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Abstract

Structured based drug design is a critical strategy for modern drug development. Recently,
molecular generative models have demonstrated their potential in designing molecules from
scratch with high binding affinities in a pre-determined protein pocket. However, the
generative processes are random in current generative models and the atomic interaction
information between ligand and protein are ignored. Besides that, the binding mode of
ligands in proteins is crucial for drug design and the ligand has high propensity to bind with
residues called hotspots. Hot spot residues contribute to the majority of the binding free
energy and have been recognized as appealing targets for designing molecules. To this end,
we develop an interaction prompt guided diffusion model, InterDiff to deal with the above
challenges. Four kinds of atomic interactions are involved in our model and represented as
learnable vector embeddings. These embeddings serve as a condition for each residue to
guide the molecular generative process. Comprehensive in silico experiments evince that our
model could generate molecules with desired interactions. Furthermore, we validate InterDiff
on two realistic protein-based therapeutic agents and experiments show that InterDiff could
design molecules with similar binding mode with known targeted drugs.

Introduction

Structure based drug discovery (SBDD) strives for design molecules that can bind to a target
protein with high binding affinity and specificity, which acts as a critical approach in
contemporary biopharmaceutical research[1]. However, SBDD remains a challenge owing to
the massive chemical space. It is estimated that the number of “drug-like” molecules range
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from 107°-10% considering the oral bioavailability and Lipinski's rule-of-five[2]. Traditional in
silico SBDD methods, such as virtual screening are computationally costly due to the large
feasible chemical space and could not find novel drugs. In recent years, molecular generative
models have emerged as a promising technique in drug discovery and enabled de novo
molecular generation. Earlier methods relied on 1D (SMILES strings and SELFIES strings) or
2D (graphs) molecular representations[3-6], and are able to generate diverse and novel
molecules. Nevertheless, these models ignore 3D spatial information of molecules and the
protein pocket environment, which is essential for molecular properties and protein binding
affinity. Consequently, 3D structure-based generative methods have gained lots of attention
due to their capability of designing molecules that bind to a specific protein pocket.
Recently, various models have been proposed for 3D structure-based molecular generation,
including variational autoencoders (VAEs), flow-based models, autoregressive models and
diffusion models[7-14]. In [7], Matthew et al. represent molecules as density grids and a
conditional VAE is used to generate new atomic density grids, then atom fitting and bond
inference are applied to obtain novel molecules. Although they achieve remarkable results in
generating diverse molecules, as pointed in [9, 10, 13], inferencing molecules from density
grids is a nontrivial task and irregularities are presented in the generated molecules. Besides,
the model is not equivariant and hard to scale to large protein systems. Peng et al. utilize
autoregressive model to generate molecules atom by atom in protein pocket[14], but the
generation process is inefficient and the deviations are accumulated as a result of the
sequential generation. For instance, if the first several atoms are placed at improper positions,
this will incur bias in subsequent generation process. On the contrary, diffusion-based models
sample atom types and coordinates simultaneously in the light of protein context. Concretely,
diffusion model defines a noise schedule and add noise to the molecular geometry in forward
process. In the backward (generation) process, the model learns to reverse the noise process
to recover the true molecular geometry. There is no mismatch between the training and
generating process in diffusion models. Further, geometric symmetries in molecular system
like rotation, translation and reflection are respected in diffusion model to improve the
generalization ability.

Nonetheless, diffusion models still face one limitation in real scenarios. Essentially, diffusion
models pertain to a model class named score-based generative models[15]. Another member
in score-based generative models is score matching, which estimates the score of data at
different noise scales and samples by gradually decreasing noise levels[16, 17]. As Song et al.
pointed, when the number of noise scales go to infinity, score-based generative models can
be regarded as a stochastic differential equation (SDE)[15]. While sampling from the SDE,
there exists a corresponding ordinary differential equation (ODE) sharing the same marginal
probability densities. On this account, the diversity of generated molecules would be
decreased[12]. Additionally, the binding mode of proteins with ligand are vital for
understanding the biological processes. It has been found that only a fraction of residues in
the pocket, called hot spots contribute most to the binding affinity[18, 19]. A mutation in hot
spots can cause significant drop in binding affinity and even drive drug resistance in
patients[20, 21]. In modern development of drugs, hot spots are crucial for rational drug
design and one usually desire that the drug can form interactions with hot spots. However,
current diffusion models ignore the protein-ligand interaction information and cannot
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customize the generated molecules.

