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Abstract 

Structured based drug design is a critical strategy for modern drug development. Recently, 

molecular generative models have demonstrated their potential in designing molecules from 

scratch with high binding affinities in a pre-determined protein pocket. However, the 

generative processes are random in current generative models and the atomic interaction 

information between ligand and protein are ignored. Besides that, the binding mode of 

ligands in proteins is crucial for drug design and the ligand has high propensity to bind with 

residues called hotspots. Hot spot residues contribute to the majority of the binding free 

energy and have been recognized as appealing targets for designing molecules. To this end, 

we develop an interaction prompt guided diffusion model, InterDiff to deal with the above 

challenges. Four kinds of atomic interactions are involved in our model and represented as 

learnable vector embeddings. These embeddings serve as a condition for each residue to 

guide the molecular generative process. Comprehensive in silico experiments evince that our 

model could generate molecules with desired interactions. Furthermore, we validate InterDiff 

on two realistic protein-based therapeutic agents and experiments show that InterDiff could 

design molecules with similar binding mode with known targeted drugs.  

Introduction 

Structure based drug discovery (SBDD) strives for design molecules that can bind to a target 

protein with high binding affinity and specificity, which acts as a critical approach in 

contemporary biopharmaceutical research[1]. However, SBDD remains a challenge owing to 

the massive chemical space. It is estimated that the number of <drug-like= molecules range 
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 considering the oral bioavailability and Lipinski9s rule-of-five[2]. Traditional in 

silico SBDD methods, such as virtual screening are computationally costly due to the large 

feasible chemical space and could not find novel drugs. In recent years, molecular generative 

models have emerged as a promising technique in drug discovery and enabled de novo 

molecular generation. Earlier methods relied on 1D (SMILES strings and SELFIES strings) or 

2D (graphs) molecular representations[3-6], and are able to generate diverse and novel 

molecules. Nevertheless, these models ignore 3D spatial information of molecules and the 

protein pocket environment, which is essential for molecular properties and protein binding 

affinity. Consequently, 3D structure-based generative methods have gained lots of attention 

due to their capability of designing molecules that bind to a specific protein pocket.  

Recently, various models have been proposed for 3D structure-based molecular generation, 

including variational autoencoders (VAEs), flow-based models, autoregressive models and 

diffusion models[7-14]. In [7], Matthew et al. represent molecules as density grids and a 

conditional VAE is used to generate new atomic density grids, then atom fitting and bond 

inference are applied to obtain novel molecules. Although they achieve remarkable results in 

generating diverse molecules, as pointed in [9, 10, 13], inferencing molecules from density 

grids is a nontrivial task and irregularities are presented in the generated molecules. Besides, 

the model is not equivariant and hard to scale to large protein systems. Peng et al. utilize 

autoregressive model to generate molecules atom by atom in protein pocket[14], but the 

generation process is inefficient and the deviations are accumulated as a result of the 

sequential generation. For instance, if the first several atoms are placed at improper positions, 

this will incur bias in subsequent generation process. On the contrary, diffusion-based models 

sample atom types and coordinates simultaneously in the light of protein context. Concretely, 

diffusion model defines a noise schedule and add noise to the molecular geometry in forward 

process. In the backward (generation) process, the model learns to reverse the noise process 

to recover the true molecular geometry. There is no mismatch between the training and 

generating process in diffusion models. Further, geometric symmetries in molecular system 

like rotation, translation and reflection are respected in diffusion model to improve the 

generalization ability. 

Nonetheless, diffusion models still face one limitation in real scenarios. Essentially, diffusion 

models pertain to a model class named score-based generative models[15]. Another member 

in score-based generative models is score matching, which estimates the score of data at 

different noise scales and samples by gradually decreasing noise levels[16, 17]. As Song et al. 

pointed, when the number of noise scales go to infinity, score-based generative models can 

be regarded as a stochastic differential equation (SDE)[15]. While sampling from the SDE, 

there exists a corresponding ordinary differential equation (ODE) sharing the same marginal 

probability densities. On this account, the diversity of generated molecules would be 

decreased[12]. Additionally, the binding mode of proteins with ligand are vital for 

understanding the biological processes. It has been found that only a fraction of residues in 

the pocket, called hot spots contribute most to the binding affinity[18, 19]. A mutation in hot 

spots can cause significant drop in binding affinity and even drive drug resistance in 

patients[20, 21]. In modern development of drugs, hot spots are crucial for rational drug 

design and one usually desire that the drug can form interactions with hot spots. However, 

current diffusion models ignore the protein-ligand interaction information and cannot 
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customize the generated molecules. 

Inspired by the fruitful progress of prompt-based learning in nature language processing, we 

develop a prompt-based diffusion model called InterDiff to tailor the binding mode of 

generated molecules in the protein pocket. Specifically, we introduce four kinds of learnable 

prompt embedding to indicate the interaction type of protein residues, including π-π 

interaction, cation-π interaction, hydrogen bond interaction and halogen bond interaction. 

