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SUMMARY

- Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized

anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries
between non-CAM and CAM plants have yet to be established — if they indeed exist.

- Using novel computer vision software to measure anatomy, we combined new measurements
with published data across flowering plants. We then used machine learning and phylogenetic
comparative methods to investigate relationships between CAM and anatomy.

- We found significant differences in photosynthetic tissue anatomy between plants with
differing CAM phenotypes. Machine learning based classification was over 95% accurate in
differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM
phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM
evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and
decreased intercellular airspace.

- Our findings suggest that machine learning may be used to aid the discovery of new CAM
species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires

continual anatomical specialization.
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INTRODUCTION

Carbon concentrating mechanisms increase the efficiency of photosynthesis by raising the
concentration of CO> inside photosynthetic tissues relative to the ambient environment. The most
common carbon concentrating mechanism, Crassulacean acid metabolism (CAM), was first
discovered because of marked physiological differences between succulent and nonsucculent
plants (de Saussure, 1804). Generally, CAM species conduct gas exchange at night to reduce
transpirational water loss; the nocturnally fixed carbon is stored as malic acid overnight and
released the next day behind closed stomata, thereby saturating photosynthetic tissues with CO»
(Osmond, 1978). Although the co-occurrence of CAM and succulent anatomy is so consistent
that botanists have used it as a guide to find new CAM plants (Coutinho, 1969), quantitative

relationships between anatomy and CAM remain elusive.

CAM and succulence may be correlated because they are co-selected as adaptations to
water limitation. CAM species can be up to eightfold as water use efficient as Cs species (Winter
et al., 2005) and the water stored in succulent plants is essential for drought avoidance (Males,
2017). Although such a correlation does not necessarily imply that derived anatomy is a
prerequisite of, or is caused by, CAM evolution, there are at least two hypothesized direct
functional links between CAM and succulent anatomy. First, storage of nocturnally fixed CO> as
malic acid in mesophyll vacuoles may require large vacuoles in photosynthetic cells and
therefore larger, succulent mesophyll cells (Zambrano ef al., 2014; Topfer et al., 2020). Second,
increased succulence in mesophyll cells may lower intercellular air space (IAS) and therefore
mesophyll CO2 conductance (g») (Nelson et al., 2008; Cousins ef al., 2020); thus, increased
succulence may increase selection for CAM by lowering the efficiency of Cs photosynthesis
(Nelson et al., 2008; Edwards, 2019). It is also possible that the evolution of CAM does not
entail selection on succulence per se, but that the use of CAM reduces constraints on succulence

evolution by removing g,, limitations due to carbon concentration.

Quantitative studies of CAM and anatomy have generally been restricted to relatively few
taxa at the extremes of the CAM phenotypic spectrum, but have generally found positive
correlations between CAM and succulence. Individual studies have reported that CAM species

tend to have greater leaf thickness (LT) and larger mesophyll cell area (MA), but mixed trends
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have been observed for IAS (Nelson et al., 2005 2008; Zambrano et al., 2014; Earles et al.,
2018; Lujan et al., 2022); however, a recent meta-analysis of these relationships found
inconsistent trends across clades (Herrera, 2020). Recently, hybrids between species with
different photosynthetic types have been used to study the relationships between CAM activity
and anatomical traits. In both Yucca (Agavoideae, Asparagaceae) (Heyduk et al., 2020) and
Cymbidium (Orchidaceae) (Yamaga-Hatakeyama et al., 2022), hybrids of C3 x CAM crosses
possessed intermediate anatomical phenotypes and CAM activity. Within Yucca hybrid
genotypes, however, the correlations between CAM activity and anatomy decreased in

magnitude or disappeared entirely (Heyduk et al., 2020).

The mosaic of past research provides limited insight into the evolution of CAM and
photosynthetic tissue anatomy because it has focused on the extremes of CAM phenotypes (i.e.,
non-CAM species and species that use CAM as their primary metabolism). However, there are
many recognized CAM phenotypes that differ in pattern and magnitude of CAM activity
(Winter, 2019). Here, we use term “CAM?” to refer to all species capable of CAM, regardless of
strength or pattern of expression, and “minority-CAM” and “primary-CAM?” to refer to species
that fix the minority and majority of CO2 with CAM, respectively. Primary-CAM (pCAM) is
consistent with past definitions of “CAM plant” (Winter, 2019) and “strong CAM” (Edwards,
2019), while minority-CAM (mCAM) encompasses species that can facultatively use CAM or
constitutively use CAM at low levels, but primarily use C3 or C4 photosynthesis for CO,
assimilation (MCAM = “C3+CAM” of Edwards (2019), but with the inclusion of C4+CAM
species). It is generally assumed that the evolution of pCAM requires transitioning through
mCAM (Hancock and Edwards, 2014; Yang et al., 2015; Edwards, 2019), but the relative
timings of anatomical shifts during the evolution of mMCAM and pCAM — and whether or not

mCAM species possess a specialized anatomy — remain open questions.

