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ABSTRACT 22 

Despite decades of antibody research, it remains challenging to predict the specificity of an 23 

antibody solely based on its sequence. Two major obstacles are the lack of appropriate models 24 

and inaccessibility of datasets for model training. In this study, we curated a dataset of >5,000 25 

influenza hemagglutinin (HA) antibodies by mining research publications and patents, which 26 

revealed many distinct sequence features between antibodies to HA head and stem domains. We 27 

then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for 28 

sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM 29 

captured key sequence motifs of HA stem antibodies. Additionally, by applying mBLM to HA 30 

antibodies with unknown epitopes, we discovered and experimentally validated many HA stem 31 

antibodies. Overall, this study not only advances our molecular understanding of antibody 32 

response to influenza virus, but also provides an invaluable resource for applying deep learning 33 

to antibody research.  34 
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INTRODUCTION 35 

Discovery and characterization of monoclonal antibodies are central to the understanding of 36 

human immune response, as well as design of vaccines and therapeutics [1, 2]. As exemplified 37 

by SARS-CoV-2 research in the past few years, antibody discovery has dramatically accelerated 38 

due to the technological advancements in single-cell high-throughput screen [3] and paired B cell 39 

receptor sequencing [4]. Nevertheless, epitope mapping remains a major bottleneck of antibody 40 

characterization, which often involves the determination of individual antigen-antibody complex 41 

structures using X-ray crystallography or cryogenic electron microscopy (cryo-EM). As a result, 42 

there is a huge interest in developing methods for antibody specificity prediction. 43 

 44 

Despite the huge diversity of human antibody repertoire with at least 1015 antibody sequences [5, 45 

6], antibody responses from different individuals often utilize recurring sequence features to target 46 

a given epitope [7-15]. This phenomenon is also known as convergent or public antibody 47 

response. Traditionally, antibody specificity prediction has mainly relied on biophysical models 48 

[16]. However, the observation of public antibody response suggests that antibody specificity 49 

prediction can also be achieved by an orthogonal, data driven approach. Specifically, with a 50 

sufficiently large sequence dataset of human antibodies that share a common epitope, a purely 51 

sequence-based model can be trained to predict whether an antibody targets this given epitope 52 

or not. 53 

 54 

Recently, the application of natural language processing has revolutionized protein structure and 55 

function prediction as well as protein design [17-23]. While several language models for 56 

antibodies have also been developed [24-26], none of them enables antibody specificity prediction 57 

to the best of our knowledge. One of the major barriers to developing a language model for 58 

antibody specificity prediction is the lack of systematically assembled datasets for model training, 59 

which would require both sequence and epitope information for individual antibodies. Although 60 
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many studies have reported sequences of antibodies with known epitopes, such information is 61 

often not centralized. Database such as CoV-AbDab, which documents the sequence and epitope 62 

information for >10,000 antibodies to coronavirus [27], is absent for most pathogens including 63 

influenza virus. 64 

 65 

Hemagglutinin (HA) is the major antigen of influenza virus and has a hypervariable globular head 66 

domain atop a highly conserved stem domain [28]. In this study, we manually curated 5,561 67 

human antibodies to influenza hemagglutinin (HA) protein from research publications and patents. 68 

Recurring sequence features among these HA antibodies were identified, many of which were 69 

previously unknown. Using this dataset, we further developed a memory B cell language model 70 

(mBLM) for antibody specificity prediction based on seven specificity categories, including HA 71 

head and stem domains. Saliency map explanation of mBLM revealed that key binding motifs 72 

were learned during specificity prediction. Moreover, we successfully applied mBLM to discover 73 

HA stem antibodies with subsequent experimental validation. 74 

 75 

RESULTS 76 

A large-scale collection of influenza antibody information 77 

We compiled a list of 5,561 human monoclonal antibodies to influenza HA from 60 research 78 

publications and three patents (Table S1). Information on germline gene usage, sequence, 79 

binding specificity (e.g. group 1, group 2, type A or B, etc.), epitope (head or stem), and donor 80 

status (e.g., infected patient, vaccinee, etc.), if available, was collected for individual antibodies. 81 

Among these antibodies, which were isolated from 132 different donors, 564 (10.1%) bind to the 82 

globular head domain and 518 (9.3%) bind to the stem domain. Epitope information was not 83 

available for the remaining 4,479 HA antibodies. 84 

 85 

HA head and stem antibodies have distinct sequence features 86 
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We first aimed to analyze this large dataset to examine the recurring sequence features of human 87 

antibody responses to influenza HA. Our analysis captured previously known germline gene 88 

preference for HA stem antibodies, such as IGHV1-69 [8, 29] and IGHD3-9 [7], as well as for HA 89 

head antibodies, such as IGHV2-70 and IGHD4-17 (Figure 1A, Figure 1C, and Figure S1) [30]. 90 

Other recurring sequence features were also observed in our analysis, such as the enrichment of 91 

IGKV3-11, IGKV3-15, and IGKV3-20 among HA stem antibodies, as well as IGKV1-33 and 92 

IGLV3-9 among HA head antibodies (Figure 1B). In addition, our analysis discovered five public 93 

clonotypes that target influenza type B HA (clonotypes 13, 16, 56, 89, and 117) that have not 94 

been described previously to the best of our knowledge (Figure S2 and Table S1). 95 

 96 

The high prevalence of IGHD4-17 among HA head antibodies stood out to us. It is known that the 97 

second reading frame of IGHD4-17 encodes a YGD motif (Figure S3A) and can pair with IGHV2-98 

70 to form a multidonor antibody class targeting the receptor binding site in the HA head domain 99 

