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Abstract

Amino acid auxotrophies are prevalent among bacteria. They can govern ecological
dynamics in microbial communities and indicate metabolic cross-feeding interactions
among coexisting genotypes. Despite the ecological importance of auxotrophies, their
distribution and impact on the diversity and function of the human gut microbiome remain
poorly understood. This study performed the first systematic analysis of the distribution of
amino acid auxotrophies in the human gut microbiome using a combined metabolomic,
metagenomic, and metabolic modeling approach. Results showed that amino acid
auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being
the most common. Auxotrophy frequencies were higher for those amino acids that are also
essential to the human host. Moreover, a higher overall abundance of auxotrophies was
associated with greater microbiome diversity and stability, and the distribution of
auxotrophs was found to be related to the human host's metabolome, including
trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results
suggest that amino acid auxotrophies are important factors contributing to microbiome

ecology and host-microbiome metabolic interactions.
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Background

The metabolic processes performed by the human gut microbiota have a crucial impact on
human metabolism and health(1-3). For instance, various human gut bacteria produce the
short-chain fatty acid butyrate. Butyrate is a primary energy source for human
colonocytes(1) and intersects with host immunological processes by mediating anti-
inflammatory effects(4,5). Another notable metabolic interaction between the human host
and its gastrointestinal microbiota is the microbial transformation of aromatic amino acids
into various metabolites. Recent studies suggest that aromatic amino acid-derived
metabolites such as the auxins indole-3-propionic acid and indole-3-acetic acid can
modulate the host immune system(6,7). Thus, these and several further studies provide
evidence that gut microbial metabolites are essential factors in the pathophysiology of

inflammatory diseases and the efficacy of immunomodulatory therapies(7—10).

The repertoire of molecules synthesized and eventually released by individual gut microbes
comprises metabolic by-products that serve the dual purpose of energy metabolism and
facilitating the biosynthesis of essential metabolites necessary for cellular maintenance and
proliferation. However, often not all metabolites required for growth and survival (i.e.,
nucleotides, vitamins, amino acids) can be de-novo synthesized by gut-dwelling
microorganisms, rendering those organisms dependent (termed auxotrophic) on the uptake
of the focal metabolite from the microbial cell’s nutritional environment. Several in silico
studies have applied genome-mining approaches, suggesting that most analyzed gut
bacteria lack biosynthetic pathways for producing at least one proteinogenic amino
acid(11,12) or a growth-essential vitamin(13,14). In addition, in vitro growth experiments
have confirmed specific amino acid and vitamin auxotrophies in common human gut

bacteria(13,15,16).

The prevalence of auxotrophs in the human gut microbiome raises the question of the
source of the required metabolites in the gastrointestinal growth environment. There are
three potential sources of essential nutrients for microbial growth: (i) Required metabolites
could be diet-derived. However, amino acids and vitamins are usually efficiently absorbed

by the human host in the small intestine(17), limiting the accessibility of diet-derived
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79  essential nutrients for the majority of the gut microbial community, which resides in the
80  colonic region(18). {ii) Metabolites required by auxotrophic microorganisms in the
81  gastrointestinal tract may be host-derived, e.g., from proteins and peptides secreted by the
82  gut epithelium into the gut lumen or from apical proteins of the host epithelial cell layer
83  accessible to gut microorganisms(15). {iii) Auxotrophic members of the gut microbial
84  community might obtain essential nutrients via cross-feeding interactions with prototrophic
85  organisms within their microbial community(19,20).
86
87  While the exchange of electron donor metabolites (e.g., acetate- or lactate cross-feeding)
88  between different microorganisms is well-documented for the human gut microbiome(21—
89  23), the extent of cross-feeding interactions via the exchange of essential nutrients such as
90 amino acids and vitamins remains still unknown. However, in vitro experiments of synthetic
91  microbial communities suggest that co-cultured microorganisms, which are auxotrophic for
92  different compounds, can support each other’s growth by exchanging the focal
93  metabolites(24). Furthermore, theoretical ecological models suggest that cross-feeding
94  interactions between auxotrophic organisms within complex communities can increase
95 community diversity through metabolic niche expansion(25) and community robustness to
96  ecological perturbance(26), such as changes in the composition of the chemical
97  environment. Thus, cross-feeding of amino acids and vitamins between different members
98  of the human gut microbiota could be crucial determinants of microbiome dynamics,
99 resilience, and the contribution of gut microbes to human metabolism and health.
100
101 Inthis study, we applied genome-scale metabolic modeling to predict the distribution and
102  diversity of amino acid auxotrophies in the human gut microbiome. The predictions were
103  combined with stool metagenomic sequencing and targeted serum metabolomics from
104  observational human cohort studies to estimate auxotrophy frequencies and their impact
105  on the human metabolome. We found that amino acids that are essential to the human
106  host are also the most common auxotrophies in the human gut microbiome. Intriguingly, a
107  higher frequency of auxotrophies was associated with long-term stability of the microbiome
108 community composition. Furthermore, a higher number of auxotrophies among gut bacteria
109  was associated with higher diversity of the gut bacteria and increased levels of aromatic

110  compounds of putative microbial origin in the human serum metabolome.
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Results

Prediction and validation of auxotrophies with genome-scale

metabolic modeling

To estimate the overall distribution of amino acid auxotrophies in the human gut
microbiome, we predicted the amino acid production capacities using genome-metabolic
modeling for all bacterial genomes (n=5 414) from the ‘Human Reference Gut Microbiome
(HRGMY' collection(27). Auxotrophies were predicted for the 20 proteinogenic amino acids
by comparing the model's growth with and without the amino acid using flux-balance
analysis. If the model was not able to grow without the amino acid, then an auxotrophy was
predicted (Fig. 1). To exclude an overprediction of auxotrophies due to genome
incompleteness, we correlated the genome completeness and the number of auxotrophies
predicted. Results showed a negative relationship between genome completeness and the
number of auxotrophies per genome (Supplementary Fig. S1, p=-0.50, p<2.2e-16). To
combat this, the genomes were filtered for completeness 285% and contamination <2%.
Only the filtered metabolic models (n=3 687) were used to predict auxotrophies and
ongoing analysis. All auxotrophies predicted for HRGM models are in the supplementary
material (Supplementary Table S1).