Here, we combined anatomical measurements from thousands of angiosperm species
from over 200 families to draw anatomical boundaries between non-CAM, mCAM, and pCAM
phenotypes. Using supervised machine learning models, we were able to classify CAM
phenotypes from anatomical measurements with moderate to high accuracy. Finally, in a detailed
study of the Portullugo clade (Fig. 1), we reconstructed the evolution of CAM and used

phylogenetic comparative methods to establish significant relationships between anatomy and
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CAM evolution. Our findings support the hypothesis that CAM evolution entails anatomical

evolution and reveal nuances about the earliest stages of CAM evolution.

MATERIALS AND METHODS
Public anatomical data sets, taxon sampling, and specimen imaging

Publicly available data were gathered from the TRY (Fraser et al., 2020) and BROT2
(Tavsanoglu and Pausas, 2018) plant trait databases and individual studies of CAM anatomy in
Orchidaceae (Silvera et al., 2005), Bromeliaceae (Males, 2018), Asparagaceae (Heyduk et al.,
2016), Caryophyllales (Ogburn and Edwards, 2012, 2013), Papua New Guinean epiphytes
(Earnshaw et al., 1987), Clusiaceae (Lujan et al., 2022), and across angiosperms (Nelson et al.,
2008) (Supporting Information Table S1). These data contained observations of mesophyll cell
area (MA), leaf thickness (LT), mesophyll intercellular air space (IAS), leaf dry matter content
(LDMC), and specific leaf area per unit dry mass (SLA). We generated two new datasets of MA,
IAS, and LT for members of the Asparagaceae (subfamilies Agavoideae and Nolinoideae) and
Portullugo (including families Anacampserotaceae, Cactaceae, Didiereaceae, Montiaceae,
Molluginaceae, and Portulacaceae) (Supporting Information Table S2). In 2017, leaf cross
sections were taken from 15 Portullugo species grown at Brown University, Providence, RI.
Tissue sections were immediately placed in 10% neutral buffered formalin and sent to the
Veterinary Diagnostic Laboratories in the College of Veterinary Medicine at the University of
Georgia (Athens, GA) for fixation, embedding, and sectioning and staining with toluidine blue.
In the spring of 2019, we collected leaf or stem cross sections of 41 species of Asparagaceae and
38 species of Portullugo growing at the Desert Botanical Garden, Phoenix, AZ; fixed specimens
were created as above and imaged on an Olympus BX51 microscope (Evident Corporation,
Toyko, Japan) with an Infinity3-3UR camera (Teledyne Lumenera, Ottawa, Canada). To
supplement our sampling, we were provided high resolution images of leaf cross sections of 13

Portulaca (Portulacaceae) species used in Ocampo et al. (2013) by the authors.

The multiple data sets had some taxonomic overlap and some included multiple

measurements from multiple accessions of the same species. To reduce our data set to one


https://doi.org/10.1101/2023.09.11.557216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557216; this version posted September 15, 2023. The copyright holder for this preprint

141
142
143
144
145
146
147
148

149

150
151
152
153
154
155
156
157
158
159
160
161

162

163
164
165
166
167
168
169

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

observation per species, we took the mean of each feature where multiple accessions were
measured; these mean species values were used as the basis for analysis throughout. We binned
each taxon into three CAM phenotypes based on Gilman et al. (2023) and references therein: Cs,
C3-C4, and C4 taxa were coded as “non-CAM?”; taxa that fix the minority of their daily CO> with
CAM (C3+CAM, C3-C4+CAM, and C4+CAM) were coded as minority CAM (mCAM); and taxa
that primarily use CAM to fix CO: (i.e., over 50%, resulting in 8!*C ratios > -18.7%o; Winter and
Holtum, 2002) as primary CAM (pCAM). The final data set contained observations from 5,316
non-CAM, 207 mCAM, and 222 pCAM taxa (Supporting Information Dataset S1).