[30]. However, our analysis here demonstrated that IGHD4-17 could pair with other IGHV genes 100 

to target diverse epitopes in the HA head domain (Figure S3B, Figure S4A, and Table S2). Most 101 

of these antibodies contain an IGHD4-17-encoded YGD motif in the complementarity determining 102 

region (CDR) H3 (Table S2). Consistently, CDR H3 with a YGD motif was observed in 12.8% of 103 

the HA head antibodies, but only in 0.8% and 2.0% of the HA stem antibodies and all antibodies 104 

from GenBank (Figure S4B and Table S3), respectively. These observations suggest the 105 

versatility of the IGHD4-17-encoded YGD motif in targeting multiple epitopes in the HA head 106 

domain, similar to the ability of IGHV3-53 to engage different epitopes in SARS-CoV-2 spike (S) 107 

receptor-binding domain (RBD) [31, 32]. 108 

 109 

While the major antigenic sites in the HA head domain largely consist of hydrophilic and charged 110 

amino acids [33-36], HA stem antibodies are known to commonly target a hydrophobic groove 111 

[37]. Consistently, the CDR H3 sequences of HA stem antibodies had significantly higher 112 
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hydrophobicity than those of HA head antibodies (p = 0.001) (Figure 2A). Such difference was 113 

more pronounced when we only considered the tip of the CDR H3, which locates in the center of 114 

the CDR H3 sequence and is typically important for binding (p = 4e-12) (Figure 2B). In contrast, 115 

the CDR H3 lengths of antibodies to HA head and stem domains did not differ significantly (p = 116 

0.38) (Figure 2C). Overall, these analyses reveal distinct recurring sequence features between 117 

HA head and stem antibodies. 118 

 119 

Antibody specificity prediction using mBLM 120 

Our previous work has shown that antibodies with different specificities can be distinguished using 121 

a sequence-based machine learning model that has a simple architecture with one transformer 122 

encoder for each CDR, followed by a multi-layered perceptron (<CDR encoders=) [15]. Here, we 123 

postulated that a language model could offer better performance, given the recent success of 124 

applying language models to predict protein structures and functions [17-23]. Specifically, we 125 

aimed to pre-train a memory B cell language model (mBLM) to learn the intrinsic <grammar= of 126 

functional antibodies, and to subsequently distinguished between HA head and stem antibodies, 127 

as well as antibodies to other antigens. 128 

 129 

Briefly, mBLM was pre-trained to predict masked amino acid residues in the context of paired 130 

heavy and light chain antibody sequences, using a total of 253,808 unique paired antibody 131 

sequences from GenBank [38] and Observed Antibody Space [39] (see Methods). For antibody 132 

specificity prediction, mBLM was fine-tuned by using the final-layer embeddings of the pre-trained 133 

mBLM, followed by a multi-head self-attention block and a multi-layer perceptron (MLP) block 134 

(Figure 3A). Our prediction was based on seven specificity categories, namely influenza HA head, 135 

influenza HA stem, HIV, SARS-CoV-2 S NTD, SARS-CoV-2 S RBD, SARS-CoV-2 S S2, and 136 

others (none of the above). Since many antibodies in these specificity categories did not have 137 

light chain sequence available, only heavy chain sequences were used for specificity prediction 138 
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(see Methods). Of note, the highest pairwise sequence identity between the test and training sets 139 

was 80%. In other words, the pairwise sequence identity between individual antibody sequences 140 

in the test set and the training set was at least 20% (i.e. 26 amino acids). As indicated by the 141 

confusion matrix analysis and F1 score, mBLM had a decent performance on the test set (Figure 142 

3B-C). The F1 score on the test set was 0.75 for mBLM, but only 0.49 for CDR encoders (Figure 143 

3C). The performance of mBLM, which had 41 million parameters, was also slightly better than 144 

the pre-trained general protein language model ESM2 with 650 million parameters (F1 score on 145 

the test set = 0.74) [18]. This result demonstrates that mBLM is an efficient model for antibody 146 

specificity prediction. 147 

 148 

mBLM learned the sequence features of HA stem antibodies 149 

Next, we aimed to understand what mBLM had learned for antibody specificity prediction. Recent 150 

advancements in the field of computer vision have employed Gradient-Weighted Class Activation 151 

Maps (Grad-CAMs) on CNN-based architectures to identify the determinants for classification 152 

decisions [40, 41]. Here, Grad-CAM was adopted to analyze the fine-tuned mBLM by quantifying 153 

the importance of individual amino acid residues for antibody specificity prediction. Our result 154 

indicates that residues with high importance, as indicated by the saliency score, were enriched in 155 

the CDRs (Figure 4A). 156 

 157 

Based on the saliency score pattern, we further identified six clusters of HA stem antibodies. 158 

These clusters captured several known sequence features of HA stem antibodies. For example, 159 

most antibodies in cluster 3 are encoded by IGHD3-9 (Figure 4B), which is known to be enriched 160 

among HA stem antibodies (Figure 1C) [7]. Among IGHD3-9 antibodies in cluster 3, we observed 161 

an FxWL motif in the CDR H3 with high saliency score (Figure 4C). As described previously, 162 

many IGHD3-9 antibodies are featured by a LxYFxWL motif in the CDR H3 [7]. Therefore, our 163 

result indicates that the fine-tuned mBLM partially learned a known CDR H3 motif for predicting 164 
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HA stem antibodies. Other known sequence features of HA stem antibodies were also learned by 165 

mBLM, including IGHV1-18 with a QxxV motif in the CDR H3 (Figure S5A-B) [42], IGHV1-69 with 166 

Y98 (Figure S5A-D) [8], and IGHV6-1 with an FGV motif in the CDR H3 (Figure S5E-F) [43]. 167 

 168 

When we projected the saliency score of individual residues on the structures, residues closer to 169 

the epitope appeared to have a higher saliency score (Figure 4D and Figure S5G-I). Consistently, 170 

through systematically analyzing 18 structures of HA stem antibodies [7, 29, 42, 44-54], we found 171 

that the saliency score of individual residues in HA stem antibodies and their distance to HA 172 

exhibited a moderate negative correlation (Spearman9s rank correlation = -0.38, Figure 4E). 173 

