

1 Amino acid auxotrophies in human gut bacteria are linked 2 to higher microbiome diversity and long-term stability

3

4 Svenja Starke¹, Danielle MM Harris^{1,2}, Johannes Zimmermann^{3,4}, Sven Schuchardt⁵, Mhmd
5 Oumari², Derk Frank^{6,7}, Corinna Bang², Philip Rosenstiel², Stefan Schreiber^{2,8}, Norbert
6 Frey^{6,7,9}, Andre Franke², Konrad Aden^{2,8,*}, Silvio Waschina^{1,*}

7

8 ¹Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel,
9 Germany

10 ²Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany

11 ³Research Group Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel,
12 Kiel, Germany

13 ⁴Max Planck Institute for Evolutionary Biology, Plön, Germany

14 ⁵Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany

15 ⁶Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel,
16 Germany

17 ⁷German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck,
18 Germany

19 ⁸Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel,
20 Germany

21 [#] Current Affiliation: Department of Internal Medicine III, University Hospital Heidelberg,
22 Heidelberg, Germany

23

24 *Correspondence: s.waschina@nutrinf.uni-kiel.de, k.aden@ikmb.uni-kiel.de

25

26 Authors' ORCIDs:

27 **SvSt** (0000-0002-8089-9700); **DH** (0000-0002-1950-399X); **JZ** (0000-0002-5041-1954); **SvS**
28 (0000-0002-4593-9324); **MO** (0009-0008-4977-7888); **DF** (0000-0001-7561-075X); **CB** (0000-
29 0001-6814-6151); **PR** (0000-0002-9692-8828); **StS** (0000-0003-2254-7771); **NF** (0000-0001-
30 7611-378X); **AF** (0000-0003-1530-5811); **KA** (0000-0003-3482-7316); **SW** (0000-0002-6290-
31 3593)

32 **Abstract**

33 Amino acid auxotrophies are prevalent among bacteria. They can govern ecological
34 dynamics in microbial communities and indicate metabolic cross-feeding interactions
35 among coexisting genotypes. Despite the ecological importance of auxotrophies, their
36 distribution and impact on the diversity and function of the human gut microbiome remain
37 poorly understood. This study performed the first systematic analysis of the distribution of
38 amino acid auxotrophies in the human gut microbiome using a combined metabolomic,
39 metagenomic, and metabolic modeling approach. Results showed that amino acid
40 auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being
41 the most common. Auxotrophy frequencies were higher for those amino acids that are also
42 essential to the human host. Moreover, a higher overall abundance of auxotrophies was
43 associated with greater microbiome diversity and stability, and the distribution of
44 auxotrophs was found to be related to the human host's metabolome, including
45 trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results
46 suggest that amino acid auxotrophies are important factors contributing to microbiome
47 ecology and host-microbiome metabolic interactions.

48 **Background**

49 The metabolic processes performed by the human gut microbiota have a crucial impact on
50 human metabolism and health(1–3). For instance, various human gut bacteria produce the
51 short-chain fatty acid butyrate. Butyrate is a primary energy source for human
52 colonocytes(1) and intersects with host immunological processes by mediating anti-
53 inflammatory effects(4,5). Another notable metabolic interaction between the human host
54 and its gastrointestinal microbiota is the microbial transformation of aromatic amino acids
55 into various metabolites. Recent studies suggest that aromatic amino acid-derived
56 metabolites such as the auxins indole-3-propionic acid and indole-3-acetic acid can
57 modulate the host immune system(6,7). Thus, these and several further studies provide
58 evidence that gut microbial metabolites are essential factors in the pathophysiology of
59 inflammatory diseases and the efficacy of immunomodulatory therapies(7–10).

60

61 The repertoire of molecules synthesized and eventually released by individual gut microbes
62 comprises metabolic by-products that serve the dual purpose of energy metabolism and
63 facilitating the biosynthesis of essential metabolites necessary for cellular maintenance and
64 proliferation. However, often not all metabolites required for growth and survival (i.e.,
65 nucleotides, vitamins, amino acids) can be *de-novo* synthesized by gut-dwelling
66 microorganisms, rendering those organisms dependent (termed *auxotrophic*) on the uptake
67 of the focal metabolite from the microbial cell's nutritional environment. Several *in silico*
68 studies have applied genome-mining approaches, suggesting that most analyzed gut
69 bacteria lack biosynthetic pathways for producing at least one proteinogenic amino
70 acid(11,12) or a growth-essential vitamin(13,14). In addition, *in vitro* growth experiments
71 have confirmed specific amino acid and vitamin auxotrophies in common human gut
72 bacteria(13,15,16).

