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SUMMARY 35 

-  Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized 36 

anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries 37 

between non-CAM and CAM plants have yet to be established 3 if they indeed exist.  38 

-  Using novel computer vision software to measure anatomy, we combined new measurements 39 

with published data across flowering plants. We then used machine learning and phylogenetic 40 

comparative methods to investigate relationships between CAM and anatomy. 41 

-  We found significant differences in photosynthetic tissue anatomy between plants with 42 

differing CAM phenotypes. Machine learning based classification was over 95% accurate in 43 

differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM 44 

phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM 45 

evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and 46 

decreased intercellular airspace.  47 

-  Our findings suggest that machine learning may be used to aid the discovery of new CAM 48 

species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires 49 

continual anatomical specialization. 50 

 51 

Keywords: (4-10) 52 

Asparagaceae, Crassulacean acid metabolism, machine learning, photosynthesis, Portullugo 53 
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INTRODUCTION 54 

Carbon concentrating mechanisms increase the efficiency of photosynthesis by raising the 55 

concentration of CO2 inside photosynthetic tissues relative to the ambient environment. The most 56 

common carbon concentrating mechanism, Crassulacean acid metabolism (CAM), was first 57 

discovered because of marked physiological differences between succulent and nonsucculent 58 

plants (de Saussure, 1804). Generally, CAM species conduct gas exchange at night to reduce 59 

transpirational water loss; the nocturnally fixed carbon is stored as malic acid overnight and 60 

released the next day behind closed stomata, thereby saturating photosynthetic tissues with CO2 61 

(Osmond, 1978). Although the co-occurrence of CAM and succulent anatomy is so consistent 62 

that botanists have used it as a guide to find new CAM plants (Coutinho, 1969), quantitative 63 

relationships between anatomy and CAM remain elusive. 64 

 CAM and succulence may be correlated because they are co-selected as adaptations to 65 

water limitation. CAM species can be up to eightfold as water use efficient as C3 species (Winter 66 

et al., 2005) and the water stored in succulent plants is essential for drought avoidance (Males, 67 

2017). Although such a correlation does not necessarily imply that derived anatomy is a 68 

prerequisite of, or is caused by, CAM evolution, there are at least two hypothesized direct 69 

functional links between CAM and succulent anatomy. First, storage of nocturnally fixed CO2 as 70 

malic acid in mesophyll vacuoles may require large vacuoles in photosynthetic cells and 71 

therefore larger, succulent mesophyll cells (Zambrano et al., 2014; Töpfer et al., 2020). Second, 72 

increased succulence in mesophyll cells may lower intercellular air space (IAS) and therefore 73 

mesophyll CO2 conductance (gm) (Nelson et al., 2008; Cousins et al., 2020); thus, increased 74 

succulence may increase selection for CAM by lowering the efficiency of C3 photosynthesis 75 

(Nelson et al., 2008; Edwards, 2019). It is also possible that the evolution of CAM does not 76 

entail selection on succulence per se, but that the use of CAM reduces constraints on succulence 77 

evolution by removing gm limitations due to carbon concentration. 78 

 Quantitative studies of CAM and anatomy have generally been restricted to relatively few 79 

taxa at the extremes of the CAM phenotypic spectrum, but have generally found positive 80 

correlations between CAM and succulence. Individual studies have reported that CAM species 81 

tend to have greater leaf thickness (LT) and larger mesophyll cell area (MA), but mixed trends 82 
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have been observed for IAS (Nelson et al., 2005 2008; Zambrano et al., 2014; Earles et al., 83 

2018; Luján et al., 2022); however, a recent meta-analysis of these relationships found 84 

inconsistent trends across clades (Herrera, 2020). Recently, hybrids between species with 85 

different photosynthetic types have been used to study the relationships between CAM activity 86 

and anatomical traits. In both Yucca (Agavoideae, Asparagaceae) (Heyduk et al., 2020) and 87 

Cymbidium (Orchidaceae) (Yamaga-Hatakeyama et al., 2022), hybrids of C3 x CAM crosses 88 

possessed intermediate anatomical phenotypes and CAM activity. Within Yucca hybrid 89 

genotypes, however, the correlations between CAM activity and anatomy decreased in 90 

magnitude or disappeared entirely (Heyduk et al., 2020). 91 

 The mosaic of past research provides limited insight into the evolution of CAM and 92 

photosynthetic tissue anatomy because it has focused on the extremes of CAM phenotypes (i.e., 93 

non-CAM species and species that use CAM as their primary metabolism). However, there are 94 

many recognized CAM phenotypes that differ in pattern and magnitude of CAM activity 95 

(Winter, 2019). Here, we use term <CAM= to refer to all species capable of CAM, regardless of 96 

strength or pattern of expression, and <minority-CAM= and <primary-CAM= to refer to species 97 

that fix the minority and majority of CO2 with CAM, respectively. Primary-CAM (pCAM) is 98 

consistent with past definitions of <CAM plant= (Winter, 2019) and <strong CAM= (Edwards, 99 

