

1 **Interferon lambda restricts herpes simplex virus skin disease by suppressing neutrophil-
2 mediated pathology**

3

4 Running Title: IFN-λ protects mice from severe HSV skin disease

5

6 Drake T. Philip^a, Nigel M. Goins^a, Nicholas J. Catanzaro^b, Ichiro Misumi^c, Jason K. Whitmire^{ac},
7 Hannah M. Atkins^d, Helen M. Lazear^{a,#}

8

9 ^aDepartment of Microbiology & Immunology, University of North Carolina at Chapel Hill

10 ^bDepartment of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill

11 ^cDepartment of Genetics, University of North Carolina at Chapel Hill

12 ^dDepartment of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill

13

14 #Corresponding author: helen.lazear@med.unc.edu

15

16 Word count (Abstract): 174

17 Word count (Text): 10015

18

19 **ABSTRACT**

20 Type III interferons (IFN-λ) are antiviral and immunomodulatory cytokines that have been
21 best characterized in respiratory and gastrointestinal infections, but the effects of IFN-λ against
22 skin infections have not been extensively investigated. We sought to define the skin-specific
23 effects of IFN-λ against the highly prevalent human pathogen herpes simplex virus (HSV). We
24 infected mice lacking the IFN-λ receptor (*Ifnlr1*^{-/-}), both the IFN-λ and the IFN- $\alpha\beta$ receptor (*Ifnar1*^{-/-} *Ifnlr1*^{-/-}), or IFN-λ cytokines (*Ifnl2/3*^{-/-}) and found that IFN-λ restricts the severity of HSV-1 and
25 HSV-2 skin lesions, independent of a direct effect on viral load. Using conditional knockout mice,
26 we found that IFN-λ signaling in both keratinocytes and neutrophils was necessary to control HSV-
27 1 skin lesion severity, and that IFN-λ signaling in keratinocytes suppressed CXCL9-mediated
28 neutrophil recruitment to the skin. Furthermore, depleting neutrophils or blocking CXCL9
29 protected against severe HSV-1 skin lesions in *Ifnlr1*^{-/-} mice. Altogether, our results suggest that
30 IFN-λ plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology
31 during HSV infection, and suggest potential applications for IFN-λ in treating viral skin infections.

33

34 **INTRODUCTION**

35 The skin is one of the largest physiologic and immunologic barriers that separates the host
36 from its environment and continuously encounters commensal and pathogenic microbes.
37 Dysregulation of this barrier can result in inflammatory skin conditions, such as atopic dermatitis
38 (eczema), or susceptibility to viral, bacterial, and fungal infections (Handfield et al., 2018).
39 Resident and infiltrating immune cells as well as barrier-specific cytokines contribute to providing
40 a balanced immune response in the skin (Nestle et al., 2009). The skin is comprised of two layers:
41 the epidermis and dermis. The epidermis primarily consists of keratinocytes (skin epithelial cells)
42 and T cells (CD8 and $\gamma\delta$). Keratinocytes form the physical barrier of the skin but also are
43 immunologically active, coordinating resident and infiltrating leukocyte responses (Nestle et al.,
44 2009). The dermis is primarily made of fibroblasts and is surveyed by a more diverse set of

45 immune cells including macrophages, dendritic cells, granulocytes, Langerhans cells, and T cells
46 (CD8, CD4, $\gamma\delta$) (Nestle et al., 2009). Both layers of the skin act in concert to mediate immune
47 responses, using a variety of cytokines and chemokines—including interferons (IFNs)—in
48 balancing pathogen clearance with homeostasis and barrier integrity (Kobayashi et al., 2019).

49 There are three families of IFNs: type I (IFN- α/β), type II (IFN- γ), and type III (IFN- λ), which
50 are distinguished by their receptor usage (Mesev et al., 2019). IFN- α/β and IFN- γ typically mediate
51 systemic antiviral and immunomodulatory functions whereas the activity of IFN- λ is most evident
52 at epithelial barriers such as the respiratory and gastrointestinal tracts (Lazear et al., 2019). There
53 are four IFN- λ subtypes in humans (IFN- $\lambda 1-4$), whereas mice express only IFN- $\lambda 2$ and IFN- $\lambda 3$
54 (Lazear et al., 2019). All IFN- λ subtypes signal through the same heterodimeric receptor
55 comprised the IFNLR1 and IL10R β subunits (Dowling & Forero, 2022). IFN- λ intracellular
56 signaling is similar to IFN- α/β in that upon receptor binding Jak1 and Tyk2 are activated to
57 phosphorylate STAT1 and STAT2, which bind to IRF9 and translocate to the nucleus to drive
58 interferon stimulated gene (ISG) expression (Dowling & Forero, 2022). Although IFN- λ and IFN-
59 α/β canonically share the same intracellular signaling cascade and activate similar antiviral
60 transcriptional programs, there has been a growing appreciation for their different antiviral and
61 immunomodulatory functions. Their difference in function is in part due to kinetics, as IFN- α/β is
62 induced more rapidly upon infection whereas IFN- λ is produced later and for longer throughout
63 infection (Lazear et al., 2019; Mesev et al., 2019). Further, whereas the IFN- α/β receptor
64 (IFNAR1/IFNAR2 heterodimer) is expressed ubiquitously, IFNLR1 expression is restricted
65 primarily to epithelial cells and select leukocytes such as neutrophils, dendritic cells, and
66 macrophages (Lazear et al., 2019). The high expression of IFNLR in epithelial tissues has led to
67 substantial characterization of IFN- λ antiviral and immunomodulatory functions at epithelial
68 barriers including the respiratory tract and gastrointestinal tract. However, relatively little is known
69 about the role of IFN- λ in the skin, even though the skin is an important epithelial barrier and home
70 to a variety of IFN- λ producing and responding cell types.

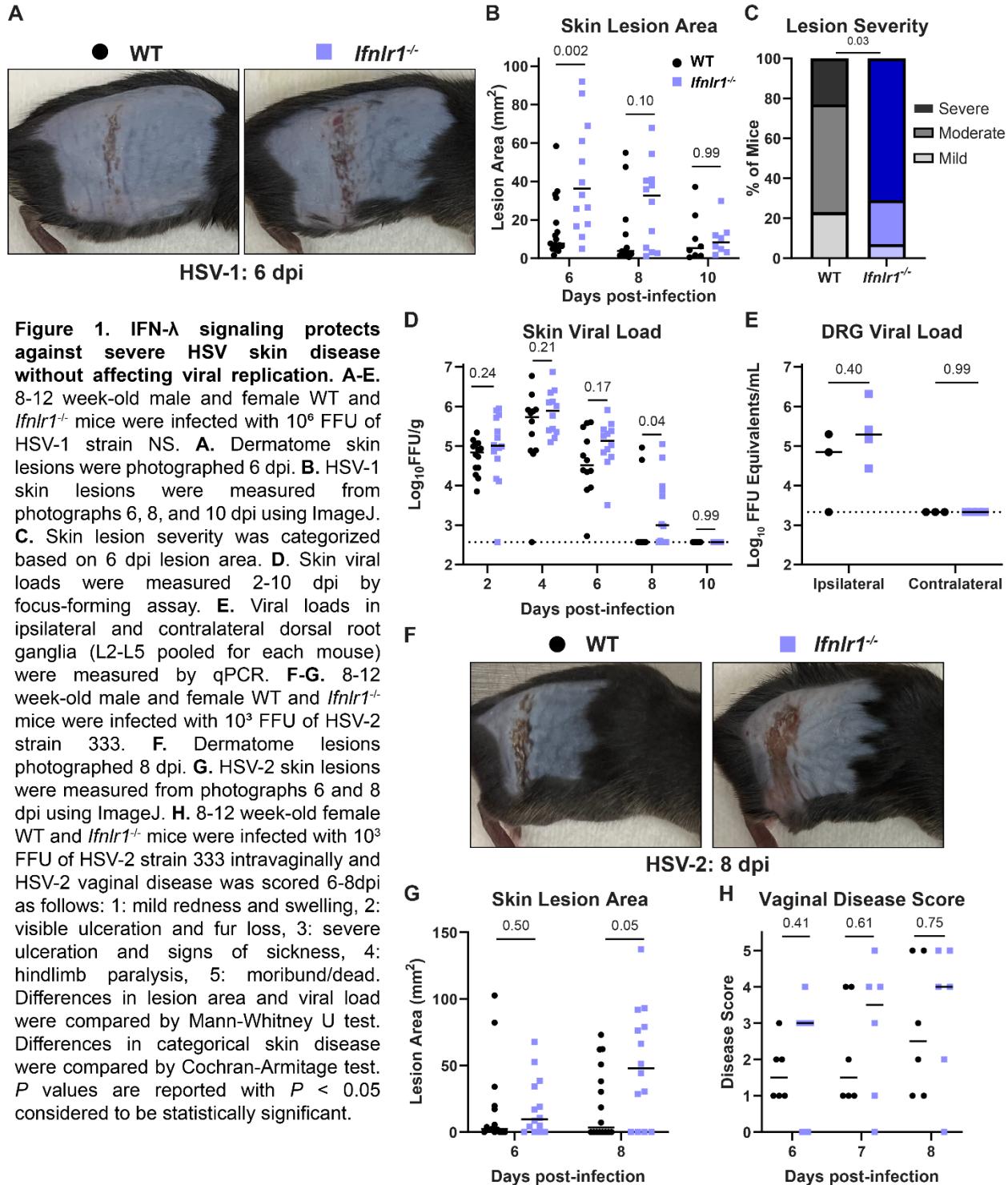
71 Therefore, we sought to investigate the functions of IFN-λ signaling in the skin using a
72 highly prevalent human skin pathogen, herpes simplex virus (HSV-1 and HSV-2). HSV-1 primarily
73 manifests as orofacial or genital lesions but severe complications of HSV-1 infection include
74 herpes encephalitis, herpes keratitis, and eczema herpeticum (Kollias et al., 2015). HSV-2 most
75 commonly causes genital herpes and can cause severe disease when transmitted to neonates at
76 delivery (Bradley et al., 2014). HSV-1 and HSV-2 establish life-long persistent (latent) infections
77 in sensory neurons that are never cleared by the immune system; viral reactivation from latency
78 results in recurrent epithelial lesions (cold sores, genital herpes) and transmission to new
79 individuals. Over half of the US adult population are seropositive for HSV-1 and 15% are
80 seropositive for HSV-2 (Bradley et al., 2014). The disease associated with HSV-1 infection, in
81 both mice and humans, is partly immune-mediated (Kollias et al., 2015) but the viral and host
82 factors that drive disease severity are not fully understood, including the effects of IFN-λ signaling
83 in HSV-1 skin infection.

84 Here, we report a protective role for IFN-λ signaling in restricting severe HSV-1 skin
85 disease. Using a mouse model of HSV-1 skin infection, we found that IFN-λ-dependent protection
86 from severe HSV-1 skin disease requires signaling in both keratinocytes and leukocytes (including
87 neutrophils). We found that neutrophils are the primary leukocytes recruited to the skin during
88 HSV-1 infection, and that mice lacking IFN-λ signaling (*Ifnlr1*^{-/-}) have more skin-infiltrating
89 neutrophils compared to wild-type mice. We found a greater proportion of neutrophils expressing
90 the tissue homing integrin leukocyte function associated antigen- 1 (LFA-1) in *Ifnlr1*^{-/-} compared
91 to wild-type mice, suggesting that *Ifnlr1*^{-/-} neutrophils are highly recruited to and retained in HSV-
92 1 infected skin. Furthermore, we showed that depleting neutrophils prevented the development
93 of severe HSV-1 skin lesions in *Ifnlr1*^{-/-} mice and that IFN-λ signaling in keratinocytes limits
94 CXCL9-mediated neutrophil recruitment to the skin. Altogether, our results suggest that IFN-λ
95 plays an immunomodulatory role in the skin that restricts neutrophil-mediated pathology during
96 HSV infection and suggest potential applications for IFN-λ in treating viral skin infections.

97

98 **RESULTS**

99 *Defining HSV-1 skin lesion severity in the mouse flank infection model*


100 Flank scarification is a well-established mouse model for studying HSV-1 pathogenesis
101 (Simmons & Nash, 1984; van Lint et al., 2004; Wang et al., 2019). In the standard model, HSV-1
102 is scratched into depilated flank skin using a 27 gauge needle (Simmons & Nash, 1984; van Lint
103 et al., 2004; Wang et al., 2019). The virus replicates at the inoculation site, infects innervating
104 sensory neurons and traffics in a retrograde direction to the neuron cell body located in the dorsal
105 root ganglia (DRG), then traffics in an anterograde direction, returning to the entire dermatome
106 innervated by that DRG, producing a dermatome skin lesion (Fig. S1A) (Wang et al., 2019). To
107 improve the reproducibility of this infection model, we tested two modifications to the commonly
108 used procedures. First, we depilated mice by manual plucking, rather than shaving plus chemical
109 depilation (e.g. Nair cream). Plucking re-sets the hair cycle (Kobayashi et al., 2019), producing
110 an immunologically uniform environment across the depilated skin, and also is faster and easier
111 than shaving plus chemical depilation. We found no significant difference in dermatome lesion
112 area for mice depilated by plucking compared to shaving plus Nair (Fig. S1B), suggesting that the
113 method of depilation does not impact HSV-1 skin infection in this model, so further experiments
114 depilated mice by plucking. Next, we compared three methods for disrupting the skin barrier, as
115 HSV-1 does not efficiently infect intact skin. We applied 10^6 focus-forming units (FFU) of HSV-1
116 (strain NS) onto depilated flank skin and abraded the inoculation site skin by i) 40 gentle scratches
117 with a 27G needle, ii) 10 closely-spaced punctures with a Quintip skin test (allergy needle), or iii)
118 a single puncture with a Greer pick skin test, and measured viral loads in dermatome skin at 6
119 days post-infection (dpi). We found that skin viral loads corresponded to the extent of skin barrier
120 disruption, with needle scarification producing a higher median viral load than a Quintip puncture
121 (5.0 vs. 4.2 Log_{10} FFU/g) and no virus detected after a Greer pick puncture (Fig. S1C). Although
122 needle scarification produced higher median viral loads, there was greater mouse-to-mouse

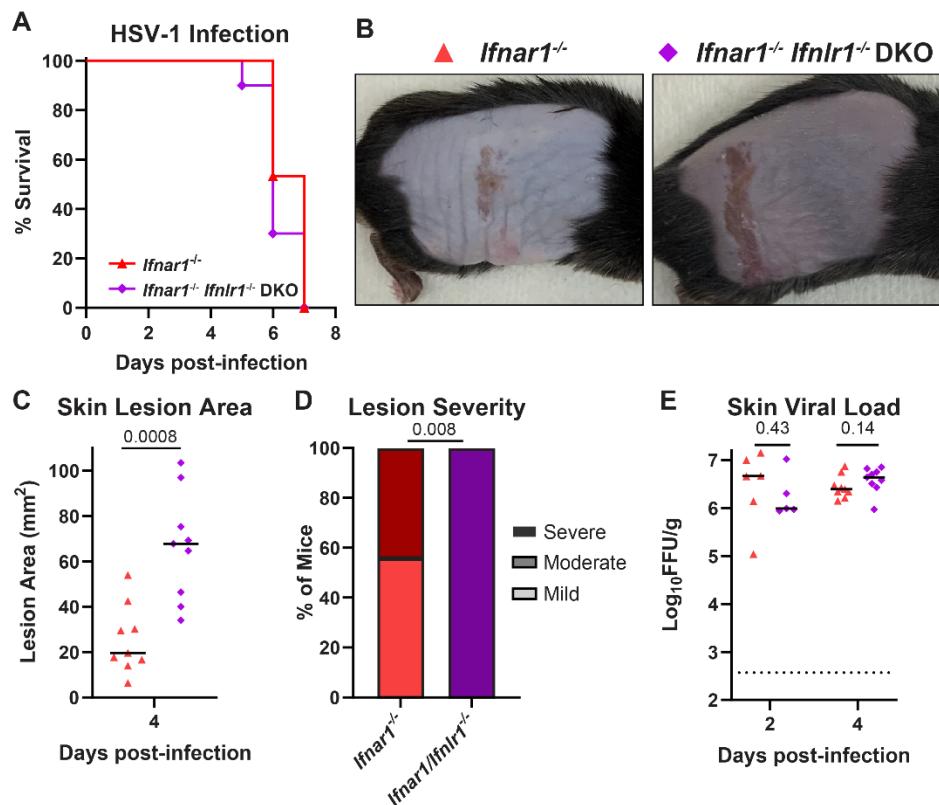
123 variability compared to Quintip puncture (standard deviation (SD) 1.1 vs 0.7 Log₁₀ FFU/g) and we
124 and others have observed substantial operator-to-operator variability with needle scarification.
125 Further, we found no difference in median lesion area between needle scarification and Quintip
126 puncture (Fig. S1D); therefore, we used Quintip puncture to disrupt the skin barrier for further
127 experiments.

128 We also sought to define a categorical system for classifying dermatome lesions as mild,
129 moderate, or severe to better describe skin lesion phenotypes. We infected 20 wild-type mice with
130 HSV-1, measured dermatome lesion area at 6 dpi, and found a mean area of 11 mm² (SD 12
131 mm²) (Fig. S1E). We defined severe lesions as those with area >1 SD above the mean (>23
132 mm²), mild lesions as those with area smaller than the average size of the inoculation site (<5
133 mm²), and moderate lesions as 5-23 mm² (Fig. S1F-G). We used both lesion area and categorical
134 severity score to assess dermatome lesions in further experiments. Altogether, the flank infection
135 model provides a robust system for assessing HSV-1 pathogenesis in the skin.

136 *IFN-λ signaling protects mice from severe HSV skin disease*

137 IFN-λ provides antiviral protection at epithelial barriers such as the respiratory and
138 gastrointestinal tracts (Broggi et al., 2020), but the effects of IFN-λ on viral infection in the skin
139 have not been extensively investigated. To address this gap in the field, we infected wild-type
140 mice and mice that lack the IFN-λ receptor (*Ifnlr1*^{-/-}) with 10⁶ FFU of HSV-1 and evaluated skin
141 lesion area, severity, and viral load 2-10 dpi (Fig. 1A-D). Experimental mice were generated by
142 crossing mice with a floxed allele of the IFN-λ receptor (*Ifnlr1*^{fl/fl}) with mice hemizygous for Cre
143 recombinase expression under a ubiquitous promoter (*ActB*-Cre), producing littermate Cre- (wild-
144 type) and Cre+ (*Ifnlr1*^{-/-}) mice. Genotyping was performed retrospectively after data analysis and
145 experiments were conducted blinded to the *Ifnlr1* status of each mouse. We found that *Ifnlr1*^{-/-}
146 mice developed significantly larger skin lesions than wild-type mice at 6 dpi, the time of peak

147 disease (median lesion area 36.2 vs 7.7 mm², $P < 0.01$; Fig. 1B), and that a greater proportion of
 148 *Ifnrl1^{-/-}* mice developed severe skin lesions compared to wild-type mice (71% vs 23%, $P < 0.05$;
 149 Fig. 1C). There was no significant difference in lesion area between *Ifnrl1^{-/-}* and wild-type mice at


150 8 or 10 dpi (Fig. 1B). We measured viral loads by focus-forming assay from *Ifnlr1^{-/-}* and wild-type
151 skin lesions and from infected skin prior to lesion development (Fig. 1D). We found no significant
152 differences in skin viral load between *Ifnlr1^{-/-}* and wild-type mice at 2, 4, or 6 dpi (Fig. 1D),
153 suggesting that IFN-λ signaling does not restrict HSV-1 replication in the skin. *Ifnlr1^{-/-}* mice
154 sustained detectable viral loads in the skin longer than wild-type mice (8 of 12 *Ifnlr1^{-/-}* mice positive
155 at 8 dpi vs 2 of 12 wild-type mice, $P < 0.05$), but *Ifnlr1^{-/-}* and wild-type mice both cleared the
156 infection from the skin by 10 dpi (Fig. 1D). To determine whether differences in dermatome skin
157 lesions resulted from differences in sensory neuron infection, we infected wild-type and *Ifnlr1^{-/-}*
158 mice, harvested DRG at 6 dpi, and quantified viral loads by qPCR. We found no significant
159 differences in HSV-1 viral genomes in DRG 6 dpi (Fig. 1E). Altogether, these results suggest that
160 IFN-λ restricts HSV-1 skin lesion severity independently of a direct effect on viral replication.

