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Abstract

The host immune system plays a significant role in managing and clearing pathogen
material during an infection, but this complex process presents numerous challenges
from a modeling perspective. There are many mathematical and statistical models for
these kinds of processes that take into account a wide range of events that happen
within the host. In this work, we present a Bayesian joint model of longitudinal and
time-to-event data of Leishmania infection that considers the interplay between key
drivers of the disease process: pathogen load, antibody level, and disease. The
longitudinal model also considers approximate inflammatory and regulatory immune
factors. In addition to measuring antibody levels produced by the immune system, we
adapt data from CD4+ and CD8+ T cell proliferation, and expression of interleukin 10,
interferon-gamma, and programmed cell death 1 as inflammatory or regulatory factors
mediating the disease process. The model is developed using data collected from a
cohort of dogs naturally exposed to Leishmania infantum. The cohort was chosen to
start with healthy infected animals, and this is the majority of the data. The model also
characterizes the relationship features of the longitudinal outcomes and time of death
due to progressive Leishmania infection. In addition to describing the mechanisms
causing disease progression and impacting the risk of death, we also present the model’s
ability to predict individual trajectories of Canine Leishmaniosis (CanL) progression.
The within-host model structure we present here provides a way forward to address
vital research questions regarding the understanding progression of complex chronic
diseases such as Visceral Leishmaniasis, a parasitic disease causing significant morbidity
worldwide.

Author Summary

The immune system is complex and its effectiveness against infection depends on a
variety of host and pathogen factors. Despite numerous studies of Leishmania parasite
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infections, researchers are still discovering new connections between immune system
components with hopes of better understanding how the immune system functions
during Leishmania infection.

The development of tools for understanding, preventing, and predicting Leishmania

infection outcomes is the main goal of this work. We present a computational model
made using field-collected data during canine Leishmania infections. The model
considers the interplay between three main components: parasite load, antibody level,
and disease severity. The model explores how key inflammatory and regulatory elements
of the immune response affect these main components, including T cell proliferation and
important cytokine expressions such as protective interferon-gamma (IFN-γ) or
inhibitory interleukin 10 (IL-10) [1]. Although the induction of CD4+ T helper 1 cell
responses is considered essential for immunity against Leishmania, B cells and the
production of Leishmania-specific antibodies have also been proposed to play an
important role in disease progression [2]. In a simpler model, Pabon-Rodriguez et. al.
[3] showed antibody levels are dependent on pathogen load and canine Leishmaniasis
(CanL) disease presentation. These high levels of Leishmania specific antibodies are
observed in subjects with visceral Leishmaniasis (VL) and other severe forms of
Leishmanial disease, and there is accumulating evidence that B cells and antibodies
correlate with pathology [4]. In Section 1, we introduce Canine Leishmaniasis and
discuss the importance of host-pathogen interaction with the immune response. Next, in
Section 2, we introduce the data collection study, the variables utilized in this model,
and define the clinical signs of Leishmania infection. In addition, this section explains
how the presented model was constructed based on different techniques. A summary of
model parameters, model implementation details, convergence diagnostics, and
sensitivity analysis are also included. In Section 3, we provide summary results of how
different model variables interact with one another and disease progression forecasts. In
Section 4, we discuss the results and provide further recommendations and
considerations.

1 Introduction

Infectious disease modeling has rapidly increased over the years and is utilized by
academics and the public health community to study disease progression, estimate
different epidemiological measures, and study the effects of treatments or interventions.
Most modeling approaches focus on the spread of disease by using population dynamic
models, where subjects are compartmentalized into several possible states such as being
susceptible, exposed, infected, or recovered from a particular disease. These models
often ignore randomness and variability and are instead deterministic. They typically
offer a single estimate of the relevant parameters without considering the level of
uncertainty. Given the appropriate data, our suggested statistical modeling technique is
extremely flexible and may be modified to answer a wide range of hypotheses. In
addition to between-subject variability found in healthy, immunized, or infected patient
data, we also include within-patient variability in modeling parameters of pathogen load,
inflammation, and regulation within the immune responses to pathogens over time.
These characteristics of statistical techniques offer defined advantages over
mathematical models. By combining multiple immunological parameters into a single
hierarchical model, a Bayesian statistical model enables the modeling of increasingly
complicated processes by using knowledge from previous studies and analyses. Each
sub-level is a conditional-probability model, which can be clear and simple even when
the whole model reflects a complex, multi-layered phenomenon, like the immune
response to a pathogen.

Here we build a Bayesian modeling strategy combining properties of longitudinal,
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time series, and survival models to investigate the effects of important specific immune
response variables on the ability to accurately predict disease progression and identify
responses associated with the risk of death due to CanL. Partitioning the entire
infection process into different components enables users to obtain intuitive estimations
of model quantities. The interpretations utilized in simpler statistical models still hold
true, especially when utilizing regression formulations. This enables us to estimate the
direct and indirect effects of covariates of interest and serves as a useful reference for
interface design when the models are put into reality. Such models will enable us to
evaluate the probability of an inflammatory response to immunization as well as the
overall impact of treatment on long-term pathogen control.

1.1 Leishmaniasis

Leishmaniasis is a vector-borne disease caused by infection with protozoan parasites of
the genus Leishmania. Dogs serve as the primary reservoir for human infection with L.

infantum and the immunopathology of CanL is very similar to human disease [5]. Both
human VL and CanL are chronic, progressive diseases that lead to a state of
immunosuppression and symptomatic cases that are fatal without treatment [5].
Available treatments are not ideal and no vaccine exists for humans. There is an
ongoing critical need for novel therapeutics for VL/CanL, however, the complicated
nature of the immune response to Leishmania parasites has impeded progress.

Dogs infected with L. infantum parasites can maintain a state with no clinical signs
for an extended period of time before progressing to a state with clinical manifestations
of CanL; some may never experience clinical disease. There has been much research
done to identify immune factors involved in maintaining subclinical infection with
interesting results. There is a need to incorporate these findings with statistical
modeling to establish a deeper and more comprehensive understanding of the
relationship between specific immune response components and pathogen control. A
Type 1 immune response with the secretion of IFN-γ, produced predominately by CD4+
T cells, is required for clinical protection to Leishmania parasites [6]. Solano-Gallego et.
al. [7] assayed cytokine production by cells from dogs infected with L. infantum and
found a significant negative relationship between IFN-γ production and parasitemia.
IFN-γ is a highly inflammatory cytokine that suppresses parasite replication by
activating the microbicidal activity of infected host cells to maintain a low pathogen
load. Regulatory immune factors that antagonize the effects of IFN-γ facilitate parasite
replication. The immunoregulatory cytokine IL-10 is a potent antagonist of IFN-γ
[8–10]. Additionally, although also a marker of activation, regulatory surface receptors
on T cells, such as programmed cell death 1 (PD-1), send inhibitory signals upon
ligation to curb T cell effector functions such as proliferation, cytokine production, and
cytotoxicity [11]. Esch et. al. [1] investigated T cell PD-1 expression in dogs with
progressive CanL and showed a role for this receptor in limiting the ability of T cells to
induce parasite control within infected host cells. While CD8+ T cells are thought to
play a relatively minor protective role in the immunopathogenesis of VL and CanL
compared to their CD4+ counterparts, these cells express IFN-γ and IL-10, to a lesser
extent, and are well characterized in their expression of PD-1 [12, 13]. Finally, B cells
produce antibodies during CanL, however, these antibodies are non-productive, and
mainly correlate with an enhanced disease rather than limiting parasite burden [14].
These complex inflammatory and regulatory arms of the immune response exist in a
delicate balance to eliminate pathogens while also limiting immune-mediated tissue
pathology associated with sustained exposure to inflammation. Understanding how
different immune response components interact to impact the overall disease state
would help identify candidates with immunotherapeutic potential.