2019), while minority-CAM (mCAM) encompasses species that can facultatively use CAM or 100 

constitutively use CAM at low levels, but primarily use C3 or C4 photosynthesis for CO2 101 

assimilation (mCAM = <C3+CAM= of Edwards (2019), but with the inclusion of C4+CAM 102 

species). It is generally assumed that the evolution of pCAM requires transitioning through 103 

mCAM (Hancock and Edwards, 2014; Yang et al., 2015; Edwards, 2019), but the relative 104 

timings of anatomical shifts during the evolution of mCAM and pCAM 3 and whether or not 105 

mCAM species possess a specialized anatomy 3 remain open questions.  106 

Here, we combined anatomical measurements from thousands of angiosperm species 107 

from over 200 families to draw anatomical boundaries between non-CAM, mCAM, and pCAM 108 

phenotypes. Using supervised machine learning models, we were able to classify CAM 109 

phenotypes from anatomical measurements with moderate to high accuracy. Finally, in a detailed 110 

study of the Portullugo clade (Fig. 1), we reconstructed the evolution of CAM and used 111 

phylogenetic comparative methods to establish significant relationships between anatomy and 112 
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CAM evolution. Our findings support the hypothesis that CAM evolution entails anatomical 113 

evolution and reveal nuances about the earliest stages of CAM evolution.  114 

 115 

MATERIALS AND METHODS 116 

Public anatomical data sets, taxon sampling, and specimen imaging 117 

Publicly available data were gathered from the TRY (Fraser et al., 2020) and BROT2 118 

(Tav_ano�lu and Pausas, 2018) plant trait databases and individual studies of CAM anatomy in 119 

Orchidaceae (Silvera et al., 2005), Bromeliaceae (Males, 2018), Asparagaceae (Heyduk et al., 120 

2016), Caryophyllales (Ogburn and Edwards, 2012, 2013), Papua New Guinean epiphytes 121 

(Earnshaw et al., 1987), Clusiaceae (Luján et al., 2022), and across angiosperms (Nelson et al., 122 

2008) (Supporting Information Table S1). These data contained observations of mesophyll cell 123 

area (MA), leaf thickness (LT), mesophyll intercellular air space (IAS), leaf dry matter content 124 

(LDMC), and specific leaf area per unit dry mass (SLA). We generated two new datasets of MA, 125 

IAS, and LT for members of the Asparagaceae (subfamilies Agavoideae and Nolinoideae) and 126 

Portullugo (including families Anacampserotaceae, Cactaceae, Didiereaceae, Montiaceae, 127 

Molluginaceae, and Portulacaceae) (Supporting Information Table S2). In 2017, leaf cross 128 

sections were taken from 15 Portullugo species grown at Brown University, Providence, RI. 129 

Tissue sections were immediately placed in 10% neutral buffered formalin and sent to the 130 

Veterinary Diagnostic Laboratories in the College of Veterinary Medicine at the University of 131 

Georgia (Athens, GA) for fixation, embedding, and sectioning and staining with toluidine blue. 132 

In the spring of 2019, we collected leaf or stem cross sections of 41 species of Asparagaceae and 133 

38 species of Portullugo growing at the Desert Botanical Garden, Phoenix, AZ; fixed specimens 134 

were created as above and imaged on an Olympus BX51 microscope (Evident Corporation, 135 

Toyko, Japan) with an Infinity3-3UR camera (Teledyne Lumenera, Ottawa, Canada). To 136 

supplement our sampling, we were provided high resolution images of leaf cross sections of 13 137 

Portulaca (Portulacaceae) species used in Ocampo et al. (2013) by the authors.  138 

The multiple data sets had some taxonomic overlap and some included multiple 139 

measurements from multiple accessions of the same species. To reduce our data set to one 140 
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observation per species, we took the mean of each feature where multiple accessions were 141 

measured; these mean species values were used as the basis for analysis throughout. We binned 142 

each taxon into three CAM phenotypes based on Gilman et al. (2023) and references therein: C3, 143 

C3-C4, and C4 taxa were coded as <non-CAM=; taxa that fix the minority of their daily CO2 with 144 

CAM (C3+CAM, C3-C4+CAM, and C4+CAM) were coded as minority CAM (mCAM); and taxa 145 

that primarily use CAM to fix CO2 (i.e., over 50%, resulting in d13C ratios ³ -18.70; Winter and 146 

Holtum, 2002) as primary CAM (pCAM). The final data set contained observations from 5,316 147 

non-CAM, 207 mCAM, and 222 pCAM taxa (Supporting Information Dataset S1). 148 

Measuring plant anatomy 149 

Automated analyses of plant tissues can be difficult because many or most cells are in direct 150 

contact with other cells around much of their perimeter, rather than being separated by clear 151 

boundaries. We developed a lightweight image segmentation tool built in Python 3 with OpenCV 152 

v4.5.2 (Bradski, 2000) called MiniContourFinder to facilitate measurement of histology slides. 153 