Measuring plant anatomy

Automated analyses of plant tissues can be difficult because many or most cells are in direct
contact with other cells around much of their perimeter, rather than being separated by clear
boundaries. We developed a lightweight image segmentation tool built in Python 3 with OpenCV
v4.5.2 (Bradski, 2000) called MiniContourFinder to facilitate measurement of histology slides.
Segmentation in MiniContourFinder is accomplished through a combination of thresholding,
gradient, and morphological operations (Supporting Information Figure S1). MiniContourFinder
was designed to allow users with minimal experience on the command line or image processing
to quickly generate accurate and reproducible contours, particularly from plant histology images.
MiniContourFinder can be run through the command line or a graphical user interface to tune
contours in real time. We used MiniContourFinder to measure MA in our new Asparagaceae and
Portullugo data sets. We used ImageJ v1.53 (Schneider et al., 2012) to calculate LT (for leafy
species) and IAS (in roughly 300 pm x 300 um areas of mesophyll).

Statistical analysis

We investigated group differences in anatomical measurements by assessing normality and
homoscedasticity, comparing raw and transformed data, testing for group differences, and finally
using post-hoc tests to identify group differences. We first assessed assumptions of normality
using D’ Angostino and Pearson’s test (D’ Agostino and Pearson, 1973) and homoscedasticity
using Bartlett’s test (Bartlett, 1937) of raw and logio-transformed data. None of the features were
normal when raw or transformed, but logio-transformation substantially decreased

heteroscedasticity: all transformed features were homoscedastic except SLA, which was much
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less heteroscedastic (Supporting Information Fig. S2 and Table S3). We therefore continued with
Kruskal-Wallis (KW) tests for group differences (Kruskal and Wallace, 1952) with the
transformed data, and Dunn’s post-hoc tests (Dunn, 1964) where KW tests revealed significant
group differences. We tested for correlations between transformed features using Pearson’s
(Pearson, 1895). All statistical analyses were performed using Python v3.7.12, scipy v1.5.3
(Virtanen et al., 2020), and scikit-posthocs v0.6.4 (Terpilowski, 2019).

Supervised classification

We attempted to classify species” CAM phenotypes based on anatomy using the supervised
learning method gradient boosting implemented in XGBoost via the Python package ‘xgboost’
v.1.5.0 (Chen and Guestrin, 2016). XGBoost implements gradient tree boosting algorithms
(Friedman et al., 2000; Friedman, 2001) that use greedy learning over an ensemble of regression
trees to train classification models. XGBoost is rare in that it can accept observations with
missing values without the need for data imputation. We conducted multiclass classification of
non-CAM, mCAM, and pCAM taxa and a simpler, binary classification of non-CAM and CAM
taxa, where mCAM and pCAM taxa were combined. We explored a variety of alternative
parameterizations: changing the default booster (gbtree) to DART (Rashmi and Gilad-Bachrach,
2015), which can reduce overfitting by randomly dropping decision trees; changing the objective
function (softmax or softprob for multiclass classification; logistic probability, logistic raw score,
or hinge loss for binary classification); and changing the evaluation metric (multiclass logloss,
AUC, or multiclass error rate for multiclass classification; error rate for binary classification)
(the AUC evaluation metric required a softprob objective function). In all cases we randomly

divided our data set between training (80%) and testing (20%).

We also tried several strategies to reduce the effects of highly imbalanced classes and
sparsity. We attempted to reduce class imbalance by adjusting the parameter ‘max_delta_step’
(MDS), by random over- or under-sampling our training data, and by merging mCAM and
pCAM into a binary classification model. Increasing MDS above its default (0) creates an
additional penalty that reduces splitting within trees, or the addition of trees entirely, in highly
imbalanced data sets. Random over-sampling (ROS) resamples minority classes until all class

labels are equal (augmenting training data), while random under-sampling (RUS) subsamples
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classes until all class labels are equal (reducing training data). Our data were also quite sparse
(67% missing data) because we merged data from largely non-overlapping studies. We evaluated
three data imputation strategies: median (missing features were imputed with the median),
iterative (missing features were imputed by regression of present features), and K-nearest
neighbors (Knn; missing features were imputed using the nearest neighbors in a Knn

embedding).
Phylogenetic tree inference

The Portullugo, the clade inclusive of the Portulacineae (families Anacampserotaceae,
Basellaceae, Cactaceae, Didiereaceae, Montiaceae, Portulacaceae, and Talinaceae) and its sister
clade (Molluginaceae) is well-suited for large, comparative phylogenetic studies because of
recent sequence data, its diversity of CAM phenotypes, and the overlap between anatomical data
and extant phylogenies. We constructed a new phylogeny of the Portullugo by merging two
previously published sequence matrices that were obtained using different techniques. The first
dataset consisted of 841 loci from transcriptomic data used to study the evolution of
Portulacineae and its adaptation to harsh environments (Wang et al., 2019). The second dataset
was a targeted enrichment of 83 gene families, primarily with roles in plant respiration and
photosynthesis (Goolsby et al., 2018; Hancock et al., 2018; Moore et al., 2018). To find common
loci between the datasets, we independently called consensus sequences for each locus and
mapped them against the sugar beet genome (assembly version EL10 1.0; McGrath et al., 2022)
using Blast v.2.13.0 (Camacho et al., 2009). Mapping consensus sequences for each locus
proved more accurate than using random representative sequences for a given locus due to high
sequence variation. If consensus loci hit multiple reference scaffolds, we retained the reference
locus with the highest bitscore. We used the resulting mapping coordinates to search for potential
overlapping loci between datasets and aligned them using MAFFT v.7.508 (Katoh and Sandley,
2013). Loci showing considerable dataset overlap were concatenated to create an initial matrix of
loci represented by both datasets, and then flanked with 7 randomly selected non-overlapping

