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Abstract

Mathys et al., conducted the first single-nucleus RNA-Seq study (snRNA-Seq) of
Alzheimer’s disease (AD)*. The authors profiled the transcriptomes of approximately 80,000
cells from the prefrontal cortex, collected from 48 individuals — 24 of which presented with
varying degrees of AD pathology. With bulk RNA-Seq, changes in gene expression across
cell types can be lost, potentially masking the differentially expressed genes (DEGS) across
different cell types. Through the use of single-cell techniques, the authors benefitted from
increased resolution with the potential to uncover cell type-specific DEGsin AD for the first
time?. However, there were limitations in both their data processing and quality control and
their differential expression analysis. Here, we correct these issues and use best-practice
approaches to snRNA-Seq differential expression, resulting 549 times fewer differentially

expressed genes at afalse discovery rate (FDR) of 0.05.
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Main

Mathys et al.’s* data processing and quality control strategy for their single-nucleus RNA-
Seq (snRNA-Seq) data was state-of-the-art at this time. Furthermore, the authors took extra
measures in an attempt to ensure the reliability of their results. Our re-anaysis is not a
criticism of this but endeavours to raise awareness and provide recommendations for rigorous
analysis of single-cell and single-nucleus RNA-Seq data (sc/snRNA-Seq) for future studies.
Most importantly, we aim to ensure that the Alzheimer’s disease research field does not focus
on spuriously identified genes. To this end, our questions of Mathys et al.,* focus around their
data processing and their differential expression analysis. Firstly, in relation to their
processing approach, the authors discussed the high percentages of mitochondrial reads and
low number of reads per cell present in their data. This is indicative of low cell quality®
however, we believe the authors’ quality control (QC) approach may not capture all of these
low quality cells. Moreover, the authors did not integrate the cells from different individuals
to account for batch effects. As the field has matured since the author’s work was published,
dataset integration has become a common step in single-cell RNA-Seq protocols and is
recommended to remove confounding sources of variation**®. To gain advantage of these
recent approaches, we used scFlow’ to reprocess the author’s data. This pipeline included the
removal of empty droplets, nuclei with low read counts and doublets followed by embedding
and integration of cells from separate samples and cell typing. ScFow combines best practice
approaches for processing sc/snRNA-Seq datasets, see Supplementary Note 1 for a detailed
explanation of these steps. Re-processing resulted in 50,831 cells passing QC, approximately
20,000 less the authors' post-processing set with differing cell type proportions

(Supplementary Fig. 1).

In regards to data quality, it is worth noting that over 99% of nuclei had less than 200 genes

expressed (Supplementary Table 3). While this QC step was not unique to our reprocessing,
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the authors made the same exclusion in their analysis, it highlights the relatively low quality
of the data which may be attributable to the early stage of sSnRNA-Seq technology of the
time. For example, Brase et al.’s recent study of snRNA-Seq of autosomal dominant AD®
used a more stringent cut-off for the minimum number of expressed genes and still kept 27%
(122 times more) of the assayed cells after all QC steps. Moreover, as mentioned, the authors
discussed the high percentages of mitochondrial reads in their data. The differences in
approaches to filtering based on the proportion mitochondrial reads accounts for the notable
discrepancy in the number of nucle after QC between our approach and the authors. Our
approach used a 10% cut-off for the proportion of mitochondrial reads in a nuclei, as set out
in Amezquita et al.’s best-practice guidelines’, which is less stringent than Seurat’'s
guidelines (5%)° or that from Heumos et al. (8% from a median absolute deviations based
cut-off selection)®. Conversely, the authors filtered out high mitochondrial read nuclei based
on clusters from their t-SNE projection of the data'. Even at our lenient cut-off, over 16,000
nuclei that were removed in our QC pipeline were kept by the author’s (Supplementary Fig.
2), explaining the discrepancy in the number of nuclel after QC. Based on Supplementary
Fig. 2, it is clear the author's approach was ineffective at removing nuclei with high
proportions of mitochondrial reads which isindicative of cell death®*. We have made the data
from our aternative processing approach publicly available (through Synapse:
https://doi.org/10.7303/syn51758062.1) so researchers can utilise this resource free of low

quality nuclel.