A recent study has reported discrepancies between in silico predictions using metabolic
models reconstructed with carveme (28) and in vitro studies of amino acid auxotrophies in
bacteria(13). To validate our gapseqg-based auxotrophy predictions, we compared the
predictions on strain level with in vitro experimentally verified auxotrophies as reported in
previous studies for a total of 36 gut bacteria (Supplementary Table S2), of which most were
already summarized by Ashniev et al. 2022 (29). If a genome assembly of the experimentally
tested strain was available on NCBI RefSeq, we reconstructed the genome-scale metabolic
model and predicted the auxotrophies. In addition to auxotrophy predictions using our
gapseq model collection (Supplementary Table S1), we also tested models from the
AGORAZ2 collection (Supplementary Table S3). Auxotrophy predictions using gapseq models
had a sensitivity of 75.5%, a specificity of 95.9%, and an accuracy of 93%. The auxotrophies
predicted by the AGORA2 models showed a lower degree of agreement with the
experimental data: sensitivity (43.4%), specificity (92.3%), and accuracy (81.7%). In addition,

we reconstructed genome-scale metabolic models for 124 bacterial genotypes known to be
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prototrophic for all 20 proteinogenic amino acids(28) to further validate our auxotrophy
predictions (Supplementary Table S4). We note that the 124 prototrophic genotypes are
isolates from diverse isolation sources and not from the human gut. However, the resource
can be used to estimate the rate of false auxotrophy predictions(28). In total, 99.1% of all
predictions coincided with the known amino acid prototrophies of the organisms, thus
suggesting a false auxotrophy prediction rate of less than 1%. In general, the frequency of
auxotrophy predictions among genomes from human gut bacteria is generally higher
compared to the collection of 124 prototrophic genomes (Supplementary Fig. S2), indicating
that the high frequency of auxotrophies cannot be explained by a false-positive rate

associated with potential pitfalls in the model reconstruction workflow.

Amino acid auxotrophies are common in the human gut
microbiome

Auxotrophies for tryptophan were the most prevalent, at 63.9% of the genomes in the
HRGM catalog(Fig. 2). Isoleucine, leucine, and valine (BCAA, branched-chain amino acids)
auxotrophies were also detected with a high abundance (40.1%, 40%, 41.1%, respectively).
No auxotrophies were detected for alanine, aspartate, and glutamate. We further analyzed
the observed auxotrophies at the taxonomy level by comparing the proportion and number
of auxotrophies on phylum and order level (Supplementary Fig. S3). Actinobacteriota were
shown to have a higher proportion of BCAA auxotrophies compared to prototrophies
(Supplementary Fig. S3). For tryptophan, a higher proportion of auxotrophic to prototrophic
bacteria was observed in Firmicutes, Actinobacteriota, and Fusobacteriota. Fusobacteriota
generally had a higher auxotrophic to prototrophic ratio for almost all amino acids, whereas
the opposite was predicted for Proteobacteria. This observation is further supported by the
number of auxotrophies found per genome for Proteobacteria and Fusobacteriota
(Supplementary Fig. S4). Additionally, the results suggest that auxotrophic genotypes have
lost the genes for most of the enzymes required for the biosynthesis of the focal amino acid
(Supplementary Fig. S5).

Taken together, the results indicate that amino acid auxotrophies are prevalent in the

human gut microbiome.
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Amino acid auxotrophies are associated with the profile of
fermentation products

Amino acid biosynthesis pathways and pathways producing fermentation products share
common precursor metabolites (Fig. 3B). For example, pyruvate is a central metabolite that
is utilized for the biosynthesis of the BCAA as well as in some gut bacterial species for
lactate formation, underlining the interconnection of amino acids and energy metabolism in
the metabolic network.

Here, we investigated whether bacteria that are auxotrophic for specific amino acids are
commonly associated with specific profiles of fermentation products. Therefore, we
predicted the metabolic by-products of cell growth and compared those results with the
auxotrophy predictions for the corresponding organisms (Fig. 3A). BCAA auxotrophic
bacteria were more likely to produce lactate in comparison to prototrophic bacteria
(Fisher’s exact test for count data,-log,(Odds Ratio (OR)) = 2.0- 2.8, FDR-corrected p-
value<0.05). Propionate production was commonly predicted for glutamine auxotrophic gut
bacteria (-log,(OR)= 2.4, FDR-corrected p-value<0.05) and by cysteine auxotrophs (-
log>(OR)= 1.9, FDR-corrected p-value <0.05). Succinate is predominantly produced by
asparagine auxotrophic gut bacteria (-log,(OR)= 2.2, FDR corrected p-value <0.05). For
butyrate, there was a higher association with glutamine auxotrophic bacteria (-

log>(OR)= 1.6, FDR-corrected p-value <0.05).

