595  was performed overnight at 4°C. On the following day, the ELISA plates were washed three times
596  with 1x PBS supplemented with 0.05% Tween 20, and then blocked using 200 pL of 1x PBS with
597 5% non-fat milk powder for 2 hours at room temperature. After the blocking step, 100 uL of IgGs
598 from the supernatant were added to each well and incubated for 2 hours at 37°C. The ELISA
599 plates were washed three times to remove any unbound IgGs. Next, the ELISA plates were
600 incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody (1:5000,
601 Invitrogen) for 1 hour at 37°C. Subsequently, the ELISA plates were washed five times using PBS
602 containing 0.05% Tween 20. Then, 100 yL of 1-Step Ultra TMB-ELISA Substrate Solution

603 (Thermo Fisher Scientific) was added to each well. After 15 min incubation, 50 puL of 2 M H>SO4
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604  solution was added to each well. The absorbance of each well was measured at a wavelength of
605 450 nm using a Sunrise absorbance microplate reader (BioTek Synergy HTX Multimode Reader).
606

607 Biolayer interferometry binding assay

608 Binding assays were performed by biolayer interferometry (BLI) using an Octet Red96e
609 instrument (FortéBio) at room temperature as described previously [79]. Briefly, His-tagged mini-
610 HA proteins at 0.5 uM in 1x kinetics buffer (1x PBS, pH 7.4, 0.01% w/v BSA and 0.002% v/v
611  Tween 20) were loaded onto anti-Penta-HIS (HIS1K) biosensors and incubated with the indicated
612  concentrations of Fabs. The assay consisted of five steps: (1) baseline: 60 s with 1x kinetics buffer;
613  (2) loading: 60 s with His-tagged mini-HA proteins; (3) baseline: 60 s with 1x kinetics buffer; (4)
614  association: 60s with Fab samples; and (5) dissociation: 60s with 1x kinetics buffer. For
615  estimating the exact Kp, a 1:1 binding model was used.

616

617  Virus neutralization assay

618  Madin-Darby canine kidney (MDCK) cells were seeded in a 96-well, flat-bottom cell culture plate
619  (Thermo Fisher). The next day, serially diluted monoclonal antibodies were mixed with an equal
620  volume of virus and incubated at 37°C for 1 hour. The antibody/virus mixture was then incubated
621  with the MDCK cells at 37°C after the cells were washed twice with PBS. Following a 1-hour
622 incubation, the antibody/virus mixture was replaced with Minimum Essential Medium (MEM)
623  supplemented with 25 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 1
624 g mL" of Tosyl phenylalanyl chloromethyl ketone (TPCK)-trypsin. The plate was incubated at
625  37°C for 72 hours and the presence of virus was detected by hemagglutination assay. The results
626  were analyzed using Prism software (GraphPad).

627

628 Cryogenic electron microscopy (cryo-EM) analysis
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629 To prepare cryoEM grid, an aliquot of 4 uL purified protein at ~0.5 mg mL™" concentration with 7.5
630 M lauryl maltose neopentyl glycol (LMNG) was applied to a 200-mesh Quantifoil 2Um Cu grid
631 that was pre-treated with glow-discharge. Subsequently, the grid was blotted in a Vitrobot Mark
632 IV machine (force = 0, time = 3 seconds), and plunge-frozen in liquid ethane. The grid was then
633 loaded in a ThermoFisher Glacios microscope with a Volta Phase Plate and Falcon4 Direct
634  Electron Detector. Data collection was done with Smart EPU software. Images were recorded at
635 130,000x magnification, corresponding to a pixel size of 0.96 A/pix at super-resolution mode of
636 the camera. A defocus range of -0.6 ym to -3 um was set. A total dose of 52.76 e /A? of each
637 exposure was fractionated into 40 frames. CryoEM data processing was performed with
638 cryoSPARC v4.3.0 following regular single-particle procedures. The CryoEM experiment was
639 performed at the UIUC Materials Research Laboratory Central Research Facilities. Statistics are
640 provided in Table S4. Structure was visualized using UCSF ChimeraX v1.5 (UCSF).

641

642  Data availability

643  The cryoEM map of 310-18A5 Fab in complex with SI06 HA can be accessed at the Electron
644  Microscopy Data Bank (EMDB) using accession code EMD-41849.

645

646 Model and code availability

647  Custom python scripts for all analyses and model training have been deposited to:

648 https://github.com/nicwulab/HA Abs.
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Figure 4

A Saliency map for HA stem antibodies

b

e
—élji

CDRH1

B Cluster 3
40
€ 30
3 20
(=}
o 10
0 A=_m | |
ONUDOANTTOOANOD
grraa=ead
oN NMOOOM
R
595955552
c

CDR H3 of IGHD3-9 antibodies
(Cluster 3)

sl AL .

i

CDRH2

Cluster 3

Saliency score

‘ Cluster 6
| Cluster 5 saliency
score
Cluster 3 [1'0
'| Cluster 1 03
-0.0
‘ Cluster 2
| Cluster 4

084 pP= -0.38

Distance (A)


https://doi.org/10.1101/2023.09.11.557288
http://creativecommons.org/licenses/by/4.0/

Figure 5
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