Inspired by the fruitful progress of prompt-based learning in nature language processing, we
develop a prompt-based diffusion model called InterDiff to tailor the binding mode of
generated molecules in the protein pocket. Specifically, we introduce four kinds of learnable
prompt embedding to indicate the interaction type of protein residues, including T-Tt
interaction, cation-Tt interaction, hydrogen bond interaction and halogen bond interaction.
We perform an empirical study on CrossDocked2020 dataset[22] and shows that InterDiff is
able to generate molecules under prescribed interaction prompts with high probability. In
addition, we validate our model on two well-known targets in neural systems and cancers
respectively. Experiments implicate that InterDiff could generate molecules having similar
binding mode with known targeted drugs. To the best of our knowledge, this is the first work
that introducing interaction prompt in structured based drug design.

Results

InterDiff leverages interaction prompts to guide diffusion model and design molecules,
resembling the prefix-tuning which optimizes a small continuous task-specific vector (Figure
1 and methods)[23]. To evaluate InterDiff, we first conduct the experiment on a benchmark
dataset compared with three recently published methods on five general metrics.
Furthermore, we evaluate the model performance in generating molecules with predefined
interactions, which is the key characteristic of InterDiff. We also illustrate the potential of
InterDiff in real scenarios. Two protein targets with targeted drugs are selected and InterDiff
is assessed to design molecules with identical interactions.

Data: The crossDocked2020 was used to train and evaluate InterDiff[22]. We follow the same
splitting and filtering criterion described in [10, 14], obtaining 100000 samples for training
and 100 samples for testing. The protein-ligand interactions are detected by BINANAZ2[24],
four kinds of interactions are adopted including cation-Tt, 1t-11, hydrogen and halogen
interaction. We ignore the complexes that have residue detected with more than one
interaction. Phenylalanine and Tyrosine were found to have four interactions (Figure S1) and
hydrogen bond account for the vast majority of interactions (Figure S1, S2).
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Figure 1: Overview of InterDiff in a protein conditional generation. In diffusion process g, we

simulate a progressively noised ligand point cloud (coordinates and atom types: x%, hl) under

protein environment (xf,hP) over T timesteps. The interaction prompts v are tunable in the

diffusion process. In the generative process p, a neural network learns to recover data from a noise
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distribution conditioned on protein and prompts.

Molecular structure and properties

Routinely, we assess the generated molecules from test set in five commonly used metrics: 1)
Vina Score. A binding affinity indicator calculated by physical-based empirical scoring
function. 2) QED. QED is a measurement of drug-likeness of molecules. 3) SA. SA (synthetic
accessibility) measures the feasibility of synthesize molecule based on fragmental analysis in
compound database. 4) Lipinski. We calculate the Lipinski score by quantifying how many
rules are fulfilled in Lipinski's rule of five. 5) Diversity. Diversity is computed by averaging the
pairwise dissimilarity (one minus 7an/moto similarity) of generated molecules in each pocket.

Vina Score ({) QED (1) SA (T) Lipinski (T) | Diversity (T)
Test set -6.871£2.32 | 0.476+0.20 | 0.7284+0.14 | 4.340+1.14 -
Pocket2Mol -6.561+2.67 | 0.573+0.16 | 0.756+0.13 | 4.879+0.42 | 0.731+0.12
AR(3D-SBDD) -6.59242.08 | 0.5074+0.19 | 0.6344+0.14 | 4.72340.65 | 0.698+0.10
TargetDiff -7.163+1.72 | 0.472+0.20 | 0.585%+0.12 | 4.51940.84 | 0.71740.09
InterDiff -6.584+1.29 | 0.413%+0.18 | 0.598+0.11 | 4.405+1.01 | 0.820+0.04

Tab 1: Evaluation results from test set of CrossDocked 2020 dataset. The performance is re-
evaluated for baseline methods Pocket2Mol, AR and TargetDiff.
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Figure 2: violin plot of distributions of docking score for InterDiff and baseline methods. InterDiff

shows a limited range of scores compared to other methods.