Further complicating the situation, dogs with CanL experience a high rate of
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co-infections [15]. Pathogen composition can help model co-infection with different
organisms or different strains of the same pathogen [16]. It is known that multiple
pathways of the adaptive immune system coordinate to enact responses linked to
different infectious agents [17]. By including both CD4+ and CD8+ T cell variables
such as proliferation and expression of IFN-γ, IL-10, or PD-1 collected from a
prospective cohort of dogs with CanL, we are able to more closely model real-world
disease progression. In addition to these immune responses, the Leishmania-specific
antibody level, pathogen burden, and disease state classification were also measured and
considered within the model specification for identifying the risk of death due to
progressive disease. Models of CanL that include aspects of the immune response will
more accurately approximate natural disease evolution, which may offer an important
tool for researchers targeting this deadly disease.

2 Materials and Methods

2.1 Cohort Selection and Diagnostics

A cohort of client-owned dogs naturally exposed to L. infantum in the Midwestern
United States was selected based on a positive Leishmania diagnostic test or diagnostic
positive dam or full sibling. Diagnostic tests included Real-Time quantitative
Polymerase Chain Reaction (RT-qPCR) of Leishmania DNA from peripheral blood or
Canine Visceral Leishmaniasis ® Dual Path Platform (DPP) serological test [18, 19].
Inclusion criteria included negative 4Dx Plus SNAP test (IDEXX Reference Labs) result
indicating no recent exposure to tick-borne bacteria Borrelia burgdorferi, Ehrlichia spp.,
Anaplasma spp., or heartworm, and 2 or fewer outward clinical signs of CanL. Fifty dogs
were enrolled in the study and assessed at three-month intervals over the course of 18
months. The cohort was block-randomized into two age and sex-matched groups where
one group received a tick-preventative drug and the second group received a placebo.

2.2 Measurements of State Components

At each study collection visit, pathogen load was quantified as parasite equivalents per
mL of peripheral blood using RT-qPCR against a standard curve of blood derived from
an unexposed dog spiked with known quantities of L. infantum promastigotes. To keep
things simple, we focus here on a single infectious agent (L. infantum) and incorporate
tick-borne bacterial co-infection as an indicator variable. Antibody levels were measured
in dog serum via indirect enzyme-linked immunosorbent assay (ELISA). ELISA plates
were coated with soluble Leishmania antigen (SLA) prepared from freeze-thawed
stationary phase L. infantum promastigotes. The optical density (OD) ratio was
calculated as the OD of test wells divided by a cutoff of the average OD plus 3 standard
deviations of wells containing serum from unexposed negative control dogs. An OD
ratio greater than 1 indicates a positive serological result. Disease status was
determined using the LeishVet staging guidelines using complete blood count, serum
chemistry panel, and physical examination information assessed by board-certified
veterinarians [14].

Inflammatory and regulatory immune response variables were quantified from
peripheral blood mononuclear cells (PBMCs) isolated by Ficoll-Paque PLUS density
gradient. PBMCs were stimulated with 10 ug/mL total Leishmania antigen for seven
days and then processed for surface and intracellular staining with
fluorophore-conjugated antibodies. Cell events were read on an LSR II flow cytometer
and analyzed using FlowJo™ software [20]. Immune response readouts are presented as
the percentage of cells positive for IFN-γ, IL-10, or PD-1 expression among CD4+ or
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CD8+ lymphocytes expressing high levels of CD49d, a marker of antigen-experienced T
cells [21, 22]. Proliferation was measured using carboxyfluorescein succinimidyl ester
(CFSE) dilution assay and presented as percent CFSE low cells among CD4+ or CD8+
CD49dhi lymphocytes.

2.3 Model Specification: Longitudinal Submodel

In Figure 1, we show an abbreviated illustration of the lag-1 temporal dependence
structure of the Bayesian model, relating a given time index t to the following time
across the state components. We consider N = 50 dogs during the T = 7 time points.
Mechanically, the state components are organized into subject-specific a row-vector
M i,t of length 24, where i = 1, 2, . . . , N and t = 1, 2, . . . , T . For the corresponding
indexes i and t, the row-vector M i,t includes terms representing the interplay of disease
state with the rest of the model components: pathogen load, antibody level, three
inflammatory responses, and three regulatory responses. This specification allows us to
assess the effects of the eight key drivers based on the dog’s disease state. For clarity,
we organize the non-time-varying predictors into separate subject-specific row-vectors
Xi of length 6, which include an intercept, indicators for age groups, 4Dx SNAP test
result for tick-borne co-infection status, DPP result, and an indicator for tick prevention
treatment. These two subject-specific row vectors drive the expected values of model
components for each time point conditional on the previous time. This dependency
occurs as a result of updated functions denoted by f(·) as presented in Figure 1. In this
graphical display, we separate the univariate components of the model such as disease
state, antibody level, and pathogen load, from those given a multivariate structure.
Since there are known relationships between CD4 and CD8 T cells, all of the
measurements coming from them could be potentially correlated. Thus, the
inflammatory and regulatory responses are being modeled using a multivariate
structure. Other specifications could consider a global multivariate vector autoregressive
structure, but the chosen approach allows us to adapt the form of the model to known
processes and relationships even in this relatively small sample setting.

To assess the CanL disease progression of subjects over time, we took into account
LeishVet score, pathogen load, and level of anti-Leishmania antibodies as well as
inflammatory and regulatory immune response elements, incorporated jointly in a
longitudinal Bayesian submodel. To determine the clinical status of each dog based on
professional veterinarian assessment and laboratory tests, the LeishVet scoring system
[14] was used to classify the dogs into disease scores ranging from 0 to 4, with 0
indicating no signs of disease and 4 indicating severe disease. We then define less
granular categories [3], based on LeishVet scores, consisting of four categories: healthy,
mild, severe, and removed, as previously described by Pabon-Rodriguez et. al. [3]. In
this work, we go further and rewrite the disease state as a three-categorization outcome,
where the removed state is now transformed into a whole new time-to-death submodel
which is described in a subsequent section. The disease state variable is denoted by Di,t

for the ith dog at time t, indicating the category into which the dog’s state is classified.
This categorization was then encoded through separate indicator variables for each score
over time for each dog. Once an individual is infected with the parasite L. infantum,
replication may occur. Concurrently, the host immune mounts a response against the
parasite. To measure and quantify the pathogen status component of the overall
dynamic process, we define Pi,t to denote the pathogen load for the ith dog at time t.
Further, let Ai,t denote the anti-Leishmania antibody level for the same indexes. We
denote the inflammatory state of an immune response by Ii,t for i-th dog at time t.
Since we consider several inflammatory signaling or responses, we then divided Ii,t to
define I1i,t to represent the proportion of IFN-γ positive cells among CD4+ T cells. In
a similar way, I2i,t and I3i,t are defined to capture the proportion of proliferating CD4+
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Fig 1. Dynamic Process. Graphical display of how the disease state (D), antibody level (A), pathogen load (P ), and
inflammatory (I) and regulatory (R) responses are related to predicting the future value of each state for each dog i at time
t+ 1. Non-time-varying predictors are organized into a subject-specific row-vector Xi. Expected future values of model
components are determined based on corresponding functional forms f(·). For the case of inflammatory and regulatory
responses, the term IR corresponds to a vector of length 6 including the indicated immunologic responses.

and CD8+ T cells, respectively. The regulatory response Ri,t components focus on
CD4+ cells: IL-10 expression, and cell-surface PD-1 expression. As before, an example
implementation of the regulatory state of an immune response might be separated into
three components. First, R1i,t denotes the proportion of IL-10+ expressing CD4+ T
cells, while R2i,t and R3i,t represent proportion of PD-1+ expressing CD4+ and CD8+
T cells, respectively.