We perform an empirical study on CrossDocked2020 dataset[22] and shows that InterDiff is 

able to generate molecules under prescribed interaction prompts with high probability. In 

addition, we validate our model on two well-known targets in neural systems and cancers 

respectively. Experiments implicate that InterDiff could generate molecules having similar 

binding mode with known targeted drugs. To the best of our knowledge, this is the first work 

that introducing interaction prompt in structured based drug design. 

Results 

InterDiff leverages interaction prompts to guide diffusion model and design molecules, 

resembling the prefix-tuning which optimizes a small continuous task-specific vector (Figure 

1 and methods)[23]. To evaluate InterDiff, we first conduct the experiment on a benchmark 

dataset compared with three recently published methods on five general metrics. 

Furthermore, we evaluate the model performance in generating molecules with predefined 

interactions, which is the key characteristic of InterDiff. We also illustrate the potential of 

InterDiff in real scenarios. Two protein targets with targeted drugs are selected and InterDiff 

is assessed to design molecules with identical interactions. 

Data: The crossDocked2020 was used to train and evaluate InterDiff[22]. We follow the same 

splitting and filtering criterion described in [10, 14], obtaining 100000 samples for training 

and 100 samples for testing. The protein-ligand interactions are detected by BINANA2[24], 

four kinds of interactions are adopted including cation-π, π-π, hydrogen and halogen 

interaction. We ignore the complexes that have residue detected with more than one 

interaction. Phenylalanine and Tyrosine were found to have four interactions (Figure S1) and 

hydrogen bond account for the vast majority of interactions (Figure S1, S2). 

Figure 1: Overview of InterDiff in a protein conditional generation. In diffusion process ć   we 
simulate a progressively noised ligand point cloud (coordinates and atom types: ýĀ , /Ā   under 
protein environment (ý� , /�   over �  timesteps. The interaction prompts �  are tunable in the 
diffusion process. In the generative process Ć  a neural network learns to recover data from a noise 
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distribution conditioned on protein and prompts. 

Molecular structure and properties 

Routinely, we assess the generated molecules from test set in five commonly used metrics: 1) 

Vina Score. A binding affinity indicator calculated by physical-based empirical scoring 

function. 2) QED. QED is a measurement of drug-likeness of molecules. 3) SA. SA (synthetic 

accessibility) measures the feasibility of synthesize molecule based on fragmental analysis in 

compound database. 4) Lipinski. We calculate the Lipinski score by quantifying how many 

rules are fulfilled in Lipinski's rule of five. 5) Diversity. Diversity is computed by averaging the 

pairwise dissimilarity (one minus Tanimoto similarity) of generated molecules in each pocket. 

 

 Vina Score (↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) 
Test set �-6.871±2.32 0.476±0.20 0.728±0.14 4.340±1.14 2 

Pocket2Mol -6.561±2.67 0.573±0.16 0.756±0.13 4.879±0.42 0.731±0.12 

AR(3D-SBDD) -6.592±2.08 0.507±0.19 0.634±0.14 4.723±0.65 0.698±0.10 

TargetDiff -7.163±1.72 0.472±0.20 0.585±0.12 4.519±0.84 0.717±0.09 

InterDiff -6.584±1.29 0.413±0.18 0.598±0.11 4.405±1.01 0.820±0.04 

Tab 1: Evaluation results from test set of CrossDocked 2020 dataset. The performance is re-
evaluated for baseline methods Pocket2Mol  AR and TargetDiff.  

 

 

Figure 2: violin plot of distributions of docking score for InterDiff and baseline methods. InterDiff 
shows a limited range of scores compared to other methods. 
 

Tab 1 displays the results of InterDiff and baseline methods. Overall, InterDiff outperforms 

baseline methods in the diversity and the other indicators are less ideal. We notice that the 

average number of atoms in generated molecules sampled by InterDiff is smaller than other 

methods, ranging from 2-4 atoms. Since a larger molecule tends to have a better docking 

score, this may account for the lower docking score for our method. TargetDiff achieves best 
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results in vina score and Pocket2Mol performs best in QED, SA and Lipinski. However, this 

also indicates that InterDiff and TargetDiff could generate novel molecules since QED and SA 

are calculated based on existing drug database. To evaluate the substructure of generated 

molecules, we count the percentage of different ring size. Results show that InterDiff and 

TargetDiff tend to produce a larger proportion of 7-membered ring while AR has more 3-

membered rings. (Tab S1). This could partially explain the lower score in QED and SA of 

TargetDiff and InterDiff, since 7-membered ring rarely appears in common drugs[25]. Besides, 

we spot that the variance of vina score in InterDiff are much smaller than the other methods, 

as shown in Figure 2. In the generative process, we keep the interaction prompt of the protein 

residues the same (see methods part) as reference molecule in test set and the number of 

atoms is sampled according to the distribution of pocket size and number of atoms in ligand 

(Figure S3). The interaction prompt for the residues restricts the fluctuating extent of binding 

pose of the generated molecules, resulting in a binding mode akin to the reference molecules. 