Tab 1 displays the results of InterDiff and baseline methods. Overall, InterDiff outperforms
baseline methods in the diversity and the other indicators are less ideal. We notice that the
average number of atoms in generated molecules sampled by InterDiff is smaller than other
methods, ranging from 2-4 atoms. Since a larger molecule tends to have a better docking
score, this may account for the lower docking score for our method. TargetDiff achieves best
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results in vina score and Pocket2Mol performs best in QED, SA and Lipinski. However, this
also indicates that InterDiff and TargetDiff could generate novel molecules since QED and SA
are calculated based on existing drug database. To evaluate the substructure of generated
molecules, we count the percentage of different ring size. Results show that InterDiff and
TargetDiff tend to produce a larger proportion of 7-membered ring while AR has more 3-
membered rings. (Tab S1). This could partially explain the lower score in QED and SA of
TargetDiff and InterDiff, since 7-membered ring rarely appears in common drugs[25]. Besides,
we spot that the variance of vina score in InterDiff are much smaller than the other methods,
as shown in Figure 2. In the generative process, we keep the interaction prompt of the protein
residues the same (see methods part) as reference molecule in test set and the number of
atoms is sampled according to the distribution of pocket size and number of atoms in ligand
(Figure S3). The interaction prompt for the residues restricts the fluctuating extent of binding
pose of the generated molecules, resulting in a binding mode akin to the reference molecules.
We will analyze the accuracy of InterDiff in generated molecules with defined interaction
prompt. Considering that the vina score is calculated based on the binding pose of ligand,
this could shed light on lower variance of vina score in InterDiff.

We further evaluate the molecular chemical space distribution of generated molecules by 2D
and 3D molecular fingerprints. The projection of Morgan Fingerprint and USRCAT (Ultrafast
Shape Recognition with CREDO Atom types) features by UMAP (Uniform Manifold
Approximation and Projection) are displayed in Figure S4 and S5. Morgan Fingerprint derives
from 2D molecular representation and takes atom types and connectivity into account.
USRCAT is a method that measures 3D shapes of molecules meanwhile considering the
pharmacophoric features. Generally, InterDiff has similar distributions in space with TargetDiff
and AR shows a dispersed distribution regarding USRCAT projection. Pocket2Mol behaves
differently against others, which locates at the upper corner and may correspond to a region
with more drug-like molecules. For the 2D Morgan Fingerprint, InterDiff has one dense region
while other models have two or more than three dense regions. The interaction prompt may
confine the diversities of structures presented in generated molecules, making them similar
to the reference molecules. Thisis in line with the distribution of vina score, which has a narrow
range comparing to other methods.


https://doi.org/10.1101/2023.09.11.557141
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.11.557141; this version posted September 15, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Performance of InterDiff in design specific Interactions

To evaluate the capability of InterDiff in generating molecules with designated interactions,
we re-generate molecules in the test set for 100 times and the number of atoms is identical
to the reference molecule for each sample. Additionally, we excluded test samples that did
not detect any interaction and 99 samples are left for testing. After generation, the
interactions were detected by BINANAZ2 using the conformers generated by InterDiff in
protein pocket. We compute the accuracy of accomplishing designated interactions for
generated molecules. As an illustration, if /'GLU’, 14, 'Hydrogen ] (fourteenth residue GLU with
hydrogen bond) and ['7YR, 39, ‘caption’] are given as the condition for generating, and only
('TYR, 39, ‘caption’)is obtained in the generated molecular conformer, the accuracy would
be 50%. The results are exhibited in Figure 3:

Accuracy for different number of interactions in test set

accuracy

1 interactions 2 interactions 3 interactions 4 interactions 5 interactions 6 interactions 7 interactions 8 interactions 9interactions 11 interactions
(n=1174) (n=2196) (n=1153) (n=1810) (n=682) (n=293) (n=483) (n=356) (n=191) (n=94)
number of interactions

Figure 3: Accuracy of achieving designated interactions in generated molecules in test set. The
samples are sorted by the number of interactions.

The number of interactions in the test set ranges from 1 to 11 except for the 10 interactions
and we generate 100 samples for each protein pocket. Overall, InterDiff illustrates excellent
performance in designing molecules under specific interaction prompts. We achieve the
highest accuracy under 9 interactions (mean = 68%, n = 191) and the lowest accuracy under
1 interaction (mean = 33%, n = 1174). In the most difficult setting 11 interactions, InterDiff still
reach an average accuracy of 38% in 94 generated molecules (6 molecules fail to reconstruct).
Among the 94 generated molecules, 4 samples realize the highest accuracy with 7 interactions
agreed with the reference. What’ s more, in 9 interaction cases, 5 molecules attain the same
interaction types as the reference and 23 molecules are in accord with 8 interactions. To verify
if the generated conformers agree with the pose after docking, we compare the raw
conformers from InterDiff with the docking poses generated by QuickVina. We plot the
resulting RMSD density distribution of 9 conformers (ordered by the docking score) generated
by QuickVina (Figure S7). For the besting scoring pose, QuickVina agrees with 9% of generated
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conformers (RMSD below 2 angstrom), which is similar to the work that Schneuing et al.
reported[9]. Additionally, we also observe a significant drop of the proportion of agreed
molecules in the less confident poses (4% in the 9" pose). This indicates InterDiff can generate
molecular conformers approaching the steady binding pose. Furthermore, to estimate the
ability of InterDiff in achieving disparate interactions, we assess the accuracy of four
interactions in each sample and the results are shown in Figure S6.