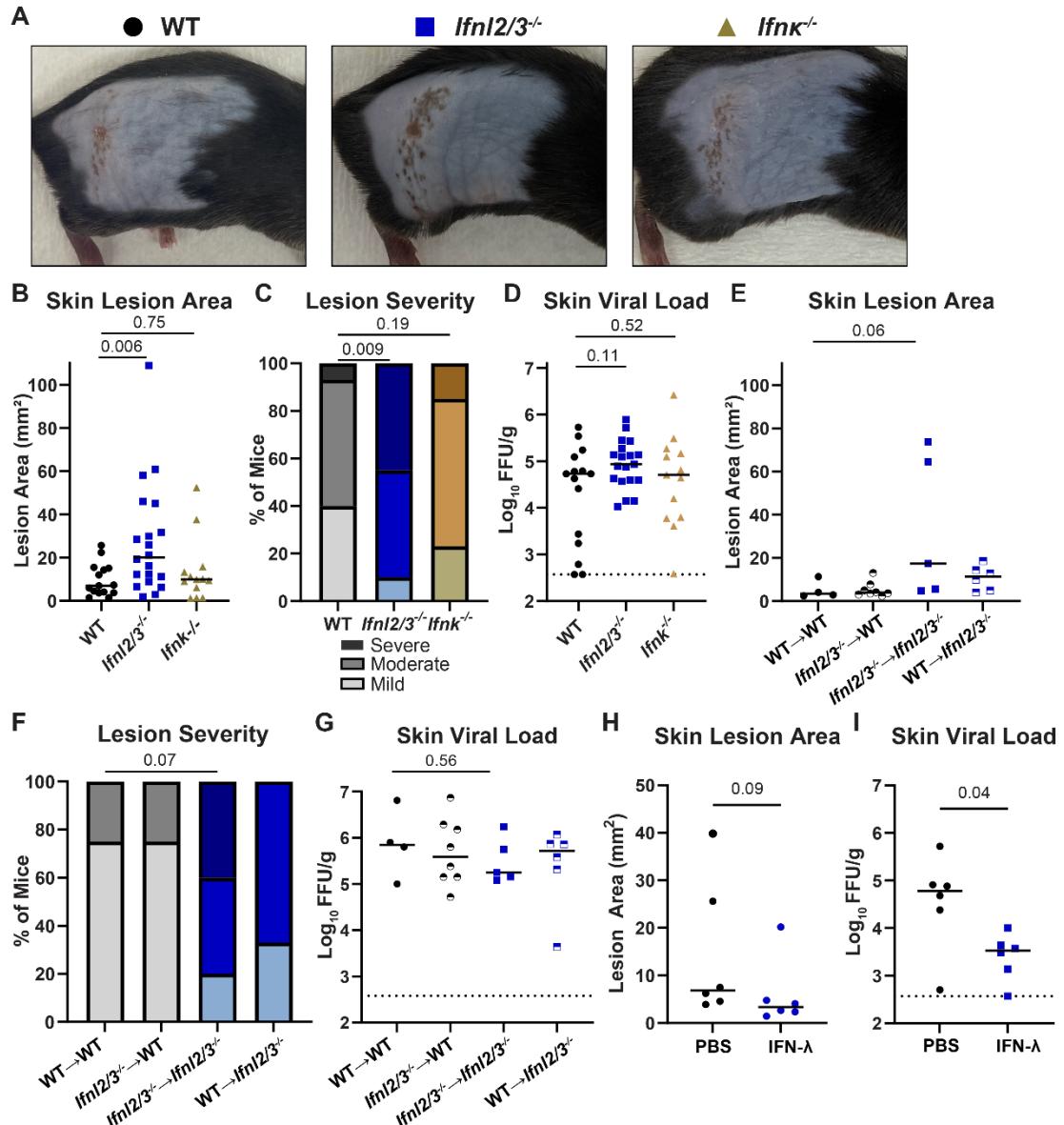
161 We next tested whether IFN-λ had a similar protective effect against skin lesions caused
162 by HSV-2. We infected mice with 1000 FFU of HSV-2 (strain 333) and measured dermatome
163 lesion areas 6 and 8 dpi (Fig. 1F-G). The kinetics of HSV-2 infection were slower, with peak skin
164 lesion area at 8 dpi, compared to 6 dpi for HSV-1, even though HSV-2 (333) was more virulent
165 than HSV-1 (NS) (~75% mortality at an inoculation dose of 1000 FFU of HSV-2 (333) compared
166 to ~0% mortality at an inoculation dose of 10^6 FFU of HSV-1 (NS). Similar to HSV-1, *Ifnlr1^{-/-}* mice
167 developed significantly larger lesions compared to wild-type mice (median lesion area at 8 dpi
168 47.8 mm^2 vs 3.6 mm^2 , $P < 0.05$; Fig. 1G). Despite the slower kinetics of HSV-2 skin disease, the
169 peak area of HSV-2 lesions in *Ifnlr1^{-/-}* mice was larger than HSV-1 lesions (median lesion area
170 47.8 mm^2 at 8 dpi vs 36.2 mm^2 at 6 dpi; Fig. 1B and 1G). We next asked whether IFN-λ protected
171 against HSV disease at other epithelial sites. Although both HSV-1 and HSV-2 infect the genital
172 tract in humans and mice, HSV-1 does not cause overt vaginal disease in mice. Therefore, we
173 used HSV-2 to assess the effects of IFN-λ during vaginal infection. We found no significant
174 difference between *Ifnlr1^{-/-}* and wild-type vaginal disease severity 6-8 dpi (Fig. 1H). After 8 dpi,
175 mice either began to recover or were euthanized due to neurologic disease signs (hindlimb

176 paralysis and hunching). Altogether these results show that IFN- λ protects against severe skin
177 disease caused by both HSV-1 and HSV-2.

178 *The protective effect of IFN- λ in the skin does not require IFN- α/β signaling*

179 IFN- λ and IFN- $\alpha\beta$ signal through distinct receptors but canonically activate an overlapping
180 JAK/STAT signaling cascade and transcriptional response (Dowling & Forero, 2022). To
181 determine whether the protective effects of IFN- λ in the skin acted via cross-talk with IFN- α/β
182 signaling, we infected mice lacking the IFN- $\alpha\beta$ receptor (*Ifnar1*^{-/-}) or both the IFN- $\alpha\beta$ and IFN- λ
183 receptors (*Ifnar1*^{-/-} *Ifnlr1*^{-/-} double-knockout, DKO) with HSV-1 and evaluated survival, skin lesion
184 area, severity, and viral loads (Fig. 2A-E). As expected, in the absence of IFN- $\alpha\beta$ signaling, the

Figure 2. The protective effect of IFN- λ in the skin does not require IFN- α/β signaling. 8-12 week-old *Ifnar1*^{-/-} and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO male and female mice were infected with 10^6 FFU of HSV-1. **A.** Lethality was monitored daily (n=15 *Ifnar1*^{-/-} and 10 DKO mice). **B.** Dermatome skin lesions were photographed 4 dpi. **C.** Skin lesion areas were measured from photographs 4 dpi using ImageJ. **D.** Skin lesion severity was categorized based on 4 dpi lesion area. **E.** Skin viral loads were measured 2 and 4 dpi by focus-forming assay. Survival differences were compared by Mantel-Cox Log-Rank test. Differences in lesion area and viral load were compared by Mann-Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage test. *P* values are reported with *P* < 0.05 considered to be statistically significant.


185 kinetics of HSV-1 infection were faster and disease was more severe, with all mice succumbing
186 5-8 dpi (Fig. 2A). At 4 dpi, the first day mice developed lesions, *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice
187 developed significantly larger skin lesions compared to *Ifnar1*^{-/-} mice (median lesion area 67.8
188 mm² vs 19.7 mm², *P* < 0.001; Fig. 2B-C) and a significantly larger proportion developed severe
189 lesions (100% vs. 44%, *P* < 0.001; Fig. 2D). We found no significant difference in skin viral loads
190 at 2 dpi or 4 dpi (Fig. 2E). Altogether, these data indicate that IFN-λ limits severe HSV-1 skin
191 disease independently of IFN-α/β and independent of a direct antiviral effect on HSV-1 replication
192 in the skin.

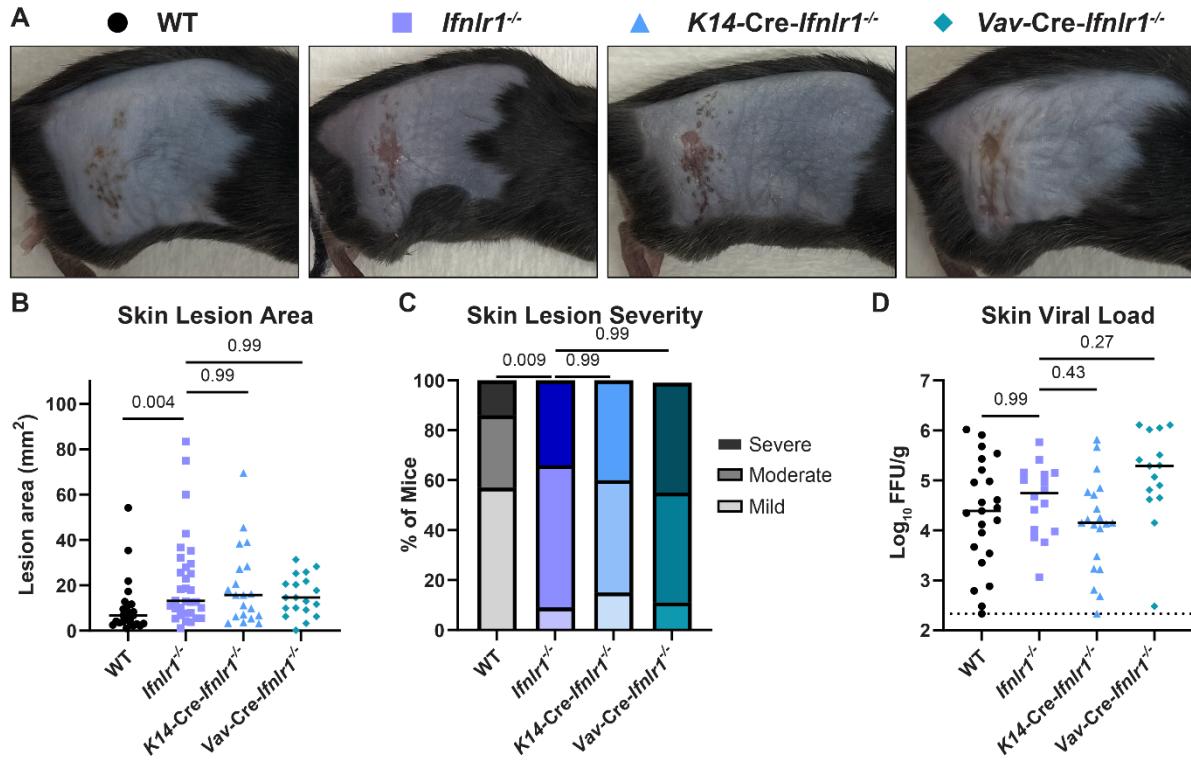
193 *IFN-λ cytokines protect against severe HSV-1 skin disease*

194 We next asked which cell types produced the IFNs responsible for controlling HSV-1 skin
195 disease. To determine whether mice lacking IFN-λ cytokines recapitulate the phenotype of mice
196 lacking the IFN-λ receptor, we infected mice lacking IFN-λ2 and IFN-λ3 (*Ifnl2/3*^{-/-}), the only IFN-λ
197 cytokines produced in mice (Peterson et al., 2019), and measured skin lesion area, disease
198 severity, and skin viral loads (Fig. 3A-D). At 6 dpi, *Ifnl2/3*^{-/-} mice developed significantly larger skin
199 lesions compared to wild-type mice (median area 20.2 mm² vs 7.1 mm², *P* < 0.01; Fig. 3B), and
200 a significantly higher proportion of *Ifnl2/3*^{-/-} mice developed severe skin lesions compared to wild-
201 type mice (45% vs 15%, *P* < 0.01, Fig. 3C) with no significant difference in skin viral loads (Fig.
202 3D). Altogether, the phenotype of mice lacking IFN-λ cytokines was consistent with the phenotype
203 of mice lacking the IFN-λ receptor, providing an independent line of evidence that IFN-λ signaling
204 restricts severe HSV-1 skin disease.

205 Although some type I IFNs, such as IFN-α and IFN-β, can be produced by many cell types,
206 IFN-κ is a type I IFN that is thought to be produced predominantly by keratinocytes (Gharaee-
207 Kermani et al., 2022; LaFleur et al., 2001). To determine whether a keratinocyte-specific type I
208 IFN might play a role in controlling skin disease caused by HSV-1, we infected *Ifnk*^{-/-} mice.
209 We found no significant differences in lesion area, disease severity, or skin viral loads between

210 *Ifnk^{-/-}* mice and wild-type mice (Fig. 3A-D), suggesting that, despite its keratinocyte-specific
 211 nature, IFN- κ does not play a key role controlling HSV-1 infection in the skin.

Figure 3. IFN-λ cytokines protect against severe HSV-1 skin disease. A-D. 8-12 week-old WT, *Ifnl2/3^{-/-}*, and *Ifnk^{-/-}* male and female mice were infected with 10^6 FFU of HSV-1. **A.** Dermatome skin lesions were photographed 6 dpi. **B.** Skin lesion areas were measured from photographs 6 dpi using ImageJ. **C.** Skin lesion severity was categorized based on 6 dpi lesion area. **D.** Skin viral loads were measured 6 dpi by FFA. **E-G.** 8 week-old WT and *Ifnl2/3^{-/-}* male and female mice were lethally irradiated and transfused with 10^7 bone marrow cells from WT or *Ifnl2/3^{-/-}* donors. 10 weeks later, mice were infected with 10^6 FFU of HSV-1. **E.** Skin lesion areas were measured from photographs 6 dpi using ImageJ. **F.** Skin lesion severity was categorized based upon 6 dpi lesion area. **G.** Skin viral loads were measured 6 dpi by FFA. **H-I.** 8-12 week-old WT male and female mice were depilated and then topically treated with 5 μ g of recombinant murine IFN-λ3 or PBS. 24 hours later, mice were infected with 10^6 FFU of HSV-1 at the treated site. **H.** Skin lesion areas were measured from photographs 6 dpi using ImageJ. **I.** Skin viral loads were measured 6 dpi by FFA. Differences in lesion area and viral load were compared by Mann-Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage test. *P* values are reported with *P* < 0.05 considered to be statistically significant.


212 To determine the source of protective IFN-λ during HSV-1 skin infection, we used bone
213 marrow chimeras between wild-type and *Ifnl2/3*^{-/-} mice, generating mice that lacked the ability to
214 produce IFN-λ2/3 in either their hematopoietic or stromal compartments. Due to a lack of
215 antibodies to detect IFN-λ, we used PCR genotyping to confirm effective bone marrow
216 engraftment in recipients. We then infected IFN-λ chimeric mice with HSV-1 and evaluated skin
217 disease 6 dpi (Fig 3E). *Ifnl2/3*^{-/-} mice receiving *Ifnl2/3*^{-/-} bone marrow showed a trend toward larger
218 lesions and more severe disease than wild-type mice receiving wild-type bone marrow (median
219 area 17.3 mm² vs 3.5 mm², $P = 0.06$; Fig. 3E), consistent with our observations in non-irradiated
220 mice. However, we found that mice retaining IFN-λ production in either their hematopoietic
221 compartment or their stromal compartment were protected from severe HSV-1 skin disease (Fig.
222 3F), suggesting that multiple cell types can produce protective IFN-λ during HSV-1 skin infection.
223 As in our previous experiments, the effects of IFN-λ on skin lesion severity were independent of
224 an effect on viral load (Fig. 3G).

225 Exogenous IFN-λ treatment has shown therapeutic potential against various viral
226 infections and autoimmune diseases (Blazek et al., 2015; Dinnon et al., 2020; Feld et al., 2021;
227 Flisiak et al., 2016; Muir et al., 2014), therefore, we sought to determine whether topical
228 administration of IFN-λ could limit HSV-1 infection and skin lesions. We depilated mice two days
229 prior to infection, pretreated topically with 5 µg of IFN-λ and infected with HSV-1 on the treated
230 site one day later. We found a modest decrease in lesion areas in IFN-λ pretreated mice at 6 dpi
231 compared to PBS-pretreated mice (median area 3.4 mm² vs 6.9 mm², $P = 0.09$; Fig. 3G).
232 Additionally, we found that viral loads at 6 dpi were significantly reduced in IFN-λ pretreated mice
233 compared to PBS-pretreated mice (median viral load 3.53 Log₁₀ FFU/g vs 4.78 Log₁₀ FFU/g, $P <$
234 0.05; Fig. 3H). Altogether, these data indicate that exogenous prophylactic administration of IFN-
235 λ can limit severe HSV-1 skin disease, suggesting potential opportunities for therapeutic
236 interventions.

237 *IFN-λ signaling in both keratinocytes and leukocytes is necessary to restrict severe HSV-1 skin*
238 *disease*

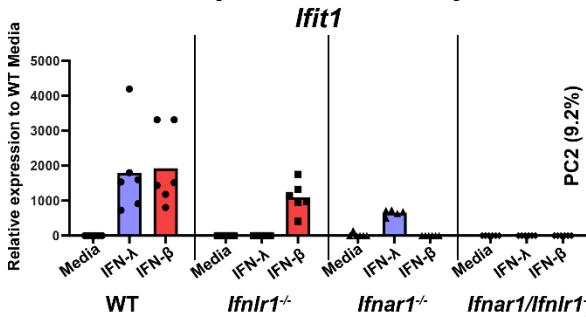
239 The skin is comprised of diverse cell types including keratinocytes and resident and
240 infiltrating leukocytes. To determine which IFN-λ responsive cell types contribute to controlling
241 HSV-1 skin infection, we used conditional knockout mice lacking IFN-λ signaling in keratinocytes
242 (*K14-Cre-Ifnlr1*^{-/-}) or leukocytes (*Vav-Cre-Ifnlr1*^{-/-}). These mice were bred as Cre hemizygotes,
243 generating littermate Cre- controls (wild-type) and were genotyped retrospectively, allowing
244 experiments to be performed blinded to the *Ifnlr1* status of each mouse. *Vav-Cre-Ifnlr1*^{-/-} mice
245 have been previously reported (Baldridge et al., 2017; Casazza et al., 2022); however, to our
246 knowledge this is the first derivation of *K14-Cre-Ifnlr1*^{-/-} mice. To validate conditional depletion of
247 the *Ifnlr1* in these mice, we used PCR genotyping in specific tissues in wild-type (Cre-) and *K14-*
248 *Cre-Ifnlr1*^{-/-} (Cre+) mice and found Cre-mediated rearrangement of the *Ifnlr1*^{ff} allele only in
249 epithelial tissues (Fig. S2). Conditional knockout mice were compared to *Ifnlr1*^{-/-} mice generated
250 by crossing *Ifnlr1*^{ff} mice to mice expressing Cre recombinase under a CMV promoter and
251 subsequently bred as knockout x knockout.

252 We infected wild-type, *Ifnlr1*^{-/-}, *K14-Cre-Ifnlr1*^{-/-}, and *Vav-Cre-Ifnlr1*^{-/-} mice with HSV-1 and
253 evaluated skin lesion area, disease severity, and viral loads 6 dpi (Fig. 4A-D). We found that *Ifnlr1*^{-/-}
254 mice developed significantly larger lesions than wild-type mice (median area 13.1 mm² vs 6.7
255 mm², *P* < 0.01) (Fig. 4B) and a greater proportion of these mice developed severe skin disease
256 (34% vs 14%, *P* < 0.01) (Fig. 4C), further supporting a role for IFN-λ in controlling severe HSV-1
257 skin disease in an independent line of *Ifnlr1*^{-/-} mice compared to those used in our earlier
258 experiments (Fig. 1). We found that mice lacking IFN-λ signaling exclusively in keratinocytes or
259 in leukocytes developed skin lesions similar in size to *Ifnlr1*^{-/-} mice (median area 15.7 mm², 14.6
260 mm², and 13.1 mm², *P* > 0.05) (Fig. 4C) and a similar proportion developed severe lesions (40%,
261 44%, 34%, *P* > 0.05) (Fig. 4D). We found no significant differences in skin viral loads comparing
262 *Ifnlr1*^{-/-} mice to wild-type or comparing conditional knockouts to *Ifnlr1*^{-/-} (Fig. 4D). Altogether, these

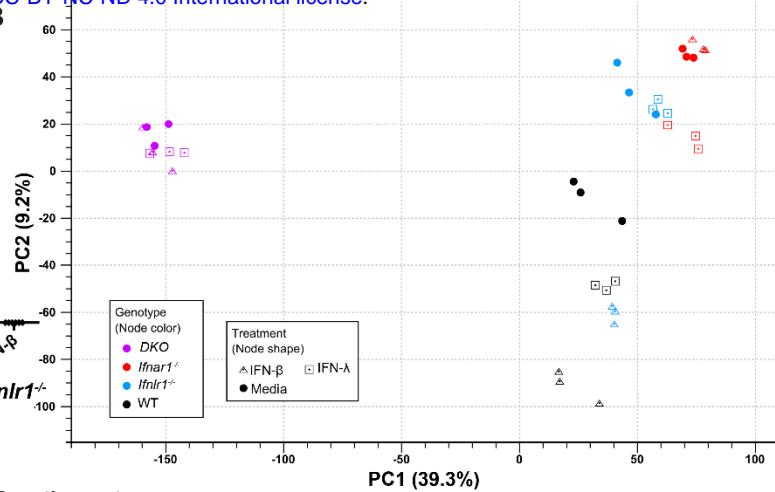
Figure 4. IFN-λ signaling in both keratinocytes and leukocytes is necessary to restrict severe HSV-1 skin disease. 8-12 week-old male and female WT, *Ifnrl1*^{-/-}, *K14-Cre-Ifnrl1*^{-/-}, and *Vav-Cre-Ifnrl1*^{-/-} mice were infected with 10⁶ FFU of HSV-1. **A.** Dermatome skin lesions photographed were 6 dpi. **B.** Skin lesion areas were measured from photographs 6 dpi using ImageJ. **C.** Skin lesion severity was categorized based on 6 dpi lesion area. **D.** Skin viral loads were measured 6 dpi by FFA. Differences in lesion area and viral load were compared by Mann-Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage test. P values are reported with $P < 0.05$ considered to be statistically significant.

263 data indicate that IFN-λ signaling in both keratinocytes and leukocytes is necessary to control
 264 severe HSV-1 skin disease.