Segmentation in MiniContourFinder is accomplished through a combination of thresholding, 154 

gradient, and morphological operations (Supporting Information Figure S1). MiniContourFinder 155 

was designed to allow users with minimal experience on the command line or image processing 156 

to quickly generate accurate and reproducible contours, particularly from plant histology images. 157 

MiniContourFinder can be run through the command line or a graphical user interface to tune 158 

contours in real time. We used MiniContourFinder to measure MA in our new Asparagaceae and 159 

Portullugo data sets. We used ImageJ v1.53 (Schneider et al., 2012) to calculate LT (for leafy 160 

species) and IAS (in roughly 300 µm x 300 µm areas of mesophyll). 161 

Statistical analysis 162 

We investigated group differences in anatomical measurements by assessing normality and 163 

homoscedasticity, comparing raw and transformed data, testing for group differences, and finally 164 

using post-hoc tests to identify group differences. We first assessed assumptions of normality 165 

using D9Angostino and Pearson9s test (D9Agostino and Pearson, 1973) and homoscedasticity 166 

using Bartlett9s test (Bartlett, 1937) of raw and log10-transformed data. None of the features were 167 

normal when raw or transformed, but log10-transformation substantially decreased 168 

heteroscedasticity: all transformed features were homoscedastic except SLA, which was much 169 
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less heteroscedastic (Supporting Information Fig. S2 and Table S3). We therefore continued with 170 

Kruskal-Wallis (KW) tests for group differences (Kruskal and Wallace, 1952) with the 171 

transformed data, and Dunn9s post-hoc tests (Dunn, 1964) where KW tests revealed significant 172 

group differences. We tested for correlations between transformed features using Pearson9s r 173 

(Pearson, 1895). All statistical analyses were performed using Python v3.7.12, scipy v1.5.3 174 

(Virtanen et al., 2020), and scikit-posthocs v0.6.4 (Terpilowski, 2019). 175 

Supervised classification 176 

We attempted to classify species9 CAM phenotypes based on anatomy using the supervised 177 

learning method gradient boosting implemented in XGBoost via the Python package 8xgboost9 178 

v.1.5.0 (Chen and Guestrin, 2016). XGBoost implements gradient tree boosting algorithms 179 

(Friedman et al., 2000; Friedman, 2001) that use greedy learning over an ensemble of regression 180 

trees to train classification models. XGBoost is rare in that it can accept observations with 181 

missing values without the need for data imputation. We conducted multiclass classification of 182 

non-CAM, mCAM, and pCAM taxa and a simpler, binary classification of non-CAM and CAM 183 

taxa, where mCAM and pCAM taxa were combined. We explored a variety of alternative 184 

parameterizations: changing the default booster (gbtree) to DART (Rashmi and Gilad-Bachrach, 185 

2015), which can reduce overfitting by randomly dropping decision trees; changing the objective 186 

function (softmax or softprob for multiclass classification; logistic probability, logistic raw score, 187 

or hinge loss for binary classification); and changing the evaluation metric (multiclass logloss, 188 

AUC, or multiclass error rate for multiclass classification; error rate for binary classification) 189 

(the AUC evaluation metric required a softprob objective function). In all cases we randomly 190 

divided our data set between training (80%) and testing (20%). 191 

We also tried several strategies to reduce the effects of highly imbalanced classes and 192 

sparsity. We attempted to reduce class imbalance by adjusting the parameter 8max_delta_step9 193 

(MDS), by random over- or under-sampling our training data, and by merging mCAM and 194 

pCAM into a binary classification model. Increasing MDS above its default (0) creates an 195 

additional penalty that reduces splitting within trees, or the addition of trees entirely, in highly 196 

imbalanced data sets. Random over-sampling (ROS) resamples minority classes until all class 197 

labels are equal (augmenting training data), while random under-sampling (RUS) subsamples 198 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.09.11.557216doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

classes until all class labels are equal (reducing training data). Our data were also quite sparse 199 

(67% missing data) because we merged data from largely non-overlapping studies. We evaluated 200 

three data imputation strategies: median (missing features were imputed with the median), 201 

iterative (missing features were imputed by regression of present features), and K-nearest 202 

neighbors (Knn; missing features were imputed using the nearest neighbors in a Knn 203 

embedding).  204 

Phylogenetic tree inference 205 

The Portullugo, the clade inclusive of the Portulacineae (families Anacampserotaceae, 206 

Basellaceae, Cactaceae, Didiereaceae, Montiaceae, Portulacaceae, and Talinaceae) and its sister 207 

clade (Molluginaceae) is well-suited for large, comparative phylogenetic studies because of 208 

recent sequence data, its diversity of CAM phenotypes, and the overlap between anatomical data 209 

and extant phylogenies. We constructed a new phylogeny of the Portullugo by merging two 210 

previously published sequence matrices that were obtained using different techniques. The first 211 

dataset consisted of 841 loci from transcriptomic data used to study the evolution of 212 