Together, our result indicates that the fine-tuned mBLM could identify residues that were critical 174 

for binding and utilized them for specificity prediction, despite structural information was not used 175 

for model training. 176 

 177 

To gain additional insights into the learned features of mBLM, we analyzed the final-layer 178 

embeddings of the pre-trained mBLM using t-SNE (t-distributed Stochastic Neighbor Embedding). 179 

Specifically, heavy chain sequences in the training set for fine-tuning were projected into a two-180 

dimensional space according to the embeddings. The result showed clustering of antibodies that 181 

belonged to the same V gene family (Figure S6A). Moreover, antibodies from the same specificity 182 

category also tended to cluster together (Figure S6B). These observations demonstrated that 183 

even during the pre-training step, mBLM partially learned the sequence features that were 184 

determinants for antibody specificity, hence specificity prediction. 185 

 186 

Discovering HA stem antibodies using mBLM 187 

There are two non-overlapping epitopes in the HA stem, namely central stem epitope [44, 45] and 188 

anchor stem epitope [55, 56]. A recent study has reported the isolation of 60 HA antibodies to the 189 

central stem epitope, and 38 to the anchor stem epitope [57]. While these antibodies were not in 190 
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the HA antibody dataset that we assembled (Table S1), they provided an additional opportunity 191 

to test the fine-tuned mBLM. Among the 60 antibodies to the central stem epitope, the fine-tuned 192 

mBLM correctly predicted 67% (40/60) as HA stem antibodies (Figure 5A). In contrast, among 193 

the 38 antibodies to the anchor stem epitope, only 8% (3/38) were predicted as HA stem 194 

antibodies (Figure 5A). The poor performance of the fine-tuned mBLM on antibodies to anchor 195 

stem epitope was likely due to lack of antibodies to anchor stem epitope in the dataset that we 196 

assembled (Table S1). In fact, antibodies to anchor stem epitope have only been extensively 197 

characterized two years ago [56]. These results suggest that HA stem antibodies correctly 198 

predicted by mBLM would mostly target the central stem epitope. 199 

 200 

Among the 5,561 HA antibodies in the dataset that we assembled (Table S1), 80% (4,479/5,561) 201 

have unknown epitopes, of which 4,452 have heavy chain sequence information available. 202 

Subsequently, we applied the fine-tuned mBLM to predict the specificities of these 4,452 203 

antibodies. While 40% (1,769/4,452) were predicted as HA stem antibodies, only 3% (119/4,452) 204 

were predicted as HA head antibodies (Figure 5B). HA head antibodies were expected to have 205 

a much higher sequence diversity than HA stem antibodies, because the HA head domain has a 206 

huge sequence diversity across influenza strains and subtypes, unlike the highly conserved HA 207 

stem domain [28]. Consequently, the poor performance of the fine-tuned mBLM on HA head 208 

antibodies was likely due to insufficient sequences of HA head antibodies in our training set. 209 

 210 

To experimentally validate our prediction result, 18 antibodies that were predicted to target HA 211 

stem were individually expressed and tested for binding to mini-HA, which is an HA stem-based 212 

construct without the HA head domain [58]. Our enzyme-linked immunosorbent assay (ELISA) 213 

result showed that 83% (15/18) could bind to mini-HA (Figure 5C). The remaining 3 antibodies 214 

also exhibited binding to mini-HA when tested at a high concentration (Figure S7A). We further 215 

selected one of the validated HA stem antibodies, 310-18A5, for additional characterization. 216 
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Biolayer interferometry indicated that 310-18A5 had a strong binding affinity against the HA from 217 

H1N1 A/Solomon Island/3/2006 (KD = 0.2 nM, Figure S7B) as well as mini-HA (KD = 1.0 nM, 218 

Figure S7C). Besides, 310-18A5 had neutralization activity against two antigenically distinct 219 

H1N1 strains (Figure S7D). Consistently, cryo-EM analysis confirmed that 310-18A5 bound to 220 

the HA stem domain (Figure 5D-E and Table S4). Overall, these results demonstrate that the 221 

fine-tuned mBLM enables discovery of antibodies to known epitopes. 222 

 223 

DISCUSSION 224 

While influenza HA antibodies have been studied over decades, there has been a lack of effort to 225 

summarize the information about these antibodies. In this study, we performed a large-scale 226 

analysis of more than 5,000 influenza HA antibodies by mining research publications and patents. 227 

Although many recurring sequence features of influenza HA antibodies have previously been 228 

reported in individual studies [7, 8, 29, 30, 42, 43, 56], our results revealed additional ones that 229 

have not been described to the best of our knowledge. For example, our study discovered the 230 

enrichment of YGD motif in the CDR H3 of HA head antibodies as well as multiple public 231 

clonotypes to influenza type B HA. We further developed a language model for antibody specificity 232 

prediction, which was subsequently applied to discover HA stem antibodies. Overall, this work 233 

not only advances the molecular understanding of influenza HA antibodies, but also provides an 234 

important resource for the antibody research community (Table S1). 235 

 236 

Discovering antibodies to a specific antigen of interest typically requires less efforts than epitope 237 

mapping. Consistently, epitope information (head or stem) is available for only ~20% of HA 238 

antibodies in our dataset. Nevertheless, we were able to utilize these ~20% of HA antibodies to 239 

train mBLM to identify HA stem antibodies among the remaining ~80% with no epitope information. 240 