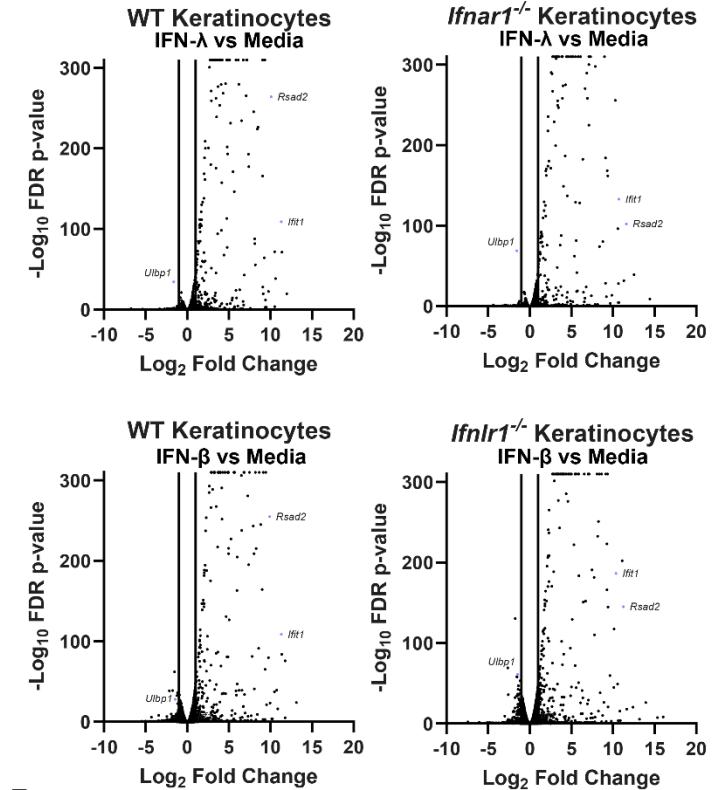
265 *IFN-λ signaling in keratinocytes differentially regulates inflammatory genes, including CXCL9*

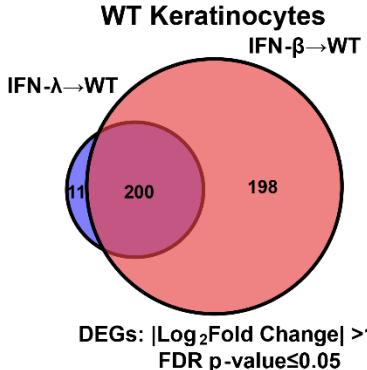

266 Because we found that IFN-λ signaling in both keratinocytes and leukocytes was
 267 necessary to control HSV-1 skin lesion severity, we next asked whether this was due to crosstalk
 268 between keratinocytes and leukocytes. To understand how IFN-λ could be mediating signaling
 269 between epithelial cells and immune cells, we first generated IFN receptor knockout A549 cells,
 270 a human lung epithelial cell line. We treated *IFNLR1* KO, *IFNAR1* KO, or nontargeting control
 271 (RenLuc) A549 cells with recombinant IFN-β or IFN-λ and measured induction of the ISG *IFIT1*
 272 by qRT-PCR. As expected, *IFNLR1* KO cells responded to IFN-β but not IFN-λ and *IFNAR1* KO
 273 cells responded to IFN-λ but not IFN-β (Fig. S4A). We then treated control and IFN receptor KO

274 cells with 50 ng/mL IFN-λ, 5 ng/mL IFN-β, or media alone for 8 hours and performed bulk RNAseq
275 (Fig. S4B-F). We found that the transcriptional response after IFN-λ treatment in A549 cells was
276 modest compared to IFN-β (Supplementary Table 1), consistent with prior studies (Coldbeck-
277 Shackley et al., 2023; Zhou et al., 2007). However, prior studies that used primary cells rather
278 than cell lines found more robust transcriptional responses induced by IFN-λ (Caine et al., 2019;
279 Galani et al., 2017). We therefore investigated IFN-λ induced transcriptional responses in primary
280 keratinocytes.


281 To define the IFN-λ specific response in keratinocytes and understand how IFN-λ could
282 be signaling through keratinocytes to mediate their crosstalk with leukocytes, we generated
283 primary keratinocytes from wild-type, *Ifnar1*^{-/-}, *Ifnlr1*^{-/-}, and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice, and treated
284 them with 5 ng IFN-λ, 5 ng IFN-β, or media for 24 hours. We first measured induction of *Ifit1* by
285 qRT-PCR. As expected, IFN-β did not induce a response in *Ifnar1*^{-/-} cells, IFN-λ did not induce a
286 response in *Ifnlr1*^{-/-} cells, and neither IFN induced a response in *Ifnar1*^{-/-} *Ifnlr1*^{-/-} cells (Fig. 5A).
287 We then performed bulk RNAseq with the goal of identifying IFN-λ-specific antiviral inflammatory
288 mediators. By principal component analysis, triplicate samples clustered together, but different
289 genotypes were distinct even without IFN treatment, suggesting differences in tonic IFN signaling
290 in keratinocytes (Fig 5B). While the IFN-β response was largely unchanged in *Ifnlr1*^{-/-} cells
291 compared to wild-type, the IFN-λ response was diminished in *Ifnar1*^{-/-} cells by both qRT-PCR (Fig.
292 5A) and principal component analysis (Fig. 5B), suggesting cross-talk between IFN-λ and IFN-β
293 signaling in keratinocytes as well as in A549 cells (Fig. S4B). Although the IFN-λ response
294 generally is reported to be less potent than the IFN-α/β response (Fig. S4) (Lazear et al., 2019),
295 we found that many ISGs (including *Ifit1* and *Rsad2*) were induced to a similar magnitude by IFN-
296 λ and IFN-β (Fig. 5A, C). We found a subset of ISGs in primary keratinocytes to be differentially
297 induced by IFN-λ but not IFN-β (Fig. 5D). However, upon inspecting the IFN-λ-specific gene list

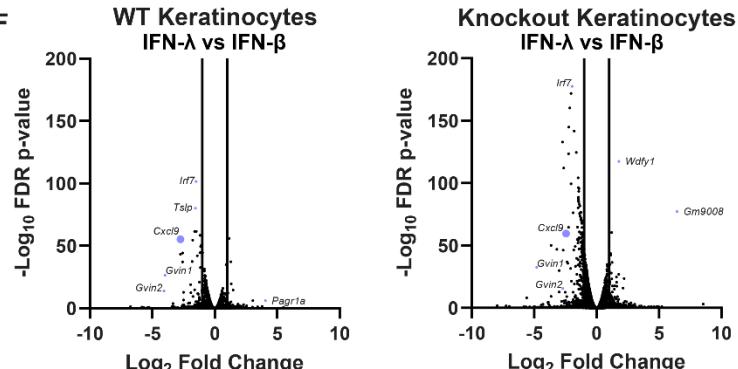
A


Primary Mouse Keratinocytes


B

C

D



DEGs: $|\text{Log}_2\text{Fold Change}| > 1$
FDR p-value ≤ 0.05

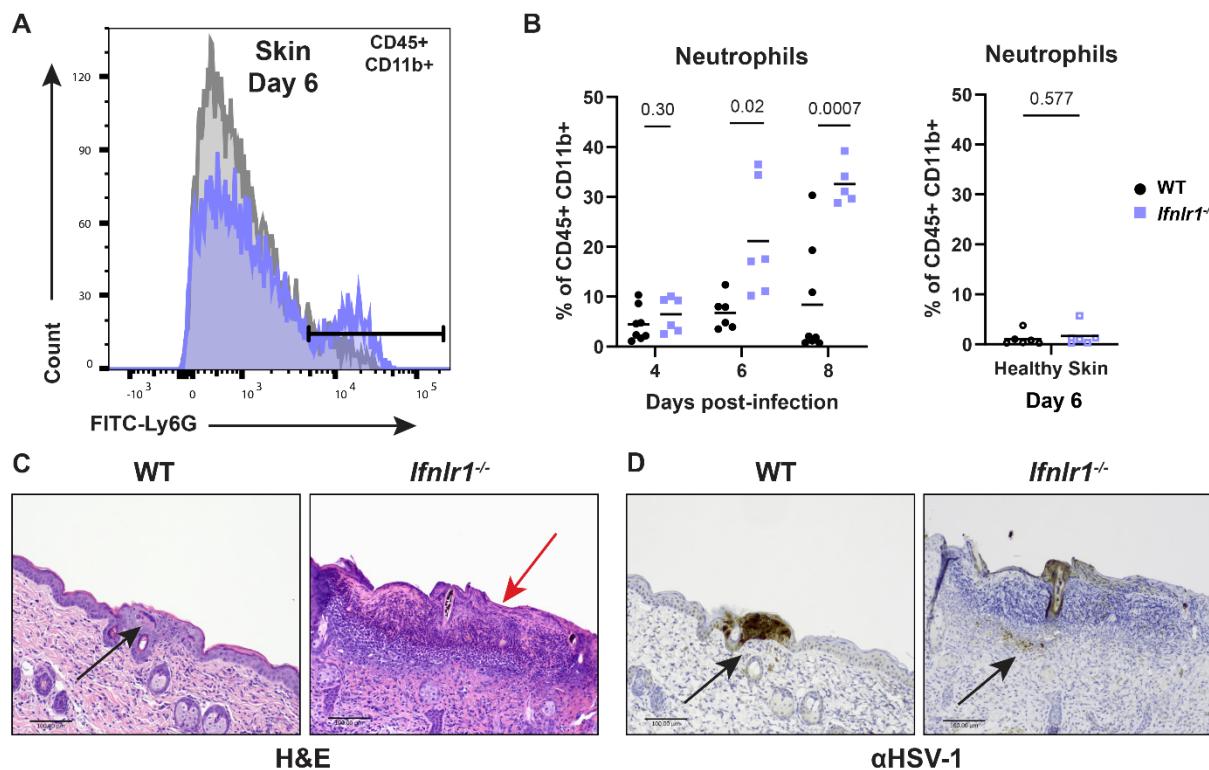
E

Name	IFN-λ → WT		IFN-β → WT	
	Log ₂ fold change	FDR p-value	Log ₂ fold change	FDR p-value
Ppp4r4	1.26	3.00E-02	0.82	1.40E-01
Traf5	1.11	7.73E-07	0.77	1.44E-03
Trim26	1.03	4.38E-40	0.88	3.92E-29
H2-Eb1	-1.57	2.00E-02	-0.83	1.60E-01
Pnpt1	1.16	3.08E-56	0.92	9.73E-35
Kans1l	1.06	4.22E-26	0.97	1.80E-21
Gm20517	-1.12	3.00E-02	-0.34	5.30E-01
Il7	1.36	3.37E-05	0.9	9.83E-03
Tnfrsf1b	1.01	2.00E-02	0.84	3.00E-02
Gm49510	-1.07	1.00E-02	-0.34	4.70E-01
Daxx	1.04	1.12E-44	0.95	1.17E-36

F

Figure 5. IFN-λ signaling in keratinocytes differentially regulates CXCL9 induction. Primary keratinocytes were prepared from WT, *Ifnlr1*^{-/-}, *Ifnar1*^{-/-} and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice and treated with IFN-λ3 (5 ng/mL), IFN-β (5 ng/mL), or media alone for 24 hours. **A.** RNA was extracted IFN-stimulated gene expression was measured by qRT-PCR. *Ifit1* expression is shown relative to *Actb* (housekeeping gene) and normalized to expression in media-treated WT cells. Results represent 6 samples from 2 independent experiments. **B-F.** RNA from 3 samples per genotype per treatment was analyzed by RNAseq (NovaSeq6000S4 XP Paired End 2x100). **B.** Principal component analysis for all analyzed samples. **C.** Volcano plots showing differentially expressed genes after IFN-λ or IFN-β treatment, compared to media-only treated keratinocytes. Differentially expressed genes were defined as having a $|\text{Log}_2\text{Fold Change}| > 1$ and an FDR p-value ≤ 0.05 . **D.** Venn diagram showing DEGs induced by IFN-λ and IFN-β in WT or knockout keratinocytes. **E.** Table of IFN-λ-specific DEGs, their Log₂Fold Change, and FDR p-value for IFN-λ and IFN-β-treated WT keratinocytes. **F.** Volcano plot showing DEGs after IFN-λ treatment compared to IFN-β treatment in WT and receptor knockout keratinocytes.

299 we found that while 11 or 10 genes did meet our differential threshold (2-fold change, FDR $P <$
300 0.05), these genes all were induced to a similar extent by IFN- β (although not quite reaching the
301 differential threshold) (Fig. 5E). Moreover, none of the genes identified as IFN- λ -specific in wild-
302 type or knockout keratinocytes overlapped (Supplementary Table 2), arguing against a set of
303 ISGs that are induced in an IFN- λ specific manner in this system.


304 We next analyzed the IFN- λ response relative to the IFN- β response in WT and knockout
305 keratinocytes to identify genes that are differentially regulated by IFN- λ compared to IFN- β (Fig.
306 5F). We found that the chemokine CXCL9 was one of the top differentially regulated genes
307 between IFN- λ and IFN- β treatment in both wild-type and the corresponding receptor knockout
308 keratinocytes. Notably, *Cxcl9* was significantly less induced after IFN- λ treatment compared to
309 IFN- β in wild-type keratinocytes (9.7-fold vs 65.0-fold) and knockout keratinocytes (23.0-fold vs
310 58.5-fold). Because *Cxcl9* is known to recruit a variety of immune cells such as T cells, NK cells,
311 and neutrophils (Chami et al., 2014, 2017; Karin, 2020), we next sought to characterize IFN- λ -
312 dependent leukocyte changes in HSV-1 infected skin to identify possible players in IFN- λ -
313 mediated protection by keratinocytes and leukocytes.

314 *Skin lesions in *Ifnlr1*^{-/-} mice exhibit extensive neutrophil infiltration and severe pathology*

315 To define IFN- λ dependent changes in leukocyte populations in response to HSV-1
316 infection, we harvested skin lesions and adjacent healthy skin at 6 dpi from *Ifnlr1*^{-/-} and wild-type
317 mice and analyzed leukocyte populations by flow cytometry. We found no significant difference
318 between *Ifnlr1*^{-/-} and wild-type leukocyte population frequencies in the healthy skin at 6 dpi (Fig.
319 S3A). Further, we found no differences in leukocyte frequency, including dendritic cells,
320 macrophages, CD4 and CD8 T cells, B cells, or NK cells, between *Ifnlr1*^{-/-} and wild-type skin
321 lesions at 6 dpi (Fig. S3A). However, we found that skin lesions from *Ifnlr1*^{-/-} mice exhibited a
322 significantly higher frequency of neutrophils (CD45+CD11b+Ly6G+, Fig. 6A-B) compared to wild-
323 type mice at 6 dpi (mean neutrophil frequency 21.1% vs 6.7%; Fig. 6B). Although we found a
324 significant increase in $\gamma\delta$ T cells between *Ifnlr1*^{-/-} and wild-type mice (Fig. S3A), we did not further

325 investigate these cells as they are not known to be IFN-λ responsive and are less abundant in the
326 skin compared to neutrophils. This increase in neutrophil frequency was specific to the skin lesion,
327 because in adjacent healthy skin neutrophil abundance was very low and there was no significant
328 difference between *Ifnlr1*^{-/-} and wild-type mice (Fig. 6B). The increase in neutrophil frequency in
329 *Ifnlr1*^{-/-} mice corresponded to the kinetics of skin lesion formation, as overall neutrophil frequency
330 was low at 4 dpi, with no significant difference between wild-type and *Ifnlr1*^{-/-} mice and the
331 increased neutrophil frequency in *Ifnlr1*^{-/-} compared to wild-type mice was first evident during peak
332 disease at 6 dpi and maintained through 8 dpi (Fig. 6B).

333

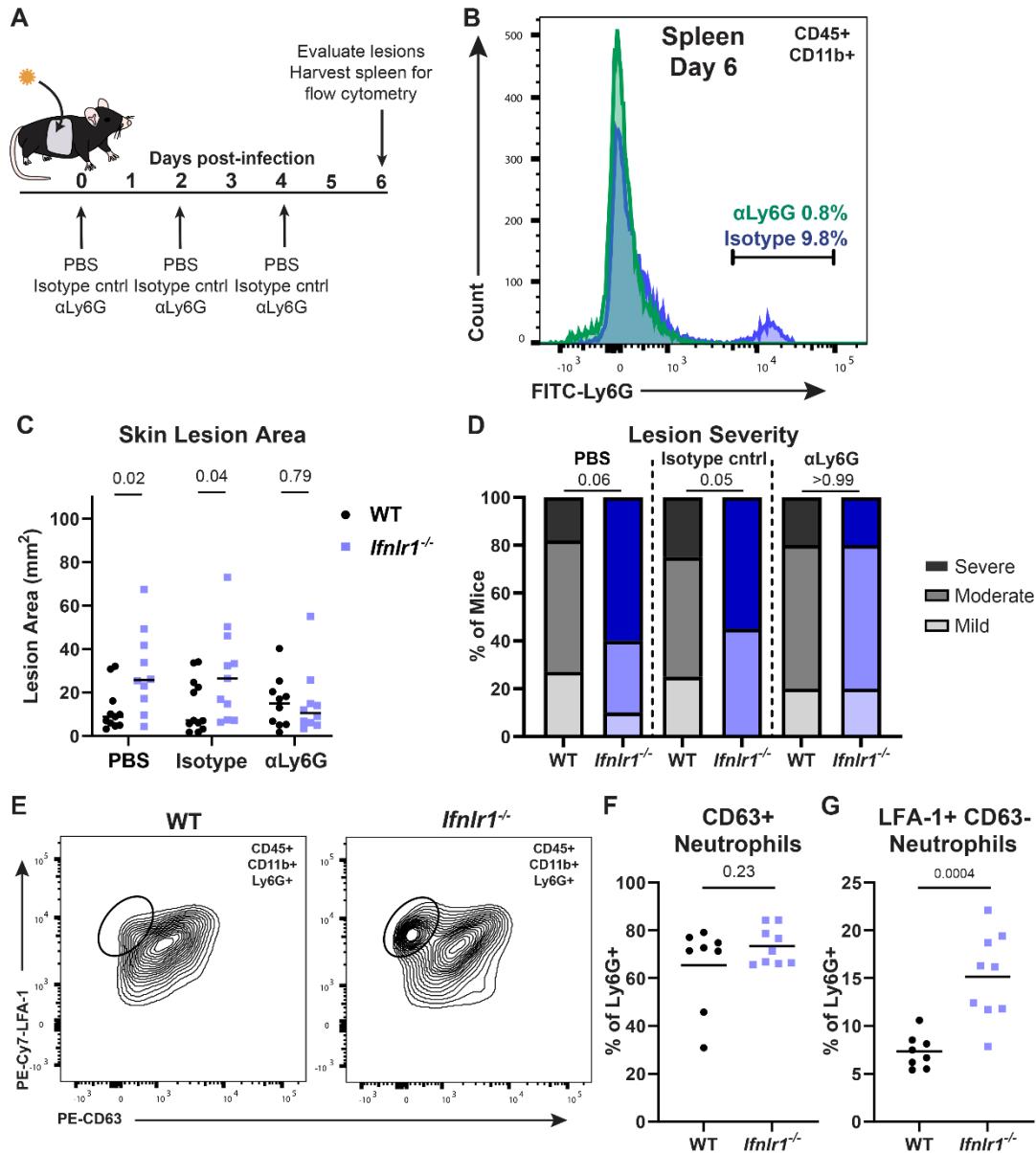


Figure 6. IFN-λ signaling limits neutrophil abundance and severe skin pathology following HSV-1 infection. 8-12 week-old male and female WT and *Ifnlr1*^{-/-} mice were infected with 10⁶ FFU of HSV-1. **A-B.** Dermatome lesions and adjacent healthy skin were collected 4-8 dpi and analyzed by flow cytometry. **A.** Representative histogram of WT and *Ifnlr1*^{-/-} lesions showing Ly6G+ neutrophil gating strategy (CD45+, CD11b+, Ly6G+) at 6 dpi. **B.** Frequency of neutrophils (Ly6G+ out of CD45+ CD11b+ live cells) for WT and *Ifnlr1*^{-/-} dermatome lesions and adjacent healthy skin. Significant differences in neutrophil frequency were determined using an unpaired t test. *P* values are reported with *P* < 0.05 considered to be statistically significant. **C-D.** Inoculated flank skin was collected at 6 dpi and serial sections of the same skin lesion were processed for histology. **C.** H&E staining; black arrow denotes a neutrophilic pustule, red arrow denotes diffuse neutrophilic infiltrate. **D.** Anti-HSV-1 immunohistochemistry; viral antigen staining is denoted by black arrows. Scale bars are 100 μ m.

334 To better define the spatial organization of IFN-λ mediated control of neutrophil infiltration,
335 we harvested skin lesions and healthy skin 6 dpi from wild-type and *Ifnlr1*^{-/-} mice and evaluated
336 skin pathology by H&E staining (Fig. 6C) and immunohistochemistry for HSV-1 antigen (Fig. 6D).
337 We found that *Ifnlr1*^{-/-} mice displayed more significant skin damage and overall loss or necrosis
338 of the epidermis in their skin lesions compared to wild-type mice (Fig. 6C, red arrow). In contrast,
339 wild-type mice had a greater number of intact pustules (Fig. 6C, black arrow) compared to *Ifnlr1*^{-/-}
340 mice, which had more diffuse spread of neutrophils throughout the dermis and epidermis.
341 Further, wild-type mice also had an increased staining intensity for HSV-1 antigen compared to
342 *Ifnlr1*^{-/-} mice, in which most staining was evident within pustules (Fig. 6D). HSV-1 antigen was
343 more present in the dermis for *Ifnlr1*^{-/-} mice (black arrows). However, the epidermis was often
344 missing or necrotic in many areas of intense neutrophilic inflammation in *Ifnlr1*^{-/-} mice, possibly
345 precluding antigen detection in the epidermis. Altogether, these data suggest that a lack of IFN-λ
346 signaling results in greater neutrophil infiltration and more severe HSV-1 skin pathology.