loci from each dataset to increase the number of taxa included and overall matrix size.

We concatenated all loci and constructed a maximum likelihood-based tree using 1Q-

TREE v2.2.0.3 (Minh et al., 2020). Within IQ-TREE, a model of sequence evolution was
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selected using the automated model finder (Kalyaanamoorthy et al., 2017) constrained to the
GTR family of models; node support was assessed using ultrafast bootstrap approximation
(Hoang et al., 2017), and the tree space was constrained by a guide tree in which all families
were monophyletic. We time calibrated the tree using the fast least squares dating method (To et
al., 2016) included in IQ-TREE using the entire concatenated sequence matrix the 13 secondary
node calibrations used by Wang et al. (2019) from Arakaki et al. (2011) (Supporting Information
Table S4). Confidence intervals were inferred by 100 resamplings of branch lengths by drawing
new clock rates (log-normal distribution with mean 1 and standard deviation 0.2), tip dates were

set to 0, and a GTR+F substitution model was selected with the automated model finder.
Phylogenetic trait analyses

We reconstructed the evolutionary history of CAM in the Portullugo using stochastic character
mapping (Nielsen, 2002; Huelsenbeck ef al., 2003) implemented with the ‘make.simmap’
function of the R package ‘phytools’ v1.2-0 (Revell, 2012), to model CAM evolutionary history
assuming 1) an all rates different (ARD) model, and 2) a constrained ARD model without
reversions from pCAM to mCAM; both models assumed a root state of non-CAM. The
constraint of the latter model was informed by the lack of evidence for reversions from pCAM
throughout vascular plants. In all analyses, we pruned our tree to one sample per species and
node reconstructions were visualized as pie charts summarizing the state frequencies over 10000

stochastic maps.

To assess the relationships between CAM phenotypes and anatomical traits in the Portullugo, we
used a threshold model of trait evolution (Wright, 1934; Felsenstein, 2005), implemented with
the ‘threshBayes’ function (Revell, 2014) of ‘phytools’ v1.2-0, and phylogenetic least squares
(PGLS) regression (Grafen, 1989), implemented with the R package ‘nlme’ v3.1-162 (Pinheiro
et al.,2023). We used PGLS regression to assess relationships between continuous anatomical
traits and between anatomical traits and discrete CAM phenotypes (as a predictor variable). We
used threshold models to measure the correlations between anatomical traits and CAM
phenotype. In all analyses, our tree was pruned to match the taxa with anatomical data and

reduced to one sample per taxon where necessary.

10
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RESULTS

Non-phylogenetic analyses of anatomy across angiosperms demonstrated significant group
differences for all five anatomical features investigated (Supporting Information Table S5).
Dunn’s post-hoc tests identified significant (p < 0.05), and generally consistent, differences
between CAM phenotypes for most features: the largest differences were observed between non-
CAM and pCAM phenotypes, with mCAM intermediate but not always significantly different
from both non-CAM and pCAM (Fig. 2). Where sufficient data were available, these trends were
supported within individual families (Supporting Information Fig. S3). We found significant
negative correlations between MA and leaf dry matter content (LDMC), between LT and specific
leaf area (SLA), LDMC, and IAS, and between LDMC and SLA; a significant positive
correlation was found between LT and MA (Supporting Information Fig. S4).