The association of auxotrophic bacteria with the production of organic acids might be
explained by the distribution of reaction fluxes through the metabolic network. For
instance, pyruvate is a metabolic precursor for the de novo biosynthesis pathways for BCAA
but also for lactate formation (Fig. 3B). Pyruvate not used for BCAA biosynthesis in
auxotrophic genotypes might be redirected towards lactate production. Thus, our findings
suggest a plausible interplay in resource allocation between a microorganism's energy

metabolism strategy and its auxotrophy profile.

More diverse gut microbiomes are characterized by a higher
auxotrophy frequency
To estimate the frequency of auxotrophies in the gut microbiome of individual persons, we

quantified the relative abundance of gut bacterial genotypes from the HRGM catalog using
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stool metagenomes of 185 healthy adults . As mentioned above, we found a negative
correlation between the number of auxotrophies and genome completeness levels
(Supplementary Fig. S1). To validate that higher genome completeness levels do not affect
the general pattern in the auxotrophy distribution of individual microbiomes, we
determined auxotrophy frequencies with different cutoff values for completeness (80%-
95%) of the reference genomes used for quantification. Overall, the distribution of
auxotrophy frequencies remained robust to increasing genome completeness levels
(Supplementary Fig. S6). Therefore, we decided to keep the 85% completeness level
described above.

Strikingly, auxotrophies for amino acids that are essential to the human organism were
more frequent than non-essential amino acids (Fig. 4A). The highest percentage of bacteria
were auxotrophic for tryptophan, followed by isoleucine and histidine (median: 54%, 28.7%,
28%, respectively). Auxotrophies for leucine, methionine, phenylalanine, arginine, and
valine were found with a median frequency of >20% (Fig. 4A). The lowest frequencies were
detected for serine, lysine, asparagine, aspartate, alanine, and glutamate auxotrophies.
Additionally, we were interested in the relationship between the proportion of auxotrophic
bacteria in the human gut and the overall microbiome diversity calculated as the Shannon
index (Fig. 4B-C). Overall, increasing frequencies of almost all amino acid auxotrophies are
accompanied by increasing microbiome diversity (Spearman correlation, Fig. 4B). Further,
we correlated the Shannon diversity with the abundance-weighted average of the number
of auxotrophies per metagenome sample, which takes the relative abundance of each
genome and its total number of amino acid auxotrophies into account. With an increasing
number of auxotrophies, an increase in the diversity was observed (Fig. 4C, p=0.27,
p=0.00018). This result may point towards a positive influence of auxotrophic bacteria on
the microbial diversity in the gut, presumably via a higher degree of amino acid cross-
feeding interactions between genotypes that are auxotrophic for different amino acids. To
test this, we calculated the pairwise dissimilarity (Hamming distance) between the binary
auxotrophy profiles of genomes and the means of those differences per metagenome
sample as an indicator for potential cross-feeding in the respective gut microbial
community. An increasing average Hamming distance was positively associated with
increased gut diversity (Fig. 4D, p=0.32, p=0.00001). Overall, a higher number of

auxotrophies in the gut community is positively correlated with a higher diversity.
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Associations of gut bacterial auxotrophies for amino acids with
host health markers and the serum metabolome

The involvement of microbial metabolism in host health has been examined in several other
studies (30,31) but not yet for the frequency of gut microbial amino acid auxotrophies. Qur
results showed that several amino acid auxotrophic bacteria are inversely associated with
the stool donor’s BMI (Fig. 4B, partial Spearman correlation). No statistically significant
associations with blood cell counts were found (Fig. 4B). Additionally, we correlated
targeted metabolomics data from serum samples with the frequencies of specific amino
acid auxotrophies (Fig. 4E, partial Spearman correlation). Positive correlations were found
between the tryptophan-derived 3-indoleacetic acid (3-IAA) as well as 3-indolepropionic
acid (3-IPA) and tryptophan auxotrophic gut bacteria. Additionally, several other amino acid
auxotrophies showed positive correlations with these metabolites. P-cresol sulfate was
positively correlated with many amino acid auxotrophies. Further, several significant
associations were detected with metabolites from bile acid metabolism. Negative
correlations were observed for glycoursodeoxycholic acid (GUDCA), a conjugated secondary
bile acid metabolite, and several amino acid auxotrophies. Further, negative correlations
with the bile acid metabolite deoxycholic acid {DCA) were found for the frequencies of
tyrosine, threonine, and cysteine auxotrophies. Positive associations were also observed for
hippuric acid and TMAQO with several amino acid auxotrophies. Interestingly, no significant
associations were found for serum levels of amino acids and amino acid-related compounds
(Fig. 4E).

Taken together, the frequency of auxotrophic bacteria is related to serum levels of several
metabolites. The gut microbial contribution to serum metabolite levels was predominantly
found for metabolites previously reported to be of microbial origin (e.g., 3-1AA) or derived

from gut microbially-produced compounds (e.g., TMAQ).

Analysis of longitudinal microbial composition data suggests a
positive influence of auxotrophies on gut microbiome stability

So far, our results suggest an involvement of auxotrophic bacteria on the gut microbial

diversity. Based on this observation, we further wanted to analyze whether the frequency of
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267  auxotrophies also impacts the microbiome's long-term stability using data from two

268 longitudinal studies. Therefore, we re-analyzed recently published metagenomic data from
269  two human cohort studies (32,33). Troci et al. included two stool metagenomes from 79
270  healthy individuals each where stool samples were three years apart{32). The longitudinal
271  study of Chen et al. involved two stool metagenomes from 338 individuals with a time

272  difference between samples of four years(33). Microbiome stability over the time periods
273  was assessed by calculating the UniFrac distance for the microbial composition between the
274  two time points for each participant. Since the UniFrac distance ranges between O (lowest
275  possible dissimilarity) and 1 (highest dissimilarity), we calculated the inverse values (1-

276  UniFrac) as a microbiome stability measure. The abundance-weighted average of

277  auxotrophies per genotype was positively correlated with microbiome stability in both

278  cohorts (Fig. 5A, Spearman rank sum correlation test, Troci et al.: p=0.31, p=0.006, n =79;
279  Chen et al.: p=0.14, p=0.0094, n = 338). We also correlated individual amino acid

280  auxotrophy frequencies with microbiome stability to understand the impact of individual
281  amino acid auxotrophies on long-term stability. A statistically significant positive correlation
282  was found in both cohorts for many amino acid auxotrophies, while no negative correlation
283  was observed (Fig. 5C).