347 *IFN-λ signaling suppresses neutrophil-mediated pathology to limit HSV-1 skin disease*

348 To further define the role of neutrophils in driving HSV-1 skin lesion pathology in the
349 absence of IFN-λ signaling, we depleted neutrophils from wild-type and *Ifnlr1*^{-/-} mice 0, 2, and 4
350 dpi using a αLy6G-depleting antibody (or an isotype-control antibody or PBS) and evaluated
351 dermatome skin lesions 6 dpi (Fig. 7A). To confirm depletion of circulating neutrophils, we
352 collected splenocytes 6 dpi (Fig. 7B) and detected neutrophils (Ly6G+) by flow cytometry. We
353 found that αLy6G antibody efficiently depleted neutrophils compared to isotype-control treated
354 mice (9.8% vs 0.8% Ly6G+ of CD11b+) (Fig. 7B). We found that neutrophil depletion had no effect
355 on skin lesion area in wild-type mice, consistent with prior studies showing that neutrophils do not
356 mediate HSV-1 skin lesion pathology in wild-type mice (Wojtasik et al., 2010). However, we
357 found that while *Ifnlr1*^{-/-} mice developed significantly larger lesions than wild-type mice and a
358 greater proportion developed severe lesions in mice with intact neutrophils (PBS or isotype-
359 control), IFN-λ-dependent protection was lost in neutrophil-depleted mice (Fig. 7C-D). Altogether

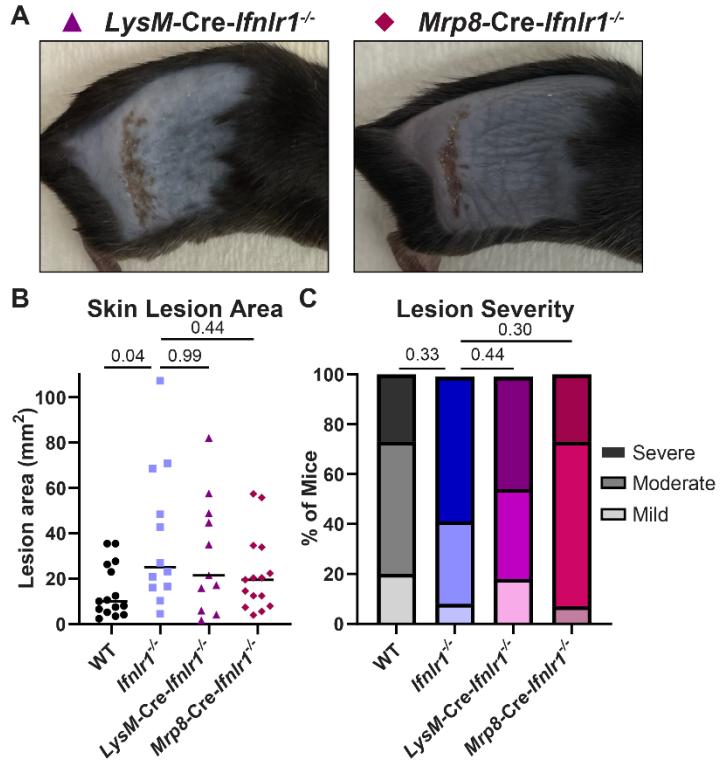


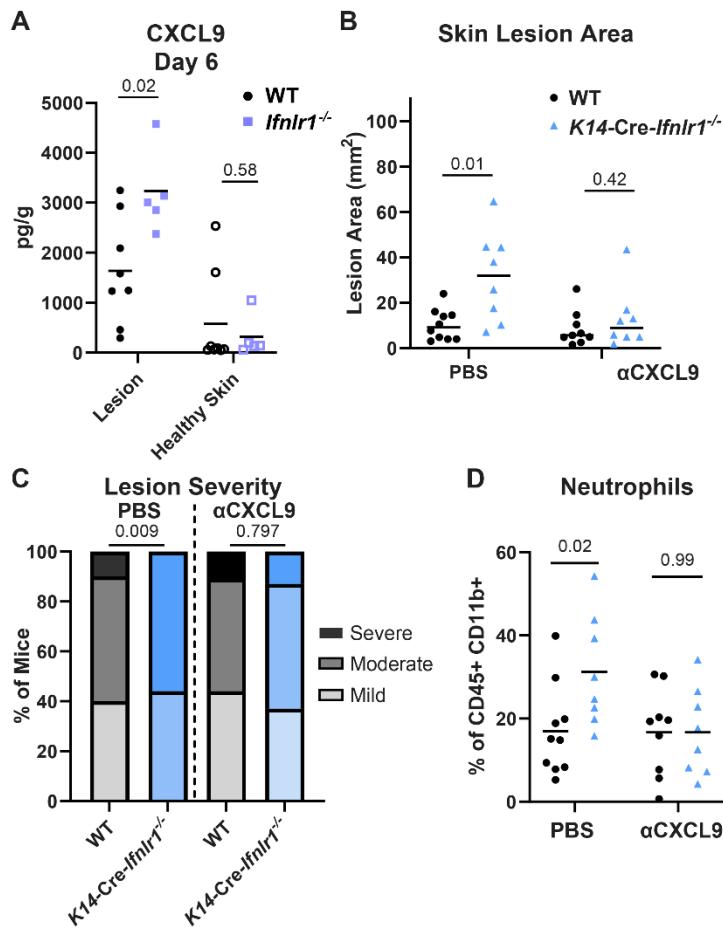
Figure 7. IFN-λ signaling suppresses neutrophil-mediated pathology to limit HSV-1 skin disease. **A.** Experimental design for neutrophil depletions **B-D.** WT and *Ifnrl1^{-/-}* mice were infected with 10⁶ FFU of HSV-1. 0, 2, and 4 dpi mice were injected intraperitoneally with PBS, 250 µg of isotype control (IgG2a), or 250 µg of αLy6G (Clone 1A8). **B.** Spleens were harvested 6 dpi and analyzed by flow cytometry to confirm neutrophil depletion. **C.** Skin lesions were photographed 6 dpi and lesion areas measured ImageJ. **D.** Skin lesion severity was categorized based on 6 dpi lesion area. **E-G.** WT and *Ifnrl1^{-/-}* mice were infected with 10⁶ FFU of HSV-1 and 6 dpi skin lesions were photographed and analyzed via flow cytometry. **E.** Representative plots and gating strategy for neutrophil phenotyping markers LFA-1 and CD63 (% of CD45+ CD11b+ Ly6G+). **F.** Frequency of CD63+ neutrophils. **G.** Frequency of LFA-1+ CD63- neutrophils. Differences in lesion area and viral load were compared by Mann-Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage test. Neutrophil frequencies were compared by unpaired t test. *P* values are reported with *P* < 0.05 considered to be statistically significant.

360 these results suggest that IFN-λ protects against severe HSV-1 skin disease by suppressing
361 neutrophil-driven immunopathology.

362 To determine the mechanism by which IFN- λ suppresses neutrophil-mediated pathology
363 during HSV-1 skin infection, we investigated whether IFN- λ signaling impacts neutrophil
364 recruitment and/or effector function. We infected wild-type and *Ifnlr1*^{-/-} mice with HSV-1 and
365 collected skin lesions at 6 dpi for flow cytometry. We measured neutrophil expression of
366 lymphocyte function associated antigen 1 (LFA-1, an integrin upregulated upon neutrophil
367 activation and associated with neutrophil recruitment from circulation into inflamed tissues) and
368 CD63 (a lysosomal membrane protein expressed on primary neutrophil granules that is presented
369 on the plasma membrane upon the final stage of neutrophil degranulation) (Fig. 7E-G)
370 (Eichelberger et al., 2019; Phillipson et al., 2006; Zenaro et al., 2015). We found no significant
371 difference in primary granule release (% LFA-1+CD63+) between wild-type and *Ifnlr1*^{-/-} mice
372 (65.4% vs 73.3%, $P > 0.05$) (Fig. 7F). However, we found that skin lesions from *Ifnlr1*^{-/-} mice had
373 a greater proportion of LFA-1+ CD63- neutrophils than wild-type mice, indicative of a population
374 of neutrophils in the skin that are activated and accumulating but have not yet fully degranulated
375 (15.2% vs 7.3%, $P < 0.05$; Fig. 7G). Therefore, our data support a model in which IFN- λ signaling
376 suppresses the accumulation, but not effector functions, of neutrophils in HSV-1 skin lesions,
377 protecting against the development of severe skin pathology.

378 Neutrophils are known to respond to IFN- λ in the context of other infection and
379 inflammation models in mice (Blazek et al., 2015; Broggi et al., 2017; Espinosa et al., 2017), so
380 we next asked whether the protective effects of IFN- λ against neutrophil-mediated pathology in
381 the skin required IFN- λ signaling directly in neutrophils. We infected conditional knockout mice
382 lacking IFN- λ signaling in myeloid cells (*LysM-Cre-Ifnlr1*^{-/-}) or neutrophils (*Mrp8-Cre-Ifnlr1*^{-/-}) with
383 HSV-1 and evaluated skin lesions and disease severity at 6 dpi, compared to wild-type and *Ifnlr1*^{-/-}
384 mice (Fig. 8A-C). We found that mice that lack IFN- λ signaling exclusively in all myeloid cells or
385 specifically in neutrophils developed skin lesions similar in size to *Ifnlr1*^{-/-} mice (mean area 21.5
386 mm², 19.4 mm², and 25.0 mm², $P > 0.05$) (Fig. 8B) and with a similar proportion developing severe

Figure 8. IFN-λ signaling in neutrophils contributes to protection from severe HSV-1 skin disease. 8-12 week-old male and female WT, *Ifnλ1^{-/-}*, *LysM-Cre-Ifnλ1^{-/-}*, and *Mrp8-Cre-Ifnλ1^{-/-}* mice were infected with 10^6 FFU of HSV-1. **A.** Dermatome skin lesions were photographed 6 dpi. **B.** Skin lesion areas were measured from photographs 6 dpi using image J. **C.** Skin lesion severity was categorized based on 6 dpi lesion area. Differences in lesion area and viral load were compared by Mann-Whitney U test. Differences in categorical skin disease were compared by Cochran-Armitage test. *P* values are reported with *P* < 0.05 considered to be statistically significant.


387 lesions (45%, 27%, 58%, *P* > 0.05) (Fig. 8C). Altogether, these data support a model where IFN-
388 λ signals through keratinocytes and myeloid cells, including neutrophils, to suppress neutrophil
389 accumulation in the skin during HSV-1 infection to control severe HSV-1 skin disease.

390 *IFN-λ signaling in keratinocytes regulates CXCL9 production to restrict neutrophil infiltration and*
391 *HSV-1 skin pathology*

392 Having established neutrophil recruitment as a key mechanism of IFN-λ-mediated
393 protection against HSV-1 skin disease, we next sought to determine whether the chemokine
394 CXCL9, identified as a DEG in IFN-λ-treated primary keratinocytes (Fig. 5F), mediated neutrophil
395 recruitment in the absence of IFN-λ signaling. Although classically a lymphocyte chemoattractant,

396 neutrophils also are reported express CXCR3, the receptor for CXCL9, in inflammatory contexts
397 (Boff et al., 2018, 2022; Chami et al., 2014, 2017; Hartl et al., 2008). Furthermore, Forero et al.
398 previously reported that IFN-λ failed to induce expression of *Cxc9* and other chemokines
399 downstream of a lack of IRF1 induction (Forero et al., 2019). Therefore, we next asked whether
400 IFN-λ acts though keratinocytes via CXCL9 to limit neutrophil infiltration and severe HSV-1 skin
401 disease. First, we measured the
402 concentration of CXCL9 in dermatome
403 lesions and adjacent healthy skin of
404 wild-type and *Ifnlr1*^{-/-} mice 6 dpi (Fig.
405 9A). We found that *Ifnlr1*^{-/-} mice had
406 significantly higher CXCL9
407 concentrations in their skin lesions
408 compared to wild-type mice (mean
409 3191 pg/g vs 1634 pg/g, $P = 0.02$).
410 The suppressive effect of IFN-λ on
411 CXCL9 was specific to lesioned skin
412 because in adjacent healthy skin
413 CXCL9 concentrations were low and
414 there was no significant difference
415 between wild-type and *Ifnlr1*^{-/-} mice.

416 Next, we asked whether
417 CXCL9 contributed to neutrophil
418 recruitment and skin pathology, and
419 whether this occurred downstream of
420 IFN-λ signaling in keratinocytes. We
421 depleted CXCL9 by injecting wild-type

Figure 9. IFN-λ signaling in keratinocytes restricts CXCL9 production to limit neutrophil recruitment and HSV-1 skin disease. 8-12 week-old male and female mice were infected with 10^6 FFU of HSV-1 and skin lesions were analyzed 6 dpi. **A.** CXCL9 was measured by ELISA in homogenates of lesional skin or adjacent healthy skin from WT and *Ifnlr1*^{-/-} mice. **B-D.** WT and *K14-Cre-Ifnlr1*^{-/-} mice were infected with HSV-1 and injected intraperitoneally with anti-CXCL9 (300 μ g) or PBS 0, 2, and 4 dpi. Skin lesion areas were measured from photographs 6 dpi (**B**) and lesion severity categorized (**C**). **D.** Neutrophil frequency in skin lesions was measured by flow cytometry 6 dpi. Differences in lesion area and viral load were compared by Mann-Whitney U test. Differences in categorical skin disease were compared by Cochran-Armitage test. Differences in CXCL9 concentration and neutrophil frequency were compared by unpaired t test. P values are reported with $P < 0.05$ considered to be statistically significant.

422 and *K14-Cre-Ifnlr1^{-/-}* mice with CXCL9 neutralizing antibody or PBS intraperitoneally 0, 2, and 4
423 dpi and assessed lesion area, disease severity, and skin neutrophil populations by flow cytometry
424 (Fig. 9B-D). We did not observe any effect of aCXCL9 treatment on lesion area, disease severity,
425 or neutrophil skin infiltration in wild-type mice. Consistent with prior experiments (Fig. 4), we found
426 that PBS-treated *K14-Cre-Ifnlr1^{-/-}* mice had larger lesions and more severe disease than wild-type
427 mice (median lesion area 13.0 mm² vs 6.7 mm², *P* = 0.01). We also found that *K14-Cre-Ifnlr1^{-/-}*
428 mice had significantly greater neutrophil skin infiltration compared to wild-type mice (mean
429 neutrophil frequency 31.3% vs 16.9%, *P* = 0.02). Strikingly, neutralizing CXCL9 ablated these
430 differences, with *K14-Cre-Ifnlr1^{-/-}* mice exhibiting similar lesion areas, disease severity, and
431 neutrophil infiltration compared to wild-type mice after aCXCL9 treatment (Fig.9B-D). Altogether,
432 these data suggest that IFN-λ regulates CXCL9 production in keratinocytes which restricts
433 neutrophil skin infiltration and severe HSV-1 skin disease.

434 Overall, we report a new protective role for IFN-λ signaling against HSV-1 skin infection.
435 We found that IFN-λ signaling in both keratinocytes and neutrophils is necessary to mediate
436 protection from severe HSV-1 skin disease. We uncovered a mechanism by which IFN-λ signaling
437 in keratinocytes suppresses CXCL9 production to control neutrophil-mediated pathology by
438 limiting neutrophil recruitment and retention in the skin. This is the first report of a protective role
439 for IFN-λ signaling in the skin against an infection and suggests future opportunities for
440 therapeutic uses of IFN-λ against HSV-1 and other skin pathogens.

441

442 **DISCUSSION**

443 IFN-λ elicits antiviral immunity and maintains barrier integrity at epithelial surfaces,
444 controlling infections locally without the inflammatory immune pathology triggered by the more
445 potent systemic IFN-αβ response (Lazear et al., 2019). Although IFN-λ induces an antiviral
446 transcriptional program most potently in epithelial cells, IFN-λ signaling in leukocytes, such as
447 neutrophils and dendritic cells (DCs), is key to the ability of IFN-λ to induce a protective response

448 without damaging inflammation (Broggi et al., 2017; Espinosa et al., 2017; Galani et al., 2017;
449 Hemann et al., 2019). Despite the well-established role for IFN-λ in antiviral immunity at anatomic
450 barriers (Lazear et al., 2019), including the respiratory and gastrointestinal tracts (Grau et al.,
451 2020; Peterson et al., 2019; Ye et al., 2019), the blood-brain barrier (Douam et al., 2017; Lazear
452 et al., 2015), and the maternal-fetal interface (Casazza et al., 2022; Jagger et al., 2017), the
453 effects of IFN-λ in the skin have not been extensively investigated. To investigate the role of IFN-
454 λ signaling in the skin, we used HSV-1, an important human pathogen that targets epithelial
455 surfaces including the skin, and which has a well-established mouse model for skin infection
456 (Simmons & Nash, 1984; van Lint et al., 2004; Wang et al., 2019). We found that mice lacking
457 IFN-λ signaling (*Ifnlr1*^{-/-}, *Ifnl2/3*^{-/-}, or *Ifnar1*^{-/-} *Ifnlr1*^{-/-}) developed larger HSV-1 skin lesions
458 compared to their IFN-λ sufficient counterparts. However, lesion size was uncoupled from skin
459 viral loads, suggesting a role for IFN-λ in suppressing inflammatory immune pathology during
460 HSV-1 skin infection. Using conditional knockout mice, we found that IFN-λ signaling in both
461 keratinocytes and leukocytes was necessary for protection from severe skin disease. We further
462 showed that neutrophils are required for the enhanced skin pathology observed in *Ifnlr1*^{-/-} mice
463 and that IFN-λ signaling in neutrophils contributes to the protective effect of IFN-λ against HSV-1
464 skin disease. Altogether, our results support a model where IFN-λ exerts an immunomodulatory
465 role during HSV-1 skin infection, suppressing neutrophil-mediated pathology.

466 IFN-λ suppresses neutrophil recruitment and pathology in colitis and rheumatoid arthritis
467 models (Blazek et al., 2015; Broggi et al., 2017), as well as during influenza virus infection (Galani
468 et al., 2017). Our results add to a growing number of systems that demonstrate a role for
469 neutrophils as a key IFN-λ responsive cell type in mice and broaden the range of mechanisms by
470 which IFN-λ impacts neutrophil function, although there is still debate regarding the extent to
471 which human neutrophils respond to IFN-λ (Broggi et al., 2017; Espinosa et al., 2017; Goel et al.,
472 2020; Santer et al., 2020). Neutrophils are recruited to the skin during HSV-1 skin infection but
473 are not important for mediating skin pathology in wild-type mice (Hor et al., 2017; Wojtasiak et al.,

474 2010). Our studies revealed a pathogenic role for neutrophils during HSV-1 skin infection but only
475 in the absence of IFN-λ signaling, identifying a key role for IFN-λ in suppressing the pathogenic
476 activity of neutrophils that are recruited into the skin during HSV-1 infection.

477 While our studies first focused on the protective effects of IFN-λ signaling in leukocytes,
478 specifically neutrophils, we found that IFN-λ signaling in keratinocytes also was required to restrict
479 HSV-1 skin disease. To investigate the mechanism by which IFN-λ signaling in keratinocytes
480 modulates skin immunity to control HSV-1 skin disease, we performed bulk RNA-seq analysis in
481 primary mouse keratinocytes, as well as in a human epithelial cell line (A549). Our data from A549
482 cells supports the standard paradigm that the transcriptional response induced by IFN-λ is less
483 potent than the IFN-β response. However, in primary keratinocytes we found that many ISGs
484 were induced equivalently by IFN-λ and IFN-β. These observations are consistent with other
485 transcriptional profiling experiments in primary cells (Caine et al., 2019; Galani et al., 2017)
486 suggesting that experiments in cell lines may underestimate the potency of the IFN-λ response.
487 A notable difference between the IFN-λ and IFN-β responses in keratinocytes was the chemokine
488 CXCL9, which was only weakly induced by IFN-λ compared to IFN-β, consistent with prior work
489 showing that IFN-λ failed to induce expression of CXCL9 and other chemokines, downstream of
490 a lack of STAT1 homodimer formation and IRF1 induction (Forero et al., 2019). Although we found
491 that the IFN-β response was not impacted by the lack of IFN-λ signaling, the IFN-λ response was
492 diminished in both keratinocytes and A549 cells lacking IFN-αβ signaling, suggesting a possible
493 role for cross-talk between the IFN-λ and IFN-αβ responses.