This result demonstrates that mBLM can accelerate epitope mapping. Although our work here 241 

applied mBLM to predict antibody specificity based on seven specificity categories, it can be fine-242 
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tuned to extend to any specificities as long as sufficient and diverse antibody sequences with 243 

such specificities are available. Given that many antibodies with different specificities have been 244 

characterized in the literature, future generalization of mBLM to additional antibody specificities 245 

will likely be achievable by extensive data mining (see discussion below). Besides, the continuous 246 

improvement of the speed of antibody discovery and characterization will also be beneficial, if not 247 

essential [3, 4]. 248 

 249 

The success of applying deep learning model to protein research can largely be attributed to the 250 

presence of databases such as Protein Data Bank (PDB) [59], UniProt [60], UniRef [61], which 251 

describe the sequence-structure-function relationships. Similarly, most, if not all, existing models 252 

for antibody specificity prediction were trained using structural information of antibody-antigen 253 

interactions in PDB [16]. Nevertheless, the epitopes of most antibodies in the literature are 254 

mapped by non-structural approaches, such as competition or mutagenesis experiments [62]. 255 

These epitope mapping data, despite being obtained by non-structural approaches, are 256 

tremendously useful for training a model for antibody specificity prediction as shown by our study 257 

here. Consequently, future efforts should focus on establishing a centralized database that 258 

describes the sequence-specificity relationship for antibodies, even for those without structural 259 

information available. Such database will allow the power of deep learning models to be fully 260 

harnessed in antibody research. 261 

 262 
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FIGURE LEGENDS 280 

Figure 1. Germline gene usages in influenza HA antibodies. (A) The IGHV gene usage, (B) 281 

IGK(L)V gene usage, and (C) IGHD gene usage in antibodies to HA head domain (orange) and 282 

HA stem domain (blue). For comparison, germline gene usages of all antibodies from Genbank 283 

are also shown (green). To avoid being confounded by B-cell clonal expansion, a single clonotype 284 

from the same donor is considered as one antibody (see Methods). 285 

 286 

Figure 2. Hydrophobicity of CDR H3 sequences. (A-B) The hydrophobicity scores of (A) CDR 287 

H3 and (B) CDR H3 tip, as well as (C) the CDR H3 length are compared between antibodies to 288 

HA head and HA stem domains. The p-values were computed by two-tailed Student9s t-tests. For 289 

the boxplot, the middle horizontal line represents the median. The lower and upper hinges 290 

represent the first and third quartiles, respectively. The upper whisker extends to the highest data 291 

point within 1.5x inter-quartile range (IQR) of the third quartile, whereas the lower whisker extends 292 

to the lowest data point within 1.5x IQR of the first quartile. Each data point represents one 293 

antibody. The horizontal dotted line indicates the mean among antibodies from Genbank. 294 
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 295 

Figure 3. Antibody specificity prediction by memory B cell language model (mBLM). (A) 296 

Model architecture of mBLM is shown. Arrows indicate the information flow in the network from 297 

the language model to antibody specificity prediction, with a final output of specificity class 298 

probability. Resi Rep: residual level representation (i.e. the final-layer embeddings from pre-299 

trained mBLM). (B) Model performance of mBLM on the test set was evaluated by a normalized 300 

confusion matrix. (C) The performance of different antibody specificity prediction models was 301 

evaluated by F1 score, which represents the weighted harmonic mean of the precision and recall. 302 

CDR encoders: our previous model using a transformer encoder to encode CDR sequences [15]. 303 

ESM2: a general protein language model [18]. 304 

 305 

Figure 4. Explanation of mBLM using saliency score. (A) Saliency score for each residue in 306 

individual HA stem antibodies was shown as a heatmap. Each row represents a single HA stem 307 

antibody. X-axis represents the amino acid residue of the heavy chain. Regions corresponding to 308 

CDR H1, H2, and H3 are indicated. For visualization purpose, only 50 HA stem antibodies are 309 

shown. Six clusters of HA stem antibodies were identified using hierarchical clustering with Ward's 310 

method. (B) IGHD gene usage among antibodies in cluster 3 is shown. (C) The saliency score of 311 

each CDR H3 residue in IGHD3-9 antibodies within cluster 3 was analyzed. The frequency of 312 

each amino acid for residues with a saliency score >0.5 is shown as a sequence logo. Arrows at 313 

the bottom indicate the residues of interest. (D) Saliency scores are projected on to the structures 314 

of four antibodies in cluster 3 (PDB 4KVN [49], PDB 5KAQ [42], PDB 8GV6 [54], and PDB 3ZTJ 315 

[47]). The color scheme is same as that in panel A. (E) The relationship between saliency score 316 

and distance to the antigen (i.e. HA stem) is shown as a scatter plot. Spearman9s rank correlation 317 

coefficient (Ã) is indicated. A total of 18 structures of HA stem antibodies in complex with HA were 318 

analyzed (PDB 3FKU, 3GBN, 3SDY, 3ZTJ, 4FQI, 4KVN, 4NM8, 4R8W, 5JW3, 5KAN, 5KAQ, 319 

5K9K, 5K9O, 5K9Q, 5WKO, 6E3H, 6NZ7, and 8GV6) [7, 29, 42, 44-54]. 320 
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 321 

Figure 5. Discovery of HA stem antibody by mBLM. (A-B) mBLM was applied to predict the 322 

specificity of (A) 60 antibodies to central stem epitope (left panel) and 38 to anchor stem epitope 323 

(right panel) that were reported recently [57], as well as (B) 4,452 HA antibodies with unknown 324 

epitopes (HA unk) in the dataset that we assembled. The fraction of antibodies that were predicted 325 

to bind to HA stem domain (Predicted as HA stem), HA head domain (Predicted as HA head), or 326 

to other antigens (Not predicted as HA) is shown. (C) Using ELISA, the binding of 18 HA unk 327 

antibodies that were predicted as HA stem antibodies was tested against mini-HA, which is an H1 328 

stem-based construct [58]. Four known HA stem antibodies (051-09 5A02, 051-09 5E03, 310-329 

18C3, and FI6v3) [47, 63, 64] were included as positive control. D2 H1-1/H3-1, which is a known 330 

HA head antibody [65], was included as negative control. In this binding experiment, antibodies 331 

were not purified from the supernatant and thus their concentrations were unknown. (D) 332 