284  Next, long-term microbiome stability was also tested for a statistical association with the
285  average Hamming distance with samples, which represents a measure of the dissimilarity
286  between the auxotrophy profile of co-existing genotypes and a potential indicator for the
287  degree of amino acid cross-feeding in the microbial community. A notable positive

288  correlation was observed for the average Hamming distance with microbiome stability in
289  both cohorts (Fig. 5B, Troci et al.: p=0.33, p=0.0033, n =79; Chen et al.: p=0.21, p=0.00014, n
290 =338.), suggesting a potential positive impact of amino acid cross-feeding among

291  auxotrophy genotypes on the long-term stability of microbiome composition.

292  Auxotrophic bacteria have a high dependence on their nutritional environment. Here, we
293  wanted to test if a higher dietary intake of amino acids affects the relative abundance of
294  amino acid auxotrophic bacteria in the gut. Therefore, we used the dietary intake data

295  obtained from food frequency questionnaires from Troci et al.(32). For both study time

296  points, the intake of amino acids was tested for correlation with the frequency of amino

297  acid auxotrophies in the microbiomes. No significant correlations between the frequency of

10
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auxotrophic bacteria and the dietary intake of amino acids were observed (Supplementary
Fig. S7).

In sum, our results suggest a positive effect of auxotrophies on gut microbiome stability.
Further, the data suggest that amino acid cross-feeding may contribute to the compositional
stability of the gut microbiome. Surprisingly, we found no evidence of diet's effect on

auxotrophy frequencies.

11
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Discussion

Auxotrophies are widespread among microorganisms (11,34). The obligate nutritional
requirements can have far-reaching consequences for the auxotrophic strains and the entire
microbial community in the ecosystem (35). On the one hand, each auxotrophy for a specific
essential nutrient (e.g., amino acids) increases the organism’s dependence on the
nutritional environment, coupling the organism’s survival and proliferation to the
availability of the specific compound (35). On the other hand, if the focal metabolite is
available, auxotrophic genotypes might gain a selective advantage over prototrophic
genotypes by saving metabolic costs (36). In microbial communities, auxotrophies can affect
the interactions between microorganisms and their hosts, where auxotrophs could act as
recyclers of metabolites that other community members release as by-products of their
metabolism (37). In addition, organisms that are auxotrophic for different metabolites could
engage in cooperative cross-feeding interactions (38—40). Despite the ecological relevance
of auxotrophies, their role in the human gut microbiome is largely unknown. More
specifically, Ashniev et al. 2022 showed that several human gut bacterial isolates are indeed
amino acid auxotrophs using genome analysis and a comprehensive literature review of
experimentally determined auxotrophies and prototrophies (29). Still, the overall
distribution and variation of auxotrophies in the human gut microbiome remain elusive.
Here, we systematically analyzed the distribution of amino acid auxotrophies in the human
gut microbiome using genome-scale metabolic modeling. Moreover, we statistically
assessed the associations of inferred auxotrophy frequencies with overall microbiome

diversity, long-term stability, and microbial contribution to the human metabolome.

Ubiquity of auxotrophies indicates a high prevalence of cross-feeding

Overall, high frequencies of auxotrophies were found in the human gut microbiome. For
instance, we found that 54%(median) of organisms in the gut microbial communities of
healthy adults are auxotrophic for tryptophan. Interestingly, the most frequent
auxotrophies for amino acids in the human gut microbiome are also essential nutrients for
the human host (Fig. 4A). While auxotrophies in human gut bacteria were reported before,
the sources of amino acids for auxotrophic genotypes remain unknown. There are three

potential sources of amino acids of auxotrophic members of the gut microbiome:
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First, amino acids might be acquired from dietary proteins (41). However, most diet-derived
protein is broken down in the upper gastrointestinal tract, and amino acids are absorbed by
the human host, limiting protein and amino acid passage to the colon, where most of the
gut microbiome resides (41). While most dietary free amino acids do not reach the colon,
some dietary proteins that escape digestion in the small intestine can provide a nutrient
source for the auxotrophic colonic microbiome(42). Our predictions are based on genomes
from stool samples, which predominantly reflect the microbiome composition in the large
intestine. Therefore, we argue that the high frequency of amino acid auxotrophies predicted
for the colon microbiome in this study is unlikely to be explained by dietary sources of
amino acids alone. Plus, we did not find any statistical associations between the dietary
intake of amino acids of 79 adults and the frequency of auxotrophies in the microbiome
(Supplementary Fig. S7), which further indicates that auxotrophic genotypes acquire their
amino acids from other sources. Another study supports our conclusion, as varying dietary
concentrations of essential nutrients did not alter the frequency of auxotrophy in the gut
(43).