73

74 The prevalence of auxotrophs in the human gut microbiome raises the question of the
75 source of the required metabolites in the gastrointestinal growth environment. There are
76 three potential sources of essential nutrients for microbial growth: (i) Required metabolites
77 could be diet-derived. However, amino acids and vitamins are usually efficiently absorbed
78 by the human host in the small intestine(17), limiting the accessibility of diet-derived

79 essential nutrients for the majority of the gut microbial community, which resides in the
80 colonic region(18). (ii) Metabolites required by auxotrophic microorganisms in the
81 gastrointestinal tract may be host-derived, e.g., from proteins and peptides secreted by the
82 gut epithelium into the gut lumen or from apical proteins of the host epithelial cell layer
83 accessible to gut microorganisms(15). (iii) Auxotrophic members of the gut microbial
84 community might obtain essential nutrients via cross-feeding interactions with prototrophic
85 organisms within their microbial community(19,20).

86

87 While the exchange of electron donor metabolites (e.g., acetate- or lactate cross-feeding)
88 between different microorganisms is well-documented for the human gut microbiome(21–
89 23), the extent of cross-feeding interactions via the exchange of essential nutrients such as
90 amino acids and vitamins remains still unknown. However, *in vitro* experiments of synthetic
91 microbial communities suggest that co-cultured microorganisms, which are auxotrophic for
92 different compounds, can support each other's growth by exchanging the focal
93 metabolites(24). Furthermore, theoretical ecological models suggest that cross-feeding
94 interactions between auxotrophic organisms within complex communities can increase
95 community diversity through metabolic niche expansion(25) and community robustness to
96 ecological perturbation(26), such as changes in the composition of the chemical
97 environment. Thus, cross-feeding of amino acids and vitamins between different members
98 of the human gut microbiota could be crucial determinants of microbiome dynamics,
99 resilience, and the contribution of gut microbes to human metabolism and health.

100

101 In this study, we applied genome-scale metabolic modeling to predict the distribution and
102 diversity of amino acid auxotrophies in the human gut microbiome. The predictions were
103 combined with stool metagenomic sequencing and targeted serum metabolomics from
104 observational human cohort studies to estimate auxotrophy frequencies and their impact
105 on the human metabolome. We found that amino acids that are essential to the human
106 host are also the most common auxotrophies in the human gut microbiome. Intriguingly, a
107 higher frequency of auxotrophies was associated with long-term stability of the microbiome
108 community composition. Furthermore, a higher number of auxotrophies among gut bacteria
109 was associated with higher diversity of the gut bacteria and increased levels of aromatic
110 compounds of putative microbial origin in the human serum metabolome.

111 **Results**

112 **Prediction and validation of auxotrophies with genome-scale** 113 **metabolic modeling**

114 To estimate the overall distribution of amino acid auxotrophies in the human gut
115 microbiome, we predicted the amino acid production capacities using genome-metabolic
116 modeling for all bacterial genomes (n=5 414) from the 'Human Reference Gut Microbiome
117 (HRGM)' collection(27). Auxotrophies were predicted for the 20 proteinogenic amino acids
118 by comparing the model's growth with and without the amino acid using flux-balance
119 analysis. If the model was not able to grow without the amino acid, then an auxotrophy was
120 predicted (Fig. 1). To exclude an overprediction of auxotrophies due to genome
121 incompleteness, we correlated the genome completeness and the number of auxotrophies
122 predicted. Results showed a negative relationship between genome completeness and the
123 number of auxotrophies per genome (Supplementary Fig. S1, $p=-0.50$, $p\leq2.2e-16$). To
124 combat this, the genomes were filtered for completeness $\geq85\%$ and contamination $\leq2\%$.
125 Only the filtered metabolic models (n=3 687) were used to predict auxotrophies and
126 ongoing analysis. All auxotrophies predicted for HRGM models are in the supplementary
127 material (Supplementary Table S1).