Next, we present the Longitudinal Autoregressive Moving Average (ARMA)
Bayesian model used for this work. Here, the AR component is used to model a linear
combination of past time series values (lag-p values) and the MA piece for the linear
combination of the past error (residuals) terms, in order to further improve predictions.
Since each time point is equally spaced with 3 elapsed months, we decided to use an
ARMA(p, q) component of orders p = 1 and q = 1 for the continuous responses, which
means that only the information and errors from the immediate previous time point are
being used in the model. For the case of disease state, only an AR component of order
p = 1 is considered. In addition, Figure 2 shows a graphical display of how the
longitudinal outcomes are structurally associated with the risk of death. A lagged
structure is used to look at the association between the longitudinal outcome at the
current time point or the last observed time with the risk of death at the following time
point. The risk of death due to progressive Leishmania infection is modeled through a
survival submodel via a proportional hazard specification with a Weibull baseline
hazard function, with the goal of examining the association between longitudinal and
survival processes.

September 10, 2023 6/35

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2023.09.11.557114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557114
http://creativecommons.org/licenses/by/4.0/


Time

H
a

za
rd

 F
u

n
ct

io
n

L
o

n
g

it
u

d
in

a
l O

u
tc

o
m

e

� � + �

Fig 2. Joint Dynamic Process. Graphical display of how the longitudinal outcomes are structurally associated with the
risk of death. A lagged structure is used to look at the association between the longitudinal outcome at the current time point
or the last observed time and the risk of death at the following time point. The diagram shows an example of a possible
univariate outcome and the hazard. The diagram serves as a visual representation, and the trajectories are not the actual
data values.

2.3.1 Pathogen Load

When measures of pathogen load are obtained and calculated from qPCR results, there
is always a possibility of readability or detection issues, particularly at lower levels of
these detection signals. One of the most common problems when assessing results
collected during a study is the presence of values below the limit of detection. For
example, in this study, pathogen load was measured as the number of parasites per mL
of blood (parasites/mL blood), and the detection of a small number of parasites was
identified to be an issue, which led laboratory staff and researchers to use a Limit of
Detection (LOD), which in this case was set to be 10 parasites per mL of blood
(LOD = 10) and use a value of zero for pathogen concentration when not detected. It is
important to determine the extent to which laboratory techniques can detect small
quantities. Therefore, we say that a value is considered to be undetectable when it has
crossed this particular limit of detection, which varies per instrumentation, and
assay/test performed. The values below or above a limit of detection are considered to
be censored values and are not missing at random in the usual sense because their
absence reflects their value.

Based on Hornung and Reed [23], several techniques can be used in practice to
model values below a limit of detection. For example, Hald [24] proposed a method of
using maximum likelihood procedures based on a censored normal distribution, where
the censoring point (limit of detection) is known and defined by the investigators.
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Another method is proposed by Nehls and Akland [25], which basically consists of
setting all values below the limit of detection to be equal to LOD/2. One last but very
simple approach is to set any value below the LOD to be equal to zero. In this work,
we model pathogen load for subject i at time t using a censoring mechanism and also
transform the data in order to have a normally shaped distribution and improve the
mixing of the model parameters. In this case, we scale pathogen load to bound the
values to the interval (0, 1) and modeled the logit of scaled pathogen load via a censored
normal distribution as defined in Equation 1, where σp is the standard deviation of the
distribution.

logit(Pi,t) ∼ Ncens

(

M i,t−1βp +Xiαp + θpw
p
i,t−1, σp

)

wp
i,t = logit(Pi,t)− (M i,t−1βp +Xiαp + θpw

p
i,t−1)

(1)

Here we have that M i,t−1βp corresponds to the inner products of longitudinal
outcomes and corresponding model coefficients (parameters), which are subject and
time specific. The second term of the mean component is Xiαp, which is also an inner
product including subject-specific covariates that are non-time dependent and their
model coefficients. In this model component, the expression for the mean of the logit of
scaled pathogen load, which is M i,t−1βp +Xiαp + θpw

p
i,t−1, represents part of an

ARMA specification, where the length of the parameters βp,αp, and θp are 24, 6, and 1,
respectively. Since the value Pi,t−1 is included in M i,t−1, then M i,t−1βp represents
part of the AR component while the term θpw

p
i,t−1 represents the MA component. To

represent the white noise (error) terms, we used the notation wp with corresponding
subject and time indexes and the notation θp to represent the parameter accompanying
the previous error terms, which are parts of the MA component. Finally, Xiαp

represents the constant term.
To characterize the censoring process, we treated all logit-scaled values below a

corresponding transformed LOD∗ as left-censored and set them to be NA (“missing”)
and kept the values when they were above LOD∗, as defined in Equation 2.

logit(Pi,t) =

{

NA, if logit(P ∗

i,t) ≤ LOD∗

logit(P ∗

i,t), if logit(P ∗

i,t) > LOD∗
(2)

2.3.2 Antibody Levels

The anti-Leishmania antibody levels for the ith dog at time t, denoted by Ai,t, were
measured by ELISA SLA OD ratio and then transformed using scaling and logit
transformation as we did with pathogen load. In Equation 3, we model antibody levels
with a logit-normal distribution with standard deviation σa.

logit(Ai,t) ∼ N
(

M i,t−1βa +Xiαa + θaw
a
i,t−1, σa

)

wa
i,t = logit(Ai,t)− (M i,t−1βa +Xiαa + θaw

a
i,t−1)

(3)

As before, the white noise (error) terms are denoted by wa with corresponding
subject and time indexes and the notation θa to represent the parameter accompanying
the previous error terms.

2.3.3 Disease Status

To assess and model disease progression, we used the LeishVet score proposed by
Solano-Gallego et al. and kept the same variable definition to qualitatively describe the
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disease state of the subjects [3]. For ith dog at time t, we define disease state Di,t as in
Equation 4.

Di,t =











1 (Healthy), if LeishV et = 0or 1

2 (Mild), if LeishV et = 2

3 (Severe), if LeishV et = 3or 4

(4)

For modeling purposes, we use a multinomial-logit link specification for a disease

state, as shown in Equation 5. Here, π
(k)
i,t defines the probability that the ith dog at

time t is classified with disease state k = 2, 3. For instance, the probability of a subject
being in the “healthy” category is then denoted within the multinomial specification by

π
(1)
i,t at given indexes and computed based on the other probabilities.

Di,t ∼ Multinomial
(

1; π
(1)
i,t , π

(2)
i,t , π

(3)
i,t

)

π
(k)
i,t =

exp
[

M i,t−1β
(k)
d +Xiαd

]

1 +
∑

g=2,3 exp
[

M i,t−1β
(g)
d +Xiαd

] ; k = 2, 3

π
(1)
i,t = 1− π

(2)
i,t − π

(3)
i,t

(5)

The multinomial-logit link specification for disease state presented in this current
work differs from the one proposed by Pabon-Rodriguez et al. [3]. In the current work,
we removed the last category and added a separate survival submodel to account for
those subjects that were censored or died due to severe CanL. For this, we used
post-follow-up time points after the study ended, corresponding to time points 8 and 9,
where additional deaths were reported due to the disease or unrelated reasons. In
addition, we use the “healthy” category as the reference level rather than the last
category since we want to compare advanced disease states to healthy subjects.

