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Abstract 

Mathys et al., conducted the first single-nucleus RNA-Seq study (snRNA-Seq) of 

Alzheimer’s disease (AD)1. The authors profiled the transcriptomes of approximately 80,000 

cells from the prefrontal cortex, collected from 48 individuals – 24 of which presented with 

varying degrees of AD pathology. With bulk RNA-Seq, changes in gene expression across 

cell types can be lost, potentially masking the differentially expressed genes (DEGs) across 

different cell types. Through the use of single-cell techniques, the authors benefitted from 

increased resolution with the potential to uncover cell type-specific DEGs in AD for the first 

time2. However, there were limitations in both their data processing and quality control and 

their differential expression analysis. Here, we correct these issues and use best-practice 

approaches to snRNA-Seq differential expression, resulting 549 times fewer differentially 

expressed genes at a false discovery rate (FDR) of 0.05. 
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Main 

Mathys et al.’s1 data processing and quality control strategy for their single-nucleus RNA-

Seq (snRNA-Seq) data was state-of-the-art at this time. Furthermore, the authors took extra 

measures in an attempt to ensure the reliability of their results. Our re-analysis is not a 

criticism of this but endeavours to raise awareness and provide recommendations for rigorous 

analysis of single-cell and single-nucleus RNA-Seq data (sc/snRNA-Seq) for future studies. 

Most importantly, we aim to ensure that the Alzheimer’s disease research field does not focus 

on spuriously identified genes. To this end, our questions of Mathys et al.,1 focus around their 

data processing and their differential expression analysis. Firstly, in relation to their 

processing approach, the authors discussed the high percentages of mitochondrial reads and 

low number of reads per cell present in their data. This is indicative of low cell quality3 

however, we believe the authors’ quality control (QC) approach may not capture all of these 

low quality cells. Moreover, the authors did not integrate the cells from different individuals 

to account for batch effects. As the field has matured since the author’s work was published, 

dataset integration has become a common step in single-cell RNA-Seq protocols and is 

recommended to remove confounding sources of variation4,5,6. To gain advantage of these 

recent approaches, we used scFlow7 to reprocess the author’s data. This pipeline included the 

removal of empty droplets, nuclei with low read counts and doublets followed by embedding 

and integration of cells from separate samples and cell typing. ScFlow combines best practice 

approaches for processing sc/snRNA-Seq datasets, see Supplementary Note 1 for a detailed 

explanation of these steps. Re-processing resulted in 50,831 cells passing QC, approximately 

20,000 less the authors’ post-processing set with differing cell type proportions 

(Supplementary Fig. 1).  

In regards to data quality, it is worth noting that over 99% of nuclei had less than 200 genes 

expressed (Supplementary Table 3). While this QC step was not unique to our reprocessing, 
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the authors made the same exclusion in their analysis1, it highlights the relatively low quality 

of the data which may be attributable to the early stage of snRNA-Seq technology of the 

time. For example, Brase et al.’s recent study of snRNA-Seq of autosomal dominant AD8 

used a more stringent cut-off for the minimum number of expressed genes and still kept 27% 

(122 times more) of the assayed cells after all QC steps. Moreover, as mentioned, the authors 

discussed the high percentages of mitochondrial reads in their data. The differences in 

approaches to filtering based on the proportion mitochondrial reads accounts for the notable 

discrepancy in the number of nuclei after QC between our approach and the authors. Our 

approach used a 10% cut-off for the proportion of mitochondrial reads in a nuclei, as set out 

in Amezquita et al.’s best-practice guidelines5, which is less stringent than Seurat’s 

guidelines (5%)9 or that from Heumos et al. (8% from a median absolute deviations based 

cut-off selection)4. Conversely, the authors filtered out high mitochondrial read nuclei based 

on clusters from their t-SNE projection of the data1. Even at our lenient cut-off, over 16,000 

nuclei that were removed in our QC pipeline were kept by the author’s (Supplementary Fig. 

2), explaining the discrepancy in the number of nuclei after QC. Based on Supplementary 

Fig. 2, it is clear the author’s approach was ineffective at removing nuclei with high 

proportions of mitochondrial reads which is indicative of cell death3,4. We have made the data 

from our alternative processing approach publicly available (through Synapse: 

https://doi.org/10.7303/syn51758062.1) so researchers can utilise this resource free of low 

quality nuclei. 