Overall, InterDiff behaves distinctly in designing disparate interaction. The probability of
hydrogen bonds being designed is the highest, followed by halogen bond. We note that
InterDiff does not perform well in Tt-Tt interactions, which is understandable since the
requirements of TI-1t interaction are more complicated than the others. Accordant with
BINANAZ2's criterion, three standardized aromatic residues (phenylalanine, tyrosine and
histidine) are involved. The aromatic ring center distance between ligand and protein must
be less than 4.4 angstroms and the ring atoms in could not deviate from planarity by more
than 15 degrees. Last but not least, the angle of two normal vectors in the ring planes needs
to within 30 degrees. Compared to other interactions, -1t interactions demand aromatic ring
structure on the ligand and the ring has to be positioned in a proper manner. In addition, we
noticed that the -1 interactions only comprise around 8 percent of the total interaction
samples. On account of this, we speculate that the imbalanced interaction distribution may
also impact the model performance in T1-T1 interactions.

Application of InterDiff in real scenarios

In this section, we investigate the potential of InterDiff in designing drugs when the binding
mode of a reference molecule is available. We select two protein targets with different
subtypes and use InterDiff to design molecules with similar binding mode as existing drugs.
The first target is muscarinic acetylcholine receptor (mAChR), acting an important target in
central nervous system diseases, for instance, Alzheimers’'s disease and schizophrenia[26].
Xanomeline was developed as an agonist to mAChRs and studies have found that it has
almost identical binding affinity to all mAChR subtypes (M1-M5), but stimulates them to
appreciably different extent[27]. A recent study termed this phenomenon as “efficacy-driven
selectivity” and the authors found that Xanomeline’s binding mode differs between inactive
states and active states of mMAChRs[28]. We use InterDiff to design molecules for M2 type
mAChR in both inactive state and active state, conditioning on the binding mode of
Xanomeline in two states. The second target is KRAS, commonly mutated in cancers and
serving as a therapeutic targeting in various cancers, such as lung cancer, colorectal cancer
and pancreatic cancer. Current inhibitors only target KRAS G12C mutants but the non-G12C
mutants constitute the most in KRAS driven cancers. Recently, Kim et al. reported a non-
covalent inhibitor BI-2865, which can bind to a wide range of KRAS altercations[29]. In
like manner, we design molecules with InterDiff and take the binding mode of BI-2865 in
KRAS G12C and another mutant G13D as references. We sample 300 molecules for each state
or mutant of two targets and check the interactions after docking by QuickVina. The original
interactions for two drugs are list in Table S3. Among the generated molecules, we
successfully obtain molecules that have identical interactions as existing drugs, and we
randomly select four molecules for illustration.
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Vina score: -6.8 Vina score: -8.1
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Figure 4: Pose of generated molecules and native drug in protein target. a, b: The illustration of
Xanomeline and generated molecules in M2 mAChRs active state and inactive state. ¢, d: Generated
molecules and BI-2865 in KRAS wild type and G12C mutant. The binding poses of generated
molecules and Xanomeline are obtained by QuickVina while the pose of BI-2865 are obtained from
cocrystal structure. Residues that have interactions with molecules are colored with green. BI-2865
and Xanomeline are colored with purple and generated molecules are colored with blue. The

structures of all molecules are available in Figure S8.

As demonstrated in Figure 4, we present the poses of generated molecules after docking
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together with the targeted drugs. The poses of Xanomeline are acquired by docking for
mAChRs and the poses of BI-2865 are acquired from cocrystal structure in PDB database for
KRAS. We can see that the docking pose of designed molecules overlap well with the
reference drug. What's more, InterDiff successfully generates similar interactions as the
reference drug in three of the four protein targets. For the last target (Figure 4d, KRAS wild
type), three of the four interactions are consistent.