2.3.4 Inflammatory and Regulatory Responses

To further improve understanding of CanL progression based on immune responses,
longitudinal inflammatory and regulatory immune outcomes were taken into
consideration. Since there are known relationships between CD4 and CD8 T cells, all of
the measurements coming from them could be potentially correlated. To account for
this, we constructed a multivariate component in the model for these responses as
presented in Equation 6, where for each dog and time-point we have that
IRi,t = [I1i,t I2i,t I3i,t R1i,t R2i,t R3i,t]

′ of dimension 6×1. Since the raw values for
these components were already expressed in decimal forms in the interval (0, 1), we only
used a logit transformation and modeled them as specified.

logit(IRi,t) ∼ MVN6

(

Θ
(IR)
i,t , Σ

(IR)
i,t

)

Θ
(IR)
i,t =

(

I6 ⊗M i,t−1

)

βir +
(

I6 ⊗Xi

)

αir +
(

T ir

)

wir
i,t−1

Σ
(IR)
i,t = Σ(IR)

wir
i,t = logit(IRi,t)−Θ

(IR)
i,t

(6)

The parameters associated with the MA component in this multivariate structure are
wir, a vector of length 6 representing the white noise (error) terms, and T ir a 6× 6
matrix of parameters for previous error terms. For each pair of subject and time

indexes, we have that Θ
(IR)
i,t is the mean vector of length 6, and Σ

(IR)
i,t = Σ(IR) the

variance-covariance matrix of dimension 6× 6.
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2.4 Model Specification: Survival Submodel

To measure the impact of longitudinal outcomes on the risk of death due to progressive
Leishmaniosis, a survival submodel is needed to examine the association between the
two disease processes. Here, the survival time for individual i is modeled from a
proportional hazard specification with a Weibull baseline hazard function h0 as shown
in Equation 7.

hi(t|·) = h0(t)exp
(

Xiγ +
8

∑

j=1

ωjmi,j(t
∗)
)

, (7)

This submodel requires the definition of an association structure between the
longitudinal and survival data, an important component in joint modeling [26]. In this
case, the association structures, denoted by mi,j(t

∗), use a lagged effect property. They
are defined as the expected value of the longitudinal outcome j at the last observed
time t∗ of subject i. The association parameters ω’s quantify the associations between
each longitudinal outcome and the risk of death due to severe disease, and γ’s examine
the effect of the non-time-varying covariates. For instance, since pathogen load is the
first component we explained in Subsubsection 2.3.1, let us assume j = 1, then
mi,1(t

∗) = E[logit(Pi,t∗)], and w1 measures the association of pathogen load on the risk
of death. While the longitudinal submodel uses information on time points from TP1 to
TP7, the survival submodel on the other hand, uses information from TP1 to TP7 as
well as two post-follow-up time points after the study ended (TP8 and TP9) where
more deaths due to severe cases of diseases and unrelated to it were identified.

2.5 Computation and Model Diagnostics

To fit the presented Bayesian model, we used the NIMBLE [27] package in R [28, 29]
along with the parallel [28] package to obtain posterior samples of model parameters
and latent quantities using Markov Chain Monte Carlo (MCMC) techniques. A general
description of MCMC techniques is provided by Liu [30] and Carlin [31]. In this case,
due to the selection of priors and definition of the model components, default samplers
from NIMBLE seemed appropriate and hence were used via the configuration tool
provided in the package.

In Bayesian analysis, the prior distribution represents the knowledge or belief about
the parameters before the data is observed. The choice of the prior distribution and its
parameters can have a significant impact on the posterior distribution, which is the
updated knowledge or belief about the parameters after the data is observed.
Independent normal prior distributions with zero mean, N (0, σ2

β), were used for the
conditional and unconditional effects (β’s) in order to shrink effects towards zero, where
gamma prior distributions Γ(1, 1) was used for the variance of the effects (σ2

β), which is
a hyperparameter. All of the parameters associated with the non-time-varying
predictors (α’s), the moving-average parameters associated with pathogen load, and
antibody levels (θp, θa) use independent standard normal prior distributions N (0, 1).
This choice of prior indicates that there is no strong prior information or belief about
the magnitude or direction of the effect of the non-time-varying predictors or
moving-average parameters on the outcomes, and allows the data to drive the posterior
inference.

Elements of the matrix T ir uses independent normal prior distributions N (0, 1). A
gamma prior distribution Γ(1, 1) was also used for the variance terms of the model

components (σ2
a, σ

2
p). The prior for the covariance matrix Σ(IR) was chosen to be an

Inverse Wishart, W−1
(

(N − p− 1)S, N
)

, where N is the number of subjects, while p
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and S are the dimensions and the sample covariance of the Inflammatory-Regulatory
responses, respectively. The white noise (w’s) or residual terms of the continuous
responses are derived parameters within the model. In the case of the survival submodel,
the association parameters (ω’s) assumed standard normal prior distributions N (0, 1),
while the covariate effects (γ’s) use independent normal prior distributions with zero
means and each with different variance term with a gamma prior distribution Γ(1, 1).

The normal distribution is a commonly used prior distribution for model parameters
because it is mathematically convenient and flexible. While the normal distribution is a
popular choice for prior distributions, it is not always appropriate or necessary. Some
reasons that led us to use this distribution are:

(i) Conjugacy: The normal distribution is a conjugate prior for the parameters of
many commonly used likelihood functions. This means that the posterior
distribution will also be a normal distribution, making computation of the
posterior distribution relatively straightforward.

(ii) Flexibility: The normal distribution is a flexible distribution that can be
parameterized to allow for varying degrees of prior information or uncertainty.
Specifically, the mean and variance parameters can be used to represent the prior
mean and precision (or equivalently, the prior standard deviation) of the
parameter values.

(iii) Familiarity: The normal distribution is a well-known and widely used distribution,
making it familiar to many researchers and practitioners. This can make it easier
to communicate results and compare findings across studies.

Among the hyperparameters within the presented Bayesian model, the variance
parameter of the prior distribution for the conditional and unconditional effects as well
as for the association parameters controls the amount of information or uncertainty that
is incorporated into the prior distribution. A smaller variance indicates a more
informative prior, where the prior distribution is concentrated around a particular value,
indicating a stronger prior belief in the parameter value. A larger variance indicates a
less informative prior, where the prior distribution is more spread out, indicating weaker
prior belief in the parameter value. By varying the variance parameter of the prior
distribution, you can explore the impact of different levels of prior information or
uncertainty on the posterior distribution. A sensitivity analysis can help us determine
how sensitive the posterior distribution is to changes in the variance parameter and can
inform decisions about the appropriateness of the prior distribution and the level of
prior information or uncertainty to use in the analysis.

In the current work, we performed a sensitivity analysis, targeting the prior
information on the variance of the model parameters, particularly on the driver effects
and association parameters between the longitudinal and survival submodels. For
variance parameters (or standard deviations), we used gamma-distributed priors as
previously discussed. Thus, we varied the shape and scale parameters of the gamma
distribution to create different levels of prior information or uncertainty. Specifically, we
considered the following scenarios with different levels of prior variance:

(ii) Gamma distribution: The first scenario uses the Γ(1, 1) distribution mentioned
above. This results in a prior distribution that is weakly informative and places a
lot of mass near zero but allows for a wide range of possible values. This prior can
be useful when you have very little information about the variance and want to
avoid overfitting by not allowing the variance to become too large.