We will analyze the accuracy of InterDiff in generated molecules with defined interaction 

prompt. Considering that the vina score is calculated based on the binding pose of ligand, 

this could shed light on lower variance of vina score in InterDiff.  

We further evaluate the molecular chemical space distribution of generated molecules by 2D 

and 3D molecular fingerprints. The projection of Morgan Fingerprint and USRCAT (Ultrafast 

Shape Recognition with CREDO Atom types) features by UMAP (Uniform Manifold 

Approximation and Projection) are displayed in Figure S4 and S5. Morgan Fingerprint derives 

from 2D molecular representation and takes atom types and connectivity into account. 

USRCAT is a method that measures 3D shapes of molecules meanwhile considering the 

pharmacophoric features. Generally, InterDiff has similar distributions in space with TargetDiff 

and AR shows a dispersed distribution regarding USRCAT projection. Pocket2Mol behaves 

differently against others, which locates at the upper corner and may correspond to a region 

with more drug-like molecules. For the 2D Morgan Fingerprint, InterDiff has one dense region 

while other models have two or more than three dense regions. The interaction prompt may 

confine the diversities of structures presented in generated molecules, making them similar 

to the reference molecules. This is in line with the distribution of vina score, which has a narrow 

range comparing to other methods.  
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Performance of InterDiff in design specific Interactions 

To evaluate the capability of InterDiff in generating molecules with designated interactions, 

we re-generate molecules in the test set for 100 times and the number of atoms is identical 

to the reference molecule for each sample. Additionally, we excluded test samples that did 

not detect any interaction and 99 samples are left for testing. After generation, the 

interactions were detected by BINANA2 using the conformers generated by InterDiff in 

protein pocket. We compute the accuracy of accomplishing designated interactions for 

generated molecules. As an illustration, if [8GLU9, 14, 8Hydrogen9] (fourteenth residue GLU with 

hydrogen bond) and ['TYR', 39, 'caption'] are given as the condition for generating, and only 

('TYR', 39, 'caption') is obtained in the generated molecular conformer, the accuracy would 

be 50%. The results are exhibited in Figure 3: 

Figure 3: Accuracy of achieving designated interactions in generated molecules in test set. The 
samples are sorted by the number of interactions. 
 

The number of interactions in the test set ranges from 1 to 11 except for the 10 interactions 

and we generate 100 samples for each protein pocket. Overall, InterDiff illustrates excellent 

performance in designing molecules under specific interaction prompts. We achieve the 

highest accuracy under 9 interactions (mean = 68%, n = 191) and the lowest accuracy under 

1 interaction (mean = 33%, n = 1174). In the most difficult setting 11 interactions, InterDiff still 

reach an average accuracy of 38% in 94 generated molecules (6 molecules fail to reconstruct). 

Among the 94 generated molecules, 4 samples realize the highest accuracy with 7 interactions 

agreed with the reference. What9 s more, in 9 interaction cases, 5 molecules attain the same 

interaction types as the reference and 23 molecules are in accord with 8 interactions. To verify 

if the generated conformers agree with the pose after docking, we compare the raw 

conformers from InterDiff with the docking poses generated by QuickVina. We plot the 

resulting RMSD density distribution of 9 conformers (ordered by the docking score) generated 

by QuickVina (Figure S7). For the besting scoring pose, QuickVina agrees with 9% of generated 
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conformers (RMSD below 2 angstrom), which is similar to the work that Schneuing et al. 

reported[9]. Additionally, we also observe a significant drop of the proportion of agreed 

molecules in the less confident poses (4% in the 9
th
 pose). This indicates InterDiff can generate 

molecular conformers approaching the steady binding pose. Furthermore, to estimate the 

ability of InterDiff in achieving disparate interactions, we assess the accuracy of four 

interactions in each sample and the results are shown in Figure S6. 

Overall, InterDiff behaves distinctly in designing disparate interaction. The probability of 

hydrogen bonds being designed is the highest, followed by halogen bond. We note that 

InterDiff does not perform well in π-π interactions, which is understandable since the 

requirements of π-π interaction are more complicated than the others. Accordant with 

BINANA29s criterion, three standardized aromatic residues (phenylalanine, tyrosine and 

histidine) are involved. The aromatic ring center distance between ligand and protein must 

be less than 4.4 angstroms and the ring atoms in could not deviate from planarity by more 

than 15 degrees. Last but not least, the angle of two normal vectors in the ring planes needs 

to within 30 degrees. Compared to other interactions, π-π interactions demand aromatic ring 

structure on the ligand and the ring has to be positioned in a proper manner. In addition, we 

noticed that the π-π interactions only comprise around 8 percent of the total interaction 

samples. On account of this, we speculate that the imbalanced interaction distribution may 

also impact the model performance in π-π interactions.  