128 A recent study has reported discrepancies between *in silico* predictions using metabolic
129 models reconstructed with *carveme* (28) and *in vitro* studies of amino acid auxotrophies in
130 bacteria(13). To validate our *gapseq*-based auxotrophy predictions, we compared the
131 predictions on strain level with *in vitro* experimentally verified auxotrophies as reported in
132 previous studies for a total of 36 gut bacteria (Supplementary Table S2), of which most were
133 already summarized by Ashniev et al. 2022 (29). If a genome assembly of the experimentally
134 tested strain was available on NCBI RefSeq, we reconstructed the genome-scale metabolic
135 model and predicted the auxotrophies. In addition to auxotrophy predictions using our
136 *gapseq* model collection (Supplementary Table S1), we also tested models from the
137 AGORA2 collection (Supplementary Table S3). Auxotrophy predictions using *gapseq* models
138 had a sensitivity of 75.5%, a specificity of 95.9%, and an accuracy of 93%. The auxotrophies
139 predicted by the AGORA2 models showed a lower degree of agreement with the
140 experimental data: sensitivity (43.4%), specificity (92.3%), and accuracy (81.7%). In addition,
141 we reconstructed genome-scale metabolic models for 124 bacterial genotypes known to be

142 prototrophic for all 20 proteinogenic amino acids(28) to further validate our auxotrophy
143 predictions (Supplementary Table S4). We note that the 124 prototrophic genotypes are
144 isolates from diverse isolation sources and not from the human gut. However, the resource
145 can be used to estimate the rate of false auxotrophy predictions(28). In total, 99.1% of all
146 predictions coincided with the known amino acid prototrophies of the organisms, thus
147 suggesting a false auxotrophy prediction rate of less than 1%. In general, the frequency of
148 auxotrophy predictions among genomes from human gut bacteria is generally higher
149 compared to the collection of 124 prototrophic genomes (Supplementary Fig. S2), indicating
150 that the high frequency of auxotrophies cannot be explained by a false-positive rate
151 associated with potential pitfalls in the model reconstruction workflow.

152

153 **Amino acid auxotrophies are common in the human gut
154 microbiome**

155 Auxotrophies for tryptophan were the most prevalent, at 63.9% of the genomes in the
156 HRGM catalog(Fig. 2). Isoleucine, leucine, and valine (BCAA, branched-chain amino acids)
157 auxotrophies were also detected with a high abundance (40.1%, 40%, 41.1%, respectively).
158 No auxotrophies were detected for alanine, aspartate, and glutamate. We further analyzed
159 the observed auxotrophies at the taxonomy level by comparing the proportion and number
160 of auxotrophies on phylum and order level (Supplementary Fig. S3). Actinobacteriota were
161 shown to have a higher proportion of BCAA auxotrophies compared to prototrophies
162 (Supplementary Fig. S3). For tryptophan, a higher proportion of auxotrophic to prototrophic
163 bacteria was observed in Firmicutes, Actinobacteriota, and Fusobacteriota. Fusobacteriota
164 generally had a higher auxotrophic to prototrophic ratio for almost all amino acids, whereas
165 the opposite was predicted for Proteobacteria. This observation is further supported by the
166 number of auxotrophies found per genome for Proteobacteria and Fusobacteriota
167 (Supplementary Fig. S4). Additionally, the results suggest that auxotrophic genotypes have
168 lost the genes for most of the enzymes required for the biosynthesis of the focal amino acid
169 (Supplementary Fig. S5).

170 Taken together, the results indicate that amino acid auxotrophies are prevalent in the
171 human gut microbiome.

172

173 **Amino acid auxotrophies are associated with the profile of**
174 **fermentation products**

175 Amino acid biosynthesis pathways and pathways producing fermentation products share
176 common precursor metabolites (Fig. 3B). For example, pyruvate is a central metabolite that
177 is utilized for the biosynthesis of the BCAA as well as in some gut bacterial species for
178 lactate formation, underlining the interconnection of amino acids and energy metabolism in
179 the metabolic network.

180 Here, we investigated whether bacteria that are auxotrophic for specific amino acids are
181 commonly associated with specific profiles of fermentation products. Therefore, we
182 predicted the metabolic by-products of cell growth and compared those results with the
183 auxotrophy predictions for the corresponding organisms (Fig. 3A). BCAA auxotrophic
184 bacteria were more likely to produce lactate in comparison to prototrophic bacteria
185 (Fisher's exact test for count data, $-\log_2(\text{Odds Ratio (OR)}) = 2.0 - 2.8$, FDR-corrected p-
186 value < 0.05). Propionate production was commonly predicted for glutamine auxotrophic gut
187 bacteria ($-\log_2(\text{OR}) = 2.4$, FDR-corrected p-value < 0.05) and by cysteine auxotrophs ($-\log_2(\text{OR}) = 1.9$, FDR-corrected p-value < 0.05). Succinate is predominantly produced by
188 asparagine auxotrophic gut bacteria ($-\log_2(\text{OR}) = 2.2$, FDR corrected p-value < 0.05). For
189 butyrate, there was a higher association with glutamine auxotrophic bacteria ($-\log_2(\text{OR}) = 1.6$, FDR-corrected p-value < 0.05).