(i) Uniform distribution: This scenario considers a uniform distribution to model
prior uncertainty about the coefficient variance across the entire range of possible
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values. We used a U(0, 100) distribution, a relatively uninformative prior, which
assumes equal probability for any value of the variance between 0 and 100. We
assumed no prior knowledge or strong beliefs about the possible range of values
for the variance.

(iii) Inverse Gamma distribution: For the third scenario, we specified a Γ−1(2, 0.5),
which can be considered an informative prior for the variance parameters. This
would put more prior weight on larger values of the variance compared to the
previous scenarios but still allow for a wide range of possible values. The shape
parameter of 2 indicates some prior belief that the variance is not very small,
while the scale parameter of 0.5 indicates some prior belief that the variance is not
very large.

For the case of unobserved or missing longitudinal outcomes (latent quantities), we
used Bayesian imputation within the analysis to obtain the posterior distribution of
these quantities of interest. In Bayesian approaches for longitudinal data, we assume
that the missing data are missing at random (MAR), which means that the probability
of missingness depends only on observed data, and not on the missing values themselves
after conditioning on the observed data. On the other hand, in the survival submodel,
missing data can occur when an individual is lost to follow-up or drops out of the study
before the end of the follow-up period. The probability of being lost to follow-up or
dropping out may depend on observable characteristics, such as age or sex, or
unobservable characteristics, such as health status or treatment response. When missing
data occur due to unobservable characteristics, the data are said to be missing not at
random (MNAR), since the missingness mechanism is related to the unobserved
outcomes. While MNAR and MAR are mutually exclusive assumptions in general and
cannot occur at the same time, in this particular case of the joint modeling of
longitudinal and survival data, it is possible to have both. This is because the
missingness mechanism can be different for the longitudinal and survival data
components. For example, the missingness in the longitudinal data may depend on the
observed longitudinal data and some additional unobserved covariates, while the
missingness in the survival data may depend on the observed survival data and some
other unobserved covariates. In this case, the longitudinal data would be MAR with
respect to the observed data and the unobserved covariates, while the survival data
would be MNAR with respect to the unobserved covariates.

Posterior results are based on a set of three (3) MCMC chains of 20, 000 iterations
on each chain, after the burn-in period. We ran the Bayesian model on a laptop
computer with an AMD Ryzen 9 processor and 24 GB of memory in order to evaluate
the computing performance. We achieved a running time of around 13 hours for the
number of iterations per chain ran in parallel, which is shorter than the running time
obtained in Pabon-Rodriguez et al. [3]. While the running time was reduced in the
current work for a more complex model specification, we still believe there are numerous
opportunities for optimization.

To assess the convergence of the parameters, a Gelman-Rubin diagnostic was
computed using the coda package [32] in R. As a rule to assess convergence, any
potential scale reduction factor below 1.2 indicates that the corresponding parameter
has reached a level of convergence. In this case, all parameters achieved an estimated
factor below the chosen threshold of 1.2. We also computed the Monte Carlo Standard
Error (MCSE), which is a measure of the precision of the posterior distribution
obtained from an MCMC algorithm. The purpose of MCSE is to provide a measure of
the accuracy of the estimate of the posterior distribution, which is the distribution of
the parameters of interest after taking into account the data and prior information [33].
For the parameters in the model, we obtained MCSE values between 0.00033 and
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0.06583, with a mean of 0.00568 and a median of 0.00328.
The code implementing the sampler using the NIMBLE system, and the posterior

summary, diagnostics, sensitivity analysis, and code for the forecasting are provided in
the supplemental material in the GitHub repository.

2.6 Posterior Predictive Distribution and P-Values

The posterior sampling process (simulation) was used to obtain posterior predictive
trajectories. The idea is to use the posterior distribution of the model parameters and
the model specification provided throughout previous subsections. The posterior
predictive trajectories are obtained by following the steps:

(i) Sample a value from the posterior distributions of each model parameter,

(ii) Obtain the estimated model components (predicted outcomes) from the Bayesian
model specification from Equations 1 to 6,

(iii) Repeat steps (i) and (ii) for S = 1000 times (s = 1, 2, 3 . . . , S), where S represents
the number of simulations performed, and

(iv) Plot the resulting posterior predictive trajectories.

Posterior predictive p-values are a Bayesian statistical method used to assess the fit
of a model to observed data [31]. They measure the probability of observing data as
extreme or more extreme than the observed data, given the model and the prior
distribution. In the Bayesian framework, a posterior predictive p-value is an important
tool for model checking and selection [33]. It allows us to evaluate whether the model
adequately explains the observed data and whether the model is consistent with prior
knowledge and assumptions. This approach can help identify potential flaws in the
model and guide the choice of alternative models. To compute the posterior predictive
p-value, a test statistic is required to summarize the observed data [33]. This test
statistic is then compared to a distribution of the same test statistic generated from
samples from the posterior predictive distribution. In the current work, we used the
mean, standard deviation, and mean squared error (MSE) as test statistics.

To obtain the posterior predictive p-values, we followed these steps:

(i) Fit a Bayesian model to the data and obtain samples from the posterior
distribution using MCMC methods

(ii) Generate new data from the posterior predictive distribution using the sampled
parameters from the posterior distribution as described at the beginning of this
subsection

(iii) Compute the test statistic on the observed data and on each simulated dataset
from the posterior predictive distribution

(iv) Calculate the p-value as the proportion of simulated test statistics that are as
extreme or more extreme than the observed test statistic

3 Results

In this analysis, we utilized the LeishVet clinical scoring scale and the more adaptive
qualitative information, as shown in Equation 4. A similarly transformed criterion was
first presented in Pabon-Rodriguez et al. [3] with the purpose of distinguishing between
healthy dogs and those exhibiting mild or severe cases of the disease. This definition led
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Fig 3. Strength Associations During CanL Disease Progression. Graphical representation of associations between
model parameters based on the estimated posterior probabilities of the effect being either positive (represented by green lines)
or negative (represented by red lines). We consider any parameter with posterior probability in the interval [0.65, 0.85) to be
a moderate effect (represented by a dashed line), while any parameter with posterior probability in the interval [0.85, 1] will
be considered as showing a strong effect (represented by a solid line). TBC - Tick-borne pathogen co-infection. Figure created
using BioRender.com

us to define a multinomial distribution for disease status and make use of basic
definitions to infer and interpret our results. For instance, it is known that the sum of
the probabilities of the clinical score categories should be equal to 1. We used this
property to infer that if the probability of the first disease score category decreases by a
certain amount, the probability of disease progression is evident, because either one of
the remaining categories’ probabilities increases, indicating a more advanced case of the
disease.

A table summarizing model parameters is provided as supplemental material as well
as in the GitHub page provided in Section 2.5. This table presents a summary of the
posterior results for all parameters in the model, including posterior means, median,
standard deviation (SD), 95% credible intervals (Cr-I), and the posterior probabilities of
each parameter (x) being either positive or negative, which is P (x > 0) or P (x < 0).
This is the main criterion used for assessing the strength of evidence for corresponding
parameters. The threshold value for the posterior probability is set to be 0.65. To
determine whether the effect is moderate or strong, we use the following rule: We
consider any parameter with a posterior probability of being positive (or negative) in
the interval [0.65, 0.85) to be a moderate effect, while any parameter with a posterior
probability of being positive (or negative) in the interval [0.85, 1] will be considered as
showing a strong effect. Using this approach, we determine which parameters drive
disease progression among the cohort and its dependence on future occasions. Moderate
and strong associations between model parameters are summarized graphically in
Figure 3.