Multiclass classification with XGBoost yielded similar results regardless of evaluation
metric or objective function, with booster choice being the only source of variation (Supporting
Information Fig S5). Because of the similarity of those results, we only continued using models
with the softprob objective function and multiclass error rate (merror) evaluation metric
(hereafter, DART and gbtree ‘base models’). The two base models had similar cross-validation
test accuracies (96.0+1.1%) (Fig. 3a), precision and recall of non-CAM, mCAM, and pCAM
(Fig. 3b), and feature importance rankings (LT > MA IAS > LDMC > SLA) (Supporting
Information Fig. S6 and Table S6). No imbalance-reduction sampling, imputation method, or
alternative parameterization increased overall accuracy (Fig. 3a); however, random over-
sampling (ROS) and random under-sampling (RUS) increased recall for mCAM and pCAM taxa
(Fig. 3b). Between models of similar accuracy, we prioritized improving mCAM recall (also
known as sensitivity in binary classification; true positives / true positives + false negatives)
because true negative rates of mCAM are not well known in most CAM-evolving clades. While
decreased non-CAM classification accuracy slightly decreased overall model accuracy, ROS
raised recall rates of mCAM and pCAM classification to 70% and >75%, respectively. Although
RUS further increased mCAM and pCAM recall (Fig. 3b), the substantial difference between
training and testing accuracy (Fig. 3a) suggested that these models were overfit. To further
address class imbalance, we combined mCAM and pCAM into a single “CAM” category and

attempted binary classification. Binary classification models had similar test accuracies (Fig. 3c),

11
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287  but the hinge objective function yielded slightly higher CAM precision and recall. As in
288  multiclass classification, ROS greatly increased CAM recall, but the F1-score (2 x precision x
289  recall / precision + recall) remained unchanged because of an equal magnitude drop in precision

290 (Fig. 3d).

291 Our preferred multiclass and binary classifiers both used gbtree boosters and ROS, and
292  the hinge object function for binary classification (Fig. 3e-f). Mean cross-validation accuracies
293 were 95.7+0.7% and 96.1+0.6% for multiclass and binary models, respectively (Fig. 3a,c). Most
294  non-CAM taxa incorrectly classified by multiclass models belonged to clades with diverse CAM
295  phenotypes (e.g., Bromeliaceae and Orchidaceae subfamily Epidendroideae), and mCAM taxa
296  were roughly equally classified as non-CAM or pCAM (Fig. 3e; Supporting Information Table
297  S7). Similarly, most incorrect predictions by the binary model were non-CAM species from

298 CAM-evolving lineages classified as CAM (Fig. 3e; Supporting Information Table S8);

299  generally, these taxa have not been thoroughly assessed for mCAM, and so it is possible that
300 they may actually have a facultative or very weak CAM cycle.

301 Our time calibrated species tree was congruent with those from which data were

302 compiled. Support was generally high, although multiple nodes along the backbone were

303  unresolved and left as polytomies in downstream analyses (Fig. 4; Supporting Information Fig.
304  S7). Stochastic character map reconstructions of CAM evolution suggested that mCAM evolved
305 atthe base of Portulacineae, and that multiple transitions to pCAM occurred in the Cactaceae and
306  Didiereaceae, while multiple reversions to non-CAM occurred in the Montiaceae (Fig. 4).

307  Though similar, we preferred a constrained all rates different model of CAM evolution (Fig. 4;
308  Supporting Information Fig. 8) to an unconstrained model (Supporting Information Fig. S9)

309  because there is no strong empirical evidence of reversions from pCAM in any vascular plant
310  lineage. Significant phylogenetic signal was detected in all three traits measured across the

311  Portullugo (Supporting Information Table S9). Phylogenetic least squares (PGLS) regression
312 revealed multiple significant (p < 0.05) relationships among anatomical traits and between

313  anatomical traits and CAM phenotype (Fig. 5, Supporting Information Table S10). However,
314  AIC-based model selection favored a model between MA and IAS with a non-significant slope,
315  contrary to our expectation that greater mesophyll cell size would lead to lower IAS (Fig. 5a).

316  Greater MA was a significant (p < 0.0001) predictor of greater LT (Fig. 5b), and we found no
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relationship between IAS and LT (Fig. 5¢). CAM phenotype was a significant predictor of MA,
LT, and IAS (Fig. 5d-f). We next used phylogenetic threshold analyses to estimate the
correlations between CAM phenotype and anatomical traits under the hypothesis that there may
be anatomical boundaries between CAM phenotypes. Threshold analyses mostly supported
PGLS results, and recovered significant positive correlations between CAM phenotype and both
MA and LT (Fig. 6a-b). However, the posterior distribution of correlation coefficients between

CAM phenotype and IAS narrowly included 0 (Fig. 6¢).

DISCUSSION

From the beaks of Galapagos finches (Darwin, 1839) to unique inflorescence architectures (Waal
et al., 2012), the links between form and function have always inspired biologists. Fixed in place,
with passive mechanisms for carbon and water acquisition, plants rely on anatomical innovations
to adapt to different environments. Succulence has long been understood as a drought avoidance
adaptation, but its relationship with CAM has not been resolved as causal or merely coincidental.
Through our broad survey of angiosperms and detailed study of the Portullugo, we found support
for previous hypotheses of CAM and photosynthetic tissue anatomy co-evolution. Furthermore,
we demonstrate that the presence or absence of CAM may be predicted using only a handful of

anatomical measurements.