494 While we found greater accumulation of neutrophils in skin lesions from *Ifnlr1*^{-/-} mice
495 compared to wild-type mice and showed that neutrophils were necessary for the severe skin
496 pathology observed in *Ifnlr1*^{-/-} mice, the mechanism by which IFN-λ modulates neutrophil function
497 to protect against HSV-1 skin disease remains unclear. We found no difference in CD63
498 expression in neutrophils from *Ifnlr1*^{-/-} mice compared to wild-type mice, suggesting that IFN-λ
499 does not act to inhibit degranulation in this system. We did find that *Ifnlr1*^{-/-} mice exhibited

500 increased expression of the lectin LFA-1, which promotes tissue recruitment and retention of
501 neutrophils, consistent with a model where IFN-λ signaling reduces neutrophil retention in HSV-
502 1 skin lesions. Accordingly, *Cxcl9* was among the genes with reduced induction by IFN-λ
503 compared to IFN-β in primary keratinocytes, CXCL9 levels in skin lesions were higher in the
504 absence of IFN-λ signaling, and depleting CXCL9 ablated the enhanced neutrophil infiltration and
505 large skin lesion phenotypes of *K14-Cre-Ifnlr1*^{-/-} mice. Altogether these data support a model
506 where in the absence of IFN-λ signaling, keratinocytes overproduce CXCL9, stimulating
507 excessive neutrophil infiltration and retention into HSV-1 infected skin, exacerbating skin disease
508 severity.

509 In addition to HSV-1, we also found a protective role for IFN-λ in HSV-2 skin infection. Like
510 HSV-1, HSV-2 produced larger skin lesions in the absence of IFN-λ signaling, although the
511 average severity of HSV-2 lesions was greater than HSV-1 and the kinetics of the infection were
512 slower. The fact that we observed a similar role for IFN-λ for both HSV-1 and HSV-2 supports a
513 general role for IFN-λ in controlling viral skin infections; future studies will investigate the
514 protective effects of IFN-λ against other viral pathogens that target the skin, including poxviruses,
515 papillomaviruses, and arboviruses, as well as bacterial, fungal, and protozoan skin pathogens.
516 We also evaluated whether IFN-λ protected against HSV vaginal infection, since the vaginal
517 epithelium is a plausible site for IFN-λ activity and IFN-λ has been reported to protect against
518 vaginal HSV-2 and Zika virus infections (Ank et al., 2008; Caine et al., 2019). HSV-1 vaginal
519 infection typically does not produce overt disease in mice, whereas HSV-2 produces disease
520 signs that can be evaluated in addition to measuring viral loads. Prior work with HSV-2 vaginal
521 infection in wild-type mice showed that neutrophil recruitment to the vagina worsened disease
522 severity (Lebratti et al., 2021), further supporting the premise for a protective role for IFN-λ at this
523 epithelial barrier. However, we found no difference in overt vaginal disease in *Ifnlr1*^{-/-} mice
524 compared to wild-type mice infected with HSV-2. These results are consistent with our previous
525 observations with Zika virus, where we found no difference in vaginal wash viral loads from *Ifnlr1*^{-/-}

526 $^{1-}$ mice compared to wild-type mice (Lopez et al., 2022). Additionally, our data are consistent with
527 other reports for Zika virus and HSV-2 vaginal infections, as these experiments only found
528 protective effects for IFN- λ signaling when pretreating mice intravaginally with recombinant IFN-
529 λ or Toll-like receptor 3 (TLR-3) or TLR-9 agonists (Ank et al., 2008; Caine et al., 2019), as
530 opposed to evaluating phenotypes in *Ifnlr1* $^{1-}$ mice. Overall, these observations suggest any
531 protective effect of IFN- λ in the vagina may be context-dependent and likely does not serve to
532 restrict viral replication. The difference in phenotypes for IFN- λ signaling against HSV-2 infection
533 in the skin and the vagina also underscores possible differences in mechanisms of immunity at
534 these different epithelial barriers.

535 Although our work has focused on IFN- λ -mediated protection from HSV-1 in context of
536 healthy skin, it will be interesting to evaluate these effects in the context of dermatological
537 conditions such as atopic dermatitis (also called eczema). Patients with atopic dermatitis are
538 susceptible to severe HSV-1 skin infections (eczema herpeticum) (Wollenberg et al., 2003).
539 Notably, atopic dermatitis skin lesions exhibit diminished IFN- λ production compared to healthy
540 skin from the same patients (Wolk et al., 2013) and injection of recombinant IFN- λ reduced the
541 severity of eczema herpeticum in mice (Kawakami et al., 2017). Atopic dermatitis patients also
542 are susceptible to severe infections by poxviruses, posing a hazard to individuals who require
543 smallpox vaccination (due to risk of exposure to or laboratory work with variola virus, vaccinia
544 virus, or other orthopoxviruses) (Reed et al., 2012; Wharton et al., 2003). We expect that the
545 mechanisms by which IFN- λ restricts HSV-1 skin disease will be relevant to other skin infections,
546 particularly where pathogen-triggered immune pathology produces skin lesions, such as vaccinia
547 virus and *Leishmania* (Novais et al., 2021; Shmeleva et al., 2022).

548 We found that *Ifnlr1* $^{1-}$ mice developed larger HSV-1 skin lesions compared to wild-type
549 mice, even though there was no difference in viral loads in the skin, supporting an
550 immunomodulatory, rather than antiviral, role for IFN- λ in the skin. However, in this system, IFN-
551 λ is induced in the skin in response to HSV-1 infection, meaning that the virus has a head start

552 and can employ its arsenal of strategies to antagonize the host IFN response. When we instead
553 pre-treated mice with topical IFN-λ prior to infection, we found lower viral loads in IFN-λ treated
554 mice compared to PBS-treated mice, indicating that IFN-λ can have an antiviral effect against
555 HSV-1 in the skin. IFN-λ has demonstrated therapeutic utility against a variety of viral infections,
556 including hepatitis C virus, hepatitis B virus, and SARS-CoV-2 in human studies, as it is thought
557 to confer protective antiviral activity without the damaging immune pathology induced by IFN-αβ
558 treatment (Feld et al., 2021; Lazear et al., 2019). The skin is an especially attractive site to
559 leverage the protective effects of IFN-λ, due to its easy accessibility for topical administration.
560 Encouragingly, topical IFN-λ treatment restricted HSV-1 corneal infection in mice (Miner et al.,
561 2020). Future studies will investigate the potential for topical IFN-λ treatment as a therapy for HSV
562 and other skin infections.

563 Altogether, our data provide the first evidence of a skin-specific role for IFN-λ in controlling
564 a viral infection. We detail a mechanism by which IFN-λ signals through both keratinocytes and
565 leukocytes to limit severe HSV-1 skin disease. We found that IFN-λ signaling suppresses
566 neutrophil recruitment to the skin, in part by suppressing CXCL9, and the excess recruitment of
567 neutrophils to the skin in the absence of IFN-λ signaling is the driver of pathology. This
568 keratinocyte-neutrophil axis via CXCL9 provides new insights into the immunomodulatory effects
569 of IFN-λ at barrier sites, including the skin.

570

571 MATERIALS AND METHODS

572 **Viruses and Cells** Virus stocks were grown in Vero (African green monkey kidney epithelial)
573 cells. Vero and A549 (ATCC# CCL-185) cells were maintained in Dulbecco's modified Eagle
574 medium (DMEM) containing 5% heat-inactivated fetal bovine serum (FBS) and L-glutamine at
575 37°C with 5% CO₂. Virus stocks were grown in DMEM containing 2% FBS, L-glutamine, and
576 HEPES at 37°C with 5% CO₂. HSV-1 strain NS was obtained from Dr. Harvey Friedman
577 (University of Pennsylvania) (Friedman et al., 1981). HSV-2 strain 333 was obtained from Dr.

578 Steven Bachenheimer (UNC). Virus stock titers were determined by focus-forming assay on Vero
579 cells. Viral foci were detected using 1:10,000 dilution of α HSV rabbit antibody (Dako) and 1:50,000
580 dilution of goat α rabbit HRP conjugated antibody, and TrueBlue peroxidase substrate (KPL).
581 Antibody incubations were performed for at least 1 hour at room temperature. Foci were counted
582 on a CTL Immunospot analyzer.

583 **Mice** All experiments and husbandry were performed under the approval of the University of
584 North Carolina at Chapel Hill Institutional Animal Care and Use Committee. Experiments used 8-
585 12-week-old male and female mice on a C57BL/6 background. Wild-type mice used in Figure 3
586 and S1 were purchased from Jackson Labs and then bred in house. *Ifnlr1*^{-/-} mice were generated
587 by two breeding schemes. For *Ifnlr1*^{-/-} mice in Figures 1, 5, 6, and 7 mice were generated by
588 crossing *Ifnlr1*^{fl/fl} mice with mice expressing Cre recombinase under control of an Actin promoter.
589 These mice were bred as Cre hemizygotes to generate mixed litters in which 50% of mice retained
590 IFN- λ signaling and 50% lacked IFN- λ signaling. For *Ifnlr1*^{-/-} mice in Figure 4 and 8, mice were
591 generated by crossing *Ifnlr1*^{fl/fl} mice with mice expressing Cre recombinase under control of an
592 CMV promoter. After generation, mice were bred as Cre homozygote knockout by knockouts and
593 experimental *Ifnlr1*^{-/-} mice were genotyped periodically to verify *Ifnlr1* knockout status. *K14*-Cre-
594 *Ifnlr1*^{-/-}, *Vav*-Cre-*Ifnlr1*^{-/-}, *LysM*-Cre-*Ifnlr1*^{-/-}, and *Mrp8*-Cre-*Ifnlr1*^{-/-} mice were generated by crossing
595 *Ifnlr1*^{fl/fl} mice with mice expressing Cre recombinase under control of a *Vav* promoter (Jackson
596 Labs #8610), a *K14* promoter (obtained from Dr. Scott Williams, UNC), a *LysM* promoter (Jackson
597 Labs #4781, obtained from Dr. Jenny Ting, UNC), or a *Mrp8* promoter (Jackson Labs #21614),
598 respectively. Mice were bred as Cre hemizygotes to generate mixed litters in which 50% of mice
599 retained IFN- λ signaling and 50% lacked IFN- λ signaling in specific cell types. After data analysis,
600 experimental mice were genotyped by PCR on tails for both Cre and *Ifnlr1* status. *Ifnar1*^{-/-} mice
601 were obtained from Dr. Jason Whitmire (UNC) then bred in-house. *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice were
602 generated by crossing *CMV*-Cre *Ifnlr1*^{-/-} and *Ifnar1*^{-/-} mice and bred in house. *Ifn2/3*^{-/-} mice were
603 obtained from Dr. Megan Baldridge (Washington University in St. Louis) and then bred in house.

604 *Ifnk*^{-/-} mice were generated in the laboratory of Dr. Michael Diamond (Washington
605 University in St. Louis). Embryonic stem (ES) cells (C57BL/6 background) were obtained from the
606 knockout mouse project (KOMP). The ES cells contained a LacZ reporter-tagged deletion allele
607 with a neomycin selection cassette (*Ifnk*^{tm1(KOMP)Vlcg}). Mice derived from these ES cells were
608 crossed to mice expressing Cre recombinase under a CMV promoter to excise the neomycin
609 selection cassette. The resulting *Ifnk*^{-/-} mice were bred at UNC for use in experiments. Genetic
610 background was confirmed by miniMUGA genotyping array.

611 **HSV Skin Infections** One day prior to infection, mice were anesthetized by nose-cone isoflurane
612 and depilated manually by plucking the fur from the right flank. One day later, mice were
613 anesthetized by chamber isoflurane for infections. To perform infections, we abraded the skin of
614 anesthetized, depilated mice with ~10x closely spaced punctures (over ~5 mm²) using a Quintip
615 skin test allergy needle. Immediately after abrasion, we overlaid 10 µL of viral inoculum (virus +
616 1% FBS in PBS) and allowed the inoculum to dry while mice were anesthetized.

617 **PCR Genotyping** *Ifnlr1*, *Cre*, *Ifnl2/3*, and *Ifnk* genotypes were determined by PCR on tail samples
618 (unless otherwise indicated) on DNA extracted using the Quantabio supermix and the following
619 previously described primers:

620 *Ifnlr1* F₁ 5'-AGGGAAGCCAAGGGATGGC-3', R₁ 5'-AGTGCCTGCTGAGGACCAGGA-3', R₂ 5'-
621 GGCTCTGGACCTACGCGCTG-3';
622 *Cre* F₁ 5'-CGTACTGACGGTGGAGAAT-3', R₁ 5'-CCCGGAAACAGGTAGTTA-3';
623 *Ifnl2/3* F_{Ko} 5'-CACACTGTGGACAGGCCAT-3', R_{Ko} 5'-ACCAGCCTGAGGTCCCTAGT-3', F_{WT} 5'-
624 TGGAGTCCAGAGCAGCTTT-3', R_{WT} 5'-TCCACCCAGAAGCAAAGAAC-3';
625 *Ifnk* F₁ 5'-CCTGTGTGTCAGGTTAC-3', R₁ 5'-TGCCCAACTCCAGGTAGAC-3', R₂ 5'-
626 GTCTGTCCTAGCTCCTCACTG -3';
627 *K14-Cre* (used for colony establishment) F₁ 5'- CACGATACACCTGACTAGCTGGGTG-3', R₁ 5'-
628 CATCACCCACAGGCTAGCGCCAATC-3';

629 Vav-Cre (used for breeders) F_{15'}- AGATGCCAGGACATCAGGAACCTG-3', R_{15'}-
630 ATCAGCCACACCAGACACAGAGATC-3'.

631 **Focus-forming Assay** Viral loads were measured by focus-forming assay in which tissues were
632 weighed, homogenized using beads and DMEM with 2% FBS and 1% HEPES and serially diluted
633 in a round bottom 96-well plate. 100 μ L of each dilution was then transferred to monolayers of
634 Vero cells (96 well plate with 2x10⁴ cells/well plated 1 day prior) in duplicate and incubated at
635 37°C for 1 hour. Thereafter, wells were overlaid with 125 μ L methylcellulose (1% methylcellulose
636 in 1X MEM+ 2% FBS, L-Glut, P/S, HEPES) and left to incubate at 37°C for 20h. After 20h, plates
637 were fixed by adding 4% paraformaldehyde (PFA) 100 μ L/well for 60 min at room. After fixing,
638 PFA and overlay was flicked off and the plates were washed 3x with PBS+1%Tween using a
639 handheld plate washer. Foci were detected using 1:10,000 dilution of α HSV rabbit antibody
640 (Dako) and 1:50000 dilution of goat rabbit HRP conjugated antibody, and TrueBlue peroxidase
641 substrate (KPL). Antibody incubations were performed for at least 1 hour at 24°C. Foci were
642 counted on a CTL Immunospot analyzer.

643 **Viral Genome Quantification by qPCR** Viral genomes were quantified from pooled DRG
644 samples (L2-L5 from the ipsilateral or contralateral sides) that were homogenized in 500 μ L of
645 PBS and beads. DNA was extracted from 200 μ L of homogenate using the Qiagen DNeasy Blood
646 & Tissue Kit (#69504). HSV-1 DNA was quantified by TaqMan qPCR on a CFX96 Touch real-
647 time PCR detection system (Bio-Rad) against a standard curve generated by extracting DNA from
648 an HSV-1 viral stock. HSV-1 genomes were detected using the following primers targeting the
649 U₂₃ gene: F primer 5'-TTGTCTCCTCCGTGTTCAAGTT-3', R primer 5'-
650 GGCTCCATACCGACGATCTG-3', and probe 5'-FAM-CCATCTCCGGGCAAACGTGC-MGB-
651 NFQ-3' (Ma et al., 2014).

652 **Lesion Area Quantification and Categorization** To measure HSV lesion areas, mice were
653 anesthetized and photographed using an iPhone camera next to a ruler and an identifying card.
654 Thereafter, images were analyzed using ImageJ in which pixels were converted to millimeters

655 using the reference ruler and then lesions were outlined using the freehand tool and calculated
656 area within the freehand designations were reported. Lesions analyzed 6 dpi were categorized
657 using the following system: <5 mm² = Mild, 5-23 mm² = Moderate, and >23 mm² = Severe.

658 **HSV-2 Vaginal Infections and Disease Categorization** To infect mice with HSV-2 vaginally,
659 experimental mice were treated 5 days prior with 2 mg DepoProvera (UNC Pharmacy) via
660 subcutaneous inoculation. On the day of infection, mice were inoculated with 10³ FFU/10µL of
661 HSV-2 strain 333 intravaginally. Mice were monitored for disease signs starting 4 dpi and
662 categorized using the following scoring system (Lebratti et al., 2021): 0: no inflammation, 1: mild
663 redness and swelling, 2: visible ulceration and fur loss, 3: severe ulceration and signs of sickness,
664 4: hindlimb paralysis, 5: moribund/dead.

665 **Bone Marrow Chimeras** Bone marrow chimera mice were generated by lethally irradiating wild-
666 type and *Ifnl2/3*^{-/-} mice (2x600 CGy) and injecting 10⁷ bone marrow cells from complementary and
667 reciprocal donors. After irradiation, mice were given sulfamethoxazole (6 mg/ml) in their drinking
668 water for the duration of their life. Mice were infected with HSV-1 and photographed and harvested
669 6 dpi. Efficient bone marrow transfer was validated at the end of the experiment by PCR
670 genotyping tail, ear skin, and whole blood from each mouse for *Ifnl2/3*.

671 **Flow Cytometry** For analysis by flow cytometry, tissues were harvested into cold DMEM + 10%
672 FBS and processed using established methods for digestion of whole mouse back skin (Lou et
673 al., 2020). In brief, samples were cut into thirds and incubated overnight at 4°C in 5 mg/mL
674 Dispase II (Sigma) in Hanks Buffered Salt Solution (HBSS). Afterwards, samples were washed
675 1x with cold PBS and epidermis and dermis were mechanically separated for separate enzymatic
676 digestions. The epidermis was digested in 1 mL 0.05% trypsin (Fisher) for 30 min at 37°C.
677 Separately, the dermis was digested in 3 mL dermal dissociation solution (1 mg/mL Collagenase
678 P (Sigma), 100 µg/mL DNase I (Fisher) for 1 hour at 37°C. After incubation, matched epidermal
679 and dermal digestions were combined and passed through a 70µm cell strainer and resuspended

680 in DMEM + 10% FBS. Suspensions were then centrifuged at 400xg for 5 min at 4°C and
681 resuspended in PBS + 1% FBS (staining buffer) and stained with fluorescent antibodies.

682 Fc Block and all fluorescent antibodies were sourced from Biolegend and titrated prior to
683 use. Samples were treated with Fc Block for 10 min at 4°C prior to staining. Afterward, samples
684 were washed 3x in staining buffer and then stained for cell surface antigens for 20 min at 4°C.
685 Cells were then washed 3x, fixed with 2% paraformaldehyde solution and analyzed on an LSRII
686 (BD). Data were analyzed with FlowJo software (v10.8). The following fluorescent antibodies (and
687 specific clones) were used: α CD3 (145-2C11), α EPCAM (G8.8), α CD8a (54-6.7), α CD4 (CK1.5),
688 α CD45 (30-F11), α NK1.1 (PK136), α Ly6G (IA8), α CD11c (N418), Fc Block α CD16/32 (93),
689 α CD11b (M1/70), α CD19 (6D5), α Ly6C (HK1.4) α CD63 (NVG-2), α LFA-1 (H155-78), Zombie UV
690 Fixable Dye. Gating strategies for neutrophils are shown in Fig. S3. All gating strategies for all
691 cell types and neutrophil phenotyping markers were based upon published immunophenotyping
692 methods (Eichelberger et al., 2019; Lou et al., 2020; Sakamoto et al., 2021).

693 **Histopathology** Samples were prepared for histology by collecting the entire depilated region of
694 the right flank (lesional and healthy skin), flattening the skin on cardstock, and submerging in 10%
695 Neutral Buffered Formalin for 48 hr at 4°C. After fixation, skins were washed and resuspended in
696 70% ethanol and stored at 4°C until submission to the UNC Pathology Services Core Facility. To
697 prepare fixed skin for submission, two cuts of skin were taken: 1) a horizontal section through the
698 flank to capture lesion and healthy skin and 2) a vertical cut to capture the diseased dermatome
699 region of skin. Thereafter, samples were stored in 70% ethanol and processed by the core,
700 stained for H&E and HSV-1 (1:1000, Dako), and analyzed by a veterinary pathologist (Dr. Hannah
701 Atkins), who selected representative images and identified regions of interest.

702 **Neutrophil and CXCL9 Depletions** To deplete neutrophils, mice were injected intraperitoneally
703 0, 2, and 4 dpi with 250 μ g in 200 μ L of α Ly6G antibody (Clone 1A8 IgG2a, BioXCell) or with isotype
704 control antibody (BioXCell) or PBS. Systemic depletion of neutrophils was validated at the end of
705 the experiment in each cohort of mice using the gating strategy outlined in supplementary Fig. 3B

706 on splenocytes. To neutralize CXCL9, mice were injected intraperitoneally 0, 2, 4 dpi with 300 µg
707 in 200 µL of α CXCL9 antibody (Clone MIG-2F5.5 IgG, BioXCell).

708 **CXCL9 ELISA** To measure the concentration of CXCL9 in the skin, lesional and healthy skin were
709 collected from wild-type and *Ifnlr1*^{-/-} mice 6 dpi. Samples were weighed and then homogenized
710 using beads and resuspended in 1 mL of DMEM. CXCL9 was measured from homogenized skin
711 supernatants using the MIG/CXCL9 Mouse ELISA Kit (ThermoFisher, #EMCXCL9) using optical
712 density read at 450nm and fit against the standard curve according to manufacturer protocol.

713 **IFN- λ Topical Pre-treatment** To prophylactically treat mice with IFN- λ , mice were depilated by
714 plucking 2 days prior to infection. The next day, 5 µg of recombinant murine IFN- λ 3 (PBL #12820)
715 in 10 µL PBS (or PBS alone) was applied topically to a 5mm² region of skin and allowed to air
716 dry. The treated area of skin was circled with a Sharpie and 24 hours later mice were infected
717 with HSV-1 at the treated site.