Our second question of Mathys et al.,1 is their differential expression approach. The authors 

conducted a differential expression analysis between the controls and the patients with AD 

pathology, concentrating on six neuronal and glial cell types; excitatory neurons, inhibitory 

neurons, astrocytes, microglia, oligodendrocytes and oligodendrocyte precursor cells, derived 

from the Allen Brain Atlas10. They performed downstream analysis on their identified DEGs 
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and investigated some of the most compelling genes in more detail. Therefore, all findings 

put forward by their paper were based upon the validity of their differential expression 

approach. However, for this approach, the authors conducted a two-part, cell and patient level 

analysis. The cell-level analysis took each cell as an independent replicate and the results of 

which were compared for consistency in directionality and rank of their DEGs against their 

patient level analysis, a Poisson mixed model. The authors identified 1,031 DEGs using this 

combinatorial approach – DEGs requiring an FDR <0.01 in the cell-level and an FDR<0.05 

in the patient level analysis. It is important to note that this cell-level differential expression 

approach, also known as pseudoreplication, over-estimates the confidence in DEGs due to the 

statistical dependence between cells from the same patient not being considered11,12,13,14. 

When we inspect all DEGs identified at an FDR of 0.05 from the authors’ cell-level analysis, 

this number increases to 14,274. Pseudobulk differential expression (DE) analysis has 

recently been proven to give optimal performance compared to both mixed models and 

pseudoreplication approaches11,12,15,16. It aggregates counts to individuals thus accounting for 

the dependence between an individual’s cells.  
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Fig 1: a, b highlight the log2 fold change and -log10 false discovery rate (FDR) of the 

differentially expressed genes from the author’s original work (Mathys et al.) and our 

reanalysis (Our analysis). In b, we have marked an FDR of 5x10-7, dashed grey line, to 

highlight how small the p-values from Mathys et al.’s analysis are. c, d, e, f, g show the 

Pearson correlation between the cell counts after QC and the number of DEGs identified. 

For f, g analysis, the samples have been randomly mixed between case and control patients. 

The different cell types are astrocytes (Astro), excitatory neurons (Exc), inhibitory neurons 
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(Inh), microglia (Micro), oligodendrocytes (Oligo) and oligodendrocyte precursor cells 

(OPC). 

Here, to compare the effect of the different DE approaches in isolation, we apply a 

pseudobulk DE approach, sum aggregation and edgeR LRT17, to the authors original 

processed data. We found 26 unique DEGs when considering the six cell types used by the 

authors (Supplementary Table 2, Supplementary Fig. 3). This was 549 times fewer DEGs 

than that reported originally at an FDR of 0.05. When we compare these DEGs, we can see 

that the absolute log2 fold change (LFC) of our DEGs is 15 times larger than the authors’; 

median LFC of 2.34 and 0.16, despite the authors’ DEGs having an FDR score 8,000 times 

smaller; median FDR of 2.89x10-7 and 0.002 (Fig. 1a-b). Although we examined a high 

correlation in the genes’ fold change values across our pseudobulk analysis and the author’s 

pseudoreplication analysis (Pearson R of 0.87 for an adjusted p-value of 0.05, Supplementary 

Table 3), the p-values and resulting DEGs vary considerably. The correspondence in fold 

change values is expected given the approaches are applied to the same dataset whereas the 

probabilities, which pertain to the likelihood that a gene’s expressional changes is related to 

the case/control differences in AD, importantly do not align. We can show that this stark 

contrast is just an artefact of the authors taking cells as independent replicates and thus 

artificially inflating confidence by considering the Pearson correlation between the number of 

DEGs found and the cell counts (Fig. 1c-e). There is a near perfect, positive correlation 

between DEG and cell counts for the authors’ pseudoreplication analysis (Fig. 1c) and for the 

1,031 genes from the authors’ combinatorial approach (Fig. 1d) which is not present in our 

pseudobulk re-analysis (Fig. 1e).  

A further point which questions the authors’ DE approach is that they identified the vast 

majority of DEGs in the more abundant, neuronal cell types1. However, an increase in the 

number of cells is not the same as an increase in sample size since these cells are not 
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independent from one another - they come from the same sample. Therefore, an increase in 

the number of cells should not necessarily result in an increase in the number of DEGs 

whereas an increase in the number of samples would. This point is the major issue with 

pseudoreplication approaches which over-estimate confidence when performing differential 

expression due to the statistical dependence between cells from the same patient not being 

considered12,14. In our opinion, it makes more sense to identify the majority of large effect 

size DEGs in microglia which recent work has established is the primary cell type by which 

the genetic risk for Alzheimer’s disease acts18,19. This is what we found with our pseudobulk 

DE approach - 96% of all DEGs were in microglia (Supplementary Table 2) whereas only 

3% of the authors’ DEGs were in microglia. 