The trajectories of observed pathogen loads and antibody levels over each of the
seven time points, each separated by three months, are shown in Figure 4. In addition,
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Fig 4. Longitudinal Plots of Continuous Outcomes. The first plot in the upper row shows Leishmania pathogen load
over time, expressed as the parasites per mL of blood, and the inflammatory responses (in blue) are expressed in terms of
percentage of expression. In the second row, we have antibody levels expressed as the ratio to control cut-off (in color green),
and the regulatory responses (in purple) expressed as a percentage of expression. Each line represents a single dog’s trajectory
over the study period. Each time point corresponds to 3 elapsed months. For the inflammatory and regulatory responses, the
information on time point 1 is unobserved (latent). In addition, information in time point 4 for the responses labeled as R2
and R3 is also unobserved. Observed information from time points 3 to 5 is connected via dashed lines to retain subject
trajectory information.

we show the trajectories of individual immune variables, each measured as proportions
in decimal form.

Concerning pathogen load, we found its dependence on previous time point values
varied with disease stage as measured by the LeishVet score. For example, the
conditional interaction effect on lag-1 pathogen load (previous time period’s pathogen
load) for score 1 dogs had a posterior mean of 0.409 with 95% Cr-I [0.211, 0.597] and
posterior probability 0.999 that the true parameter is greater than zero. We also found
strong evidence that antibody levels in LeishVet score 1 dogs were associated with
higher pathogen load, as its posterior mean was 3.374 with 95% Cr-I [2.442, 4.399] and
posterior probability 1.00 of being positive. Petersen et al. [34] showed that when the
inflammatory immune response is active, the parasite burden is diminished. We found
that immune response activity in LeishVet score 2 dogs had the strongest probability of
affecting future pathogen load. Percent IFN-γ+ CD4+ T cells produced a negative
effect on the pathogen load in LeishVet score 2 dogs. The posterior probability of this
effect being negative is 0.897, where the posterior mean of the effect is −0.483
[−1.240, 0.287]. Also in LeishVet score 2 dogs, percent IL-10+ CD4+ T cells had a
strong negative effect on future pathogen load (posterior probability of negative effect of
0.970). Interestingly, considering non-time-varying predictors, we found evidence that
the group receiving tick preventative treatment had lower overall parasite loads
(posterior probability of being negative of 0.892), with posterior mean of −0.550 with
95% Cr-I [−1.432, 0.324].

We examined possible drivers of increased antibody levels and found the percent
proliferating CD4+ T cells had moderately positive estimated effects on antibody levels
in both LeishVet score 1 and score 2 dogs. The posterior probabilities for these two
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effects are 0.769 and 0.777 of being positive, respectively. Percent PD1+ CD4+ T cells
also had a positive effect on antibody levels within LeishVet score 3 dogs (posterior
probability of being positive of 0.739). Regarding non-time-varying predictors, we found
strong evidence that exposure to tick-borne co-infections (indicated by positive 4Dx
Plus SNAP test result) had a positive effect on anti-Leishmania antibody levels, with a
posterior probability of being positive of 0.987. This effect has a posterior mean of 0.157
with 95% Cr-I [0.017, 0.306]. Furthermore, higher antibody levels were related to
stronger DPP readings (posterior probability 0.999) and tick preventative treatment
(posterior probability of being positive 0.930).

Using this model approach, we were able to identify parameters associated with the
probabilities of dogs maintaining disease states and which factors drive increasing
disease severity. As expected, pathogen load had a strong positive effect on the
probability of LeishVet score 1 dogs progressing to score 2 (posterior probability 0.997),
as well as the probability of dogs progressing from LeishVet score 2 to score 3 (posterior
probability 0.926). We also found that percent proliferating CD4+ T cells showed a
strong negative effect on disease progression, reducing the probability that LeishVet
score 1 dogs progress to LeishVet score 2. The posterior probability for this effect was
0.958. This analysis also captured the interesting effect that tick vector-borne
co-infection status had a strong positive effect on disease progression with posterior
probabilities of 0.986 and 0.830 regarding LeishVet scores 2 and 3, respectively.

Several interesting signals were found when we analyzed immunological parameter
effects within the model. In LeishVet score 1 dogs, previous percent PD-1+ of CD4+ T
cells identified with a decreased effect on future percent IFN-γ+ CD4+ T cell values,
with a posterior probability of being negative of 0.782. This decreased effect was also
found in LeishVet score 3 dogs (posterior probability of being negative of 0.736).
Pathogen load was consistently, positively, associated with increased percent PD-1+ of
CD4+ T cells at LeishVet score 1, 2, and 3 (posterior probability 0.965, 0.967, and 0.778
respectively). Pathogen load reduced future percent IFN-γ+ CD4+ T cell values during
the lower disease score states (posterior probabilities 0.713 and 0.689). At LeishVet
score 3, however, pathogen load was associated with increased future percent IFN-γ+
CD4+ T cell values (posterior probability 0.736). Increasing parasite burden produced a
positive effect on future percent IL-10+ CD4+ T cell values among LeishVet score 1
dogs (posterior probability 0.826) and LeishVet score 3 dogs (posterior probability
0.856). We found that percent IL-10+ CD4+ T cell values were also associated with
decreased percent IFN-γ+ CD4+ T cell at lower disease scores (posterior probabilities
0.740 and 0.774), which may represent a feedback mechanism between the two cytokines.
In addition, across the disease score range, we found that percent IL-10+ CD4+ T cells
was associated with increasing percent PD-1+ CD4+ T cells, where the posterior
probabilities were 0.903, 0.724, and 0.757, for LeishVet score 1, 2, and 3, respectively.

Regarding non-time-varying predictors, we found tick preventative treatment had
strong positive effects (posterior probability of 0.910) on future percent IFN-γ+ CD4+
T cells and percent PD-1+ CD4+ T cells (posterior probability of 0.991). Tick-borne
pathogen co-infection status showed positive effects on percent IL-10+ and PD-1+
CD4+ T cells, with posterior probabilities of being positive of 0.806 and 0.786,
respectively.

The longitudinal submodel has allowed us to identify evidence of possible drivers of
CanL progression by disease classification, but we can also look at the association of the
longitudinal outcomes with the risk of death due to progressive CanL within the cohort.
This association is possible via the survival submodel, as illustrated in Figure 2 and
explained by Equation 7, where a proportional hazard specification is used with a
Weibull baseline hazard function, and a lagged-effect structure. We found a strong
association that lag (previous value of) pathogen load increases the hazard of death due
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to progressive CanL. The posterior mean of this association is 0.270 with 95% Cr-I
[−0.020, 0.600] with a posterior probability of a positive association of 0.965. This
association value translates into a hazard ratio (HR) of 1.310. Concerning immune
response parameters, we found that both lag percent IL-10+ CD4+ T cell values
(associated with regulatory responses), as well as percent proliferation among CD4+ T
cells and percent IFN-γ+ CD4+ T cells (associated with inflammatory responses), are
among the responses with a strong positive association with the risk of death due to
progressive CanL (posterior probabilities of 0.999, 0.770, and 0.933, respectively). These
association values translate into HRs equal to 8.791, 1.674, and 2.930, respectively
based on mean values, which indicates a surprisingly high risk of death associated with
these indicated immune responses, especially percent IL-10+ CD4+ T cell values. In
terms of non-time-varying predictors, we found that younger subjects showed a
moderate positive association with the risk of death due to progressive CanL (posterior
probability of 0.663).