190 The association of auxotrophic bacteria with the production of organic acids might be
191 explained by the distribution of reaction fluxes through the metabolic network. For
192 instance, pyruvate is a metabolic precursor for the *de novo* biosynthesis pathways for BCAA
193 but also for lactate formation (Fig. 3B). Pyruvate not used for BCAA biosynthesis in
194 auxotrophic genotypes might be redirected towards lactate production. Thus, our findings
195 suggest a plausible interplay in resource allocation between a microorganism's energy
196 metabolism strategy and its auxotrophy profile.

197

198 **More diverse gut microbiomes are characterized by a higher**
199 **auxotrophy frequency**

200 To estimate the frequency of auxotrophies in the gut microbiome of individual persons, we
201 quantified the relative abundance of gut bacterial genotypes from the HRGM catalog using

204 stool metagenomes of 185 healthy adults . As mentioned above, we found a negative
205 correlation between the number of auxotrophies and genome completeness levels
206 (Supplementary Fig. S1). To validate that higher genome completeness levels do not affect
207 the general pattern in the auxotrophy distribution of individual microbiomes, we
208 determined auxotrophy frequencies with different cutoff values for completeness (80%-
209 95%) of the reference genomes used for quantification. Overall, the distribution of
210 auxotrophy frequencies remained robust to increasing genome completeness levels
211 (Supplementary Fig. S6). Therefore, we decided to keep the 85% completeness level
212 described above.

213 Strikingly, auxotrophies for amino acids that are essential to the human organism were
214 more frequent than non-essential amino acids (Fig. 4A). The highest percentage of bacteria
215 were auxotrophic for tryptophan, followed by isoleucine and histidine (median: 54%, 28.7%,
216 28%, respectively). Auxotrophies for leucine, methionine, phenylalanine, arginine, and
217 valine were found with a median frequency of >20% (Fig. 4A). The lowest frequencies were
218 detected for serine, lysine, asparagine, aspartate, alanine, and glutamate auxotrophies.
219 Additionally, we were interested in the relationship between the proportion of auxotrophic
220 bacteria in the human gut and the overall microbiome diversity calculated as the Shannon
221 index (Fig. 4B-C). Overall, increasing frequencies of almost all amino acid auxotrophies are
222 accompanied by increasing microbiome diversity (Spearman correlation, Fig. 4B). Further,
223 we correlated the Shannon diversity with the abundance-weighted average of the number
224 of auxotrophies per metagenome sample, which takes the relative abundance of each
225 genome and its total number of amino acid auxotrophies into account. With an increasing
226 number of auxotrophies, an increase in the diversity was observed (Fig. 4C, $p=0.27$,
227 $p=0.00018$). This result may point towards a positive influence of auxotrophic bacteria on
228 the microbial diversity in the gut, presumably via a higher degree of amino acid cross-
229 feeding interactions between genotypes that are auxotrophic for different amino acids. To
230 test this, we calculated the pairwise dissimilarity (Hamming distance) between the binary
231 auxotrophy profiles of genomes and the means of those differences per metagenome
232 sample as an indicator for potential cross-feeding in the respective gut microbial
233 community . An increasing average Hamming distance was positively associated with
234 increased gut diversity (Fig. 4D, $p=0.32$, $p=0.00001$). Overall, a higher number of
235 auxotrophies in the gut community is positively correlated with a higher diversity.