Representative 2D classes from cryo-EM analysis of 310-18A5 Fab in complex with H1N1 333 

A/Solomon Islands/3/2006 (SI06) HA are shown. Cyan arrows point to the 310-18A5 Fabs. (E) 334 

Cryo-EM 3D reconstruction of 310-18A5 Fab in complex with SI06 HA. Structural models of SI06 335 

HA (PDB 6XSK) [66] and CR9114 (PDB 4FQH) [48] were docked into the 3D reconstruction. 336 

 337 

METHODS 338 

Collections of antibody information 339 

Sequences of each human monoclonal antibody were from the original papers and/or NCBI 340 

GenBank database (Table S1 and Table S3) [38]. For influenza HA antibodies, additional 341 

information, including binding specificity, donor IDs and PDB codes, was collected from the 342 

original papers (Table S1). Putative germline genes were identified by IgBLAST [67, 68]. Some 343 

studies isolated antibodies from multiple donors, but the donor identity for each antibody was not 344 

always clear. For example, some studies mixed B cells from multiple donors before isolating 345 

individual B cell clones. Since the donor identity could not be distinguished among those 346 
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antibodies, we considered them from the same donor with <donors=, <vaccinees=, <patients=, or 347 

<cohorts= as the suffix of the donor ID. In addition, although two studies by Andrews et al. [69, 70] 348 

had shared donors from the same clinical trial (VRC 315, ClincialTrials.gov identifier 349 

NCT02206464), their antibody naming schemes were different. The IDs for these donors had a 350 

prefix <315= as described in the first study [69]. While the prefixes of antibody names from the first 351 

study matched the donor ID (e.g. antibody 315-02-1F07 was from donor 315-02) [69], some 352 

antibody names from the second study did not (e.g. antibody name with prefix <20A-518-30=) [70]. 353 

As a result, we assigned the donor ID to the antibodies from the second study by CDR H3 354 

clustering. For example, since all CDR H3 clusters that contained antibodies with prefix 20A-605-355 

30 also contained antibodies from 315-02, antibodies with prefix 20A-605-30 were assigned with 356 

a donor ID of 315-02. 357 

 358 

Identification of public clonotype 359 

Using a deterministic clustering approach, CDR H3 sequences that had the same length and at 360 

least 80% amino acid sequence identity were assigned to the same CDR H3 cluster. As a result, 361 

CDR H3 of every antibody in a CDR H3 cluster would have >20% difference in amino acid 362 

sequence identity with that of every antibody in another CDR H3 cluster. A clonotype was defined 363 

as antibodies that shared the same IGHV/IGK(L)V genes with CDR H3s from the same CDR H3 364 

cluster. A public clonotype was defined as a clonotype with antibodies from at least two donors. 365 

The epitope of each public clonotype was defined by its members. 366 

 367 

Germline gene usage analysis  368 

To avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor 369 

was considered as one antibody that represented the consensus sequence of the given clonotype. 370 

While all antibodies within a clonotype had the same IGHV/IGK(L)V genes (see above), they may 371 

not have the same IGHD gene, often due to ambiguity in IGHD-gene assignment by IgBlast. For 372 
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germline gene usage analysis, the most common IGHD gene within a clonotype from the same 373 

donor was considered. 374 

 375 

Hydrophobic score of CDR H3 376 

The hydrophobic score for a CDR H3 with a length n was computed as follow: 377 

������/����	����� = 210 × 3 ��(�����	����!)"

!#$

�  378 

where WW represents the Wimley-White whole residue hydrophobicity scale [71] and amino acidi 379 

represents the amino acid at position i. A higher hydrophobic score represents higher 380 

hydrophobicity. If the CDR H3 had an odd number of residues, the CDR H3 tip was defined as 381 

the three residues at the center of the CDR H3 sequence. If the CDR H3 had an even number of 382 

residues, the CDR H3 tip was defined as the four residues at the center of the CDR H3 sequence. 383 

The hydrophobic score of CDR H3 tip was computed in the same manner as that of CDR H3. To 384 

avoid being confounded by B-cell clonal expansion, a single clonotype from the same donor is 385 

considered as one antibody, in which the CDR H3 sequence represented the consensus among 386 

all members in the given clonotype. 387 

 388 

Datasets for model pre-training 389 

A total of 267,871 paired antibody sequences from memory B cell sequencing data were 390 

downloaded from Observed Antibody Space database (BType = Memory-B-Cells) [39]. In addition, 391 

12,487 paired antibody sequences were downloaded from NCBI GenBank database [38]. These 392 

antibody sequences were compiled into a single dataset and deduplicated by 95% sequence 393 

identity threshold. The deduplicated dataset was then partitioned into training (n = 229,773), 394 

validation (n = 15,375) and test sets (n = 8,660). The test set was generated by random sampling 395 

with different levels of maximum sequence identity to the training set (50%, 60%, 70%, 80%, and 396 

90%), allowing robust evaluation of model performance. Of note, 90% maximum sequence 397 
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identity indicated that none of the antibody sequences in the test set had >90% sequence identity 398 

with any of the sequences in the training set. In other words, the highest pairwise sequence 399 

identity between the test and training sets was 90%. To generate a balanced and robust training 400 

set, we implemented an upsampling technique based on the IGK(L)V genes. Specifically, we 401 

identified IGK(L)V genes with less than 5,000 counts and then performed random sampling to 402 

augment the dataset, ensuring each of these IGK(L)V genes had precisely 5,000 sequences. 403 

After upsampling, our training set had 467,018 paired antibody sequences. Of note, upsampling 404 

only applied to the training set, but not the validation and test sets. 405 

 406 

Sequences of antibodies with known specificities for model fine-tuning 407 

Sequences of antibodies to <HA:Head= (influenza HA head) and <HA:Stem= (influenza HA stem) 408 

were from the curated dataset in this present study. Sequences of antibodies to <S:NTD= (SARS-409 