Second, auxotrophs might obtain their essential amino acids by cross-feeding interactions
with prototrophic genotypes. Cross-feeding between strains that are auxotrophic for
different amino acids has been demonstrated in synthetic (40) and naturally occurring
microbial communities (34). Furthermore, a recent study showed that amino acids
synthesized by the colonic microbiome stay in the gut and are not absorbed via the
mucosa(42). Cross-feeding as a potential source of amino acids for auxotrophic bacteria
requires that prototrophic bacteria in the microbial community secrete the respective
amino acids. In fact, amino acid biosynthesis and the release into their growth environment
have been reported for several gut bacterial species, including members of the genus
Bacteroides{44) and the species Bifidobacterium longum(45). Thus, cross-feeding enables
the growth of auxotrophic organisms even in environments where the focal nutrient is
unavailable. Our results suggest a wide diversity of auxotrophic profiles between coexisting
genotypes (Fig. 4D), indicating metabolic complementarity and amino acid cross-feeding in
gut microbial communities.

Host-derived metabolites are the third potential source of amino acids for auxotrophic gut
microbes. Yet, evidence reported in the scientific literature for gut microbial uptake of host-

derived amino acids is scarce (42,46). An interesting case where an auxotrophic gut
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bacterium covers its demand for the focal amino acid might be Akkermansia muciniphila.
Our predictions show that this bacterium is auxotrophic for threonine, which is in
agreement with previous cultivation experiments (15). A. muciniphila is a known degrader
of host mucins and resides in the mucus layer. Besides glycans, mucin consists of a core
protein scaffold rich in proline, threonine, and serine (47). Thus, the threonine auxotrophy

of A. muciniphila may indicate that this species also utilizes host-derived threonine.

Auxotrophies might promote ecological diversity and microbiome stability

A major result of our study is the positive associations between auxotrophies and diversity
of the human gut microbiome. Earlier studies that used theoretical approaches suggested
that auxotrophies can increase and maintain diversity in microbial communities by creating
niches for different organisms to occupy through metabolite cross-feeding (25,37). Thus, we
conclude that in communities with more auxotrophic members, more cross-feeding may
take place, which could promote diversity. Our results support this theory since we
observed a positive association between microbiome diversity and auxotrophic profile
differences among coexisting genotypes.

Microbe-microbe interactions via metabolite exchanges may also promote microbiome
stability (48). Here, we tested if having more auxotrophies as an indicator for metabolite
cross-feeding in the gut microbiome is linked to greater stability in healthy adults over three
to four years. Indeed, our findings from two independent cohorts indicate that microbiomes
with a higher average frequency of auxotrophies at the beginning of the study period
remained more stable throughout the duration of the studies (Fig. 5). The association of
auxotrophies with microbiome stability was even more pronounced when considering the
dissimilarity of auxotrophy profiles of coexisting genotypes as a proxy for amino acid cross-
feeding. This result is in line with a theoretical study by Ofia and Kost, which demonstrates
that cross-feeding between auxotrophs can facilitate that the community structure returns
to equilibrium after ecological perturbance (26). Moreover, Sharma et al. (2019) reported
that B-vitamin auxotrophies in the human microbiome are prevalent and suggest that cross-
feeding B-vitamins between prototrophic and auxotrophic genotypes contributes to gut
bacterial population dynamics. The authors also base their conclusion on experimental
results, where gnotobiotic mice were colonized by a human fecal microbial community. In

these experiments, varying dietary B vitamin intake in mice did not result in appreciable

14


https://doi.org/10.1101/2023.03.23.532984
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.23.532984; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

400 changes in gut microbial community structure, including the proportion of B vitamin-

401  auxotrophic subpopulations, which further suggests cross-feeding as a source of essential
402  nutrients for auxotrophic bacteria in the gut environment and supports our hypothesis that
403  higher auxotrophy frequencies contribute to microbiome stability (Fig 5AB).

404  Since a reduction in gut microbiome diversity has been reported for several chronic

405  diseases(49-51), our results and the methodology to predict auxotrophy frequencies may
406  guide the development of novel personalized treatment strategies by targeting ecological
407 interactions between coexisting gut microorganisms. For instance, oral administration of
408 microencapsulated amino acids with delayed content release could be used to specifically
409  promote the growth of beneficial subpopulations of the large intestine microbial

410 community, which are auxotrophic for the focal compound (52).

411 There is an ongoing debate about how different types of cell interactions (i.e., cooperation
412  and competition) contribute to the stability of multi-species communities (20,26,53-55). We
413  want to emphasize that we do not claim that cooperative interactions are stronger than
414  competitive interactions in stabilizing microbiomes, also because we focused in this study
415  onone type of interaction (amino acid cross-feeding) and not on the prevalence of other
416  kinds of interactions or the exchange of other metabolites. Instead, we argue that our

417  results provide evidence that auxotrophies and potential amino acid cross-feeding

418  contribute to maintaining microbiome composition.

419

420  Auxotrophy associations with the human metabolome

421  Pathways of amino acid biosynthesis and fermentation by-product biosynthesis share

422  common precursors. Therefore, the loss of biosynthetic genes for amino acids might affect
423  the flux distribution in the metabolic network (36). Fermentation by-products such as the
424  organic acids butyrate, acetate, and propionate have implications for human physiology (1).
425  Hence, we wanted to investigate whether specific amino acid auxotrophies are associated
426  with the profile of fermentation products released by gut bacteria. Comparison of the

427  fermentation by-product profile of auxotrophic and prototrophic bacteria revealed

428  statistically significant associations (Fig. 3A), which may be due to the structure of the

429  metabolic network. For example, BCAA auxotrophic bacteria are more likely to be lactate
430  producers, which might be attributed to the fact that the common precursor of BCAA