The docking pose of generated molecules and Xanomeline for M2 mAChRs in active and
inactive state are illustrated in Figure 4a and 4b. For the active state (PDB:6oik), the original
interaction is TRP-422 with interaction cation-1t. InterDiff successfully realizes the same
interaction and additionally introduces two new interactions, TYR-426 with cation-1t and ILE-
178 with hydrogen bond. For the inactive state (PDB:3uon), the primary interactions are
cation-1t in TYR-403 and TYR-104. InterDiff also reproduces the same interactions and three
hydrogen bonds are formed in ASN-404, SER-107and ASP-103. In the second case, three
interactions are discovered by BINANAZ2 in KRAS mutant G12C cocrystal structure (PDB:8azx),
ASP-69 with hydrogen bond, GLU-63 with hydrogen bond and HIS-95 with cation-1t. While
in KRAS wild type (PDB:8azv), an additional interaction, TYR-64 with cation-mt is found.
InterDiff could discover molecules with the similar binding mode in KRAS mutant G12C (form
an extra interaction GLY-10 with hydrogen, Figure 4c) and KRAS wild type except for HIS-95
with cation-Tt. Besides that, we notice that the BI-2865 has 5 ring structures, and there are no
rings in molecules generated by InterDiff. Currently, InterDiff could not control the sub-
structures in generating process and this could be a future direction.

Fragment growing by inpainting

In this part, we investigate the potential of InterDiff in fragment-based drug design (FBDD).
FBDD enables designing molecules conditioned on a potent substructure. It is very common
that one may desire to optimize certain parts of a molecule while fix the molecular scaffold.
To this end, we additionally train an unconditional diffusion model which learns the joint
distribution of ligand atoms and protein atoms. The model structure and training process is
identical to the conditional InterDiff except for the training objective (protein atoms are
included in the loss function). To generate molecules under a given scaffold, we modify the
sampling process by injecting the fixed context in the denoising step and replacing the
corresponding parts from the model. This technique is named inpainting and initially
introduced in image imputation[30, 31]. Formally, in each denoising step, we do following

operations:
k

xtffwn~N(xt|\/ 1- ﬁtxorﬁtl)'

XTI~ (g (), Bel),

Xeoq = mOXFYWT + (1 — m)@xprmown,
where xK0Wm indicates the reference samples, x*4™"" indicates the samples from the
model and m is a binary mask which signifies the fixed context. In the experiments, the

known

pocket atoms and the native ligand are the x;7 and the denoising samples from the

model are x¥¥mOWR |t is evident that by iterating this step during the sampling process the

molecular scaffold can be preserved in the final generated molecules.
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Figure 5: Pose of designed fragments with scaffold and native drug in protein target. The transparent
parts of native drug are fragments with interactions. Residues that have interactions with molecules
are colored with green. BI-2865 and Xanomeline are colored with purple and generated molecules
are colored with yellow.

The same protein targets are used in experiment as the previous section and 100 molecules
are sampled for each state of the two targets. We evaluate InterDiff in FBDD by removing the
fragments (Figure 5, transparent parts) that have interactions with protein residues and keep
the rest of the molecules as the fixed scaffolds. Four illustrative examples are shown in Figure
5, and we successfully design fragments with the same interactions as the native drug in M2
mMAChRs based on the scaffold. For KRAS mutant G12C (PDB:8azx) and KRAS wild type
(PDB:8azv), one (ASP-69 with hydrogen) of three and two (ASP-69 with hydrogen, TYR-64
with cation-11) of four interactions are achieved. The docking poses are generated by the
model and our method can inpaint new fragments with desired interactions around the fixed
scaffolds. However, we also noticed that the accuracy of InterDiff in inpainting mode is lower
than the pocket-conditional mode. The model has to estimate the positions of both protein
and ligand atoms in the denoising steps and on the contrary, only ligand atoms are estimated
in the pocket-conditional mode. The errors in protein atoms could hamper the model to
design the correct interactions in ligand atoms. In addition, in case PDB:60oik, we found that
the new fragments are anchored in an alternative position on the 5-membered ring. It would
be interesting to add the information of anchor point in diffusion model and generate diverse
molecules.
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Related work