CoV-2 spike NTD), <S:RBD= (SARS-CoV-2 spike RBD), and <S:S2= (SARS-CoV-2 spike S2) were 410 

from our previous study [15]. Sequences of antibodies to <HIV= (human immunodeficiency virus) 411 

and <Others= (none of the above) were collected from NCBI GenBank database [38]. Antibodies 412 

to <HIV= were classified as those from GenBank with the word <HIV= in the <References= or 413 

<Description= fields. Here, only heavy chain variable domain sequences were used for model fine-414 

tuning. We performed sequence clustering with varying sequence identity cutoff (50%, 60%, 70%, 415 

80%, 90%, and 95%) using cd-hit (-M 32000 -d 0 -T 8 -n 5 -aL 0.8 -s 0.95 -uS 0.2 -sc 1 -sf 1) [72]. 416 

We observed that at a cutoff of 90% sequence identity, sequences of antibodies with different 417 

specificities could be found within the same cluster, indicating that a stringent sequence identity 418 

cutoff of >90% was needed for accurate specificity prediction by traditional sequence clustering 419 

method. Based on this result, antibodies with unknown specificities, but shared >90% sequence 420 

identity with any antibody that belonged to <HA:Head=, <HA:Stem=, <HIV=, <S:NTD=, <S:RBD=, or 421 

<S:S2=, were discarded and not assigned to the <Others= category. Our final dataset for model 422 

fine-tuning contained the heavy chain sequences from a total of 388 antibodies to <HA:Head=, 509 423 
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antibodies to <HA:Stem=, 6,995 antibodies to <HIV=, 399 antibodies to <S:NTD=, 4112 antibodies 424 

to <S:RBD=, 682 antibodies to <S:S2=, and 15,043 antibodies to <Others=. This dataset was then 425 

partitioned into training, validation and test sets, with an approximate ratio of 8:1:1. To test model 426 

generalization, the test set was generated with a maximum sequence identity of 80% to the 427 

training set. In other words, the pairwise sequence identity between individual antibody 428 

sequences in the test set and the training set was at least 20% (i.e. 26 amino acids). We also 429 

applied the upsampling technique to the training set to ensure the number of antibody sequences 430 

in different specificity categories was balanced. 431 

 432 

Pre-trained memory B cell language model (mBLM) 433 

Masked Language Modeling (MLM) 434 

Masked language modeling such as Bidirectional Encoder Representations from Transformers 435 

(BERT) [73] has been shown as a powerful pretraining technique for language models, enabling 436 

contextual information to be captured and generalized to various downstream tasks. Here, mBLM 437 

was trained to predict the masked amino acids of input sequence based on surrounding context: 438 

 439 

3%&% = 2;log�(�!|
!'%

�()"*+,*) 440 

 441 

where � represents a randomly generated mask that includes 15% of positions	� in the sequence 442 

�!. The model was tasked with predicting the identity of the amino acids �! in the mask from the 443 

surrounding context �()"*+,* . Being trained to predict masked tokens, mBLM learned to 444 

understand the relationships between amino acid residues in a sequence, leading to a robust and 445 

effective language representations. 446 

 447 

mBLM architecture 448 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.11.557288doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557288
http://creativecommons.org/licenses/by/4.0/


We adapted RoBERTa [74] as the basic model architecture, with the following hyperparameters:  449 

Tokenizer: ESM2 [18] 450 

Token length: 150 451 

Number of Layers: 6 452 

Number of Attention heads: 12 453 

Embedding dimension: 768 454 

Feed-Forward Hidden Size: 3072 455 

Dropout: 0.1 456 

 457 

mBLM pre-training 458 

mBLM was pre-trained with a context size of 250 tokens, which represented the amino acid 459 

sequences of both heavy and light chain variable domains. Since the total length of heavy chain 460 

and light chain variable domains was generally less than 250 amino acids, separation tokens 461 

were added in between. We adapted tokenizer from ESM2 [18], which converted amino acids into 462 

numerical representations (a total of 33 tokens including special tokens like [MASK]). The model 463 

was trained by masked language modeling (MLM) as described above. The model was optimized 464 

using Adam with �1 = 0.9, �2 = 0.999, � = 1028, and a learning rate of 5e-05. The model was 465 

trained using Huggingface transformers toolkit and efficiently distributed across one NVIDIA A100 466 

and three NVIDIA RTX A5000. The entire pre-training process was completed within 24 hours, 467 

showcasing the efficiency and scalability of our approach. 468 

 469 

Model fine-tuning for specificity prediction 470 

Model details 471 

The final-layer embeddings from the pre-trained mBLM were extracted as the initial hidden state 472 

for the specificity prediction model. This initial state was then fed through a multi-head self-473 

attention block and a multi-layer perceptron (MLP) block. An attention block was incorporated 474 
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between the mBLM embeddings and the MLP significantly to enhance model interpretability. 475 

Within the attention block, the self-attention layer was followed by a layer normalization to 476 

normalize the output. Subsequently, an adaptive average pooling was applied to the attended 477 

representation to aggregate information across sequence dimension, resulting in a fixed size 478 

tensor with a shape that was defined by batch size and hidden dimension. The flattened tensor 479 

was then passed through the MLP block, comprising a series of fully connected layers, ReLU 480 

activation functions, and dropout operations. These layers transformed the high-dimensional 481 

representation to low-dimensional features. Finally, the output was passed through a fully 482 

connected layer with seven output units, each represented one of the seven specificity categories. 483 