Our second question of Mathys et al.,* is their differential expression approach. The authors
conducted a differential expression analysis between the controls and the patients with AD
pathology, concentrating on six neuronal and glial cell types; excitatory neurons, inhibitory
neurons, astrocytes, microglia, oligodendrocytes and oligodendrocyte precursor cells, derived

from the Allen Brain Atlas'. They performed downstream analysis on their identified DEGs
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and investigated some of the most compelling genes in more detail. Therefore, al findings
put forward by their paper were based upon the validity of their differential expression
approach. However, for this approach, the authors conducted a two-part, cell and patient level
analysis. The cell-level analysis took each cell as an independent replicate and the results of
which were compared for consistency in directionality and rank of their DEGs against their
patient level analysis, a Poisson mixed model. The authors identified 1,031 DEGs using this
combinatoria approach — DEGs requiring an FDR <0.01 in the cell-level and an FDR<0.05
in the patient level analysis. It is important to note that this cell-level differential expression
approach, also known as pseudoreplication, over-estimates the confidence in DEGs due to the
statistical dependence between cells from the same patient not being considered™*23*.
When we inspect all DEGs identified at an FDR of 0.05 from the authors’ cell-level analysis,
this number increases to 14,274. Pseudobulk differential expression (DE) analysis has
recently been proven to give optima performance compared to both mixed models and

pseudoreplication approaches™ %1% |t aggregates counts to individuals thus accounting for

the dependence between an individual’s cells.
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Fig 1: a, b highlight the log, fold change and -log;, false discovery rate (FDR) of the

differentially expressed genes from the author’s original work (Mathys et al.) and our

reanalysis (Our analysis). In b, we have marked an FDR of 5x107, dashed grey line, to

highlight how small the p-values from Mathys et al.’s analysis are. c, d, e, f, g show the
Pearson correlation between the cell counts after QC and the number of DEGs identified.
For f, g analysis, the samples have been randomly mixed between case and control patients.

The different cell types are astrocytes (Astro), excitatory neurons (Exc), inhibitory neurons
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(Inh), microglia (Micro), oligodendrocytes (Oligo) and oligodendrocyte precursor cells
(OPC).

Here, to compare the effect of the different DE approaches in isolation, we apply a
pseudobulk DE approach, sum aggregation and edgeR LRT", to theauthors original
processed data. We found 26 unique DEGs when considering the six cell types used by the
authors (Supplementary Table 2, Supplementary Fig. 3). This was 549 times fewer DEGs
than that reported originally at an FDR of 0.05. When we compare these DEGs, we can see
that the absolute log2 fold change (LFC) of our DEGs is 15 times larger than the authors';
median LFC of 2.34 and 0.16, despite the authors DEGs having an FDR score 8,000 times
smaller; median FDR of 2.89x107 and 0.002 (Fig. 1a-b). Although we examined a high
correlation in the genes’ fold change values across our pseudobulk analysis and the author’s
pseudoreplication analysis (Pearson R of 0.87 for an adjusted p-value of 0.05, Supplementary
Table 3), the p-values and resulting DEGs vary considerably. The correspondence in fold
change values is expected given the approaches are applied to the same dataset whereas the
probabilities, which pertain to the likelihood that a gene’s expressional changes is related to
the case/control differences in AD, importantly do not align. We can show that this stark
contrast is just an artefact of the authors taking cells as independent replicates and thus
artificially inflating confidence by considering the Pearson correlation between the number of
DEGs found and the cell counts (Fig. 1c-e). There is a near perfect, positive correlation
between DEG and cell counts for the authors' pseudoreplication analysis (Fig. 1¢) and for the
1,031 genes from the authors' combinatorial approach (Fig. 1d) which is not present in our

pseudobulk re-analysis (Fig. 1€).

A further point which questions the authors' DE approach is that they identified the vast
majority of DEGs in the more abundant, neuronal cell types'. However, an increase in the

number of cells is not the same as an increase in sample size since these cells are not
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independent from one another - they come from the same sample. Therefore, an increase in
the number of cells should not necessarily result in an increase in the number of DEGs
whereas an increase in the number of samples would. This point is the major issue with
pseudoreplication approaches which over-estimate confidence when performing differential
expression due to the statistical dependence between cells from the same patient not being
considered™™*. In our opinion, it makes more sense to identify the majority of large effect
size DEGs in microglia which recent work has established is the primary cell type by which
the genetic risk for Alzheimer’s disease acts'®"®. This is what we found with our pseudobulk
DE approach - 96% of all DEGs were in microglia (Supplementary Table 2) whereas only

3% of the authors’ DEGs werein microglia.