Diffusion model for molecular design

Diffusion models are a new kind of generative model inspired by diffusion process. Impressive
progresses have been made in distinct generating task such as images, audios and even
videos[32-34]. In molecular science, Hoogeboom et al. first proposed E(3) Equivariant
Diffusion Model (EDM) for molecular generation which notably outperforms previous 3D
generative methods[35]. Shortly after their work, Schneuing developed a diffusion model for
structured based drug design named DiffSBDD, which is the first of its kind[9]. Two strategies
are introduced under their framework, protein-conditional and ligand-inpainting generation.
Specifically, ligand-inpainting method learns the joint distribution of protein-ligand complex,
and new ligands are completed in inference stage. Experiments exhibit that both strategies
can produce novel and drug-like ligands. In silico docking assessment also verify the potential
in generating ligands with high binding affinity. Similar work were done in [13] and the
difference lies in a dual diffusion was used to capture the local and global protein environment.
In addition, Guan et al. presented a target-aware diffusion model. Unlike previous work that
need to evaluate generated molecules through docking method like AutoDock, their model
can estimate and rank the binding affinity of molecules. The authors raise a problem that the
bond inference is implemented in a post-processing manner and irrational structures may
appear in generated molecules, which is also pointed out in Schneuing’s work[9]. Huang et
al. tackle this problem by setting distance threshold for covalent bond[12], but the bond
distance can vary depending on the particular chemical structure. Alternatively, Wu et al.
developed a diffusion model guided by a prior diffusion bridge[36], which can guarantee a
desirable output. Specifically, AMBER inspired physical energy and statistical energy were
incorporated as priors to guide training process. Another solution to this issue is integrating
the chemical bonds into the diffusion process to enhance the quality of generated
molecules[37].

Prompt learning for molecular design

Prompt-based learning is initially a strategy to train large language models (LLMSs), serving as
an alternative to the fine-tuning paradigm so the LLMs can adapt to different tasks without
re-training[38]. Afterward this technique was introduced to vision-language model and
greatly improved the performance over all evaluation tasks[39]. Very recently, several
attempts have been made to incorporate prompt-based learning to molecular design[40-43].
These works combine SMILES representation of molecules with other modalities including
chemical structure texts[40, 41], pharmacological properties[41-43], medical description
texts[42], and protein pocket[43]. In [43], Gao et al. propose a unified model called PrefixMol
considering both chemical properties and binding pocket via generative pre-trained
transformer (GPT). The pocket information is transformed into an embedding by geometric
vector transformer (GVF) and used as a prefix condition together with other conditional
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embeddings. PrefixMol demonstrates excellent performance in single and multiple
conditional molecular generation. But still, PrefixMol is an autoregressive model, and the
global context of ligands are lost during the generation process. Moreover, their model treats
pocket residues equally and the outputs are 1D SMILES representation, which makes it hard
to apply in real scenarios.

Discussion

In this work, we propose a novel diffusion model named InterDiff to guide the molecular
generation by residue interaction prompt. Our model could generate molecules under certain
interaction conditions with high probability, which is critical for structure-based drug design.
Besides, we demonstrate that InterDiff could be easily modified into fragment-based
generative model and improve molecules by introducing interactions with certain hot spots.
This characteristic is of benefit for modern drug design and could help optimizing lead
compound. Nevertheless, InterDiff still faces several problems such as the infeasible structures
presented in the generated molecules, which are also commonly seen in other methods.
Although this may be the flaws in molecular reconstruction algorithms, efforts are needed to
increase the molecular structural rationality. Luckily, potential solutions have been proposed
as we discussed in the related work part. We will attempt to optimize the sub-structures of
generated molecules to ameliorate the drug-likeness and synthetic accessibility. Currently,
the choice the interaction prompts for residues depends on the reference molecules or one’s
experience, and existing tools like FTMap may be helpful to this problem[44]. In addition, the
accuracy in accomplishing Tt-t interactions is still room for improvement and could be an
interesting future direction.

Methods

Molecular diffusion model

We build our model upon the framework develop by Guan et al.[10]. Let M = (x,h) denote
the molecular 3D point cloud data with x = [x®), x| € RV*3 and h = [AD), AP € RV*M
In our setting, [x®),x®)] indicate atom coordinates of ligand and protein, and [rR®, h(®]
represent the atom categorial features, where N is the number of atoms. We use diffusion
model to learn the distributions of protein-ligand complexes. Diffusion model learns two
Markov processes, a diffusion process q and a denoising process p. Diffusion process adds
Gaussian noise to data M; in time step t, where t =0,---,T — 1 is the predefined time
steps (T = 1000 in the implementation):
qMM_y) = N (Me|aeM,_y, 02 1D),

where a; is the schedule that controls how much signals are preserved in the diffusion
process and a; is the noise schedule that controls how much noises are added. For the 3D
molecular point cloud data, the atom types are categorical data while the atom coordinates
are continuous data. At time step t, We add Gaussian noise and uniform noise to the atom
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coordinate feature and atom type feature respectively[45]. Following the convention in [10,
45], the joint distribution states as:

qMe|Me_q) = N(xtl\/ 1- tht—vﬂtl) *C(hel(1 = B)he—y + Be/K),
where C indicates a categorical distribution with parameters after |, B: is the variance
schedules and K is the number of atom types with k = 1,---, K. In the implementation, the
variance is reduced as the steps grow. For the generative denoising process, the posterior
distribution p(*) can be computed in a close form by the Bayesian formula:

p(xe—11%0) ~ =
Xe_qlxp, x0) = PO x—q, Xg) ————— = N (x,_ X¢, Xo), Bl ),
p(xe—1lx¢, xo p(xelxe—q, x0) p(x,1%0) ( t 1|Ht( £ X0), Bt )
p(he—1lho)
he_{|hy, hy) = p(he|lhe_qy, hy) ——————=C | h,_,|O he, hy) ),
p(he—1lhe, ho) = p(helhe—1, ho) (e o) ( t 1| post( t 0))

where 005t (he,ho) =0/ 3810y, 0 = [ache + (1 — a)/K] O [@_1ho + (1 — @—1)/K] |

- Ja—1B ar(1-0p—q) = 1-Qp_ —
e (xg, x0) = 1t_a1t “Xo + J—tl —— X, B = 1_;; Br and ay =1—p¢, @ =[liz;a;. In the

-

denoising process, x, and hg are approximated by neural network, and we denote the
approximation of xy and hy as X, hy = ®q(x;, he, t), where @ is a neural network
parameterized by Q. The training objective is the summation for atom coordinates and atom
types. The atom coordinate loss states as:
o1 = Vellxo — %l1* + C,
where y; is the weight for MSE loss and € is a constant. In the implementation, we set y; =
1 for all time steps. The atom type loss is computed by KL-divergence of two categorical
distributions:
7] h, h
Loi= ) Bposi(hes ho)i - log %
The final loss is calculated by the weighted summation of MSE loss, KL-divergence and a
classification loss:
L=AL%_; + A LF_; + A.Cls(hP),
where A, A, and A, are the weight for MSE loss, KL-divergence and classification loss
respectively and hP indicates the protein atom features. The classification loss classified the
protein atom features according to their atomic interaction types and the cross entropy loss
are used in the experiment.
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Equivariant diffusion under prompt guidance

In this section, we elaborate our proposed InterDiff model. InterDiff is a graph neural network
in which the atom denotes the nodes and the Euclidean distance between atoms denotes the
edges. We define an edge among two nodes when the Euclidean distance is below 7

angstroms. Let v = (v,(d),v,(c)) denotes the interaction prompts, where v# € R* are one-

hot representation prompts, I € (cation — pi, halogen, hydrogen,pi —pi) and vf are
learnable continuous embeddings. The atom node features are also encoded by one-hot

vectors and transformed by a single linear layer: h%®) = Linear ([hp,v,(d)]),ho’(”=

Linear(hb).
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Figure 6: Structure of equivariant block used in InterDiff. Modules are represented by rounded
rectangle with white context while data are shown by rectangle with distinct colors. Input and output
flows are shown with arrowhead and dashed arrowhead respectively.

InterDiff is composed of six equivariant block layers (Figure 6), and each block consists of

three modules. Formally, the first module updates the node features:
-1,(P) — pl-1, ©
AL = pl=t(P) 4 4 )
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m; = cat(dij_hﬁ_l, hl-_l),

hy = MLP(m;;),h, = MLP(m; ;),h; = MLP(h'™Y),

ht =hi"1 4 attention(hk, hy, hv),
where hY®) indicates protein atom features in [th layer, d;; is the Euclidean distance
between atom i and j, and cat(-) indicates the concatenation operation. The second
module updates the ligand coordinates:

m; ; = cat(d;;h{™ R,

hy = MLP(m;;),h, = MLP(m; ;),h; = MLP(h'™Y),

hy, = hy - [xil_1 - x]g,;C}Ne(i)]?,:l

xH D) = x1=1 @D 4 gttention(hy, hg, hy),
where x"® indicates ligand atom coordinates in Ith layer, x},jENe(i) represents that jth
atom coordinates and j is the neighbors of atom i. The third module updates ligand atom
features and coordinates simultaneously with cross attention:

d; = dis_encoding(d,- j)

cxt = cat (hlh'(P)’ UI(C))

R W, xb W) = crossatte(cxt, dij,
where dis_encoding(-) is the encoding of distance matrix between ligand and protein, h»®),
x®) and x%=®) indicate the node features and coordinates of ligand and coordinates of

protein from the first and second module. For the distance encoding, we use multilayer

dyj, hin®), xbe@) xbe®)),

perceptron in the implementation. The crossatte(:) is computed as follows:

h‘lz,’({L) = Linear (hw®), cxt gy, = Linear(cxt),
sim = MLP (cat (hé‘,((l“) " CXtg, dij)) )