431  synthesis and lactate synthesis, pyruvate, is no longer used for BCAA synthesis in BCAA
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auxotrophic bacteria but can be used for lactate formation. The altered fermentation profile
in auxotrophic bacteria may, therefore, indicate the importance of the nutritional
requirements of gut bacteria for the microbiome’s contribution to the human metabolome.
Indeed, when we tested for associations of the relative abundance of amino acid
auxotrophs with compounds of the human metabolome, we found several significant
correlations (Fig. 4E). In particular, the frequencies of several auxotrophies were correlated
with phenylic and indolic metabolites, namely hippuric acid, p-cresol sulfate, 3-indole acetic
acid (IAA), and 3-indole propionic acid (IPA). These compounds were previously reported to
be of microbial origin or are derived from gut microbially-produced metabolites (56). For
instance, hippuric acid and p-cresol sulfate levels were reported to strongly correlate with
the microbiome alpha diversity in a large human cohort study (57). P-cresol is known to be
produced by gut bacteria that metabolize tyrosine (58), and we found an association with
tyrosine auxotrophic gut bacteria. Moreover, the tryptophan-derived IAA is a known agonist
of the epithelial human aryl hydrocarbon receptor, an important regulator of intestinal
immunity(59). In summary, our results suggest that the contribution of phenylic and indolic
compounds to the human metabolome is linked to metabolic processes performed by

amino acid auxotrophic gut bacteria.

Limitations

The method of our study is subject to certain limitations. In our study, auxotrophies were
predicted with reconstructed genome-scale metabolic models. Discrepancies between
metabolic modelling-based predictions and results from vitro assessments have been
reported and discussed previously (13,28,60). Thus, it is crucial to validate in silico prediction
with in vitro results of auxotrophies. Here, we compared our in silico results with in vitro
results for 36 gut bacterial strains and found a sensitivity of 75% for auxotrophy predictions
with gapseq- reconstructed genome-scale metabolic models. In addition, we performed
auxotrophy prediction for 124 genomes from bacterial strains that are not human gut
bacteria but known from cultivation experiments to be prototrophic for all 20 proteinogenic
amino acids. This test showed that 99.1% of our prototrophy predictions are in line with the
experimental data, suggesting that the high prevalence of predicted auxotrophies among
the human gut bacterial genomes is not due to a potential technical bias in the in silico

approach.
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Conclusion

Our study demonstrates the prevalence and impact of auxotrophs in the human gut
microbiome. Auxotrophies are common in the human gut microbiome, and interestingly,
amino acids essential to the human host are also commonly essential for large fractions of
the gut microbiome. Furthermore, human gut microbiomes with high frequencies of
auxotrophies were characterized by higher alpha diversity and were more stable over time.
Since gut microbial communities commonly display reduced diversity during chronic
diseases, auxotrophy frequencies in the human gut microbiome could indicate a healthy gut
microbiome. In addition, our results suggest that metabolite cross-feeding networks in gut
bacterial communities may be an important factor for stability and maintaining diversity.
From a more technical point of view, previous studies have suggested a cautious
interpretation of in silico-predicted auxotrophies. Therefore, we validated our in silico
results with experimentally determined auxotrophies reported in scientific literature. This
validation indicated the high predictive performance of our method, which used automatic
genome-scale metabolic network reconstruction without the need for manual curation of
individual genotypes. Thus, the approach can also be applied to microbial communities

other than the human gut microbiome.

17


https://doi.org/10.1101/2023.03.23.532984
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.23.532984; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

482
483

484
485
486
487
488
489
490
491
492

493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511

512

available under aCC-BY-ND 4.0 International license.

Material and Methods

Reconstruction of genome-scale metabolic models

Genome-scale metabolic models were reconstructed for bacterial genomes from the Human
Reference Gut Microbiome (HRGM) genome collection(27,61). The HRGM collection
combines isolate and metagenome-assembled genomes (MAGs) from several data sources
to summarize genome sequences obtained from human fecal samples. Metabolic models
were reconstructed using gapseq version 1.2(62). A detailed description of the genome-
scale metabolic model reconstruction workflow can be found in the Supplementary

Information and Supplementary Table S6.

Prediction of amino acid auxotrophies

Amino acid auxotrophies were predicted with flux balance analysis(63), where the objective
function was set to the flux through the biomass formation reaction. In detail, each model
was tested for its ability to form biomass under two different environmental conditions:
First, with the growth medium predicted with gapseq (see Supplementary Information), and
second, with the same medium but where the amino acid of interest was removed. An
organism was defined as auxotrophic for a specific amino acid if the organism was able to
form biomass in the original medium but not in the medium without the amino acid of
interest. Flux balance analysis was performed in R (v4.1.2), the R package sybil v2.2.0 (64),
and IBM ILOG CPLEX optimizer as linear programming solver. We validated our auxotrophy
predictions for 150 organisms (36 from the human gut, 124 known prototrophs from
different environments), for which experimental data for amino acid auxotrophies and
prototrophies were available in scientific literature (see Supplementary Information for
details).