Portulacineae and its adaptation to harsh environments (Wang et al., 2019). The second dataset 213 

was a targeted enrichment of 83 gene families, primarily with roles in plant respiration and 214 

photosynthesis (Goolsby et al., 2018; Hancock et al., 2018; Moore et al., 2018). To find common 215 

loci between the datasets, we independently called consensus sequences for each locus and 216 

mapped them against the sugar beet genome (assembly version EL10_1.0; McGrath et al., 2022) 217 

using Blast v.2.13.0 (Camacho et al., 2009). Mapping consensus sequences for each locus 218 

proved more accurate than using random representative sequences for a given locus due to high 219 

sequence variation. If consensus loci hit multiple reference scaffolds, we retained the reference 220 

locus with the highest bitscore. We used the resulting mapping coordinates to search for potential 221 

overlapping loci between datasets and aligned them using MAFFT v.7.508 (Katoh and Sandley, 222 

2013). Loci showing considerable dataset overlap were concatenated to create an initial matrix of 223 

loci represented by both datasets, and then flanked with 7 randomly selected non-overlapping 224 

loci from each dataset to increase the number of taxa included and overall matrix size.  225 

We concatenated all loci and constructed a maximum likelihood-based tree using IQ-226 

TREE v2.2.0.3 (Minh et al., 2020). Within IQ-TREE, a model of sequence evolution was 227 
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selected using the automated model finder (Kalyaanamoorthy et al., 2017) constrained to the 228 

GTR family of models; node support was assessed using ultrafast bootstrap approximation 229 

(Hoang et al., 2017), and the tree space was constrained by a guide tree in which all families 230 

were monophyletic. We time calibrated the tree using the fast least squares dating method (To et 231 

al., 2016) included in IQ-TREE using the entire concatenated sequence matrix the 13 secondary 232 

node calibrations used by Wang et al. (2019) from Arakaki et al. (2011) (Supporting Information 233 

Table S4). Confidence intervals were inferred by 100 resamplings of branch lengths by drawing 234 

new clock rates (log-normal distribution with mean 1 and standard deviation 0.2), tip dates were 235 

set to 0, and a GTR+F substitution model was selected with the automated model finder.  236 

Phylogenetic trait analyses 237 

We reconstructed the evolutionary history of CAM in the Portullugo using stochastic character 238 

mapping (Nielsen, 2002; Huelsenbeck et al., 2003) implemented with the 8make.simmap9 239 

function of the R package 8phytools9 v1.2-0 (Revell, 2012), to model CAM evolutionary history 240 

assuming 1) an all rates different (ARD) model, and 2) a constrained ARD model without 241 

reversions from pCAM to mCAM; both models assumed a root state of non-CAM. The 242 

constraint of the latter model was informed by the lack of evidence for reversions from pCAM 243 

throughout vascular plants. In all analyses, we pruned our tree to one sample per species and 244 

node reconstructions were visualized as pie charts summarizing the state frequencies over 10000 245 

stochastic maps. 246 

To assess the relationships between CAM phenotypes and anatomical traits in the Portullugo, we 247 

used a threshold model of trait evolution (Wright, 1934; Felsenstein, 2005), implemented with 248 

the 8threshBayes9 function (Revell, 2014) of 8phytools9 v1.2-0, and phylogenetic least squares 249 

(PGLS) regression (Grafen, 1989), implemented with the R package 8nlme9 v3.1-162 (Pinheiro 250 

et al., 2023). We used PGLS regression to assess relationships between continuous anatomical 251 

traits and between anatomical traits and discrete CAM phenotypes (as a predictor variable). We 252 

used threshold models to measure the correlations between anatomical traits and CAM 253 

phenotype. In all analyses, our tree was pruned to match the taxa with anatomical data and 254 

reduced to one sample per taxon where necessary. 255 

 256 
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RESULTS 257 

Non-phylogenetic analyses of anatomy across angiosperms demonstrated significant group 258 

differences for all five anatomical features investigated (Supporting Information Table S5). 259 

Dunn9s post-hoc tests identified significant (p < 0.05), and generally consistent, differences 260 

between CAM phenotypes for most features: the largest differences were observed between non-261 

CAM and pCAM phenotypes, with mCAM intermediate but not always significantly different 262 

from both non-CAM and pCAM (Fig. 2). Where sufficient data were available, these trends were 263 

supported within individual families (Supporting Information Fig. S3). We found significant 264 

negative correlations between MA and leaf dry matter content (LDMC), between LT and specific 265 

leaf area (SLA), LDMC, and IAS, and between LDMC and SLA; a significant positive 266 

correlation was found between LT and MA (Supporting Information Fig. S4). 267 

Multiclass classification with XGBoost yielded similar results regardless of evaluation 268 

metric or objective function, with booster choice being the only source of variation (Supporting 269 

Information Fig S5). Because of the similarity of those results, we only continued using models 270 

with the softprob objective function and multiclass error rate (merror) evaluation metric 271 

(hereafter, DART and gbtree 8base models9). The two base models had similar cross-validation 272 

test accuracies (96.0±1.1%) (Fig. 3a), precision and recall of non-CAM, mCAM, and pCAM 273 