718 **Generating IFN Receptor Knockout A549 Cell Lines** IFN receptor knockout cell lines were
719 generated in an A549 background using CRISPR/Cas9 gene editing. A single guide RNA
720 targeting exon 2 of IFNAR1 (5'-CACCGTAGATGACAACCTTATCCTG-3'), exon 3 of IFNLR1 (5'-
721 CACCGACAAGTTCAAGGGACGCGTG-3'), and a non-targeting control (5'-
722 CACCGGTATAATACACCGCGCTAC-3') were cloned into the lentiCRISPRv2 vector (Addgene).
723 The gRNA construct was then co-transfected with two packaging plasmids (pMD2.G and
724 pSPAX2, Addgene) into HEK293T cells to produce lentiviruses. A549 cells were transduced and
725 selected using 2.5 µg/ml puromycin for two weeks. Surviving cells were then single cell sorted
726 into 96 well plates using a FACS ARIA II flow cytometer. Single clones of knockout monoclonal
727 cultures were confirmed via Sanger sequencing and used for subsequent experiments.

728 **Primary Mouse Keratinocyte Isolation** Keratinocytes were isolated from adult male and female
729 mice of indicated genotypes using published protocols (Li et al., 2017). In brief, mice were
730 euthanized and whole tails were harvested into cold PBS. Tail skin was peeled off, cut into thirds,
731 and digested overnight at 4°C in 4 mg/mL Dispase II (Sigma) while rotating. The epidermis was

732 then mechanically peeled from the dermis and placed basal side down into 0.05% trypsin to shake
733 for 20 min at room temperature. Afterwards, 7 mL of DMEM with 10% FBS was added and the
734 epidermis was rubbed basal side down into the bottom of a petri dish to release basal
735 keratinocytes. Cell suspensions were collected, passed through a 70 μ m cell strainer, and pelleted
736 at 400xg for 5 min. Cell pellets were resuspended in DermaLife K Keratinocyte Medium without
737 antibiotics (Lifeline, Cat #LL-007) to 1×10^5 cells/mL and seeded 1mL/well in 12-well plates. One
738 adult mouse tail generally yields $\sim 1 \times 10^5$ cells. Keratinocytes were grown to confluence, ~ 3 -4 days,
739 with media changes every other day, prior to experimental use.

740 **IFN treatments in Cell Culture** Primary mouse keratinocytes in 12-well plates were grown to
741 confluence for 3-4 days after isolation. Recombinant murine IFN- β (5 ng/mL; PBL #12401) or IFN-
742 λ 3 (5 ng/mL; PBL# 12820) was resuspended in fresh keratinocyte growth media and 1 mL of IFN
743 suspension or media alone was added to cells. 24 hours later, supernatant was removed, 350 μ L
744 of Buffer RLT (Qiagen) was added to each well, and samples were stored at -80 $^{\circ}$ C until RNA
745 extraction. A549 cells were treated similarly at confluence in 6-well plates with recombinant
746 human IFN- β (5 ng/mL; PBL #11415) or IFN- λ 2 (50 ng/mL; PBL #11720) or media only,
747 resuspended in A549 growth media. Then, 8 hours later, supernatant was removed, 350 μ L of
748 Buffer RLT (Qiagen) was added to each well, and samples were stored at -80 $^{\circ}$ C until RNA
749 extraction.

750 **RNA extractions and qRT-PCR** RNA from primary keratinocytes and A549 cells was extracted
751 with the Qiagen RNAeasy minikit. Predesigned primer/probe sets (Integrated DNA Technologies)
752 were used to detect murine *Ifit1* (Mm.PT.58.32674307) and *ActB* (Mm.PT.39a.22214843.g) and
753 human *IFIT1* (Hs.PT.56a.20769090.g) and *ACTB* (Hs.PT.39a.22214847). Transcripts were
754 measured by TaqMan one-step qRT-PCR on a CFX96 Touch real-time PCR detection system
755 (Bio-Rad) and were reported as relative differences in threshold cycle (Ct) values between ISG
756 and actin as a housekeeping gene using the $2^{-\Delta\Delta Ct}$ with reference to the average of media-treated,
757 wild-type primary keratinocytes or RenLuc A549s for each sample.

758 **RNA Sequencing** RNA extracted from A549 cells and primary keratinocytes with the indicated
759 IFN treatments was prepared for RNA sequencing by the UNC High Throughput Sequencing
760 Facility using the Kapa mRNA stranded library prep kit. Primary keratinocytes were sequenced
761 using NovaSeq6000S4 XP Paired End 2x100 and A549 cells were sequenced using
762 NovaSeq6000S4 XP Paired End 2x150. Sequences were analyzed using CLC Genomics
763 Workbench version 23.0.4 (Qiagen) with references to *Mus musculus* reference genome
764 sequence and annotation mm10 (Ensembl GRCm39.110) and *Homo sapiens* reference genome
765 sequence and annotation hg38 (Ensembl GRCh38. 110) for sequences from primary
766 keratinocytes and A549 cells, respectively, using default settings. Gene lists were then analyzed
767 using principal component analysis and volcano plot tools within CLC Genomics Workbench.
768 Differentially expressed genes were defined by having a false discovery rate (FDR) < 0.05 and
769 an absolute value Log₂ Fold Change > 1. Statistics were calculated within CLC Genomics
770 Workbench and volcano plots were prepared for visualization using Graphpad Prism 9 and
771 principal component analysis plots using CLC Genomics Workbench. Raw and processed RNA
772 sequencing data is available under the GEO superseries accession number GSE242171.

773 **Statistics** All statistics (apart from RNAseq data) were calculated using GraphPad Prism 9 or
774 XLSTAT 2022 Plugin. Lesion area, viral loads, and vaginal disease score were analyzed using a
775 Mann-Whitney U test and adjusting for multiple comparisons using the Holm-Šídák method when
776 appropriate. Flow cytometry was analyzed using an unpaired t-test. HSV-1 skin disease severity
777 was analyzed using the Cochrane-Armitage Method and adjusting for multiple-comparisons using
778 the Benjamini and Hochberg method when appropriate. Survival curves were analyzed using the
779 Mantel-Cox Log Rank test.

780

781 **ACKNOWLEDGEMENTS**

782 This work was supported by R01 AI139512 and R01 AI175708 (H.M.L.). D.T.P. was supported
783 by T32 AI007419 and F31 AI167502. IM and JKW were supported by R01 AI138337, R01

784 AI131685, R01 AI143894 to JKW, and R21 AI163606 to IM, and a DoD award W81XWH2110919
785 (JKW). The UNC flow cytometry core facility is supported by a NCI Center Core Support Grant
786 (5P30CA016086). We gratefully acknowledge the technical support from the UNC High
787 Throughput Sequencing Facility. This facility is supported by the University Cancer Research
788 Fund, Comprehensive Cancer Center Core Support grant (P30-CA016086) and the UNC Center
789 for Mental Health and Susceptibility grant (P30-ES010126). The authors have no competing
790 financial interests.

791

792 **SUPPLEMENTARY MATERIALS**

793 Supplementary Figures 1-4

794 Supplementary Table 1: RNAseq data from A549 cells

795 Supplementary Table 2: RNAseq data from primary keratinocytes

796

797 **REFERENCES**

- 798 1. Ank, N., Iversen, M. B., Bartholdy, C., Staeheli, P., Hartmann, R., Jensen, U. B.,
799 Dagnaes-Hansen, F., Thomsen, A. R., Chen, Z., Haugen, H., Klucher, K., & Paludan, S.
800 R. (2008). An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced
801 antiviral activity. *Journal of Immunology (Baltimore, Md.: 1950)*, 180(4), 2474–2485.
802 <https://doi.org/10.4049/jimmunol.180.4.2474>
- 803 2. Baldrige, M. T., Lee, S., Brown, J. J., McAllister, N., Urbanek, K., Dermody, T. S., Nice,
804 T. J., & Virgin, H. W. (2017). Expression of Ifnlr1 on Intestinal Epithelial Cells Is Critical
805 to the Antiviral Effects of Interferon Lambda against Norovirus and Reovirus. *Journal of*
806 *Virology*, 91(7), e02079-16. <https://doi.org/10.1128/JVI.02079-16>
- 807 3. Blazek, K., Eames, H. L., Weiss, M., Byrne, A. J., Perocheau, D., Pease, J. E., Doyle,
808 S., McCann, F., Williams, R. O., & Udalova, I. A. (2015). IFN-λ resolves inflammation via

809 suppression of neutrophil infiltration and IL-1 β production. *The Journal of Experimental*
810 *Medicine*, 212(6), 845–853. <https://doi.org/10.1084/jem.20140995>

811 4. Boff, D., Crijns, H., Janssens, R., Vanheule, V., Menezes, G. B., Macari, S., Silva, T. A.,
812 Amaral, F. A., & Proost, P. (2018). The chemokine fragment CXCL9(74-103) diminishes
813 neutrophil recruitment and joint inflammation in antigen-induced arthritis. *Journal of*
814 *Leukocyte Biology*, 104(2), 413–422. <https://doi.org/10.1002/JLB.3MA1217-502R>

815 5. Boff, D., Russo, R. C., Crijns, H., de Oliveira, V. L. S., Mattos, M. S., Marques, P. E.,
816 Menezes, G. B., Vieira, A. T., Teixeira, M. M., Proost, P., & Amaral, F. A. (2022). The
817 Therapeutic Treatment with the GAG-Binding Chemokine Fragment CXCL9(74-103)
818 Attenuates Neutrophilic Inflammation and Lung Dysfunction during Klebsiella
819 pneumoniae Infection in Mice. *International Journal of Molecular Sciences*, 23(11), 6246.
820 <https://doi.org/10.3390/ijms23116246>

821 6. Bradley, H., Markowitz, L. E., Gibson, T., & McQuillan, G. M. (2014). Seroprevalence of
822 herpes simplex virus types 1 and 2—United States, 1999-2010. *The Journal of Infectious*
823 *Diseases*, 209(3), 325–333. <https://doi.org/10.1093/infdis/jit458>

824 7. Broggi, A., Granucci, F., & Zanoni, I. (2020). Type III interferons: Balancing tissue
825 tolerance and resistance to pathogen invasion. *The Journal of Experimental Medicine*,
826 217(1), e20190295. <https://doi.org/10.1084/jem.20190295>

827 8. Broggi, A., Tan, Y., Granucci, F., & Zanoni, I. (2017). IFN- λ suppresses intestinal
828 inflammation by non-translational regulation of neutrophil function. *Nature Immunology*,
829 18(10), 1084–1093. <https://doi.org/10.1038/ni.3821>

830 9. Caine, E. A., Scheaffer, S. M., Arora, N., Zaitsev, K., Artyomov, M. N., Coyne, C. B.,
831 Moley, K. H., & Diamond, M. S. (2019). Interferon lambda protects the female
832 reproductive tract against Zika virus infection. *Nature Communications*, 10(1), 280.
833 <https://doi.org/10.1038/s41467-018-07993-2>

834 **10.** Casazza, R. L., Philip, D. T., & Lazear, H. M. (2022). Interferon Lambda Signals in
835 Maternal Tissues to Exert Protective and Pathogenic Effects in a Gestational Stage-
836 Dependent Manner. *MBio*, 13(3), e0385721. <https://doi.org/10.1128/mbio.03857-21>

837 **11.** Chami, B., Yeung, A., Buckland, M., Liu, H., M. Fong, G., Tao, K., & Bao, S. (2017).
838 CXCR3 plays a critical role for host protection against Salmonellosis. *Scientific Reports*,
839 7(1), Article 1. <https://doi.org/10.1038/s41598-017-09150-z>

840 **12.** Chami, B., Yeung, A. W. S., van Vreden, C., King, N. J. C., & Bao, S. (2014). The role of
841 CXCR3 in DSS-induced colitis. *PLoS One*, 9(7), e101622.
842 <https://doi.org/10.1371/journal.pone.0101622>

843 **13.** Coldbeck-Shackley, R. C., Romeo, O., Rosli, S., Gearing, L. J., Gould, J. A., Lim, S. S.,
844 Van der Hoek, K. H., Eyre, N. S., Shue, B., Robertson, S. A., Best, S. M., Tate, M. D.,
845 Hertzog, P. J., & Beard, M. R. (2023). Constitutive expression and distinct properties of
846 IFN-epsilon protect the female reproductive tract from Zika virus infection. *PLoS*
847 *Pathogens*, 19(3), e1010843. <https://doi.org/10.1371/journal.ppat.1010843>

848 **14.** Dinnon, K. H., Leist, S. R., Schäfer, A., Edwards, C. E., Martinez, D. R., Montgomery, S.
849 A., West, A., Yount, B. L., Hou, Y. J., Adams, L. E., Gully, K. L., Brown, A. J., Huang, E.,
850 Bryant, M. D., Choong, I. C., Glenn, J. S., Gralinski, L. E., Sheahan, T. P., & Baric, R. S.
851 (2020). A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures.
852 *Nature*, 586(7830), 560–566. <https://doi.org/10.1038/s41586-020-2708-8>

853 **15.** Douam, F., Soto Albrecht, Y. E., Hrebikova, G., Sadimin, E., Davidson, C., Kotenko, S.
854 V., & Ploss, A. (2017). Type III Interferon-Mediated Signaling Is Critical for Controlling
855 Live Attenuated Yellow Fever Virus Infection In Vivo. *MBio*, 8(4), e00819-17.
856 <https://doi.org/10.1128/mBio.00819-17>

857 **16.** Dowling, J. W., & Forero, A. (2022). Beyond Good and Evil: Molecular Mechanisms of
858 Type I and III IFN Functions. *Journal of Immunology (Baltimore, Md.: 1950)*, 208(2),
859 247–256. <https://doi.org/10.4049/jimmunol.2100707>

860 **17.** Eichelberger, K. R., Jones, G. S., & Goldman, W. E. (2019). Inhibition of Neutrophil
861 Primary Granule Release during *Yersinia pestis* Pulmonary Infection. *MBio*, 10(6),
862 e02759-19. <https://doi.org/10.1128/mBio.02759-19>

863 **18.** Espinosa, V., Dutta, O., Mc Elrath, C., Du, P., Chang, Y.-J., Cicciarelli, B., Pitler, A.,
864 Whitehead, I., Obar, J. J., Durbin, J., Kotenko, S., & Rivera, A. (2017). Type III interferon
865 is a critical regulator of innate antifungal immunity. *Science Immunology*, 2(16),
866 eaan5357. <https://doi.org/10.1126/sciimmunol.aan5357>

867 **19.** Feld, J. J., Kandel, C., Biondi, M. J., Kozak, R. A., Zahoor, M. A., Lemieux, C., Borgia, S.,
868 M., Boggild, A. K., Powis, J., McCready, J., Tan, D. H. S., Chan, T., Coburn, B., Kumar,
869 D., Humar, A., Chan, A., O'Neil, B., Noureldin, S., Booth, J., ... Hansen, B. E. (2021).
870 Peginterferon lambda for the treatment of outpatients with COVID-19: A phase 2,
871 placebo-controlled randomised trial. *The Lancet. Respiratory Medicine*, 9(5), 498–510.
872 [https://doi.org/10.1016/S2213-2600\(20\)30566-X](https://doi.org/10.1016/S2213-2600(20)30566-X)

873 **20.** Flisiak, R., Schiffman, M., Arenas, J., Cheinquer, H., Nikitin, I., Dong, Y., Rana, K., &
874 Srinivasan, S. (2016). A Randomized Study of Peginterferon Lambda-1a Compared to
875 Peginterferon Alfa-2a in Combination with Ribavirin and Telaprevir in Patients with
876 Genotype-1 Chronic Hepatitis C. *PLoS One*, 11(10), e0164563.
877 <https://doi.org/10.1371/journal.pone.0164563>

878 **21.** Forero, A., Ozarkar, S., Li, H., Lee, C. H., Hemann, E. A., Nadjsombati, M. S.,
879 Hendricks, M. R., So, L., Green, R., Roy, C. N., Sarkar, S. N., von Moltke, J., Anderson,
880 S. K., Gale, M., & Savan, R. (2019). Differential Activation of the Transcription Factor
881 IRF1 Underlies the Distinct Immune Responses Elicited by Type I and Type III
882 Interferons. *Immunity*, 51(3), 451-464.e6. <https://doi.org/10.1016/j.jimmuni.2019.07.007>

883 **22.** Friedman, H. M., Macarak, E. J., MacGregor, R. R., Wolfe, J., & Kefalides, N. A. (1981).
884 Virus infection of endothelial cells. *The Journal of Infectious Diseases*, 143(2), 266–273.
885 <https://doi.org/10.1093/infdis/143.2.266>

886 **23.** Galani, I. E., Triantafyllia, V., Eleminiadou, E.-E., Koltsida, O., Stavropoulos, A.,
887 Manioudaki, M., Thanos, D., Doyle, S. E., Kotenko, S. V., Thanopoulou, K., &
888 Andreakos, E. (2017). Interferon-λ Mediates Non-redundant Front-Line Antiviral
889 Protection against Influenza Virus Infection without Compromising Host Fitness.
890 *Immunity*, 46(5), 875-890.e6. <https://doi.org/10.1016/j.immuni.2017.04.025>

891 **24.** Gharaei-Kermani, M., Estadt, S. N., Tsoi, L. C., Wolf-Fortune, S. J., Liu, J., Xing, X.,
892 Theros, J., Reed, T. J., Lowe, L., Gruszka, D., Ward, N. L., Gudjonsson, J. E., &
893 Kahlenberg, J. M. (2022). IFN-κ Is a Rheostat for Development of Psoriasisiform
894 Inflammation. *The Journal of Investigative Dermatology*, 142(1), 155-165.e3.
895 <https://doi.org/10.1016/j.jid.2021.05.029>

896 **25.** Goel, R. R., Wang, X., O'Neil, L. J., Nakabo, S., Hasneen, K., Gupta, S., Wigerblad, G.,
897 Blanco, L. P., Kopp, J. B., Morasso, M. I., Kotenko, S. V., Yu, Z.-X., Carmona-Rivera, C.,
898 & Kaplan, M. J. (2020). Interferon lambda promotes immune dysregulation and tissue
899 inflammation in TLR7-induced lupus. *Proceedings of the National Academy of Sciences
900 of the United States of America*, 117(10), 5409–5419.
901 <https://doi.org/10.1073/pnas.1916897117>

902 **26.** Grau, K. R., Zhu, S., Peterson, S. T., Helm, E. W., Philip, D., Phillips, M., Hernandez, A.,
903 Turula, H., Frasse, P., Graziano, V. R., Wilen, C. B., Wobus, C. E., Baldridge, M. T., &
904 Karst, S. M. (2020). The intestinal regionalization of acute norovirus infection is
905 regulated by the microbiota via bile acid-mediated priming of type III interferon. *Nature
906 Microbiology*, 5(1), 84–92. <https://doi.org/10.1038/s41564-019-0602-7>

907 **27.** Handfield, C., Kwock, J., & MacLeod, A. S. (2018). Innate Antiviral Immunity in the Skin.
908 *Trends in Immunology*, 39(4), 328–340. <https://doi.org/10.1016/j.it.2018.02.003>

909 **28.** Hartl, D., Krauss-Etschmann, S., Koller, B., Hordijk, P. L., Kuijpers, T. W., Hoffmann, F.,
910 Hector, A., Eber, E., Marcos, V., Bittmann, I., Eickelberg, O., Griese, M., & Roos, D.
911 (2008). Infiltrated neutrophils acquire novel chemokine receptor expression and

912 chemokine responsiveness in chronic inflammatory lung diseases. *Journal of*
913 *Immunology (Baltimore, Md.: 1950)*, 181(11), 8053–8067.
914 <https://doi.org/10.4049/jimmunol.181.11.8053>

915 **29.** Hemann, E. A., Green, R., Turnbull, J. B., Langlois, R. A., Savan, R., & Gale, M. (2019).
916 Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with
917 influenza A virus. *Nature Immunology*, 20(8), 1035–1045.
918 <https://doi.org/10.1038/s41590-019-0408-z>

919 **30.** Hor, J. L., Heath, W. R., & Mueller, S. N. (2017). Neutrophils are dispensable in the
920 modulation of T cell immunity against cutaneous HSV-1 infection. *Scientific Reports*, 7,
921 41091. <https://doi.org/10.1038/srep41091>

922 **31.** Jagger, B. W., Miner, J. J., Cao, B., Arora, N., Smith, A. M., Kovacs, A., Mysorekar, I. U.,
923 Coyne, C. B., & Diamond, M. S. (2017). Gestational Stage and IFN-λ Signaling Regulate
924 ZIKV Infection In Utero. *Cell Host & Microbe*, 22(3), 366–376.e3.
925 <https://doi.org/10.1016/j.chom.2017.08.012>

926 **32.** Karin, N. (2020). CXCR3 Ligands in Cancer and Autoimmunity, Chemoattraction of
927 Effector T Cells, and Beyond. *Frontiers in Immunology*, 11, 976.
928 <https://doi.org/10.3389/fimmu.2020.00976>

929 **33.** Kawakami, Y., Ando, T., Lee, J.-R., Kim, G., Kawakami, Y., Nakasaki, T., Nakasaki, M.,
930 Matsumoto, K., Choi, Y. S., & Kawakami, T. (2017). Defective natural killer cell activity in
931 a mouse model of eczema herpeticum. *The Journal of Allergy and Clinical Immunology*,
932 139(3), 997–1006.e10. <https://doi.org/10.1016/j.jaci.2016.06.034>