3.1 Posterior Predictive Trajectories

We examined the extent to which the presented Bayesian model could forecast
trajectories of CanL progression. We considered four dogs within the cohort showing
outcome patterns of decreasing, stable, or growing clinical status. One disadvantage of
longitudinal forecasts for dynamic processes generally is that predictions further forward
in time increase model uncertainty. Accordingly, we assumed only data from the first
two time points were available and used a six month forecast window, which is a
clinically relevant time frame for this disease. All of the posterior predicted trajectories
are presented in Appendix A. In addition, we only provide the 95% credible bounds of
the posterior predictive trajectories. Here, we noticed that the posterior predictive
intervals are wider when looking at time point 4 (six month forecast window) compared
to the narrower intervals obtained when predicting responses for time point 3 (three
month forecast window).

As discussed in Subsubsection 2.3.1, pathogen load was defined based on a censoring
approach, therefore the model should be able to detect a trajectory of censored values.
Figure 5 shows the posterior predictive trajectories of the pathogen load of the four
example subjects. Subjects 2, 3, and 4 had censored values, and the model generated a
median predicted trajectory similar to the observed trajectory at time point 3, but a
slight increase is shown in pathogen load from time point 3 to 4, which was
accompanied by a more notable change in antibody production as shown in 6. This
caused a change in the probabilities of disease state classification as shown in Figure 7.
At the second time point, subject 2 is in LeishVet score 1 with probability 1, but the
probability of remaining score 1 decreased gradually, while the probability of
progressing to LeishVet score 2 or 3 increased. The increase in pathogen load and
antibody levels in this subject caused deterioration in the probability of improving
clinical status, as seen in the graph, when the probability of LeishVet score 1 decreases
from 1 at time point 2 to 0.70 by time point 4, while the marginal probability of
LeishVet score 2 for this subject is at approximately 0.20 by time point 4. In the case of
subject 3, which is in LeishVet score 2 with probability 1 at time point 2, its marginal
probability of LeishVet score 2 is reduced to around 0.45, while the marginal probability
of clinical improvement to LeishVet score 1 disease is around 0.41 at time point 4.
Subsequent graphs in Figures 8 to 13 show posterior predictive trajectories of
inflammatory and regulatory immune components. Among these, the model performed
well in predicting the proportion of IFN-γ+ and IL-10+ CD4+ T cells, which are of
great importance for immunopathogenesis during CanL.

The posterior predictive p-values for pathogen load and antibody levels readouts are
0.242 and 0.486, respectively. For the case of the inflammatory and regulatory responses
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of the immune system, we obtained the posterior p-values: 0.348, 0.868, 0.563, 0.801,
0.494, and 0.847. These posterior p-values correspond, respectively, to the readouts as
presented in Figure 4. While there is no universal rule of thumb for posterior p-values,
on many occasions, a common approach considers a posterior p-value close to 0.50 to
indicate that the observed data is perfectly consistent with the model and prior
assumptions, but other research works have also used the rule of a p-value between 0.15
and 0.85 to be acceptable. It is worth noting that the interpretation of a posterior
p-value can also depend on the sample size, as larger samples may lead to smaller
posterior p-values even if the data are relatively consistent with the model and prior
assumptions. In this work, we handled a small sample setting, which could lead to
larger posterior p-values. Based on the estimated posterior p-values, we can say that
our observed data are relatively consistent with the model and prior assumptions.

4 Discussion

Clinical management of CanL is difficult due to its intricacy and a wide array of clinical
signs, which have a high degree of overlap with other ailments and common infections.
The LeishVet group proposed a method for classifying clinical CanL [14] based on a
combination of clinical signs, clinicopathological laboratory abnormalities, and
serological status. The staging system can aid clinicians in identifying proper therapy,
anticipating prognosis, and executing follow-up actions. We hypothesize modeling
disease status as dependent on multiple parameters including pathogen load, antibody
level, and inflammatory and regulatory immune factors will improve model predictions
and expand model applications. Through this novel statistical analysis, we were able to
characterize interactions between specific pathogen and host immune response
parameters and assess possible drivers of CanL disease progression.

In the Bayesian model presented here, we examined pathogen load as a longitudinal
outcome possibly affected by immune parameters and found several interesting
relationships, summarized in Figure 3. The model suggests induction of IFN-γ+ CD4+
T cells during the lower scores of the disease is associated with a decrease in pathogen
load. This is consistent with the known function of IFN-γ+ to activate macrophage
microbicidal responses. Interestingly, percent IL-10+ CD4+ T cells were also associated
with decreased pathogen load in lower disease score stages, this could indicate that the
initial CD4+ T cell response is comprised of cells co-producing IFN-γ+ and IL-10,
where the relative efficacy of IFN-γ+ to IL-10 is sufficient to exert inhibition of parasite
growth. CD4+ T cells with this Type 1 regulatory cell phenotype have been observed in
experimental visceral leishmaniasis [35]. However, IL-10+ CD4+ T cells may indirectly
promote increased parasite burdens through a positive association with increasing
PD-1+ CD4+ T cells observed at LeishVet scores 1, 2, and 3. Percent PD-1+ CD4+ T
cells were associated with increased pathogen load throughout the course of CanL
disease scores, which may indicate an important role for PD-1 in influencing parasite
control. In agreement with our findings, it has been shown that blocking the interaction
of PD-1 with it’s ligand, PD-L1, among canine peripheral mononuclear cells or
splenocytes, enhances leishmanicidal activity [1, 36]. PD-1 immunotherapy has been
proposed as a potential treatment strategy for treating dogs with CanL [37], the results
of the model presented here support PD-1 as a therapeutic target for reducing parasite
load in dogs with CanL.

PD-1 is upregulated on T cells following normal activation by cognate
antigen-presenting cells in order to temper T cell responses. Therefore, PD-1 can serve
as a marker of T cell activation. However, sustained high levels of PD-1 expression are
associated with significantly decreased T cell effector functions [38]. This model allows
us to probe how specific immune parameters of interest interact with other immune
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response variables, in order gain insight into how the parameter contributes to the
overall immune environment of the host. Modeling results show increasing parasite
burden is associated with increasing percent IL-10+ CD4+ T cells. In turn, higher
frequencies of IL-10+ CD4+ T cells were led to higher levels of PD-1+ CD4+ T cells,
and PD-1+ CD4+ T cells were associated with higher parasite burdens. This suggests a
positive feedback loop between parasite burden, IL-10, and PD-1 pathways. Further,
enhanced percent PD-1+ CD4+ T cells (at LeishVet score 1 and 3) and IL-10+ CD4+
T cells (at LeishVet score 1 and 2) were both associated with reduced proportions of
protective IFN-γ+ CD4+ T cells.

Consistently, this model generated evidence suggesting tick-borne pathogen
co-infections exacerbate CanL. Tick-borne pathogen co-infection status was strongly
associated with an increased probability of disease progression from LeishVet score 1 to
score 2, as well as from LeishVet score 2 to score 3. We observed that co-infected dogs
were associated with increased anti-Leishmania antibody levels, percent IL-10+ CD4+
T cells, and percent PD-1+ CD4+ T cells. This enhanced regulatory CD4 T cell
phenotype associated with co-infected dogs may negatively affect cellular immunity and
host cell leishmanicidal activity. In agreement, receiving tick preventative treatment was
strongly negatively associated with parasite load. The model results suggest tick
preventative treatment leads to increased future percent IFN-γ+ CD4+ T cells which
are known to be protective but, counter-intuitively, also led to increased future percent
PD-1+ CD4+ T cells.