Anatomical measurements from over 200 angiosperm families revealed significant
differences in photosynthetic tissue anatomy of non-CAM, mCAM, and pCAM species. The
larger mesophyll cell area (MA) of both mCAM and pCAM species suggests some anatomical
specialization is required to perform CAM in any capacity, and the reduction in intercellular
airspace (IAS) of pCAM species indicates that further specialization is required to use CAM for
primary carbon metabolism. We also showed significant increases in leaf thickness (LT) and
decreases in leaf dry matter content (LDMC) from non-CAM to mCAM to pCAM, as well as
significantly lower specific leaf area (SLA) in pCAM species, which support past anatomical
studies that found thicker and more succulent leaves to be positively associated with strong CAM
activity within individual clades (Teeri et al., 1981; Winter ef al., 1983; Nelson et al., 2005,
2008; Zambrano et al., 2014; Lujan et al., 2022).

13


https://doi.org/10.1101/2023.09.11.557216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557216; this version posted September 15, 2023. The copyright holder for this preprint

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373
374
375
376

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Because lineage-specific organismal detail will surely influence physiology-anatomy
relationships, analyses of anatomy and CAM evolution are best evaluated using phylogenetic
comparative methods. PGLS regression and phylogenetic threshold analysis supported the
correlated evolution of larger mesophyll cells and thicker leaves. Although PGLS regression
further showed a continuous decrease in IAS from non-CAM to pCAM species, we found no
significant relationship between IAS and MA. That IAS and MA may evolve independently of
one another provides an important nuance to the co-evolution of succulence and CAM.
Decreased IAS in CAM species has often been discussed as an adaptation to reduce CO: efflux
during malate decarboxylation (Nelson et al., 2008) or as a consequence of increased succulence
restricting g, which would limit CO; fixation by Rubisco during the day (Zambrano ef al., 2014;
Earles et al., 2018; Edwards, 2019). More recently, reduced IAS has been hypothesized to be an
indirect consequence of increased mesophyll cell volume used for malic acid storage (Leverett et
al., 2023). While we found that succulence generally increased with CAM evolution, the
decoupling of the underlying traits may allow the evolution of intermediate photosynthetic and
anatomical phenotypes that efficiently utilize both CAM and C; or C4 photosynthesis. These
conclusions are consistent with photosynthetic models that found increased vacuolar volume
(and therefore MA) necessary for CAM (Topfer et al., 2020) and empirical findings that the high
IAS in mCAM species may allow for C; (or C4) photosynthesis when plants are not engaging
CAM (Nelson et al., 2008; Zambrano et al., 2014). Furthermore, lowest IAS values in the
Portullugo were observed in pCAM species, which reinforces the hypothesis that extremely low

IAS may reduce g and Cs or C; efficiency.

In addition to providing support for a positive relationship between CAM and succulence,
our findings point towards interactions between life history, CAM, and succulence for those taxa
that do not neatly fall along regression lines. Phylogenetic analyses of the Portullugo showed
general increases in succulence and a tightening of the distributions of underlying traits for
pCAM species. In contrast, nCAM taxa had both the single largest MA and greatest IAS
observations, with values that mostly spanned the non-CAM to pCAM range. The eight largest
observed MA values in the Portullugo were from mCAM species; most are annual species, with
the exceptions of Parakeelya flava (a perennial geophyte with above ground tissue that regrows
annually) and Grahamia bracteata and Talinopsis frutescens (which have non-succulent woody

stems and drought-deciduous leaves). This suggests that the evolution of pCAM requires a shift

14


https://doi.org/10.1101/2023.09.11.557216
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557216; this version posted September 15, 2023. The copyright holder for this preprint

377
378
379
380
381
382
383

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

to a (functional) perennial life history with long-lived photosynthetic tissues (Hancock et al.,
2019); indeed, we are unaware of any annual pCAM species. The halophyte Halophytum
ameghinoi had the second largest observed MA in the Portullugo. While saline soils may select
for increased succulence to maintain cytosolic ion balance (Naidoo and Rughunanan, 1990;
Ogburn and Edwards, 2010), high salt concentrations inhibit the central CAM enzymes
phosphoenolpyruvate carboxylase (PEPC) and malic enzyme (ME) (Kluge and Ting, 1978), and

may therefore represent an ecological constraint on the evolution of pCAM.