933 **34.** Kobayashi, T., Naik, S., & Nagao, K. (2019). Choreographing immunity in the skin
934 epithelial barrier. *Immunity*, 50(3), 552–565.
935 <https://doi.org/10.1016/j.jimmuni.2019.02.023>

936 **35.** Kollias, C. M., Huneke, R. B., Wigdahl, B., & Jennings, S. R. (2015). Animal models of
937 herpes simplex virus immunity and pathogenesis. *Journal of Neurovirology*, 21(1), 8–23.
938 <https://doi.org/10.1007/s13365-014-0302-2>

939 **36.** LaFleur, D. W., Nardelli, B., Tsareva, T., Mather, D., Feng, P., Semenuk, M., Taylor, K.,
940 Buergin, M., Chinchilla, D., Roshke, V., Chen, G., Ruben, S. M., Pitha, P. M., Coleman,
941 T. A., & Moore, P. A. (2001). Interferon- κ , a novel type I interferon expressed in
942 human keratinocytes. *The Journal of Biological Chemistry*, 276(43), 39765–39771.
943 <https://doi.org/10.1074/jbc.M102502200>

944 **37.** Lazear, H. M., Daniels, B. P., Pinto, A. K., Huang, A. C., Vick, S. C., Doyle, S. E., Gale,
945 M., Klein, R. S., & Diamond, M. S. (2015). Interferon- λ restricts West Nile virus
946 neuroinvasion by tightening the blood-brain barrier. *Science Translational Medicine*,
947 7(284), 284ra59. <https://doi.org/10.1126/scitranslmed.aaa4304>

948 **38.** Lazear, H. M., Schoggins, J. W., & Diamond, M. S. (2019). Shared and Distinct
949 Functions of Type I and Type III Interferons. *Immunity*, 50(4), 907–923.
950 <https://doi.org/10.1016/j.immuni.2019.03.025>

951 **39.** Lebratti, T., Lim, Y. S., Cofie, A., Andhey, P., Jiang, X., Scott, J., Fabbrizi, M. R.,
952 Ozantürk, A. N., Pham, C., Clemens, R., Artyomov, M., Dinauer, M., & Shin, H. (2021). A
953 sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral
954 infection. *eLife*, 10, e65762. <https://doi.org/10.7554/eLife.65762>

955 **40.** Li, F., Adase, C. A., & Zhang, L. (2017). Isolation and Culture of Primary Mouse
956 Keratinocytes from Neonatal and Adult Mouse Skin. *Journal of Visualized Experiments: JoVE*, 125, 56027. <https://doi.org/10.3791/56027>

958 **41.** Lopez, C. A., Dulson, S. J., & Lazear, H. M. (2022). Zika Virus Replicates in the Vagina
959 of Mice with Intact Interferon Signaling. *Journal of Virology*, 96(18), e0121922.
960 <https://doi.org/10.1128/jvi.01219-22>

961 **42.** Lou, F., Sun, Y., & Wang, H. (2020). Protocol for Flow Cytometric Detection of Immune
962 Cell Infiltration in the Epidermis and Dermis of a Psoriasis Mouse Model. *STAR
963 Protocols*, 1(3), 100115. <https://doi.org/10.1101/2020.10.01.20100115>

964 **43.** Ma, J. Z., Russell, T. A., Spelman, T., Carbone, F. R., & Tscharke, D. C. (2014). Lytic
965 Gene Expression Is Frequent in HSV-1 Latent Infection and Correlates with the
966 Engagement of a Cell-Intrinsic Transcriptional Response. *PLoS Pathogens*, 10(7),
967 e1004237. <https://doi.org/10.1371/journal.ppat.1004237>

968 **44.** Mesev, E. V., LeDesma, R. A., & Ploss, A. (2019). Decoding type I and III interferon
969 signalling during viral infection. *Nature Microbiology*, 4(6), 914–924.
970 <https://doi.org/10.1038/s41564-019-0421-x>

971 **45.** Miner, J. J., Platt, D. J., Ghaznavi, C. M., Chandra, P., Santeford, A., Menos, A. M.,
972 Dong, Z., Wang, E. R., Qian, W., Karozichian, E. S., Philips, J. A., & Apte, R. S. (2020).
973 HSV-1 and Zika Virus but Not SARS-CoV-2 Replicate in the Human Cornea and Are
974 Restricted by Corneal Type III Interferon. *Cell Reports*, 33(5), 108339.
975 <https://doi.org/10.1016/j.celrep.2020.108339>

976 **46.** Muir, A. J., Arora, S., Everson, G., Flisiak, R., George, J., Ghalib, R., Gordon, S. C.,
977 Gray, T., Greenbloom, S., Hassanein, T., Hillson, J., Horga, M. A., Jacobson, I. M.,
978 Jeffers, L., Kowdley, K. V., Lawitz, E., Lueth, S., Rodriguez-Torres, M., Rustgi, V., ...
979 EMERGE study group. (2014). A randomized phase 2b study of peginterferon lambda-
980 1a for the treatment of chronic HCV infection. *Journal of Hepatology*, 61(6), 1238–1246.
981 <https://doi.org/10.1016/j.jhep.2014.07.022>

982 **47.** Nestle, F. O., Di Meglio, P., Qin, J.-Z., & Nickoloff, B. J. (2009). Skin immune sentinels in
983 health and disease. *Nature Reviews Immunology*, 9(10), 679–691.
984 <https://doi.org/10.1038/nri2622>

985 **48.** Novais, F. O., Amorim, C. F., & Scott, P. (2021). Host-Directed Therapies for Cutaneous
986 Leishmaniasis. *Frontiers in Immunology*, 12, 660183.
987 <https://doi.org/10.3389/fimmu.2021.660183>

988 **49.** Peterson, S. T., Kennedy, E. A., Brigleb, P. H., Taylor, G. M., Urbanek, K., Bricker, T. L.,
989 Lee, S., Shin, H., Dermody, T. S., Boon, A. C. M., & Baldridge, M. T. (2019). Disruption
990 of Type III Interferon (IFN) Genes Ifnl2 and Ifnl3 Recapitulates Loss of the Type III IFN
991 Receptor in the Mucosal Antiviral Response. *Journal of Virology*, 93(22), e01073-19.
992 <https://doi.org/10.1128/JVI.01073-19>

993 **50.** Phillipson, M., Heit, B., Colarusso, P., Liu, L., Ballantyne, C. M., & Kubes, P. (2006).
994 Intraluminal crawling of neutrophils to emigration sites: A molecularly distinct process
995 from adhesion in the recruitment cascade. *The Journal of Experimental Medicine*,
996 203(12), 2569–2575. <https://doi.org/10.1084/jem.20060925>

997 **51.** Reed, J. L., Scott, D. E., & Bray, M. (2012). Eczema vaccinatum. *Clinical Infectious
998 Diseases: An Official Publication of the Infectious Diseases Society of America*, 54(6),
999 832–840. <https://doi.org/10.1093/cid/cir952>

1000 **52.** Sakamoto, K., Goel, S., Funakoshi, A., Honda, T., & Nagao, K. (2021). Flow cytometry
1001 analysis of the subpopulations of mouse keratinocytes and skin immune cells. *STAR
1002 Protocols*, 3(1), 101052. <https://doi.org/10.1016/j.xpro.2021.101052>

1003 **53.** Santer, D. M., Minty, G. E. S., Golec, D. P., Lu, J., May, J., Namdar, A., Shah, J., Elahi,
1004 S., Proud, D., Joyce, M., Tyrrell, D. L., & Houghton, M. (2020). Differential expression of
1005 interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral
1006 response induced by interferon-lambda 3 in human immune cells. *PLoS Pathogens*,
1007 16(4), e1008515. <https://doi.org/10.1371/journal.ppat.1008515>

1008 **54.** Shmeleva, E. V., Gomez de Agüero, M., Wagner, J., Enright, A. J., Macpherson, A. J.,
1009 Ferguson, B. J., & Smith, G. L. (2022). Smallpox vaccination induces a substantial
1010 increase in commensal skin bacteria that promote pathology and influence the host

1011 response. *PLoS Pathogens*, 18(4), e1009854.

1012 <https://doi.org/10.1371/journal.ppat.1009854>

1013 **55.** Simmons, A., & Nash, A. A. (1984). Zosteriform spread of herpes simplex virus as a
1014 model of recrudescence and its use to investigate the role of immune cells in prevention
1015 of recurrent disease. *Journal of Virology*, 52(3), 816–821.

1016 **56.** van Lint, A., Ayers, M., Brooks, A. G., Coles, R. M., Heath, W. R., & Carbone, F. R.
1017 (2004). Herpes simplex virus-specific CD8+ T cells can clear established lytic infections
1018 from skin and nerves and can partially limit the early spread of virus after cutaneous
1019 inoculation. *Journal of Immunology (Baltimore, Md.: 1950)*, 172(1), 392–397.
1020 <https://doi.org/10.4049/jimmunol.172.1.392>

1021 **57.** Wang, P., Gamero, A. M., & Jensen, L. E. (2019). IL-36 promotes anti-viral immunity by
1022 boosting sensitivity to IFN- α/β in IRF1 dependent and independent manners. *Nature
1023 Communications*, 10(1), 4700. <https://doi.org/10.1038/s41467-019-12318-y>

1024 **58.** Wharton, M., Strikas, R. A., Harpaz, R., Rotz, L. D., Schwartz, B., Casey, C. G.,
1025 Pearson, M. L., Anderson, L. J., Advisory Committee on Immunization Practices, &
1026 Healthcare Infection Control Practices Advisory Committee. (2003). Recommendations
1027 for using smallpox vaccine in a pre-event vaccination program. Supplemental
1028 recommendations of the Advisory Committee on Immunization Practices (ACIP) and the
1029 Healthcare Infection Control Practices Advisory Committee (HICPAC). *MMWR.
1030 Recommendations and Reports: Morbidity and Mortality Weekly Report*.
1031 *Recommendations and Reports*, 52(RR-7), 1–16.

1032 **59.** Wojtasiak, M., Pickett, D. L., Tate, M. D., Bedoui, S., Job, E. R., Whitney, P. G., Brooks,
1033 A. G., & Reading, P. C. (2010). Gr-1+ cells, but not neutrophils, limit virus replication and
1034 lesion development following flank infection of mice with herpes simplex virus type-1.
1035 *Virology*, 407(1), 143–151. <https://doi.org/10.1016/j.virol.2010.08.001>

1036 **60.** Wolk, K., Witte, K., Witte, E., Raftery, M., Kokolakis, G., Philipp, S., Schönrich, G.,
1037 Warszawska, K., Kirsch, S., Prösch, S., Sterry, W., Volk, H.-D., & Sabat, R. (2013). IL-29
1038 is produced by T(H)17 cells and mediates the cutaneous antiviral competence in
1039 psoriasis. *Science Translational Medicine*, 5(204), 204ra129.
1040 <https://doi.org/10.1126/scitranslmed.3006245>

1041 **61.** Wollenberg, A., Wetzel, S., Burgdorf, W. H. C., & Haas, J. (2003). Viral infections in
1042 atopic dermatitis: Pathogenic aspects and clinical management. *The Journal of Allergy*
1043 and *Clinical Immunology*, 112(4), 667–674. <https://doi.org/10.1016/j.jaci.2003.07.001>

1044 **62.** Ye, L., Schnepf, D., Becker, J., Ebert, K., Tanriver, Y., Bernasconi, V., Gad, H. H.,
1045 Hartmann, R., Lycke, N., & Staeheli, P. (2019). Interferon-λ enhances adaptive mucosal
1046 immunity by boosting release of thymic stromal lymphopoietin. *Nature Immunology*,
1047 20(5), 593–601. <https://doi.org/10.1038/s41590-019-0345-x>

1048 **63.** Zenaro, E., Pietronigro, E., Della Bianca, V., Piacentino, G., Marongiu, L., Budui, S.,
1049 Turano, E., Rossi, B., Angiari, S., Dusi, S., Montresor, A., Carlucci, T., Nanì, S.,
1050 Tosadori, G., Calciano, L., Catalucci, D., Berton, G., Bonetti, B., & Constantin, G. (2015).
1051 Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1
1052 integrin. *Nature Medicine*, 21(8), 880–886. <https://doi.org/10.1038/nm.3913>

1053 **64.** Zhou, Z., Hamming, O. J., Ank, N., Paludan, S. R., Nielsen, A. L., & Hartmann, R.
1054 (2007). Type III interferon (IFN) induces a type I IFN-like response in a restricted subset
1055 of cells through signaling pathways involving both the Jak-STAT pathway and the
1056 mitogen-activated protein kinases. *Journal of Virology*, 81(14), 7749–7758.
1057 <https://doi.org/10.1128/JVI.02438-06>

1058

1059 **FIGURE LEGENDS**

1060 **Figure 1. IFN-λ signaling protects against severe HSV skin disease without affecting viral**
1061 **replication. A-E.** 8-12 week-old male and female WT and *Ifnlr1*^{-/-} mice were infected with 10⁶ FFU

1062 of HSV-1 strain NS. **A.** Dermatome skin lesions were photographed 6 dpi. **B.** HSV-1 skin lesions
1063 were measured from photographs 6, 8, and 10 dpi using imageJ. **C.** Skin lesion severity was
1064 categorized based on 6 dpi lesion area. **D.** Skin viral loads were measured 2-10 dpi by focus-
1065 forming assay. **E.** Viral loads in ipsilateral and contralateral dorsal root ganglia (L2-L5 pooled for
1066 each mouse) were measured by qPCR. **F-G.** 8-12 week-old male and female WT and *Ifnlr1*^{-/-} mice
1067 were infected with 10³ FFU of HSV-2 strain 333. **F.** Dermatome lesions photographed 8 dpi. **G.**
1068 HSV-2 skin lesions were measured from photographs 6 and 8 dpi using ImageJ. **H.** 8-12 week-
1069 old female WT and *Ifnlr1*^{-/-} mice were infected with 10³ FFU of HSV-2 strain 333 intravaginally and
1070 HSV-2 vaginal disease was scored 6-8dpi as follows: 1: mild redness and swelling, 2: visible
1071 ulceration and fur loss, 3: severe ulceration and signs of sickness, 4: hindlimb paralysis, 5:
1072 moribund/dead. Differences in lesion area and viral load were compared by Mann-Whitney U test.
1073 Differences in categorical skin disease were compared by Cochran-Armitage test. *P* values are
1074 reported with *P* < 0.05 considered to be statistically significant.

1075

1076 **Figure 2. The protective effect of IFN-λ in the skin does not require IFN-α/β signaling.** 8-12
1077 week-old *Ifnar1*^{-/-} and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO male and female mice were infected with 10⁶ FFU of
1078 HSV-1. **A.** Lethality was monitored daily (n=15 *Ifnar1*^{-/-} and 10 DKO mice). **B.** Dermatome skin
1079 lesions were photographed 4 dpi. **C.** Skin lesion areas were measured from photographs 4 dpi
1080 using ImageJ. **D.** Skin lesion severity was categorized based on 4 dpi lesion area. **E.** Skin viral
1081 loads were measured 2 and 4 dpi by focus-forming assay. Survival differences were compared
1082 by Mantel-Cox Log-Rank test. Differences in lesion area and viral load were compared by Mann-
1083 Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage
1084 test. *P* values are reported with *P* < 0.05 considered to be statistically significant.

1085

1086 **Figure 3. IFN-λ cytokines protect against severe HSV-1 skin disease.** **A-D.** 8-12 week-old
1087 WT, *Ifnl2/3*^{-/-}, and *Ifnk*^{-/-} male and female mice were infected with 10⁶ FFU of HSV-1. **A.**

1088 Dermatome skin lesions were photographed 6 dpi. **B.** Skin lesion areas were measured from
1089 photographs 6 dpi using ImageJ. **C.** Skin lesion severity was categorized based on 6 dpi lesion
1090 area. **D.** Skin viral loads were measured 6 dpi by FFA. **E-G.** 8 week-old WT and *Ifnl2/3*^{-/-} male and
1091 female mice were lethally irradiated and transfused with 10⁷ bone marrow cells from WT or *Ifnl2/3*^{-/-}
1092 donors. 10 weeks later, mice were infected with 10⁶ FFU of HSV-1. **E.** Skin lesion areas were
1093 measured from photographs 6 dpi using ImageJ. **F.** Skin lesion severity was categorized based
1094 upon 6 dpi lesion area. **G.** Skin viral loads were measured 6 dpi by FFA. **H-I.** 8-12 week-old WT
1095 male and female mice were depilated and then topically treated with 5 µg of recombinant murine
1096 IFN-λ3 or PBS. 24 hours later, mice were infected with 10⁶ FFU of HSV-1 at the treated site. **H.**
1097 Skin lesion areas were measured from photographs 6 dpi using ImageJ. **I.** Skin viral loads were
1098 measured 6 dpi by FFA. Differences in lesion area and viral load were compared by Mann-
1099 Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage
1100 test. *P* values are reported with *P* < 0.05 considered to be statistically significant.

1101

1102 **Figure 4. IFN-λ signaling in both keratinocytes and leukocytes is necessary to restrict**
1103 **severe HSV-1 skin disease.** 8-12 week-old male and female WT, *Ifnlr1*^{-/-}, *K14-Cre-Ifnlr1*^{-/-}, and
1104 *Vav-Cre-Ifnlr1*^{-/-} mice were infected with 10⁶ FFU of HSV-1. **A.** Dermatome skin lesions
1105 photographed were 6 dpi. **B.** Skin lesion areas were measured from photographs 6 dpi using
1106 ImageJ. **C.** Skin lesion severity was categorized based on 6 dpi lesion area. **D.** Skin viral loads
1107 were measured 6 dpi by FFA. Differences in lesion area and viral load were compared by Mann-
1108 Whitney U test and differences in categorical skin disease were compared by Cochran-Armitage
1109 test. *P* values are reported with *P* < 0.05 considered to be statistically significant.

1110

1111 **Figure 5. IFN-λ signaling in keratinocytes differentially regulates CXCL9 induction.** Primary
1112 keratinocytes were prepared from WT, *Ifnlr1*^{-/-}, *Ifnar1*^{-/-}, and *Ifnar1*^{-/-} *Ifnlr1*^{-/-} DKO mice and treated
1113 with IFN-λ3 (5 ng/mL), IFN-β (5 ng/mL), or media alone for 24 hours. **A.** RNA was extracted and

1114 IFN-stimulated gene expression was measured by qRT-PCR. *Ifit1* expression is shown relative to
1115 *ActB* (housekeeping gene) and normalized to expression in media-treated WT cells. Results
1116 represent 6 samples from 2 independent experiments. **B-F**. RNA from 3 samples per genotype
1117 per treatment was analyzed by RNAseq (NovaSeq6000S4 XP Paired End 2x100). **B**. Principal
1118 component analysis for all analyzed samples. **C**. Volcano plots showing differentially expressed
1119 genes after IFN- λ or IFN- β treatment, compared to media-only treated keratinocytes. Differentially
1120 expressed genes were defined as having a $|\text{Log}_2\text{Fold Change}| > 1$ and an FDR p-value ≤ 0.05 . **D**.
1121 Venn diagram showing DEGs induced by IFN- λ and IFN- β in WT or knockout keratinocytes. **E**.
1122 Table of IFN- λ -specific DEGs, their $\text{Log}_2\text{Fold Change}$, and FDR p-value for IFN- λ and IFN- β -
1123 treated WT keratinocytes. **F**. Volcano plot showing DEGs after IFN- λ treatment compared to IFN-
1124 β treatment in WT and receptor knockout keratinocytes.

1125

1126 **Figure 6. IFN- λ signaling limits neutrophil abundance and severe skin pathology following**
1127 **HSV-1 infection.** 8-12 week-old male and female WT and *Ifnlr1*^{-/-} mice were infected with 10^6
1128 FFU of HSV-1. **A-B.** Dermatome lesions and adjacent healthy skin were collected 4-8 dpi and
1129 analyzed by flow cytometry. **A.** Representative histogram of WT and *Ifnlr1*^{-/-} lesions showing
1130 Ly6G+ neutrophil gating strategy (CD45+, CD11b+, Ly6G+) at 6 dpi. **B.** Frequency of neutrophils
1131 (Ly6G+ out of CD45+ CD11b+ live cells) for WT and *Ifnlr1*^{-/-} dermatome lesions and adjacent
1132 healthy skin. Significant differences in neutrophil frequency were determined using an unpaired t
1133 test. *P* values are reported with *P* < 0.05 considered to be statistically significant. **C-D.** Inoculated
1134 flank skin was collected at 6 dpi and serial sections of the same skin lesion were processed for
1135 histology. **C.** H&E staining; black arrow denotes a neutrophilic pustule, red arrow denotes diffuse
1136 neutrophilic infiltrate. **D.** Anti-HSV-1 immunohistochemistry; viral antigen staining is denoted by
1137 black arrows. Scale bars are 100 μm .