(Fig. 3b), and feature importance rankings (LT > MA IAS g LDMC > SLA) (Supporting 274 

Information Fig. S6 and Table S6). No imbalance-reduction sampling, imputation method, or 275 

alternative parameterization increased overall accuracy (Fig. 3a); however, random over-276 

sampling (ROS) and random under-sampling (RUS) increased recall for mCAM and pCAM taxa 277 

(Fig. 3b). Between models of similar accuracy, we prioritized improving mCAM recall (also 278 

known as sensitivity in binary classification; true positives / true positives + false negatives) 279 

because true negative rates of mCAM are not well known in most CAM-evolving clades. While 280 

decreased non-CAM classification accuracy slightly decreased overall model accuracy, ROS 281 

raised recall rates of mCAM and pCAM classification to 70% and >75%, respectively. Although 282 

RUS further increased mCAM and pCAM recall (Fig. 3b), the substantial difference between 283 

training and testing accuracy (Fig. 3a) suggested that these models were overfit. To further 284 

address class imbalance, we combined mCAM and pCAM into a single <CAM= category and 285 

attempted binary classification. Binary classification models had similar test accuracies (Fig. 3c), 286 
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but the hinge objective function yielded slightly higher CAM precision and recall. As in 287 

multiclass classification, ROS greatly increased CAM recall, but the F1-score (2 x precision x 288 

recall / precision + recall) remained unchanged because of an equal magnitude drop in precision 289 

(Fig. 3d). 290 

Our preferred multiclass and binary classifiers both used gbtree boosters and ROS, and 291 

the hinge object function for binary classification (Fig. 3e-f). Mean cross-validation accuracies 292 

were 95.7±0.7% and 96.1±0.6% for multiclass and binary models, respectively (Fig. 3a,c). Most 293 

non-CAM taxa incorrectly classified by multiclass models belonged to clades with diverse CAM 294 

phenotypes (e.g., Bromeliaceae and Orchidaceae subfamily Epidendroideae), and mCAM taxa 295 

were roughly equally classified as non-CAM or pCAM (Fig. 3e; Supporting Information Table 296 

S7). Similarly, most incorrect predictions by the binary model were non-CAM species from 297 

CAM-evolving lineages classified as CAM (Fig. 3e; Supporting Information Table S8); 298 

generally, these taxa have not been thoroughly assessed for mCAM, and so it is possible that 299 

they may actually have a facultative or very weak CAM cycle. 300 

Our time calibrated species tree was congruent with those from which data were 301 

compiled. Support was generally high, although multiple nodes along the backbone were 302 

unresolved and left as polytomies in downstream analyses (Fig. 4; Supporting Information Fig. 303 

S7). Stochastic character map reconstructions of CAM evolution suggested that mCAM evolved 304 

at the base of Portulacineae, and that multiple transitions to pCAM occurred in the Cactaceae and 305 

Didiereaceae, while multiple reversions to non-CAM occurred in the Montiaceae (Fig. 4). 306 

Though similar, we preferred a constrained all rates different model of CAM evolution (Fig. 4; 307 

Supporting Information Fig. 8) to an unconstrained model (Supporting Information Fig. S9) 308 

because there is no strong empirical evidence of reversions from pCAM in any vascular plant 309 

lineage. Significant phylogenetic signal was detected in all three traits measured across the 310 

Portullugo (Supporting Information Table S9). Phylogenetic least squares (PGLS) regression 311 

revealed multiple significant (p < 0.05) relationships among anatomical traits and between 312 

anatomical traits and CAM phenotype (Fig. 5, Supporting Information Table S10). However, 313 

AIC-based model selection favored a model between MA and IAS with a non-significant slope, 314 

contrary to our expectation that greater mesophyll cell size would lead to lower IAS (Fig. 5a). 315 

Greater MA was a significant (p < 0.0001) predictor of greater LT (Fig. 5b), and we found no 316 
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relationship between IAS and LT (Fig. 5c). CAM phenotype was a significant predictor of MA, 317 

LT, and IAS (Fig. 5d-f). We next used phylogenetic threshold analyses to estimate the 318 

correlations between CAM phenotype and anatomical traits under the hypothesis that there may 319 

be anatomical boundaries between CAM phenotypes. Threshold analyses mostly supported 320 

PGLS results, and recovered significant positive correlations between CAM phenotype and both 321 

MA and LT (Fig. 6a-b). However, the posterior distribution of correlation coefficients between 322 

CAM phenotype and IAS narrowly included 0 (Fig. 6c).  323 

 324 

DISCUSSION 325 

From the beaks of Galapagos finches (Darwin, 1839) to unique inflorescence architectures (Waal 326 

et al., 2012), the links between form and function have always inspired biologists. Fixed in place, 327 

with passive mechanisms for carbon and water acquisition, plants rely on anatomical innovations 328 

to adapt to different environments. Succulence has long been understood as a drought avoidance 329 

adaptation, but its relationship with CAM has not been resolved as causal or merely coincidental. 330 