Although it has been proven that pseudoreplication approaches result in false positives by
artificially inflating the confidence from non-independent samples, we wanted to investigate
the effect of the approach on the authors' dataset. We ran the same cell-level analysis
approach — a Wilcoxon rank-sum test and FDR multiple-testing correction, 100 times whilst
randomly permuting the patient identifiers (Fig. 1f). We would expect to find minimal DEGs
with this approach given the random mixing of case and control patients. However, this
pseudoreplication approach consistently found high numbers of DEGs and we observe the
same correlation between the number of cells and number of DEGs as with the authors
results. We did not observe the same pattern when running the same analysis with
pseudobulk differential expression (Fig. 1g). As a result, we conclude that integrating this
pseudoreplication approach with a mixed model like the authors proposed just artificially
inflates the test confidence for a random sample of the genes resulting in more false

discoveriesin cell types with bigger counts.

Up to this point, to compare the effect of the DE approaches in isolation, we analysed the

same processed data from the authors as opposed to our reprocessed data. We also performed
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pseudobulk DE on our reprocessed data and found 16 unique DEGs (Supplementary Table 4).
It is worth noting that the fold change correlation between our two DE analyses (reprocessed
data vs authors processed data) on the identified DEGs is only moderate (Pearson R of 0.57)
and is lower than that of the correlation between pseudoreplication and pseudobulk on the
same dataset (Supplementary Table 3). This highlights the effect that the low quality, high

mitochondrial read cells have on DE analysis.
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Conclusion

In conclusion, the authors analysis has been highly influential in the field with numerous
studies undertaken based on their results, something we show has uncertain foundations.
However, we would like to highlight that the use of pseudoreplication in neuroscience
research is not isolated to the author’s work, others have used this approach®®*#* and their
results should be similarly scrutinised. Here, we provide our processed count matrix with
metadata and also, the DEGs identified using an independently validated, differential
expression approach so that other researchers can use this rich dataset free from spurious
nuclei or DEGs. While the number of DEGs found here are significantly lower, much greater
confidence can be had that these are AD relevant genes. The low number of DEGs found may
also cause concern given the sample size and cost of collection and sequencing of such
datasets. However, the increasing number of sSnRNA-Seq studies being conducted for AD,
creates the opportunity to conduct differential meta-analyses to increase power. Further work
is required in the field to develop methods to conduct such analysis, integrating studies and
accounting for their the heterogeneity, similar to that which has been done for bulk RNA-
Seq®. Some such approaches have already been made in COVID-19 research which could be

leveraged for neurodegenerative disease®.
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Data availability

The differentially expressed genes and processed count matrix from the original study are
available with their manuscript. The count matrix and metadata from our reprocessing
approach are available via the AD Knowledge Portal (https://adknowledgeportal.org). The
AD Knowledge Portal is a platform for accessing data, analyses, and tools generated by the
Accelerating Medicines Partnership (AMP-AD) Target Discovery Program and other
National Institute on Aging (NIA)-supported programs to enable open-science practices and
accelerate translational learning. The data, analyses and tools are shared early in the research
cycle without a publication embargo on secondary use. Data is available for general research
use according to the following requirements for data access and data attribution
(https://adknowledgeportal .org/DataAccess/Instructions). For access to content described in

this manuscript see: https://doi.org/10.7303/syn51758062.1. All other relevant scripts and

data for working with this dataset and supporting the key findings of this study are available
within the article and its Supplementary Information files or from our Github repository:

https://qithub.com/neurogenomics/reanaysis Mathys 2019.

Code availability
The differential expression analysis pipeline is available a:

https.//github.com/neurogenomics/reanalysis Mathys 2019. This is a general use pipeline

which can be run for any single-nucleus or single-cell transcriptomic dataset. The config file
containing all the parameters used and quality control overview file for the scFlow run is also

available in this repository.
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