_ 1

™) = softmax(sim) [:Enheads] s cxty,,

1
#0) = mean (so ftmax(sim) [E nheads: D,
hEW) = pln@® 4 MLP(RED),

L(L) — ol Ly,(L) L)y . =1,
xV B = x4 [ — X MLP(x+@),

where nheads is the number of heads in cross attention mechanism, sim is the attention
map between ligand and protein. Noted that we ignore the operations of dimension
rearrangement in above formulas and simplify Einstein summation to dot product here.
Identical to previous work [35, 46, 47], we use ‘subspace-trick’ by limiting the center of mass
(CoM) of training samples to zero to ensure the model can achieve translation invariance in
the generative process. For the SE(3)-equivariance of Markov transition, the proof of the first
two modules is similar to [10] and we prove the equivariance for the cross attention module
in the supplementary.

Training and sampling details

InterDiff consists of 6 equivariant blocks and each block has three modules with transformer
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like structure. The diffusion steps are set to 1000 in training and sampling. We utilize a sigmoid
B scheduler for atom coordinates and a cosine S scheduler for atom types. The number of
heads is 16 for the first two modules and 32 for the cross attention module. The dimension is

128 for the atom features and interaction prompt v,(c). We use Adam[48] method to optimize

the model with an initial learning rate 0.001, betas=(0.95,0.999) and the batch size is set to 8.
A ‘plateau’ scheduler was applied to decay the learning rate with a factor 0.8 when the
validation performance is stuck for 4 evaluation steps. The minimum learning rate is 1e-6. The
loss weight is 100 for atom type loss and 1 for MSE loss. We train InterDiff on one NVIDIA
V100S GPU and the model converges within 32 hours. In addition, we empirically found that
the model could be further improved on validation set (randomly selected from training data
for validation) when fix the prompt embedding and fine tune after convergence.

In the sampling process, the interaction prompts for each sample are provided in keeping
with the molecule in test set. The center of mass is subtracted from the coordinates of protein
atoms and the number of atoms is sample according to the pocket size (Figure S3). The initial
coordinates of ligand atoms are sampled from a normal distribution and atom types are
sampled from a Gumbel distribution and then transformed into one-hot vectors.

Featurization of atoms and distance

Atoms in ligand and protein are represented by one-hot vector initially and then transformed
by a linear layer. We use a mixed representation for protein atoms and ligand atoms as
described in [10]. Specifically, the protein atom features encode the information about amino
acid types, atom types and whether the atom is backbone atoms. The ligand atom features
encode the atom types and aromatic information. The distance between atoms and bond
types are used to construct graph edges. Four types of bonds are considered by one-hot
vector, which indicates the connection between ligand atoms, protein atoms, ligand-protein
atoms and protein-ligand atoms. The edge feature are then encoded by gaussian radial basis
functions with learnable parameters of mean and variance, for the details please refer to [49].

Characterizations and parameters of interactions

In this paper, we consider four types of interactions, and the characterizations of interactions
are consistent with BINANAZ2. Cation-T1 interactions comprise of a charged functional group
and an aromatic ring. The coordinate of charged functional groups is projected to the plane
of the aromatic ring and cation-T1t interaction is accepted if the distance of two center points
between pairs is less than a threshold. Tt-11 interactions have two types of forms, pi-pi stacking
(face to face) and T-stacking (edge to face). To detect -1t interactions, distance of the
projection of center points on two aromatic rings and the angle of two vectors normal to
planes for each ring are calculated. If the distance and angle satisfy certain thresholds, a -
TT interaction is identified. Hydrogen bond is composed of a hydrogen bond donor and a
hydrogen bond acceptor. In BINANAZ, thiol, amine, and hydroxyl groups are allowed as
donors and nitrogen, sulfur and oxygen atoms can act as receptors. Likewise the distance
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between donor and receptor and the dihedral angle between hydrogen atoms, donor and
receptor must locate in a certain range. Halogen bonds also consist of a donor and a receptor.
The donors include O-X, N-X, S-X, and C-X, where X is F, Cl, Br, or |. The acceptors could be
nitrogen, sulfur and oxygen atoms. The threshold of distance for halogen bonds tends to be
longer than hydrogen bonds and the dihedral angle is the same. The details of threshold
values are listed in Table S2.

Data availability
The CrossDocked 2020 can be obtained at https://bits.csb.pitt.edu/files/crossdock2020/;
Structured models used in studies are deposited in Protein Data Band with accession codes

6oik, 3uon, 8azx and 8azv. The source code will be available on Github when publised.
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