Canine CD8+ T cells are capable of influencing Leishmania-infected macrophage
microbicidal activity [39], therefore we also included CD8+ T cell parameters in this
model to see if any associations were revealed. We observed a strong negative effect of
tick preventative treatment on future CD8+ T cell proliferation (posterior probability
0.928). This could imply CD8+ T cells are involved in tick-borne co-infections in dogs
with underlying CanL. Another strong association we observed was between increased
anti-Leishmania antibody levels and increased percent PD1+ CD8+ T cells throughout
CanL progression (posterior probability 0.928, 0.944, and 0.717 at LeishVet scores 1, 2,
and 3 respectively). High amounts of circulating antibodies during CanL can lead to
kidney dysfunction and are usually observed during advanced clinical disease. Previous
studies of human and experimental VL show CD8+ T cells display a high level of
inhibitory receptors including PD-1 and a dysfunctional, exhausted phenotype during
symptomatic disease [12, 40, 41].

The model identified outcomes associated with the risk of death due to progressive
CanL disease. Unsurprisingly, pathogen load was associated with a higher risk of death.
In terms of immune responses, we also found that increased frequencies of IL-10+ CD4+
T cells and IFN-γ+ CD4+ T cells both showed a strong association of increased risk of
death due to progressive CanL. This agrees with our findings that both regulatory and
inflammatory CD4+ T cell functions are activated in dogs battling CanL. From the
hazard ratios obtained for each association, we saw that increased percent IL-10+ CD4+
T cells had a much stronger effect on the likelihood of death, with an HR of ∼8.8x,
compared to percent IFN-γ+ CD4+ T cells (HR ∼2.9x). This indicates that although
both cytokines are increased in dogs with severe disease, the relative contribution of
IL-10 is more significant when it comes to mortality outcome.

A benefit of this model framework is that it allows researchers to insert different
immune parameters and measure their relationship to disease outcome and pathogen
load to identify candidates for experimental testing. Furthermore, the model allows
measuring the association of these longitudinal readouts with the risk of death due to
severe cases of CanL. This model incorporates the percent of T cells expressing IFN-γ,
IL-10, or PD-1 but does not capture the magnitude of that expression. Future model
iterations could include additional continuous measurements such as concentration of
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secreted IFN-γ or IL-10 measured by ELISA, or cytokine and PD-1 mean fluorescence
intensities, which may further illuminate if relative levels of these inflammatory and
regulatory proteins alter the probability outcomes observed by the model. Additionally,
this model does not take into account other immune or stromal cell types expressing
IFN-γ, IL-10, PD-1, or their respective receptors. Therefore, we can only draw
conclusions about the role of these proteins with respect to their expression by the cell
types included in this model. Finally, there are numerous other immune cell types,
cytokines, and receptors involved in the pathogenesis of CanL that may interact directly
or indirectly with the immune parameters included in this model, highlighting the
complexity of this disease and the need for more inclusive datasets to improve model
utility to predict immune responses and clinical outcomes. In addition, opportunities to
explore causal direct and indirect processes through counterfactual formulations abound
with this approach and may help to better understand the processes of disease
progression in future studies.

Our main purpose was to better understand CanL disease progression over time, its
relationship to different immunological responses, and its associations with the risk of
death. Despite a large number of research studies on the immune response occurring
during Leishmania infection, the entirety of the underlying mechanisms and their
relationship to disease progression remain to be elucidated. The novel contribution of
this model comes from the inclusion of immune responses as outcomes and possible
drivers of disease progression, as well as the incorporation of different time-series and
longitudinal model techniques into the within-host joint modeling framework of
longitudinal and time-to-event data. We found important results regarding the effects of
inflammatory and regulatory responses in disease progression. We also demonstrated a
Bayesian model including immune parameters improved the predictive trajectories of
pathogen load and disease classification, producing more reasonable and interpretable
results compared to a model that does not take immune parameters into account [3].
This work can provide insight and new immune interactions associated with
Leishmaniasis disease progression.

In this study, our primary emphasis was on utilizing posterior predictive trajectories
as a principal tool to assess the adequacy of the Bayesian statistical model. While both
posterior predictive plots and leave-one-out cross-validation (LOOCV) are conventional
techniques in Bayesian data analysis for evaluating model fit, our decision to prioritize
posterior predictive plots arises from the anticipated computational demands associated
with implementing LOOCV within our modeling framework. Therefore, our future
efforts are focused on optimizing the computational efficiency of our framework. Once
we have successfully streamlined the computational processes and improved running
times, we will turn our attention to incorporating LOOCV into our evaluation strategy.
This staged approach ensures that we effectively address computational challenges
before integrating LOOCV, maintaining a clear trajectory toward a comprehensive
assessment of our proposed modeling methodology.

Based on the sensitivity analysis performed on the presented Bayesian model, it was
found that the posterior density plots of the model parameters associated with pathogen
load, antibody levels, and disease status were relatively similar across the different prior
specifications considered. This suggests that the choice of prior had little impact on the
resulting posterior inference for this model parameters. These results provide evidence of
the robustness of the Bayesian inference to different prior specifications and support the
validity of the chosen prior distributions, which also serves as evidence for the Bayesian
model presented in our previous work [3]. The posterior density plots for the association
parameters between the longitudinal and survival models were also relatively similar
across the different prior specifications. However, we noticed that the selected prior
specifications for parameters associated with the inflammatory and regulatory responses
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of the immune system were affected by this choice, suggesting further investigation. It is
important to note that the sensitivity analysis was limited to a small number of prior
specifications, and additional analyses may be needed to fully explore the impact of
different prior choices on the model inference. Overall, these findings provide partial
support for the reliability of the Bayesian analysis presented in the current work.

The generality of the framework employed here enables it to be used to model and
predict disease outcomes of other infectious diseases as well as identify important
signaling of increased or decreased risk of death due to severe cases of the disease. In
applications where disease transmission between individuals is considered, it would be
straightforward to adapt our model to define a linked model of the longitudinal
within-host model of disease progression with a transmission model (between-host) of
infectious diseases. A full understanding of infectious diseases requires two distinct
components: an understanding of transmission dynamics between hosts and an
adequate model of within-host disease progression processes. These processes may be
influenced by each other, particularly if time and other factors (internal and external)
are considered. Nevertheless, simultaneously modeling at these disparate scales is
practically and computationally challenging. We believe that, in future studies, this type
of linked model approach may provide a greater opportunity for medical practitioners
and researchers to work together, and contribute to the understanding of the drivers,
treatments, and control of infectious diseases. Fortunately, the use of Bayesian
techniques enables this flexibility in model specification, albeit at a potentially greater
computational cost. This remains, however, a promising avenue for future research.
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5. Miró G, López-Vélez R. Clinical management of canine leishmaniosis versus
human leishmaniasis due to Leishmania infantum: Putting “One Health”
principles into practice. Veterinary parasitology. 2018;254:151–159.

6. Kaye P, Scott P. Leishmaniasis: complexity at the host–pathogen interface.
Nature reviews microbiology. 2011;9(8):604–615.

7. Solano-Gallego L, Montserrat-Sangrà S, Ordeix L, Mart́ınez-Orellana P.
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A Posterior Predictive Trajectories of State
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Fig 5. Posterior Predictive Trajectories of Pathogen Load.
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Fig 6. Posterior Predictive Trajectories of Antibody Levels.
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Fig 7. Posterior Marginal Probabilities of Disease Status.
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Fig 8. Posterior Predictive Trajectories of Proportion of IFN-γ+ of CD4+.
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Fig 9. Posterior Predictive Trajectories of Proportion of Proliferation of CD4+.
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Fig 10. Posterior Predictive Trajectories of Proportion of Proliferation of CD8+.
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Fig 11. Posterior Predictive Trajectories of Proportion of IL-10+ of CD4+.
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Fig 12. Posterior Predictive Trajectories of Proportion of PD-1+ of CD4+.
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Fig 13. Posterior Predictive Trajectories of of Proportion of PD-1+ of CD8+.
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