Application of InterDiff in real scenarios 

In this section, we investigate the potential of InterDiff in designing drugs when the binding 

mode of a reference molecule is available. We select two protein targets with different 

subtypes and use InterDiff to design molecules with similar binding mode as existing drugs. 

The first target is muscarinic acetylcholine receptor (mAChR), acting an important target in 

central nervous system diseases, for instance, Alzheimers9s disease and schizophrenia[26]. 

Xanomeline was developed as an agonist to mAChRs and studies have found that it has 

almost identical binding affinity to all mAChR subtypes (M1-M5), but stimulates them to 

appreciably different extent[27]. A recent study termed this phenomenon as <efficacy-driven 

selectivity= and the authors found that Xanomeline9s binding mode differs between inactive 

states and active states of mAChRs[28]. We use InterDiff to design molecules for M2 type 

mAChR in both inactive state and active state, conditioning on the binding mode of 

Xanomeline in two states. The second target is KRAS, commonly mutated in cancers and 

serving as a therapeutic targeting in various cancers, such as lung cancer, colorectal cancer 

and pancreatic cancer. Current inhibitors only target KRAS G12C mutants but the non-G12C 

mutants constitute the most in KRAS driven cancers. Recently, Kim et al. reported a non-

covalent inhibitor BI-2865, which can bind to a wide range of KRAS altercations[29]. In      

like manner, we design molecules with InterDiff and take the binding mode of BI-2865 in 

KRAS G12C and another mutant G13D as references. We sample 300 molecules for each state 

or mutant of two targets and check the interactions after docking by QuickVina. The original 

interactions for two drugs are list in Table S3. Among the generated molecules, we 

successfully obtain molecules that have identical interactions as existing drugs, and we 

randomly select four molecules for illustration. 
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Figure 4: Pose of generated molecules and native drug in protein target. a, b: The illustration of 
Xanomeline and generated molecules in M2 mAChRs active state and inactive state. c, d: Generated 
molecules and BI-2865 in KRAS wild type and G12C mutant. The binding poses of generated 
molecules and Xanomeline are obtained by QuickVina while the pose of BI-2865 are obtained from 
cocrystal structure. Residues that have interactions with molecules are colored with green. BI-2865 
and Xanomeline are colored with purple and generated molecules are colored with blue. The 
structures of all molecules are available in Figure S8. 
 

As demonstrated in Figure 4, we present the poses of generated molecules after docking 
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together with the targeted drugs. The poses of Xanomeline are acquired by docking for 

mAChRs and the poses of BI-2865 are acquired from cocrystal structure in PDB database for 

KRAS. We can see that the docking pose of designed molecules overlap well with the 

reference drug. What9s more, InterDiff successfully generates similar interactions as the 

reference drug in three of the four protein targets. For the last target (Figure 4d, KRAS wild 

type), three of the four interactions are consistent. 

The docking pose of generated molecules and Xanomeline for M2 mAChRs in active and 

inactive state are illustrated in Figure 4a and 4b. For the active state (PDB:6oik), the original 

interaction is TRP-422 with interaction cation-π. InterDiff successfully realizes the same 

interaction and additionally introduces two new interactions, TYR-426 with cation-π and ILE-

178 with hydrogen bond. For the inactive state (PDB:3uon), the primary interactions are 

cation-π in TYR-403 and TYR-104. InterDiff also reproduces the same interactions and three 

hydrogen bonds are formed in ASN-404, SER-107and ASP-103. In the second case, three 

interactions are discovered by BINANA2 in KRAS mutant G12C cocrystal structure (PDB:8azx), 

ASP-69 with hydrogen bond, GLU-63 with hydrogen bond and HIS-95 with cation-π. While 

in KRAS wild type (PDB:8azv), an additional interaction, TYR-64 with cation-π is found. 

InterDiff could discover molecules with the similar binding mode in KRAS mutant G12C (form 

an extra interaction GLY-10 with hydrogen, Figure 4c) and KRAS wild type except for HIS-95 

with cation-π. Besides that, we notice that the BI-2865 has 5 ring structures, and there are no 

rings in molecules generated by InterDiff. Currently, InterDiff could not control the sub-

structures in generating process and this could be a future direction. 

Fragment growing by inpainting 

In this part, we investigate the potential of InterDiff in fragment-based drug design (FBDD). 

FBDD enables designing molecules conditioned on a potent substructure. It is very common 

that one may desire to optimize certain parts of a molecule while fix the molecular scaffold. 