When assessing the distribution of amino acid auxotrophies in sampled individual
microbiomes, it is important to consider the relative abundance of different genotypes. To
this end, we combined the estimated relative abundances of reference genomes (see
‘Metagenome data processing’) and predicted auxotrophies in the corresponding genomes
to calculate the relative auxotrophy abundance y; , of amino acid k in sample j using the

equation:
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Vik = Z Di,jbix

IEM
513  Where M is the set of all reference genomes, p;; the relative abundance of genome i in
514  sample j, and b; the auxotrophy prediction with “1” if genotype i is auxotrophic for amino
515  acid k and “0” otherwise.
516

517 Prediction of metabolic by-products

518  For comparison of auxotrophic to prototrophic bacteria, the production rates of

519 fermentation by-product formation were predicted. We undertook this analysis based on
520 the demonstrated accuracy of gapseq in predicting fermentation products of anaerobically
521  cultured gut bacteria(62). Given the potential correlation between auxotrophies and the
522  generation of metabolic by-products, investigating auxotrophy distributions could offer new
523  insights into gut microbial metabolism and ecology. Metabolic by-products were predicted
524  with flux-balance-analysis(63) using the flux through the biomass reaction as objective

525  function (i.e., maximization) and subsequently analyzing the fluxes through exchange

526  reactions. Metabolite production rates (mmol*gDW *hr') were normalized by growth rates
527 (hr'l), resulting in the unit mmol/gDW. Production rates > 1 mmol/gDW were considered as
528  microbial production. The production of the two enantiomers, D- and L-lactate, were

529  combined since their production rates were interchangeable in the FBA solution.

530

531 Cohorts

532  Data from three human population cohorts were analyzed for the present study. The first
533  cohort comprised paired stool metagenomes and serum metabolomes from 185

534  participants. This cohort was recruited at the University Hospital Schleswig Holstein,

535  Campus Kiel 2016, and included detailed phenotypic and health-related data. The study was
536  approved by the local ethics committee in Kiel (D441). None of the participants had received
537  antibiotics or other medication two months before inclusion.

538 The second cohort (Troci et al., 2022) comprised longitudinal stool metagenomes from 79
539  study participants. Data from this cohort were already part of a previous study (32), which
540  were reanalyzed in the present study. For each participant from this cohort, two

541 metagenomes were sequenced from stool samples that were three years apart. In addition,
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for each sampling time point, data from food frequency questionnaires were available. In
brief, the questionnaire, originally designed and validated for use in the German EPIC study
(65), comprised 112 food items and aimed to collect the intake frequency and amount of
various types of foods. The average energy intake and other nutrients per day were
calculated with data from the German Food Code and Nutrient Data Base (BLS version 1.3
(66)). Further information about the sampling method, study design, and sequencing
method of the Troci et al. 2022 study can be found in the original publication (32).

The third cohort integrates fecal metagenomes from the 2021 publication by Chen et al.,
involving 338 Dutch study participants(33). Like the second cohort, the Chen et al. cohort is
designed longitudinally, incorporating two fecal metagenomic samples per participant over

a four-year interval.

Metagenome sequencing

DNA of stool samples was extracted using the QlAamp DNA fast stool mini kit automated on
the QlAcube (Qiagen, Hilden, Germany) with a prior bead-beating step as described earlier
(66). DNA extracts were used for metagenomic library preparation as described previously
(32) using lllumina Nextera DNA Library Preparation Kit (lllumina, San Diego, CA) and

sequenced with 2x150 bp paired-end reads on a NovaSeq platform {/llumina).

Metagenome data processing

Metagenomic reads were quality filtered using the ‘qc” workflow from the metagenome-
atlas pipeline tool v2.9.0(67) with default parametrization if not stated otherwise in the
Supplementary Information. Quality-controlled {(QC) reads were used to estimate the
relative abundance of genomes from the HRGM catalog{27) using coverM v0.6.1{68). Across
all three analyzed metagenome data sets, a median of 76% QC reads mapped to HRGM

reference genomes (Supplementary Fig. S8).

Targeted metabolomics of blood samples
Metabolite quantification for serum was performed by liquid chromatography tandem mass
spectrometry (LC-MS-MS) using the MxP Quant 500 kit (Biocrates Life Sciences AG,

Innsbruck, Austria) according to the manufacturer's instructions. Please refer to the

20


https://doi.org/10.1101/2023.03.23.532984
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.23.532984; this version posted September 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

573
574
575

576
577
578
579
580
581
582
583
584
585
586
587
588
589

590
591
592
593
594
595
596
597
598
599
600
601

available under aCC-BY-ND 4.0 International license.

Supplementary Information document for blood sample preparation and metabolite

quantification details.

Statistical data analysis
All data analysis steps and statistical tests were performed using R (v4.1.2). Flow charts (Fig.
1. and 3A) were created and rendered using Flowchart Designer 3. P-values were corrected
for multiple testing using the Benjamini and Hochberg method (69). In all statistical tests, an
adjusted p-value of <0.05 was considered as significance threshold. UniFrac distances{70)
were calculated using relative abundances of genomes using the R-package abdiv, v0.2.0
(71).
Alpha diversity was calculated using the Shannon index as implemented in the R-package
‘vegan’ v2.6-2 (72). The average pairwise Hamming distance between auxotrophic profiles
of co-occurring genomes was calculated per sample to study the effect of metabolic
dissimilarity on diversity. In other words, the Hamming distance is the number of amino
acids for which the two genotypes had different auxotrophy predictions. In addition to the
Hamming distance, we also calculated the abundance-weighted average of auxotrophies per
genome y; for each sample j using the equation:

Vi = Z a;pij

ieM

Where M is the set of all genomes, a; the number of auxotrophies in genome i, and p;; the
relative abundance of genome i in sample j.
For the longitudinal cohorts, the UniFrac distance was correlated with the abundance-
weighted average of auxotrophies per genome at the first time point using the Spearman
correlation. Further, the Spearman correlation was used to determine the association
between the UniFrac distance and the Hamming distance. With food frequency
questionnaires, the total dietary intake of amino acids per day was summed up for every
individual, and the energy percentage was then calculated based on the total energy intake
per day. The Spearman correlation was used to study an association between the total
dietary intake of amino acids relative to the total consumed energy (E%) and the frequency
of amino acid auxotrophic bacteria. The correlation between the intake of amino acids and

frequencies of amino acid auxotrophic bacteria was studied separately for both time points.
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Data availability