 484 

15-fold cross-validation 485 

To evaluate the robustness of our mBLM for specificity prediction, we employed a 15-fold cross-486 

validation approach for fine-tuning, specificity inference, and model explanation. We randomly 487 

down/upsampled and split the data 15 times, resulting in a diverse set of sequences in each 488 

iteration. Then, the model underwent 15 rounds of training and testing. For each iteration, model 489 

performance was evaluated. The overall model performance was quantified as the average 490 

across all iterations. The final predicted class represented the mode. 491 

 492 

mBLM fine-tuning 493 

The model was trained using the PyTorch Lightning framework using Adam optimizer with a 494 

learning rate of 2e-05 and a batch size of 32. Early stopping was applied to monitor the validation 495 

loss. 496 

 497 

ESM2 fine-tuning 498 

Similar to mBLM fine-tuning, the final representations of ESM2 model (33 layers and 650 million 499 

parameters) were extracted as the initial hidden state for specificity prediction. This initial state 500 
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was then fed through the attention and MLP blocks. The model was trained using the PyTorch 501 

Lightning framework using Adam optimizer with a learning rate of 1e-04 and a batch size 32. Early 502 

stopping was applied to monitor the validation loss. The best model checkpoint was saved. 503 

 504 

Performance Metrics 505 

The fine-tuned model was evaluated using the average F1 score, which represents the weighted 506 

harmonic mean of the precision and recall, as well as confusion matrix. The calculations were 507 

conducted using sklearn metrics functions [75]. 508 

 509 

Model Interpretation 510 

Gradient-weighted Class Activation Mapping (Grad-CAM) analysis 511 

Grad-CAM, which is a class-discriminative localization technique that provides visual 512 

explanations for predictions made by CNN-based models [40], was used to identify residues in a 513 

protein sequence that are important for the prediction of a particular function [41]. To calculate 514 

Grad-CAM, we first computed the importance weights �!( for the input sequence: 515 

 516 

�!( =
1
� ; ��(

��
-

!

-	'	/

 517 

 518 

where �!( represents the global average pooling over embedding dimension � for the importance 519 

weights of residue � for predicting specificity class �. Then, the saliency map was obtained in a 520 

residue space by generating the weighted forward activation maps �! , followed by a ���� 521 

function: 522 

 523 

�!( = ����L�!(�!M 524 

 525 
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where �!( represents the relative importance (saliency score) of residue � to specificity class �. 526 

The ���� function ensured that only features with positive influence on the functional label were 527 

preserved.  528 

 529 

Saliency map clustering 530 

We applied hierarchical clustering with Ward's method to perform saliency map clustering. 531 

Euclidean distance was used to calculate the distance matrix that quantified the pairwise 532 

dissimilarity between saliency maps. We then used the linkage function to define the hierarchical 533 

relationships between the samples. Finally, clustered results were visualized using clustermap 534 

function in seaborn [76]. 535 

 536 

Sequence logo analysis 537 

To identify sequence features within each cluster, we employed a thresholding approach based 538 

on the saliency scores. Specifically, for each cluster, we computed the frequency of each amino 539 

acid for residues with a saliency score >0.5. Then, sequence logos were generated by Logomaker 540 

in Python [77]. 541 

 542 

Structural analysis of saliency score 543 

For those HA stem antibodies with structural information available, the relationship between 544 

saliency score of each residue and its minimum distance to HA was examined. Distance was 545 

calculated using the application programming interface in PyMOL (Schrödinger). 546 

 547 

Mammalian cell culture 548 

HEK293T cells were cultured in Dulbecco9s modified Eagle9s medium (DMEM high glucose; Gibco) 549 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco), 1% penicillin-550 

streptomycin (Gibco), and 1´ GlutaMax (Gibco). Cell passaging was performed every 3 to 4 days 551 
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using 0.05% Trypsin-EDTA solution (Gibco). Expi293F cells were maintained in Expi293 552 

Expression Medium (Thermo Fisher Scientific). Sf9 cells (Spodoptera frugiperda ovarian cells, 553 

female, ATCC) were maintained in Sf-900 II SFM medium (Thermo Fisher Scientific). 554 

 555 

Expression and purification of mini-HA and HA 556 

The mini-HA #4900 [58] and H1N1 A/Solomon Island/3/2006 HA were fused with N-terminal gp67 557 

signal peptide and a C-terminal BirA biotinylation site, thrombin cleavage site, trimerization 558 

domain, and a 6xHis-tag, and then cloned into a customized baculovirus transfer vector [46]. 559 

Subsequently, recombinant bacmid DNA was generated using the Bac-to-Bac system (Thermo 560 

Fisher Scientific) according to the manufacturer9s instructions. Baculovirus was generated by 561 

transfecting the purified bacmid DNA into adherent Sf9 cells using Cellfectin reagent (Thermo 562 

Fisher Scientific) according to the manufacturer9s instructions. The baculovirus was further 563 

amplified by passaging in adherent Sf9 cells at a multiplicity of infection (MOI) of 1. Recombinant 564 

mini-HA protein was expressed by infecting 1)L of suspension Sf9 cells at an MOI of 1. On day 3 565 

post-infection, Sf9 cells were pelleted by centrifugation at 4000)×)g for 25)min, and soluble 566 

recombinant mini-HA and HA were purified from the supernatant by affinity chromatography using 567 

Ni Sepharose excel resin (Cytiva) and then size exclusion chromatography using a HiLoad 16/100 568 

Superdex 200 prep grade column (Cytiva) in 20)mM Tris-HCl pH 8.0, 100)mM NaCl. The purified 569 

mini-HA protein was concentrated by Amicon spin filter (Millipore Sigma) and filtered by 0.22 µm 570 

centrifuge tube filters (Costar). Concentration of the protein was determined by nanodrop (Fisher 571 

Scientific). Proteins were subsequent aliquoted, flash frozen by dry-ice ethanol mixture, and 572 

stored at -80°C until used. 573 

 574 

Expression and purification of IgG 575 

The heavy and light chain genes of the obtained antibody were synthesized as eBlocks 576 

(Integrated DNA Technologies), and then cloned into human IgG1 and human kappa or lambda 577 
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light chain expression vectors using Gibson assembly according to a previously described method 578 