Our ancestral state reconstruction of CAM in the Portullugo was the first to model CAM
as an ordered multistate trait, and supported an early- to mid-Eocene origin of mCAM — a time
when the Earth’s atmosphere had relatively high levels of CO> (Rae ef al., 2021). The
reconstruction of mCAM at the crown of the Portulacineae agrees with transcriptomic data that
suggest a single recruitment event of a PEPC ortholog for use in CAM (Christin et al., 2014;
Goolsby et al., 2018). All transitions to pPCAM were found be within the past 30 Ma (Sage et al.,
2023), congruent with shifts across angiosperms (including within Caryophyllales) to Cs4
photosynthesis, as atmospheric CO> fell below 500ppm (Christin ef al., 2011). Despite declining
CO: in the Oligocene and Miocene, multiple lineages within the Montiaceae have lost the ability
perform CAM. Although we expect more Montiaceae lineages to exhibit CAM upon
experimentation, multiple independent losses of CAM have been experimentally validated in
Parakeelya (Hancock et al., 2019), a clade endemic to hot, dry areas of Australia. While life
history may constrain the evolution of pCAM, it remains unclear why some members of the
Portulacineae — occupying similarly semiarid environments — transitioned to C3 photosynthesis,
while others simultaneously transitioned to pCAM, as CO; continued to decline. We suspect that
these losses of CAM may be linked to shifts in phenology; for example, C3 Parakeelya tend to
germinate toward the end of the wet season, when temperature are cooler and water is readily

available.

Most clades with CAM lineages show highly bimodal distributions of carbon isotope
ratios (Messerschmid et al., 2021) that have been used for decades to identify pCAM species, but
are generally unable to distinguish between mCAM from non-CAM. Laborious controlled
experiments (e.g., of gas exchange or malic acid content) with live plants have been the only

ways to identify mCAM, but such experiments are not feasible for many long-lived, rare, or
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difficult to cultivate species. We found that differences in photosynthetic anatomy across
angiosperms translated into moderate to high accuracy in predicting CAM phenotype. After
assessing a variety of machine learning models, we found that random-over sampling (ROS)
increased prediction of mCAM and pCAM species while not overfitting to training data. To our
knowledge, machine learning has not yet been applied to predict the presence or absence of
physiological traits from anatomical measurements, such as CAM phenotypes. We believe that
the accuracy we obtained represents a lower bound on the true accuracy of our models because
some of our misclassified non-CAM species have not been thoroughly investigated for mCAM.
For example, multiple orchid and bromeliad species labeled as non-CAM were predicted to be
mCAM, but have not been subjected to drought experiments that might induce CAM activity.
We predict that some misclassified species, such as Nolina bigelovii (Asparagaceae) will exhibit
CAM upon experimentation, resulting in more true positive predictions. Experimentation should
continue to be the gold-standard for determining CAM phenotypes, but machine learning
models, such as those developed here, could play a valuable role in prioritizing study species and

would only require small tissue sections for initial fixation and measurement.

Applications of machine learning in Plant Physiologyogy and evolution are only just
beginning. Machine learning has been successful in predicting real-time photosynthetic status;
for example, deep learning using hyperspectral reflectance in wheat has been used to predict
electron transport rate, CO; assimilate rate, stomatal conductance, and more (Furbank et al.,
2021). Our machine learning models were limited in several ways; perhaps most by the degree of
missing data and class imbalance. Our greatest model improvements came when using ROS,
suggesting that measuring new mCAM and pCAM species to reduce class imbalance will
increase model accuracy. If missing data could be sufficiently reduced, imputation strategies may
facilitate the use of models beyond XGBoost, which allows missing data. In addition to our
machine learning models, we hope that the tools and methodology developed here for measuring
anatomy and merging sequence matrices will facilitate future studies of anatomical evolution.
Although software exists for taking measurements from images (e.g., ImageJ (Schneider et al.,
2012), which we used for portions of this study), making dozens or hundreds of measurements
needed for phylogenetic studies remains time consuming and the results are not easily
reproducible. Our image segmentation software, MiniContourFinder can be automated from the

command line, quickly segment and measure image features, and record associated metadata so
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exact measurements can be reproduced. Finally, our strategy for combining reduced-genomic
sampling data types into a single phylogenetic analysis is flexible and in theory adaptable to any
sequencing strategy. Most clades have reference, or near-reference, quality genomes within ~75
Ma of their focal taxa (as in this study) (Cheng et al., 2018) that can serve as common maps to
identify overlapping genomic regions, and high-quality transcriptomes (Matasci et al., 2014;
Leebens-Mack et al., 2019) or targeted sequencing data (Johnson ef al., 2019) for constructing

backbones in larger phylogenies.