The reconstructed genome-scale metabolic models from the HRGM catalog are available via
Zenodo (73). Further, metabolic model reconstructions for 124 prototrophic genotypes and
36 gut bacterial genotypes with amino acid auxotrophy/prototrophy status known from
laboratory experiments are available via Zenodo {74,75). Metagenome sequencing data are
provided via the European Nucleotide Archive ‘ENA’ for our study cohort and the cohort
from Troci et al. (this study accession: PRIEB60573, Troci et al.: PRJEB48605). Metagenome
sequencing data from Chen et al. 2021 (33) are available upon request via the European

Genome-Phenome Archive (accession: EGAD00001006959).

Code availability

The code for analysis of the data can be found in the GitHub repositories
https://github.com/SvBusche/Auxo_manuscript_2023 (main results) and
https://github.com/Waschina/AGORA2_auxotrophies (for auxotrophy predictions from
AGORA2 metabolic models).
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Figure legends

Figure 1. Workflow for the prediction of auxotrophies with genome-scale metabolic
modeling. Gapseq was used to reconstruct genome-scale metabolic models from genomes
of the Human Reference Gut Microbiome {(HRGM) catalog(27). The workflow of gapseg to
reconstruct metabolic models consists of five steps: transporter/metabolic pathway
prediction, draft metabolic network construction, growth medium prediction, gap filling,
final model reconstruction. Auxotrophy prediction was performed using flux-balance
analysis and validated by reconstructing gapseq models from experimentally verified
auxotrophic strains. The predicted auxotrophies were compared on strain level from gapseq
and AGORA2 models to experimentally verified auxotrophies. QC reads of cohorts were
mapped on HRGM. Auxotrophy frequencies in cohorts were determined by mapping QC
reads from the metagenomes of the cohorts to genomes from HRGM collection. Icons are
from www.flaticon.com (creators: photo3idea_studio, Freepik, surang, Eucalyp, Voysla,

juicy_fish, smashingstocks, SBTS2018, creative_designer).

Figure 2. Abundances of auxotrophies in 3 687 genomes. The predicted amino acid
auxotrophies in HRGM genomes were categorized into human essential and non-essential

amino acids.

Figure 3. Associations of auxotrophies and fermentation products. (A) Comparison of
fermentation product production rates in auxotrophic and prototrophic bacteria.
Production rates of fermentation by-products were predicted with flux-balance analysis
(cutoff-value > 1 mmol/gDW) in 3 687 HRGM genomes. The association with the
auxotrophic or prototrophic phenotype was statistically evaluated with the Fisher test for
exact count data by calculating odds ratios. Asterisks denote FDR-corrected p-values <0.05.
(B) Interconnection between the pathways of formation of fermentation products and
amino acids, based on MetaCyc pathways(76). We note that not all the displayed

reactions/pathways occur in every gut bacterial genotype. The metabolic network shown
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displays pathways commonly found in human gut metagenomes and linked to amino acid

biosynthetic pathways.

Figure 4. Distribution of auxotrophies in human gut microbiomes from 185 healthy adults,
their association with diversity, and serum metabolite levels. (A) Boxplots display the
abundance of amino acid auxotrophies in the human gut microbiome (n=185 samples). (B)
Partial Spearman correlation between the frequency of auxotrophic gut bacteria and serum
levels of health markers and microbiome Shannon diversity. Dots indicate significant
associations (FDR-corrected p-values < 0.05, adjusted for the potential confounders age,
sex, and BMI). (C) The abundance-weighted average of auxotrophies was calculated and
correlated with the Shannon diversity (Spearman correlation, p =0.60, p<2.2e-16). (D) The
average hamming distance was calculated to study the metabolic dissimilarity of auxotrophy
profiles of coexisting genotypes and, therefore, potential cross-feeding interactions within
the microbial communities. With the Spearman correlation, the association between the
calculated average hamming distance and the Shannon diversity in the gut was estimated (p
=0.62, p<2.2e-16). (E) Partial Spearman correlations between the serum levels of
metabolites and the frequency of auxotrophic bacteria in the gut microbiome.
Abbreviations for the serum metabolite levels can be found in Supplementary Table S5. Dots
indicate significant associations (FDR-corrected p-values < 0.05, adjusted for confounders

age, sex, and BMI).

Figure 5. Influence of auxotrophies on long-term stability of the human gut microbiome.
(A) The stability of the human gut microbiome was calculated as 1 minus the UniFrac
distance between the two time points in the longitudinal studies and correlated with the
abundance-weighted average of auxotrophies at the first time point to study a potential
influence of auxotrophies on the long-term stability of the human gut microbiome. (B) The
average Hamming distance was calculated for the first time point and then correlated with
the 1-UniFrac value to investigate the influence of potential cross-feeding on long-term

stability. (C) The contribution of individual amino acid auxotrophies on the stability was
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958 calculated with the Spearman correlation between the 1-UniFrac values and individual

959  amino acid auxotrophy frequencies.
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Tables

Table 1. Cohort characteristics. Age and BMI are given as the median and interquartile

range.
This study Troci et al., 2022 Chenetal., 2021
Age (years) 47 [40-52] 53 [45.75-57.25]* 47.5 [40-56]
BMI 24.5 [22.2-26.4] 25.7 [23.5 -27.5]* -
Female (%) 449 37.5% 55.6
Study participants 185 79 338

* Missing values/information: 7.
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