To this end, we additionally train an unconditional diffusion model which learns the joint 

distribution of ligand atoms and protein atoms. The model structure and training process is 

identical to the conditional InterDiff except for the training objective (protein atoms are 

included in the loss function). To generate molecules under a given scaffold, we modify the 

sampling process by injecting the fixed context in the denoising step and replacing the 

corresponding parts from the model. This technique is named inpainting and initially 

introduced in image imputation[30, 31]. Formally, in each denoising step, we do following 

operations: ýþ21āÿĀāÿ~ý(ýþ|√1 2 Āþý0, Āþ�), ýþ21ÿÿāÿĀāÿ~ý(Ā̃�(ýþ), Ā�þ�), ýþ21 = ă⨀ýþ21āÿĀāÿ + (1 2 ă)⨀ýþ21ÿÿāÿĀāÿ, 
where ýþ21āÿĀāÿ  indicates the reference samples, ýþ21ÿÿāÿĀāÿ  indicates the samples from the 

model and ă is a binary mask which signifies the fixed context. In the experiments, the 

pocket atoms and the native ligand are the ýþ21āÿĀāÿ and the denoising samples from the 

model are ýþ21ÿÿāÿĀāÿ. It is evident that by iterating this step during the sampling process the 

molecular scaffold can be preserved in the final generated molecules.  
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Figure 5: Pose of designed fragments with scaffold and native drug in protein target. The transparent 
parts of native drug are fragments with interactions. Residues that have interactions with molecules 
are colored with green. BI-2865 and Xanomeline are colored with purple and generated molecules 
are colored with yellow. 

The same protein targets are used in experiment as the previous section and 100 molecules 

are sampled for each state of the two targets. We evaluate InterDiff in FBDD by removing the 

fragments (Figure 5, transparent parts) that have interactions with protein residues and keep 

the rest of the molecules as the fixed scaffolds. Four illustrative examples are shown in Figure 

5, and we successfully design fragments with the same interactions as the native drug in M2 

mAChRs based on the scaffold. For KRAS mutant G12C (PDB:8azx) and KRAS wild type 

(PDB:8azv), one (ASP-69 with hydrogen) of three and two (ASP-69 with hydrogen, TYR-64 

with cation-π) of four interactions are achieved. The docking poses are generated by the 

model and our method can inpaint new fragments with desired interactions around the fixed 

scaffolds. However, we also noticed that the accuracy of InterDiff in inpainting mode is lower 

than the pocket-conditional mode. The model has to estimate the positions of both protein 

and ligand atoms in the denoising steps and on the contrary, only ligand atoms are estimated 

in the pocket-conditional mode. The errors in protein atoms could hamper the model to 

design the correct interactions in ligand atoms. In addition, in case PDB:6oik, we found that 

the new fragments are anchored in an alternative position on the 5-membered ring. It would 

be interesting to add the information of anchor point in diffusion model and generate diverse 

molecules. 
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Related work 

Diffusion model for molecular design 

Diffusion models are a new kind of generative model inspired by diffusion process. Impressive 

progresses have been made in distinct generating task such as images, audios and even 

videos[32-34]. In molecular science, Hoogeboom et al. first proposed E(3) Equivariant 

Diffusion Model (EDM) for molecular generation which notably outperforms previous 3D 

generative methods[35]. Shortly after their work, Schneuing developed a diffusion model for 

structured based drug design named DiffSBDD, which is the first of its kind[9]. Two strategies 

are introduced under their framework, protein-conditional and ligand-inpainting generation. 

Specifically, ligand-inpainting method learns the joint distribution of protein-ligand complex, 

and new ligands are completed in inference stage. Experiments exhibit that both strategies 

can produce novel and drug-like ligands. In silico docking assessment also verify the potential 

in generating ligands with high binding affinity. Similar work were done in [13] and the 

difference lies in a dual diffusion was used to capture the local and global protein environment. 

In addition, Guan et al. presented a target-aware diffusion model. Unlike previous work that 

need to evaluate generated molecules through docking method like AutoDock, their model 

can estimate and rank the binding affinity of molecules. The authors raise a problem that the 

bond inference is implemented in a post-processing manner and irrational structures may 

appear in generated molecules, which is also pointed out in Schneuing9s work[9]. Huang et 

al. tackle this problem by setting distance threshold for covalent bond[12], but the bond 

distance can vary depending on the particular chemical structure. Alternatively, Wu et al. 

developed a diffusion model guided by a prior diffusion bridge[36], which can guarantee a 

desirable output. Specifically, AMBER inspired physical energy and statistical energy were 

incorporated as priors to guide training process. Another solution to this issue is integrating 

the chemical bonds into the diffusion process to enhance the quality of generated 

molecules[37]. 

Prompt learning for molecular design 

Prompt-based learning is initially a strategy to train large language models (LLMs), serving as 

an alternative to the fine-tuning paradigm so the LLMs can adapt to different tasks without 

re-training[38]. Afterward this technique was introduced to vision-language model and 

greatly improved the performance over all evaluation tasks[39]. Very recently, several 

attempts have been made to incorporate prompt-based learning to molecular design[40-43]. 