In conclusion, with a broad sampling of anatomical traits from thousands of angiosperms
and a detailed phylogenetic study of the Portullugo clade, we provided support for hypotheses of
CAM anatomical evolution. Our findings suggest that even weakly expressed CAM is correlated
with larger mesophyll cells, and that decreased intercellular airspace in photosynthetic tissue is
associated with a transition to using CAM as the primary carbon fixation pathway. Furthermore,
our findings point towards possible evolutionary constraints on pCAM evolution, such as annual
life history and halophytism. We were able predict CAM phenotypes from a handful of
anatomical features, which represents a successful first application of machine learning to this
problem, but also highlights the paucity of anatomical data for species capable of weak or
facultative CAM. As data accumulate, we hope that these correlations will be continuously
evaluated across vascular plants with tools that may allow causal evolutionary inference, such as
phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer, 2013). We expect that efforts
to quantify key anatomical parameters for a diversity of CAM phenotypes will more sharply
delineate the anatomical requirements of even a weak CAM cycle, and demonstrate the

anatomical and biochemical interplay during the evolutionary transition to a primary CAM

physiology.
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FIGURES

Figure 1. Gross morphology (a-c) and photosynthetic anatomy (d-f) of species with varying
CAM phenotypes sampled for this study: (a,d) non-CAM Claytonia lanceolata Pursh
(Montiaceae) (b,e) minority CAM Calyptridium umbellatum (Torr.) Greene (Montiaceae), (c,f)
primary CAM Ariocarpus retusus Scheidw. (Cactaceae). Non-author photograph credits: (a) Dr.
Thomas Stoughton, (b) Anri Chomentowska, and (c) Desert Botanic Garden, Phoenix, AZ.

Figure 2. Results of Dunn’s post-hoc tests for group differences been logio-transformed features.
Purple, yellow, and green box-and-whisker plots show non-CAM, minority CAM, and primary
CAM trait distributions; boxes represent the interquartile range (IQR) with a line representing
the median, whiskers show 1.5x the IQR, and points outside were considered outliers. MA,
mesophyll cell area; LT, leaf thickness; IAS, intercellular airspace; LDMC, leaf dry matter

content; SLA, specific leaf area.
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Figure 3. Machine learning model accuracies. Classification error (a,c), precision and recall rates
(b,d), and best performing model confusion matrices (e-f) for multiclass and binary classifiers.
Multiclass models (a-b) varied in booster (DART or gbtree), sampling strategy (ROS or RUS),
imputation method (iterative, Knn, or median), and MDS (1, 2, 5, or 10); binary models (c-d)
varied in objective function (logistic, logitraw, or hinge) and sampling strategy (with or without
ROS). The columns of each confusion matrix (e-f) show the number of true CAM phenotypes in
the test data set and the rows show the model predictions. The diagonal in each matrix represents
correct model predictions and off-diagonal elements show incorrect predictions; for example, a
true pCAM species predicted to be non-CAM would be shown in the first row, third column of
(c). Knn, K-nearest neighbors; MDS, max_delta_step; mCAM, minority CAM; pCAM, primary
CAM. Base models are in bolded text and the best performing models are highlighted in red.

Figure 4. Time calibrated phylogeny of the Portullugo with inferred transitions between CAM
phenotypes. The Portullugo and Portulacineae nodes are highlighted, and color gradients indicate
transitions between non-CAM (purple), mCAM (yellow), and pCAM (green) based on the results
of our biologically-informed ancestral state reconstruction. Pie charts at nodes bracketing
inferred transitions show the fractions of stochastic maps supporting each ancestral state. This
tree has been pruned to show only those taxa with morphological data used in this study and
therefore not all transitions are shown; the full tree is shown in the inset and multiple ancestral

state reconstructions are available in the Supporting Information.

Figure 5. Results of phylogenetic least squares (PGLS) regression. Predictor and response
variables are shown on the horizontal and vertical axes, respectively. Points show trait values for
non-CAM (purple), mCAM (yellow), and pCAM (green) species. Solid and dashed grey lines
show the fitted regression lines using Brownian motion (BM) and Ornstein-Uhlenbeck (OU)
models of trait evolution, respectively. The best fit significant relationships are shown with bold
black lines, associated model coefficients, and grey shading to show standard error. MA,

mesophyll cell area; LT, leaf thickness; IAS, intercellular airspace.
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766  Figure 6. Phylogenetic threshold model correlations. The distribution of correlation coefficients
767  (r) between CAM phenotype and logio-transformed mesophyll cell area (MA) (A), intercellular
768  airspace (IAS) (B), and leaf thickness (LT) (C). The grey histograms show the frequency of
769  values visited by the MCMC sampler following a 20% burn-in period, red lines show the median
770  rvalues, and dashed black lines show the 95% credible interval.
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