Through our broad survey of angiosperms and detailed study of the Portullugo, we found support 331 

for previous hypotheses of CAM and photosynthetic tissue anatomy co-evolution. Furthermore, 332 

we demonstrate that the presence or absence of CAM may be predicted using only a handful of 333 

anatomical measurements. 334 

 Anatomical measurements from over 200 angiosperm families revealed significant 335 

differences in photosynthetic tissue anatomy of non-CAM, mCAM, and pCAM species. The 336 

larger mesophyll cell area (MA) of both mCAM and pCAM species suggests some anatomical 337 

specialization is required to perform CAM in any capacity, and the reduction in intercellular 338 

airspace (IAS) of pCAM species indicates that further specialization is required to use CAM for 339 

primary carbon metabolism. We also showed significant increases in leaf thickness (LT) and 340 

decreases in leaf dry matter content (LDMC) from non-CAM to mCAM to pCAM, as well as 341 

significantly lower specific leaf area (SLA) in pCAM species, which support past anatomical 342 

studies that found thicker and more succulent leaves to be positively associated with strong CAM 343 

activity within individual clades (Teeri et al., 1981; Winter et al., 1983; Nelson et al., 2005, 344 

2008; Zambrano et al., 2014; Luján et al., 2022).  345 
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 Because lineage-specific organismal detail will surely influence physiology-anatomy 346 

relationships, analyses of anatomy and CAM evolution are best evaluated using phylogenetic 347 

comparative methods. PGLS regression and phylogenetic threshold analysis supported the 348 

correlated evolution of larger mesophyll cells and thicker leaves. Although PGLS regression 349 

further showed a continuous decrease in IAS from non-CAM to pCAM species, we found no 350 

significant relationship between IAS and MA. That IAS and MA may evolve independently of 351 

one another provides an important nuance to the co-evolution of succulence and CAM. 352 

Decreased IAS in CAM species has often been discussed as an adaptation to reduce CO2 efflux 353 

during malate decarboxylation (Nelson et al., 2008) or as a consequence of increased succulence 354 

restricting gm, which would limit CO2 fixation by Rubisco during the day (Zambrano et al., 2014; 355 

Earles et al., 2018; Edwards, 2019). More recently, reduced IAS has been hypothesized to be an 356 

indirect consequence of increased mesophyll cell volume used for malic acid storage (Leverett et 357 

al., 2023). While we found that succulence generally increased with CAM evolution, the 358 

decoupling of the underlying traits may allow the evolution of intermediate photosynthetic and 359 

anatomical phenotypes that efficiently utilize both CAM and C3 or C4 photosynthesis. These 360 

conclusions are consistent with photosynthetic models that found increased vacuolar volume 361 

(and therefore MA) necessary for CAM (Töpfer et al., 2020) and empirical findings that the high 362 

IAS in mCAM species may allow for C3 (or C4) photosynthesis when plants are not engaging 363 

CAM (Nelson et al., 2008; Zambrano et al., 2014). Furthermore, lowest IAS values in the 364 

Portullugo were observed in pCAM species, which reinforces the hypothesis that extremely low 365 

IAS may reduce gm and C3 or C4 efficiency. 366 

In addition to providing support for a positive relationship between CAM and succulence, 367 

our findings point towards interactions between life history, CAM, and succulence for those taxa 368 

that do not neatly fall along regression lines. Phylogenetic analyses of the Portullugo showed 369 

general increases in succulence and a tightening of the distributions of underlying traits for 370 

pCAM species. In contrast, mCAM taxa had both the single largest MA and greatest IAS 371 

observations, with values that mostly spanned the non-CAM to pCAM range. The eight largest 372 

observed MA values in the Portullugo were from mCAM species; most are annual species, with 373 

the exceptions of Parakeelya flava (a perennial geophyte with above ground tissue that regrows 374 

annually) and Grahamia bracteata and Talinopsis frutescens (which have non-succulent woody 375 

stems and drought-deciduous leaves). This suggests that the evolution of pCAM requires a shift 376 
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to a (functional) perennial life history with long-lived photosynthetic tissues (Hancock et al., 377 

2019); indeed, we are unaware of any annual pCAM species. The halophyte Halophytum 378 

ameghinoi had the second largest observed MA in the Portullugo. While saline soils may select 379 

for increased succulence to maintain cytosolic ion balance (Naidoo and Rughunanan, 1990; 380 

Ogburn and Edwards, 2010), high salt concentrations inhibit the central CAM enzymes 381 

phosphoenolpyruvate carboxylase (PEPC) and malic enzyme (ME) (Kluge and Ting, 1978), and 382 

may therefore represent an ecological constraint on the evolution of pCAM.  383 

Our ancestral state reconstruction of CAM in the Portullugo was the first to model CAM 384 

as an ordered multistate trait, and supported an early- to mid-Eocene origin of mCAM 3 a time 385 

when the Earth9s atmosphere had relatively high levels of CO2 (Rae et al., 2021). The 386 

reconstruction of mCAM at the crown of the Portulacineae agrees with transcriptomic data that 387 

suggest a single recruitment event of a PEPC ortholog for use in CAM (Christin et al., 2014; 388 