Although it has been proven that pseudoreplication approaches result in false positives by 

artificially inflating the confidence from non-independent samples, we wanted to investigate 

the effect of the approach on the authors’ dataset. We ran the same cell-level analysis 

approach – a Wilcoxon rank-sum test and FDR multiple-testing correction, 100 times whilst 

randomly permuting the patient identifiers (Fig. 1f). We would expect to find minimal DEGs 

with this approach given the random mixing of case and control patients. However, this 

pseudoreplication approach consistently found high numbers of DEGs and we observe the 

same correlation between the number of cells and number of DEGs as with the authors 

results. We did not observe the same pattern when running the same analysis with 

pseudobulk differential expression (Fig. 1g). As a result, we conclude that integrating this 

pseudoreplication approach with a mixed model like the authors proposed just artificially 

inflates the test confidence for a random sample of the genes resulting in more false 

discoveries in cell types with bigger counts. 

Up to this point, to compare the effect of the DE approaches in isolation, we analysed the 

same processed data from the authors as opposed to our reprocessed data. We also performed 
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pseudobulk DE on our reprocessed data and found 16 unique DEGs (Supplementary Table 4). 

It is worth noting that the fold change correlation between our two DE analyses (reprocessed 

data vs authors processed data) on the identified DEGs is only moderate (Pearson R of 0.57) 

and is lower than that of the correlation between pseudoreplication and pseudobulk on the 

same dataset (Supplementary Table 3). This highlights the effect that the low quality, high 

mitochondrial read cells have on DE analysis. 
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Conclusion 

In conclusion, the authors’ analysis has been highly influential in the field with numerous 

studies undertaken based on their results, something we show has uncertain foundations. 

However, we would like to highlight that the use of pseudoreplication in neuroscience 

research is not isolated to the author’s work, others have used this approach20,21,22 and their 

results should be similarly scrutinised. Here, we provide our processed count matrix with 

metadata and also, the DEGs identified using an independently validated, differential 

expression approach so that other researchers can use this rich dataset free from spurious 

nuclei or DEGs. While the number of DEGs found here are significantly lower, much greater 

confidence can be had that these are AD relevant genes. The low number of DEGs found may 

also cause concern given the sample size and cost of collection and sequencing of such 

datasets. However, the increasing number of snRNA-Seq studies being conducted for AD, 

creates the opportunity to conduct differential meta-analyses to increase power. Further work 

is required in the field to develop methods to conduct such analysis, integrating studies and 

accounting for their the heterogeneity, similar to that which has been done for bulk RNA-

Seq23. Some such approaches have already been made in COVID-19 research which could be 

leveraged for neurodegenerative disease24. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2023. ; https://doi.org/10.1101/2023.04.01.535040doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.01.535040
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data availability 

The differentially expressed genes and processed count matrix from the original study are 

available with their manuscript. The count matrix and metadata from our reprocessing 

approach are available via the AD Knowledge Portal (https://adknowledgeportal.org). The 

AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the 

Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other 

National Institute on Aging (NIA)-supported programs to enable open-science practices and 

accelerate translational learning. The data, analyses and tools are shared early in the research 

cycle without a publication embargo on secondary use. Data is available for general research 

use according to the following requirements for data access and data attribution 

(https://adknowledgeportal.org/DataAccess/Instructions). For access to content described in 

this manuscript see: https://doi.org/10.7303/syn51758062.1. All other relevant scripts and 

data for working with this dataset and supporting the key findings of this study are available 

within the article and its Supplementary Information files or from our Github repository: 

https://github.com/neurogenomics/reanalysis_Mathys_2019. 

 

Code availability 

The differential expression analysis pipeline is available at: 

https://github.com/neurogenomics/reanalysis_Mathys_2019. This is a general use pipeline 

which can be run for any single-nucleus or single-cell transcriptomic dataset. The config file 

containing all the parameters used and quality control overview file for the scFlow run is also 

available in this repository. 
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