These works combine SMILES representation of molecules with other modalities including 

chemical structure texts[40, 41], pharmacological properties[41-43], medical description 

texts[42], and protein pocket[43]. In [43], Gao et al. propose a unified model called PrefixMol 

considering both chemical properties and binding pocket via generative pre-trained 

transformer (GPT). The pocket information is transformed into an embedding by geometric 

vector transformer (GVF) and used as a prefix condition together with other conditional 
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embeddings. PrefixMol demonstrates excellent performance in single and multiple 

conditional molecular generation. But still, PrefixMol is an autoregressive model, and the 

global context of ligands are lost during the generation process. Moreover, their model treats 

pocket residues equally and the outputs are 1D SMILES representation, which makes it hard 

to apply in real scenarios.  

Discussion 

In this work, we propose a novel diffusion model named InterDiff to guide the molecular 

generation by residue interaction prompt. Our model could generate molecules under certain 

interaction conditions with high probability, which is critical for structure-based drug design. 

Besides, we demonstrate that InterDiff could be easily modified into fragment-based 

generative model and improve molecules by introducing interactions with certain hot spots. 

This characteristic is of benefit for modern drug design and could help optimizing lead 

compound. Nevertheless, InterDiff still faces several problems such as the infeasible structures 

presented in the generated molecules, which are also commonly seen in other methods. 

Although this may be the flaws in molecular reconstruction algorithms, efforts are needed to 

increase the molecular structural rationality. Luckily, potential solutions have been proposed 

as we discussed in the related work part. We will attempt to optimize the sub-structures of 

generated molecules to ameliorate the drug-likeness and synthetic accessibility. Currently, 

the choice the interaction prompts for residues depends on the reference molecules or one9s 

experience, and existing tools like FTMap may be helpful to this problem[44]. In addition, the 

accuracy in accomplishing π-π interactions is still room for improvement and could be an 

interesting future direction. 

Methods 

Molecular diffusion model 

We build our model upon the framework develop by Guan et al.[10]. Let 3 = (ý, /) denote 

the molecular 3D point cloud data with ý = [ý(Ā), ý(�)] ∈ ℛĂ×3 and / = [/(Ā), /(�)] ∈ ℛĂ×ā. 

In our setting, [ý(Ā), ý(�)] indicate atom coordinates of ligand and protein, and [/(Ā), /(�)] 
represent the atom categorial features, where Ă is the number of atoms. We use diffusion 

model to learn the distributions of protein-ligand complexes. Diffusion model learns two 

Markov processes, a diffusion process ć and a denoising process Ć. Diffusion process adds 

Gaussian noise to data 3þ  in time step Ċ, where Ċ = 0,⋯ , � 2 1 is the predefined time 

steps (� = 1000 in the implementation): ć(3þ|3þ21) = ý(3þ|ÿþ3þ21, �þ2�), 
where ÿþ  is the schedule that controls how much signals are preserved in the diffusion 

process and �þ is the noise schedule that controls how much noises are added. For the 3D 

molecular point cloud data, the atom types are categorical data while the atom coordinates 

are continuous data. At time step Ċ, We add Gaussian noise and uniform noise to the atom 
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coordinate feature and atom type feature respectively[45]. Following the convention in [10, 

45], the joint distribution states as: ć(3þ|3þ21) = ý(ýþ|√1 2 Āþýþ21, Āþ�) ∙ �(/þ|(1 2 Āþ)/þ21 + Āþ/ÿ), 
where �  indicates a categorical distribution with parameters after | , Āþ  is the variance 

schedules and ÿ is the number of atom types with ā = 1,⋯ ,ÿ. In the implementation, the 

variance is reduced as the steps grow. For the generative denoising process, the posterior 

distribution Ć(∙) can be computed in a close form by the Bayesian formula: Ć(ýþ21|ýþ , ý0) = Ć(ýþ|ýþ21, ý0) Ć(ýþ21|ý0)Ć(ýþ|ý0) = ý(ýþ21|Ā̃þ(ýþ , ý0), Ā�þ�), Ć(/þ21|/þ , /0) = Ć(/þ|/þ21, /0) Ć(/þ21|/0)Ć(/þ|/0) = � (/þ21|�āĀýþ(/þ , /0)), 
where �āĀýþ(/þ, /0) = ��/3 ��āÿā=1 , �� = [ÿþ/þ + (1 2 ÿþ)/ÿ] ⊙ [ÿ�þ21/0 + (1 2 ÿ�þ21)/ÿ] , Ā̃þ(ýþ, ý0) = √ÿ��−1Ā�12ÿ�� ý0 + √ÿ�(12ÿ��−1)12ÿ�� ýþ , Ā�þ = 12ÿ��−112ÿ�� Āþ and ÿþ = 1 2 Āþ , ÿ�þ = / ÿýþý=1 . In the 

denoising process, ý0  and /0  are approximated by neural network, and we denote the 

approximation of ý0  and /0  as ý̂0, /̂0 = ΦΩ(ýþ , /þ , Ċ) , where Φ  is a neural network 

parameterized by Ω. The training objective is the summation for atom coordinates and atom 