Goolsby et al., 2018). All transitions to pCAM were found be within the past 30 Ma (Sage et al., 389 

2023), congruent with shifts across angiosperms (including within Caryophyllales) to C4 390 

photosynthesis, as atmospheric CO2 fell below 500ppm (Christin et al., 2011). Despite declining 391 

CO2 in the Oligocene and Miocene, multiple lineages within the Montiaceae have lost the ability 392 

perform CAM. Although we expect more Montiaceae lineages to exhibit CAM upon 393 

experimentation, multiple independent losses of CAM have been experimentally validated in 394 

Parakeelya (Hancock et al., 2019), a clade endemic to hot, dry areas of Australia. While life 395 

history may constrain the evolution of pCAM, it remains unclear why some members of the 396 

Portulacineae 3 occupying similarly semiarid environments 3 transitioned to C3 photosynthesis, 397 

while others simultaneously transitioned to pCAM, as CO2 continued to decline. We suspect that 398 

these losses of CAM may be linked to shifts in phenology; for example, C3 Parakeelya tend to 399 

germinate toward the end of the wet season, when temperature are cooler and water is readily 400 

available. 401 

Most clades with CAM lineages show highly bimodal distributions of carbon isotope 402 

ratios (Messerschmid et al., 2021) that have been used for decades to identify pCAM species, but 403 

are generally unable to distinguish between mCAM from non-CAM. Laborious controlled 404 

experiments (e.g., of gas exchange or malic acid content) with live plants have been the only 405 

ways to identify mCAM, but such experiments are not feasible for many long-lived, rare, or 406 
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difficult to cultivate species. We found that differences in photosynthetic anatomy across 407 

angiosperms translated into moderate to high accuracy in predicting CAM phenotype. After 408 

assessing a variety of machine learning models, we found that random-over sampling (ROS) 409 

increased prediction of mCAM and pCAM species while not overfitting to training data. To our 410 

knowledge, machine learning has not yet been applied to predict the presence or absence of 411 

physiological traits from anatomical measurements, such as CAM phenotypes. We believe that 412 

the accuracy we obtained represents a lower bound on the true accuracy of our models because 413 

some of our misclassified non-CAM species have not been thoroughly investigated for mCAM. 414 

For example, multiple orchid and bromeliad species labeled as non-CAM were predicted to be 415 

mCAM, but have not been subjected to drought experiments that might induce CAM activity. 416 

We predict that some misclassified species, such as Nolina bigelovii (Asparagaceae) will exhibit 417 

CAM upon experimentation, resulting in more true positive predictions. Experimentation should 418 

continue to be the gold-standard for determining CAM phenotypes, but machine learning 419 

models, such as those developed here, could play a valuable role in prioritizing study species and 420 

would only require small tissue sections for initial fixation and measurement. 421 

Applications of machine learning in Plant Physiologyogy and evolution are only just 422 

beginning. Machine learning has been successful in predicting real-time photosynthetic status; 423 

for example, deep learning using hyperspectral reflectance in wheat has been used to predict 424 

electron transport rate, CO2 assimilate rate, stomatal conductance, and more (Furbank et al., 425 

2021). Our machine learning models were limited in several ways; perhaps most by the degree of 426 

missing data and class imbalance. Our greatest model improvements came when using ROS, 427 

suggesting that measuring new mCAM and pCAM species to reduce class imbalance will 428 

increase model accuracy. If missing data could be sufficiently reduced, imputation strategies may 429 

facilitate the use of models beyond XGBoost, which allows missing data. In addition to our 430 

machine learning models, we hope that the tools and methodology developed here for measuring 431 

anatomy and merging sequence matrices will facilitate future studies of anatomical evolution. 432 

Although software exists for taking measurements from images (e.g., ImageJ (Schneider et al., 433 

2012), which we used for portions of this study), making dozens or hundreds of measurements 434 

needed for phylogenetic studies remains time consuming and the results are not easily 435 

reproducible. Our image segmentation software, MiniContourFinder can be automated from the 436 

command line, quickly segment and measure image features, and record associated metadata so 437 
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exact measurements can be reproduced. Finally, our strategy for combining reduced-genomic 438 

sampling data types into a single phylogenetic analysis is flexible and in theory adaptable to any 439 

sequencing strategy. Most clades have reference, or near-reference, quality genomes within ~75 440 

Ma of their focal taxa (as in this study) (Cheng et al., 2018) that can serve as common maps to 441 

identify overlapping genomic regions, and high-quality transcriptomes (Matasci et al., 2014; 442 

Leebens-Mack et al., 2019) or targeted sequencing data (Johnson et al., 2019) for constructing 443 

backbones in larger phylogenies. 444 

 In conclusion, with a broad sampling of anatomical traits from thousands of angiosperms 445 

and a detailed phylogenetic study of the Portullugo clade, we provided support for hypotheses of 446 