[78]. The plasmids were transiently co-transfected into HEK293T cells at a mass ratio of 2:1 579 

(HC:LC) using Lipofectamine 2000 (Thermo Fisher Scientific). On day 3 post-transfection, 580 

supernatant containing the IgG was collected for binding experiment. The expression of IgG was 581 

confirmed by SDS-PAGE gel electrophoresis and Coomassie Blue R-250 staining. Selected IgGs 582 

were purified using a CaptureSelect CH1-XL Pre-packed Column (Thermo Fisher Scientific). 583 

 584 

Expression and purification of Fab 585 

Fab heavy and light chains were cloned into phCMV3 vector. The plasmids were transiently co-586 

transfected into Expi293F cells at a mass ratio of 2:1 (HC:LC) using ExpiFectamine 293 Reagent 587 

(Thermo Fisher Scientific). After transfection, the cell culture supernatant was collected at 6 days 588 

post-transfection. The Fab was then purified using a CaptureSelect CH1-XL pre-packed column 589 

(Thermo Fisher Scientific). 590 

 591 

Enzyme-linked immunosorbent assay (ELISA) 592 

Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were utilized and coated with 100 ¿L of 593 

recombinant proteins at a concentration of 1 ¿g ml-1 in a 1× PBS solution. The coating process 594 

was performed overnight at 4°C. On the following day, the ELISA plates were washed three times 595 

with 1× PBS supplemented with 0.05% Tween 20, and then blocked using 200 ¿L of 1× PBS with 596 

5% non-fat milk powder for 2 hours at room temperature. After the blocking step, 100 ¿L of IgGs 597 

from the supernatant were added to each well and incubated for 2 hours at 37°C. The ELISA 598 

plates were washed three times to remove any unbound IgGs. Next, the ELISA plates were 599 

incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody (1:5000, 600 

Invitrogen) for 1 hour at 37°C. Subsequently, the ELISA plates were washed five times using PBS 601 

containing 0.05% Tween 20. Then, 100 ¿L of 1-Step Ultra TMB-ELISA Substrate Solution 602 

(Thermo Fisher Scientific) was added to each well. After 15 min incubation, 50 ¿L of 2)M H2SO4 603 
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solution was added to each well. The absorbance of each well was measured at a wavelength of 604 

450 nm using a Sunrise absorbance microplate reader (BioTek Synergy HTX Multimode Reader). 605 

 606 

Biolayer interferometry binding assay 607 

Binding assays were performed by biolayer interferometry (BLI) using an Octet Red96e 608 

instrument (FortéBio) at room temperature as described previously [79]. Briefly, His-tagged mini-609 

HA proteins at 0.5)¿M in 1× kinetics buffer (1× PBS, pH 7.4, 0.01% w/v BSA and 0.002% v/v 610 

Tween 20) were loaded onto anti-Penta-HIS (HIS1K) biosensors and incubated with the indicated 611 

concentrations of Fabs. The assay consisted of five steps: (1) baseline: 60)s with 1× kinetics buffer; 612 

(2) loading: 60)s with His-tagged mini-HA proteins; (3) baseline: 60)s with 1× kinetics buffer; (4) 613 

association: 60)s with Fab samples; and (5) dissociation: 60)s with 1× kinetics buffer. For 614 

estimating the exact KD, a 1:1 binding model was used. 615 

 616 

Virus neutralization assay 617 

Madin-Darby canine kidney (MDCK) cells were seeded in a 96-well, flat-bottom cell culture plate 618 

(Thermo Fisher). The next day, serially diluted monoclonal antibodies were mixed with an equal 619 

volume of virus and incubated at 37°C for 1 hour. The antibody/virus mixture was then incubated 620 

with the MDCK cells at 37°C after the cells were washed twice with PBS. Following a 1-hour 621 

incubation, the antibody/virus mixture was replaced with Minimum Essential Medium (MEM) 622 

supplemented with 25 mM of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 1 623 

¿g mL-1 of Tosyl phenylalanyl chloromethyl ketone (TPCK)-trypsin. The plate was incubated at 624 

37°C for 72 hours and the presence of virus was detected by hemagglutination assay. The results 625 

were analyzed using Prism software (GraphPad). 626 

 627 

Cryogenic electron microscopy (cryo-EM) analysis 628 
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To prepare cryoEM grid, an aliquot of 4 ¿L purified protein at ~0.5 mg mL-1 concentration with 7.5 629 

¿M lauryl maltose neopentyl glycol (LMNG) was applied to a 200-mesh Quantifoil 2Um Cu grid 630 

that was pre-treated with glow-discharge. Subsequently, the grid was blotted in a Vitrobot Mark 631 

IV machine (force = 0, time = 3 seconds), and plunge-frozen in liquid ethane. The grid was then 632 

loaded in a ThermoFisher Glacios microscope with a Volta Phase Plate and Falcon4 Direct 633 

Electron Detector. Data collection was done with Smart EPU software. Images were recorded at 634 

130,000× magnification, corresponding to a pixel size of 0.96 Å/pix at super-resolution mode of 635 

the camera. A defocus range of -0.6 ¿m to -3 ¿m was set. A total dose of 52.76 e2/Å2 of each 636 

exposure was fractionated into 40 frames. CryoEM data processing was performed with 637 

cryoSPARC v4.3.0 following regular single-particle procedures. The CryoEM experiment was 638 

performed at the UIUC Materials Research Laboratory Central Research Facilities. Statistics are 639 

provided in Table S4. Structure was visualized using UCSF ChimeraX v1.5 (UCSF).  640 

 641 

Data availability 642 

The cryoEM map of 310-18A5 Fab in complex with SI06 HA can be accessed at the Electron 643 

Microscopy Data Bank (EMDB) using accession code EMD-41849. 644 

 645 

Model and code availability 646 

Custom python scripts for all analyses and model training have been deposited to: 647 

https://github.com/nicwulab/HA_Abs. 648 

 649 
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