types. The atom coordinate loss states as: Āþ21Ă = āþ||ý0 2 ý̂0||2 + �, 
where āþ is the weight for MSE loss and � is a constant. In the implementation, we set āþ =1 for all time steps. The atom type loss is computed by KL-divergence of two categorical 

distributions: Āþ21/ =∑ �āĀýþ(/þ , /0)ā ∙ Ăąā �āĀýþ(/þ, /0)ā�āĀýþ(/þ, /̂0)āā . 
The final loss is calculated by the weighted summation of MSE loss, KL-divergence and a 

classification loss: Ā = ÿĂĀþ21Ă + ÿ/Āþ21/ + ÿý�Ăĉ(/ā), 
where ÿĂ , ÿ/  and ÿý  are the weight for MSE loss, KL-divergence and classification loss 

respectively and /ā indicates the protein atom features. The classification loss classified the 

protein atom features according to their atomic interaction types and the cross entropy loss 

are used in the experiment. 
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Equivariant diffusion under prompt guidance 

In this section, we elaborate our proposed InterDiff model. InterDiff is a graph neural network 

in which the atom denotes the nodes and the Euclidean distance between atoms denotes the 

edges. We define an edge among two nodes when the Euclidean distance is below 7 

angstroms. Let � = (��(þ), ��(ý)) denotes the interaction prompts, where ��þ ∈ ℛ4 are one-

hot representation prompts, � ∈ (ý�ĊÿąĄ 2 Ćÿ, /�ĂąāÿĄ, /þþĈąāÿĄ, Ćÿ 2 Ćÿ)  and ��ý  are 

learnable continuous embeddings. The atom node features are also encoded by one-hot 

vectors and transformed by a single linear layer: /0,(ā) = ĀÿĄÿ�Ĉ ([/ā, ��(þ)]) , /0,(Ā) =ĀÿĄÿ�Ĉ(/Ā).  

 

Figure 6: Structure of equivariant block used in InterDiff. Modules are represented by rounded 
rectangle with white context while data are shown by rectangle with distinct colors. Input and output 
flows are shown with arrowhead and dashed arrowhead respectively. 
InterDiff is composed of six equivariant block layers (Figure 6), and each block consists of 

three modules. Formally, the first module updates the node features: /Ă21,(�) = /Ă21,(�) + ��(ý), 
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ăÿ,Ā = ý�Ċ(þÿĀ,/ÿĂ21, /ĀĂ21), /ā = āĀ�(ăÿ,Ā), /Ā = āĀ�(ăÿ,Ā), /Ă = āĀ�(/Ă21), /Ă = /Ă21 + �ĊĊÿĄĊÿąĄ(/ā , /Ă , /Ā), 
where /Ă,(�)  indicates protein atom features in Ă th layer, þÿĀ  is the Euclidean distance 

between atom ÿ  and Ā , and ý�Ċ(∙)  indicates the concatenation operation. The second 

module updates the ligand coordinates: ăÿ,Ā = ý�Ċ(þÿĀ,/ÿĂ21, /ĀĂ21), /ā = āĀ�(ăÿ,Ā), /Ā = āĀ�(ăÿ,Ā), /Ă = āĀ�(/Ă21), /Ā = /Ā ∙ [ýÿĂ21 2 ýĀ,Ā∈Ăÿ(ÿ)Ă21 ]ÿ=1Ă  ýĂ,(Ā) = ýĂ21,(Ā) + �ĊĊÿĄĊÿąĄ(/ā , /Ă , /Ā), 
where ýĂ,(Ā) indicates ligand atom coordinates in Ăth layer, ýĀ,Ā∈Ăÿ(ÿ)Ă  represents that Āth 

atom coordinates and Ā is the neighbors of atom ÿ. The third module updates ligand atom 

features and coordinates simultaneously with cross attention: þ̃ÿĀ = dis_encoding(þÿĀ) ýýĊ = ý�Ċ (/Ăℎ,(�), ��(ý)) /Ă,(Ā), ýĂ,(Ā) = ýĈąĉĉ�ĊĊÿ(ýýĊ, þ̃ÿĀ , þÿĀ , /Ăℎ,(Ā), ýĂ�,(Ā), ýĂ�,(ā)), 
where dis_encoding(∙) is the encoding of distance matrix between ligand and protein, /Ăℎ,(Ā), ýĂ�,(Ā) and ýĂ�,(�) indicate the node features and coordinates of ligand and coordinates of 

protein from the first and second module. For the distance encoding, we use multilayer 

perceptron in the implementation. The ýĈąĉĉ�ĊĊÿ(∙) is computed as follows: /ĂāĂ,(Ā) = ĀÿĄÿ�Ĉ(/Ăℎ,(Ā)), ýýĊĂā = ĀÿĄÿ�Ĉ(ýýĊ), 
ĉÿă = āĀ� (ý�Ċ (/ĂāĂ,(Ā) ∙ ýýĊĂā , þ̃ÿĀ)) , /�Ă,(Ā) = ĉąĀĊă�ý(ĉÿă) [: 12 Ą/ÿ�þĉ] ∙ ýýĊĀ , ý̃Ă,(Ā) = ăÿ�Ą (ĉąĀĊă�ý(ĉÿă) [12 Ą/ÿ�þĉ: ]) , /Ă,(Ā) = /Ăℎ,(Ā) +āĀ�(/�Ă,(Ā)), ýĂ,(Ā) = ýĂ�,(Ā) + [ýÿĂ�,(Ā) 2 ýĀĂ�,(ā)]ÿĀ ∙ āĀ�(ý̃Ă,(Ā)), 