CAM anatomical evolution. Our findings suggest that even weakly expressed CAM is correlated 447 

with larger mesophyll cells, and that decreased intercellular airspace in photosynthetic tissue is 448 

associated with a transition to using CAM as the primary carbon fixation pathway. Furthermore, 449 

our findings point towards possible evolutionary constraints on pCAM evolution, such as annual 450 

life history and halophytism. We were able predict CAM phenotypes from a handful of 451 

anatomical features, which represents a successful first application of machine learning to this 452 

problem, but also highlights the paucity of anatomical data for species capable of weak or 453 

facultative CAM. As data accumulate, we hope that these correlations will be continuously 454 

evaluated across vascular plants with tools that may allow causal evolutionary inference, such as 455 

phylogenetic path analysis (von Hardenberg and Gonzalez-Voyer, 2013). We expect that efforts 456 

to quantify key anatomical parameters for a diversity of CAM phenotypes will more sharply 457 

delineate the anatomical requirements of even a weak CAM cycle, and demonstrate the 458 

anatomical and biochemical interplay during the evolutionary transition to a primary CAM 459 

physiology. 460 
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 723 

FIGURES 724 

Figure 1. Gross morphology (a-c) and photosynthetic anatomy (d-f) of species with varying 725 

CAM phenotypes sampled for this study: (a,d) non-CAM Claytonia lanceolata Pursh 726 

(Montiaceae) (b,e) minority CAM Calyptridium umbellatum (Torr.) Greene (Montiaceae), (c,f) 727 

primary CAM Ariocarpus retusus Scheidw. (Cactaceae). Non-author photograph credits: (a) Dr. 728 

Thomas Stoughton, (b) Anri Chomentowska, and (c) Desert Botanic Garden, Phoenix, AZ.  729 

Figure 2. Results of Dunn9s post-hoc tests for group differences been log10-transformed features. 730 

Purple, yellow, and green box-and-whisker plots show non-CAM, minority CAM, and primary 731 

CAM trait distributions; boxes represent the interquartile range (IQR) with a line representing 732 

the median, whiskers show 1.5x the IQR, and points outside were considered outliers. MA, 733 

mesophyll cell area; LT, leaf thickness; IAS, intercellular airspace; LDMC, leaf dry matter 734 

content; SLA, specific leaf area. 735 

 736 
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Figure 3. Machine learning model accuracies. Classification error (a,c), precision and recall rates 737 

(b,d), and best performing model confusion matrices (e-f) for multiclass and binary classifiers. 738 

Multiclass models (a-b) varied in booster (DART or gbtree), sampling strategy (ROS or RUS), 739 

imputation method (iterative, Knn, or median), and MDS (1, 2, 5, or 10); binary models (c-d) 740 

varied in objective function (logistic, logitraw, or hinge) and sampling strategy (with or without 741 

ROS). The columns of each confusion matrix (e-f) show the number of true CAM phenotypes in 742 

the test data set and the rows show the model predictions. The diagonal in each matrix represents 743 

correct model predictions and off-diagonal elements show incorrect predictions; for example, a 744 

true pCAM species predicted to be non-CAM would be shown in the first row, third column of 745 

(c). Knn, K-nearest neighbors; MDS, max_delta_step; mCAM, minority CAM; pCAM, primary 746 

CAM. Base models are in bolded text and the best performing models are highlighted in red. 747 

 748 

Figure 4. Time calibrated phylogeny of the Portullugo with inferred transitions between CAM 749 

phenotypes. The Portullugo and Portulacineae nodes are highlighted, and color gradients indicate 750 

transitions between non-CAM (purple), mCAM (yellow), and pCAM (green) based on the results 751 

of our biologically-informed ancestral state reconstruction. Pie charts at nodes bracketing 752 

inferred transitions show the fractions of stochastic maps supporting each ancestral state. This 753 

tree has been pruned to show only those taxa with morphological data used in this study and 754 

therefore not all transitions are shown; the full tree is shown in the inset and multiple ancestral 755 

state reconstructions are available in the Supporting Information. 756 

 757 

Figure 5. Results of phylogenetic least squares (PGLS) regression. Predictor and response 758 

variables are shown on the horizontal and vertical axes, respectively. Points show trait values for 759 

non-CAM (purple), mCAM (yellow), and pCAM (green) species. Solid and dashed grey lines 760 

show the fitted regression lines using Brownian motion (BM) and Ornstein-Uhlenbeck (OU) 761 

models of trait evolution, respectively. The best fit significant relationships are shown with bold 762 

black lines, associated model coefficients, and grey shading to show standard error. MA, 763 

mesophyll cell area; LT, leaf thickness; IAS, intercellular airspace. 764 

 765 
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Figure 6. Phylogenetic threshold model correlations. The distribution of correlation coefficients 766 

(r) between CAM phenotype and log10-transformed mesophyll cell area (MA) (A), intercellular 767 

airspace (IAS) (B), and leaf thickness (LT) (C). The grey histograms show the frequency of r 768 

values visited by the MCMC sampler following a 20% burn-in period, red lines show the median 769 

r values, and dashed black lines show the 95% credible interval. 770 
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