1138

1139 **Figure 7. IFN-λ signaling suppresses neutrophil-mediated pathology to limit HSV-1 skin**
1140 **disease. A.** Experimental design for neutrophil depletions **B-D.** WT and *Ifnlr1*^{-/-} mice were infected
1141 with 10⁶ FFU of HSV-1. 0, 2, and 4 dpi mice were injected intraperitoneally with PBS, 250 µg of
1142 isotype control (IgG2a), or 250 µg of αLy6G (Clone 1A8). **B.** Spleens were harvested 6 dpi and
1143 analyzed by flow cytometry to confirm neutrophil depletion. **C.** Skin lesions were photographed 6
1144 dpi and lesion areas measured ImageJ. **D.** Skin lesion severity was categorized based on 6 dpi
1145 lesion area. **E-G.** WT and *Ifnlr1*^{-/-} mice were infected with 10⁶ FFU of HSV-1 and 6 dpi skin lesions
1146 were photographed and analyzed via flow cytometry. **E.** Representative plots and gating strategy
1147 for neutrophil phenotyping markers LFA-1 and CD63 (% of CD45+ CD11b+ Ly6G+). **F.** Frequency
1148 of CD63+ neutrophils. **G.** Frequency of LFA-1+ CD63- neutrophils. Differences in lesion area and
1149 viral load were compared by Mann-Whitney U test and differences in categorical skin disease
1150 were compared by Cochran-Armitage test. Neutrophil frequencies were compared by unpaired t
1151 test. *P* values are reported with *P* < 0.05 considered to be statistically significant.

1152

1153 **Figure 8. IFN-λ signaling in neutrophils contributes to protection from severe HSV-1 skin**
1154 **disease.** 8-12 week-old male and female WT, *Ifnlr1*^{-/-}, *LysM-Cre-Ifnlr1*^{-/-}, and *Mrp8-Cre-Ifnlr1*^{-/-}
1155 mice were infected with 10⁶ FFU of HSV-1. **A.** Dermatome skin lesions were photographed 6 dpi.
1156 **B.** Skin lesion areas were measured from photographs 6 dpi using image J. **C.** Skin lesion severity
1157 was categorized based on 6 dpi lesion area. Differences in lesion area and viral load were
1158 compared by Mann-Whitney U test. Differences in categorical skin disease were compared by
1159 Cochran-Armitage test. *P* values are reported with *P* < 0.05 considered to be statistically
1160 significant.

1161

1162 **Figure 9. IFN-λ signaling in keratinocytes restricts CXCL9 production to limit neutrophil**
1163 **recruitment and HSV-1 skin disease.** 8-12 week-old male and female mice were infected with
1164 10⁶ FFU of HSV-1 and skin lesions were analyzed 6 dpi. **A.** CXCL9 was measured by ELISA in

1165 homogenates of lesional skin or adjacent healthy skin from WT and *Ifnlr1*^{-/-} mice. **B-D.** WT and
1166 *K14-Cre-Ifnlr1*^{-/-} mice were infected with HSV-1 and injected intraperitoneally with anti-CXCL9
1167 (300 μ g) or PBS 0, 2, and 4 dpi. Skin lesion areas were measured from photographs 6 dpi (**B**) and
1168 lesion severity categorized (**C**). **D.** Neutrophil frequency in skin lesions was measured by flow
1169 cytometry 6 dpi. Differences in lesion area and viral load were compared by Mann-Whitney U test.
1170 Differences in categorical skin disease were compared by Cochran-Armitage test. Differences in
1171 CXCL9 concentration and neutrophil frequency were compared by unpaired t test. *P* values are
1172 reported with *P* < 0.05 considered to be statistically significant.

1173

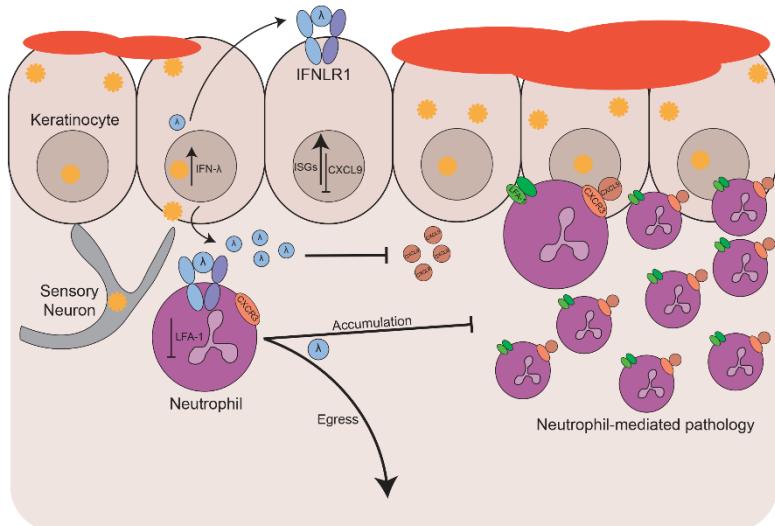
1174 **Supplementary Figure 1. Optimizing an HSV-1 skin infection model. A.** HSV-1 skin infection
1175 model. **B-G.** 8-12 week-old male and female wild-type (C57BL/6) mice were infected with 10⁶ FFU
1176 of HSV-1 strain NS and dermatome lesions were analyzed 6 dpi. **B.** Mice were depilated by
1177 manual plucking or by shaving plus Nair 1 day prior to infection. **C-D.** Depilated right flank skin of
1178 mice was abraded prior to inoculation using 40 scratches with a 27G needle, 10 punctures with a
1179 Quintip allergy needle, or 1 puncture with a multi-pronged Greer pick allergy needle. **C.** Skin lesion
1180 viral loads were measured by FFA. **D.** Skin lesions were photographed and areas measured using
1181 ImageJ. **E-G.** 20 mice were depilated by manual plucking and infected 1 day later using a Quintip
1182 allergy needle. **E.** Skin lesions were photographed 6 dpi and lesion areas measured using
1183 ImageJ. The standard deviation of lesion areas was 12 mm². **F.** Lesion severity was categorized
1184 based on lesion area: <5 mm² = Mild, 5-23 mm² = Moderate, >23 mm² = Severe. **G.** Representative
1185 images of each skin disease severity category.

1186

1187 **Supplementary Figure 2. Validation of keratinocyte-specific *Ifnlr1* conditional knockouts.**
1188 Tissues (flank skin, blood, brain, spleen, tail) were harvested from 8-week-old *K14-Cre-* and *K14-*
1189 *Cre+* littermates, both carrying homozygous floxed alleles of *Ifnlr1*. *Cre* and *Ifnlr1* genotyping was
1190 performed by PCR.

1191

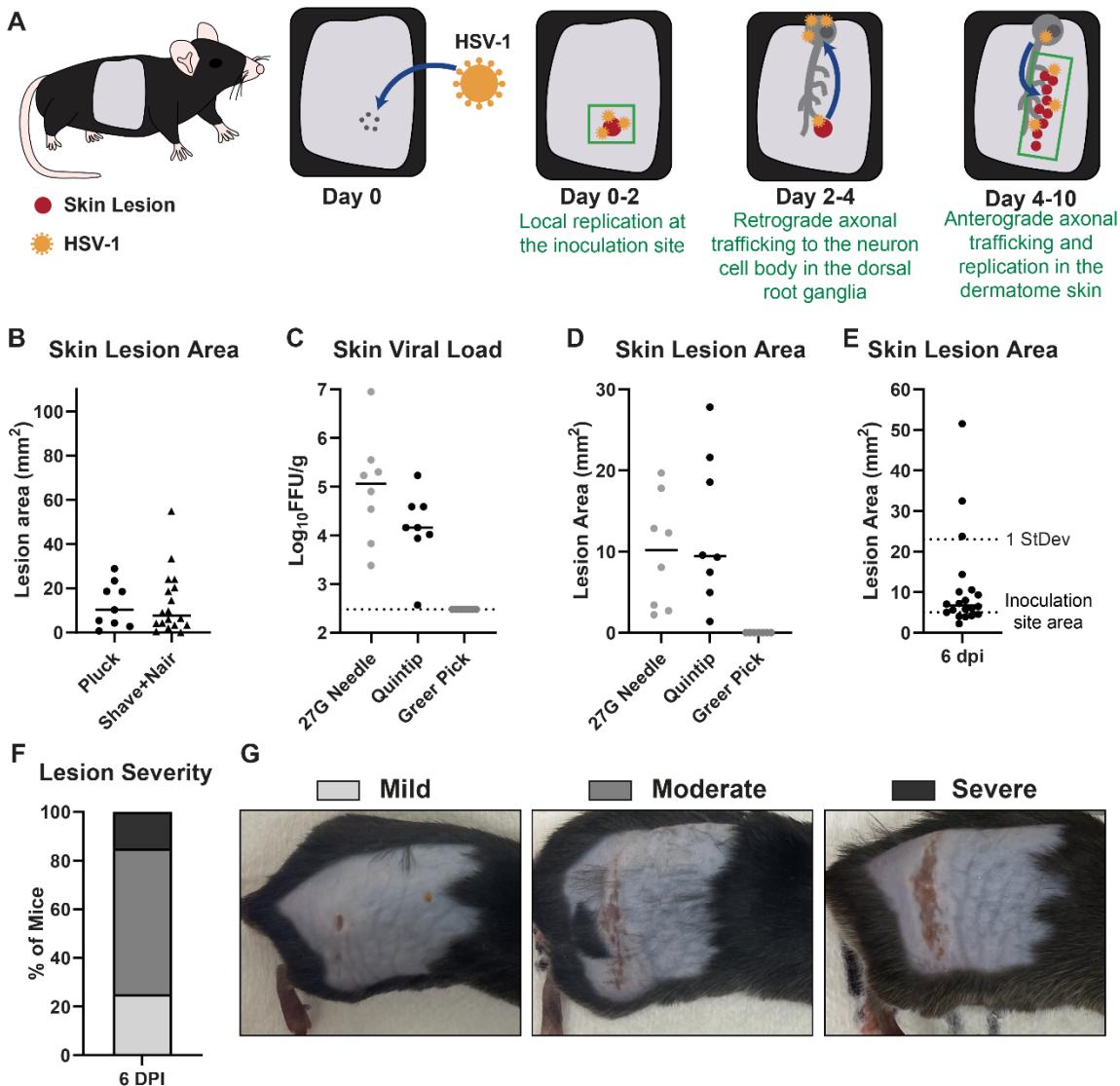
1192 **Supplementary Figure 3. Immunophenotyping of skin tissues from WT and *Ifnlr1*^{-/-} mice. A.**


1193 8-12-week-old male and female WT and *Ifnlr1*^{-/-} mice were infected with 10⁶ FFU of HSV-1.
1194 Dermatome skin lesions and adjacent healthy skin were collected 6 dpi, processed to single cell
1195 suspensions, and analyzed by flow cytometry. All cell populations were normalized to the total
1196 live cell population in each sample (Zombie UV-). All leukocytes were CD45+ and the frequencies
1197 of leukocyte populations were determined as follows: $\gamma\delta$ T cells (CD3+, $\gamma\delta$ TCR+), CD4 T cells
1198 (CD3+, CD4+), CD8 T cells (CD3+, CD8+), B Cells (CD3-, CD19+), dendritic cells (CD11c+; DC),
1199 activated macrophages (CD11b+, Ly6G-, Ly6C high), and NK cells (NK1.1+). Differences in
1200 leukocyte populations were compared by unpaired t test, with $P < 0.05$ considered to be
1201 significant. These mice are the same as those in Fig. 6. **B.** Representative gating strategy to
1202 define neutrophil populations.

1203

1204 **Supplementary Figure 4. IFN- λ and IFN- β induced transcriptional responses in A549 cells.**

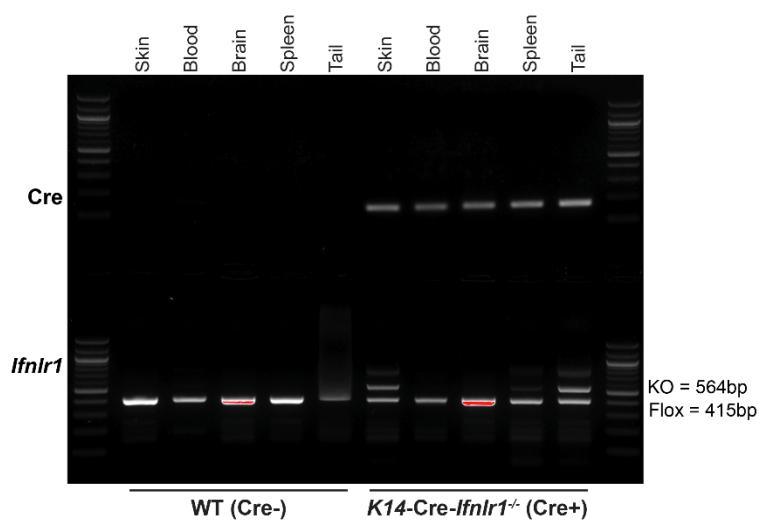
1205 *IFNLR1*^{-/-}, *IFNAR1*^{-/-}, and control (renilla luciferase) A549 cells were treated with IFN- λ 2 (50
1206 ng/mL), IFN- β (5 ng/mL), or media for 8 hours. **A.** RNA was extracted and IFN-stimulated gene
1207 expression was measured by qRT-PCR. *IFIT1* expression is shown relative to *ACTB*
1208 (housekeeping gene) and normalized to expression in media-treated Ren-Luc cells. Results
1209 represent 3 samples from one experiment. **B-F.** RNA was analyzed by RNAseq
1210 (NovaSeq6000S4 XP Paired End 2x100). **B.** Principal component analysis for all analyzed
1211 samples. **C.** Volcano plots showing differentially expressed genes after IFN- λ or IFN- β treatment,
1212 compared to media-only treated cells. Differentially expressed genes were defined as having a
1213 $|\text{Log}_2\text{Fold Change}| > 1$ and an FDR p-value ≤ 0.05 . **D.** Venn diagram showing DEGs induced by
1214 IFN- λ and IFN- β in control or knockout cells. **E.** Table of IFN- λ -specific DEGs, their Log_2Fold


1215 Change, and FDR p-value for IFN-λ and IFN-β-treated control cells. **F**. Volcano plots showing
1216 DEGs after IFN-λ treatment compared to IFN-β treatment in control and receptor knockout cells.
1217

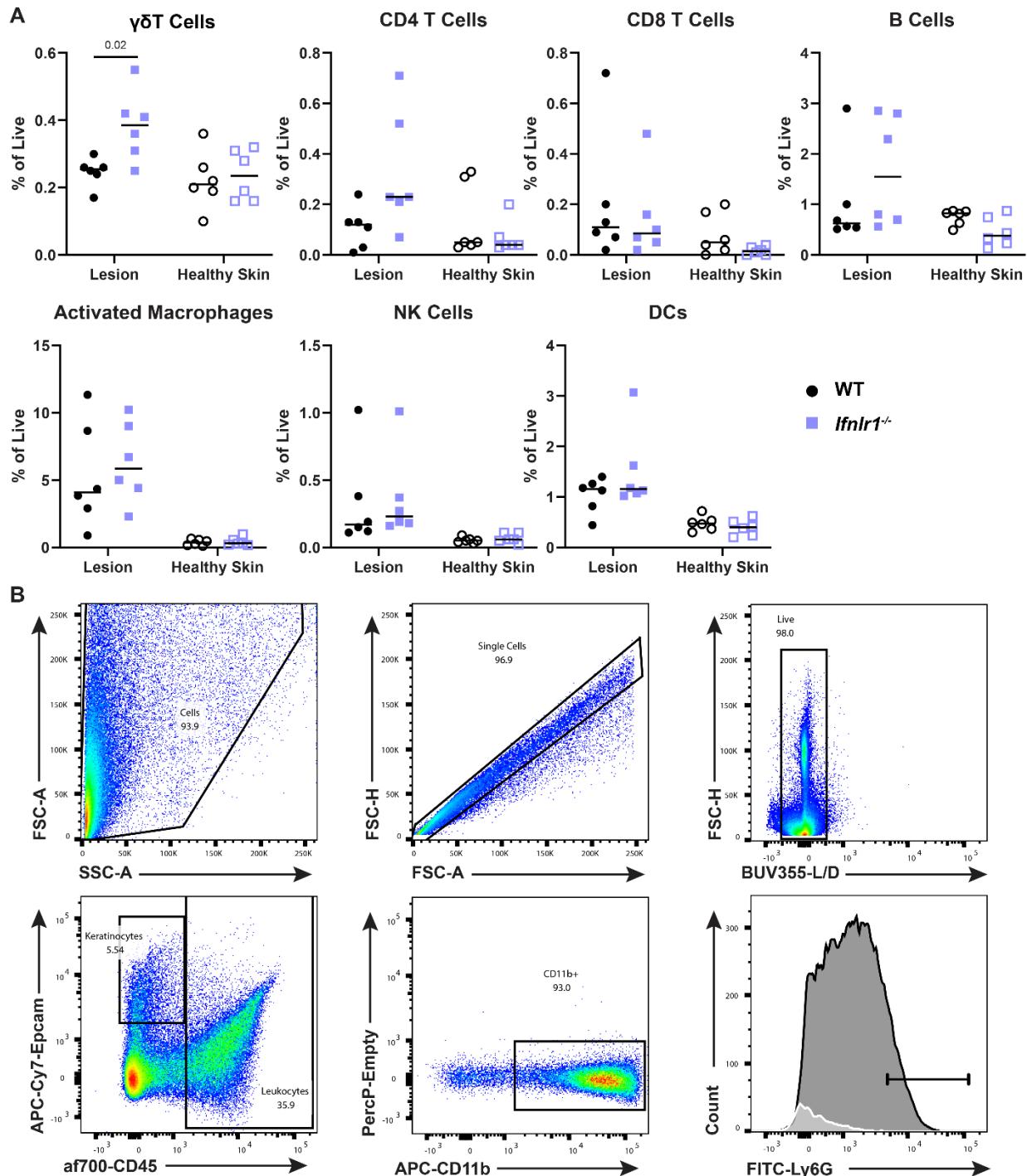
1218 **Graphical Abstract**

1219

1220



Supplementary Figure 1. Optimizing an HSV-1 skin infection model. **A.** HSV-1 skin infection model. **B-G.** 8-12 week-old male and female wild-type (C57BL/6) mice were infected with 10^6 FFU of HSV-1 strain NS and dermatome lesions were analyzed 6 dpi. **B.** Mice were depilated by manual plucking or by shaving plus Nair 1 day prior to infection. **C-D.** Depilated right flank skin of mice was abraded prior to inoculation using 40 scratches with a 27G needle, 10 punctures with a Quintip allergy needle, or 1 puncture with a multi-pronged Greer pick allergy needle. **C.** Skin lesion viral loads were measured by FFA. **D.** Skin lesions were photographed and areas measured using ImageJ. **E-G.** 20 mice were depilated by manual plucking and infected 1 day later using a Quintip allergy needle. **E.** Skin lesions were photographed 6 dpi and lesion areas measured using ImageJ. The standard deviation of lesion areas was 12 mm^2 . **F.** Lesion severity was categorized based on lesion area: $<5 \text{ mm}^2$ = Mild, $5-23 \text{ mm}^2$ = Moderate, $>23 \text{ mm}^2$ = Severe. **G.** Representative images of each skin disease severity category.


1221

1222

1223

Supplementary Figure 2. Validation of keratinocyte-specific *Ifnlr1* conditional knockouts. Tissues (flank skin, blood, brain, spleen, tail) were harvested from 8-week-old *K14-Cre*- and *K14-Cre*⁺ littermates, both carrying homozygous floxed alleles of *Ifnlr1*. Cre and *Ifnlr1* genotyping was performed by PCR.

Supplementary Figure 3. Immunophenotyping of skin tissues from WT and *Ifnrl1*^{-/-} mice. **A.** 8-12-week-old male and female WT and *Ifnrl1*^{-/-} mice were infected with 10⁶ FFU of HSV-1. Dermatome skin lesions and adjacent healthy skin were collected 6 dpi, processed to single cell suspensions, and analyzed by flow cytometry. All cell populations were normalized to the total live cell population in each sample (Zombie UV-). All leukocytes were CD45+ and the frequencies of leukocyte populations were determined as follows: $\gamma\delta$ T cells (CD3+, $\gamma\delta$ TCR+), CD4 T cells (CD3+, CD4+), CD8 T cells (CD3+, CD8+), B Cells (CD3-, CD19+), dendritic cells (CD11c+; DC), activated macrophages (CD11b+, Ly6G-, Ly6C high), and NK cells (NK1.1+). Differences in leukocyte populations were compared by unpaired t test, with $P < 0.05$ considered to be significant. These mice are the same as those in Fig. 6. **B.** Representative gating strategy to define neutrophil populations.

Supplementary Figure 4. IFN-λ and IFN-β induced transcriptional responses in A549 cells. *IFNLR1*^{-/-}, *IFNAR1*^{-/-}, and control (renilla luciferase) A549 cells were treated with IFN-λ2 (50 ng/mL), IFN-β (5 ng/mL), or media for 8 hours. **A.** RNA was extracted and IFN-stimulated gene expression was measured by qRT-PCR. *IFIT1* expression is shown relative to *ACTB* (housekeeping gene) and normalized to expression in media-treated Ren-Luc cells. Results represent 3 samples from one experiment. **B-F.** RNA was analyzed by RNAseq (NovaSeq6000S4 XP Paired End 2x100). **B.** Principal component analysis for all analyzed samples. **C.** Volcano plots showing differentially expressed genes after IFN-λ or IFN-β treatment, compared to media-only treated cells. Differentially expressed genes were defined as having a $|\text{Log}_2\text{Fold Change}| > 1$ and an FDR p-value ≤ 0.05 . **D.** Venn diagram showing DEGs induced by IFN-λ and IFN-β in control or knockout cells. **E.** Table of IFN-λ-specific DEGs, their $\text{Log}_2\text{Fold Change}$, and FDR p-value for IFN-λ and IFN-β-treated control cells. **F.** Volcano plots showing DEGs after IFN-λ treatment compared to IFN-β treatment in control and receptor knockout cells.