where Ą/ÿ�þĉ is the number of heads in cross attention mechanism, ĉÿă is the attention 

map between ligand and protein. Noted that we ignore the operations of dimension 

rearrangement in above formulas and simplify Einstein summation to dot product here. 

Identical to previous work [35, 46, 47], we use 8subspace-trick9 by limiting the center of mass 

(CoM) of training samples to zero to ensure the model can achieve translation invariance in 

the generative process. For the SE(3)-equivariance of Markov transition, the proof of the first 

two modules is similar to [10] and we prove the equivariance for the cross attention module 

in the supplementary. 

Training and sampling details 

InterDiff consists of 6 equivariant blocks and each block has three modules with transformer 
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like structure. The diffusion steps are set to 1000 in training and sampling. We utilize a sigmoid Ā scheduler for atom coordinates and a cosine Ā scheduler for atom types. The number of 

heads is 16 for the first two modules and 32 for the cross attention module. The dimension is 

128 for the atom features and interaction prompt ��(ý). We use Adam[48] method to optimize 

the model with an initial learning rate 0.001, betas=(0.95,0.999) and the batch size is set to 8. 

A 8plateau9 scheduler was applied to decay the learning rate with a factor 0.8 when the 

validation performance is stuck for 4 evaluation steps. The minimum learning rate is 1e-6. The 

loss weight is 100 for atom type loss and 1 for MSE loss. We train InterDiff on one NVIDIA 

V100S GPU and the model converges within 32 hours. In addition, we empirically found that 

the model could be further improved on validation set (randomly selected from training data 

for validation) when fix the prompt embedding and fine tune after convergence. 

In the sampling process, the interaction prompts for each sample are provided in keeping 

with the molecule in test set. The center of mass is subtracted from the coordinates of protein 

atoms and the number of atoms is sample according to the pocket size (Figure S3). The initial 

coordinates of ligand atoms are sampled from a normal distribution and atom types are 

sampled from a Gumbel distribution and then transformed into one-hot vectors. 

Featurization of atoms and distance 

Atoms in ligand and protein are represented by one-hot vector initially and then transformed 

by a linear layer. We use a mixed representation for protein atoms and ligand atoms as 

described in [10]. Specifically, the protein atom features encode the information about amino 

acid types, atom types and whether the atom is backbone atoms. The ligand atom features 

encode the atom types and aromatic information. The distance between atoms and bond 

types are used to construct graph edges. Four types of bonds are considered by one-hot 

vector, which indicates the connection between ligand atoms, protein atoms, ligand-protein 

atoms and protein-ligand atoms. The edge feature are then encoded by gaussian radial basis 

functions with learnable parameters of mean and variance, for the details please refer to [49].  

Characterizations and parameters of interactions 

In this paper, we consider four types of interactions, and the characterizations of interactions 

are consistent with BINANA2. Cation-π interactions comprise of a charged functional group 

and an aromatic ring. The coordinate of charged functional groups is projected to the plane 

of the aromatic ring and cation-π interaction is accepted if the distance of two center points 

between pairs is less than a threshold. π-π interactions have two types of forms, pi-pi stacking 

(face to face) and T-stacking (edge to face). To detect π-π interactions, distance of the 

projection of center points on two aromatic rings and the angle of two vectors normal to 

planes for each ring are calculated. If the distance and angle satisfy certain thresholds, a π-

π interaction is identified. Hydrogen bond is composed of a hydrogen bond donor and a 

hydrogen bond acceptor. In BINANA2, thiol, amine, and hydroxyl groups are allowed as 

donors and nitrogen, sulfur and oxygen atoms can act as receptors. Likewise the distance 
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between donor and receptor and the dihedral angle between hydrogen atoms, donor and 

receptor must locate in a certain range. Halogen bonds also consist of a donor and a receptor. 

The donors include O-X, N-X, S-X, and C-X, where X is F, Cl, Br, or I. The acceptors could be 

nitrogen, sulfur and oxygen atoms. The threshold of distance for halogen bonds tends to be 

longer than hydrogen bonds and the dihedral angle is the same. The details of threshold 

values are listed in Table S2. 

 

Data availability 

The CrossDocked 2020 can be obtained at https://bits.csb.pitt.edu/files/crossdock2020/; 

Structured models used in studies are deposited in Protein Data Band with accession codes 

6oik, 3uon, 8azx and 8azv. The source code will be available on Github when publised. 
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