236

237 **Associations of gut bacterial auxotrophies for amino acids with**
238 **host health markers and the serum metabolome**

239 The involvement of microbial metabolism in host health has been examined in several other
240 studies (30,31) but not yet for the frequency of gut microbial amino acid auxotrophies. Our
241 results showed that several amino acid auxotrophic bacteria are inversely associated with
242 the stool donor's BMI (Fig. 4B, partial Spearman correlation). No statistically significant
243 associations with blood cell counts were found (Fig. 4B). Additionally, we correlated
244 targeted metabolomics data from serum samples with the frequencies of specific amino
245 acid auxotrophies (Fig. 4E, partial Spearman correlation). Positive correlations were found
246 between the tryptophan-derived 3-indoleacetic acid (3-IAA) as well as 3-indolepropionic
247 acid (3-IPA) and tryptophan auxotrophic gut bacteria. Additionally, several other amino acid
248 auxotrophies showed positive correlations with these metabolites. P-cresol sulfate was
249 positively correlated with many amino acid auxotrophies. Further, several significant
250 associations were detected with metabolites from bile acid metabolism. Negative
251 correlations were observed for glycoursoodeoxycholic acid (GUDCA), a conjugated secondary
252 bile acid metabolite, and several amino acid auxotrophies. Further, negative correlations
253 with the bile acid metabolite deoxycholic acid (DCA) were found for the frequencies of
254 tyrosine, threonine, and cysteine auxotrophies. Positive associations were also observed for
255 hippuric acid and TMAO with several amino acid auxotrophies. Interestingly, no significant
256 associations were found for serum levels of amino acids and amino acid-related compounds
257 (Fig. 4E).

258 Taken together, the frequency of auxotrophic bacteria is related to serum levels of several
259 metabolites. The gut microbial contribution to serum metabolite levels was predominantly
260 found for metabolites previously reported to be of microbial origin (e.g., 3-IAA) or derived
261 from gut microbially-produced compounds (e.g., TMAO).

262

263 **Analysis of longitudinal microbial composition data suggests a**
264 **positive influence of auxotrophies on gut microbiome stability**

265 So far, our results suggest an involvement of auxotrophic bacteria on the gut microbial
266 diversity. Based on this observation, we further wanted to analyze whether the frequency of

267 auxotrophies also impacts the microbiome's long-term stability using data from two
268 longitudinal studies. Therefore, we re-analyzed recently published metagenomic data from
269 two human cohort studies (32,33). Troci et al. included two stool metagenomes from 79
270 healthy individuals each where stool samples were three years apart(32). The longitudinal
271 study of Chen et al. involved two stool metagenomes from 338 individuals with a time
272 difference between samples of four years(33). Microbiome stability over the time periods
273 was assessed by calculating the UniFrac distance for the microbial composition between the
274 two time points for each participant. Since the UniFrac distance ranges between 0 (lowest
275 possible dissimilarity) and 1 (highest dissimilarity), we calculated the inverse values (1-
276 UniFrac) as a microbiome stability measure. The abundance-weighted average of
277 auxotrophies per genotype was positively correlated with microbiome stability in both
278 cohorts (Fig. 5A, Spearman rank sum correlation test, Troci et al.: $p=0.31$, $p=0.006$, $n=79$;
279 Chen et al.: $p=0.14$, $p=0.0094$, $n = 338$). We also correlated individual amino acid
280 auxotrophy frequencies with microbiome stability to understand the impact of individual
281 amino acid auxotrophies on long-term stability. A statistically significant positive correlation
282 was found in both cohorts for many amino acid auxotrophies, while no negative correlation
283 was observed (Fig. 5C).
284 Next, long-term microbiome stability was also tested for a statistical association with the
285 average Hamming distance with samples, which represents a measure of the dissimilarity
286 between the auxotrophy profile of co-existing genotypes and a potential indicator for the
287 degree of amino acid cross-feeding in the microbial community. A notable positive
288 correlation was observed for the average Hamming distance with microbiome stability in
289 both cohorts (Fig. 5B, Troci et al.: $p=0.33$, $p=0.0033$, $n = 79$; Chen et al.: $p=0.21$, $p=0.00014$, n
290 = 338.), suggesting a potential positive impact of amino acid cross-feeding among
291 auxotrophy genotypes on the long-term stability of microbiome composition.
292 Auxotrophic bacteria have a high dependence on their nutritional environment. Here, we
293 wanted to test if a higher dietary intake of amino acids affects the relative abundance of
294 amino acid auxotrophic bacteria in the gut. Therefore, we used the dietary intake data
295 obtained from food frequency questionnaires from Troci et al.(32). For both study time
296 points, the intake of amino acids was tested for correlation with the frequency of amino
297 acid auxotrophies in the microbiomes. No significant correlations between the frequency of

298 auxotrophic bacteria and the dietary intake of amino acids were observed (Supplementary
299 Fig. S7).

300 In sum, our results suggest a positive effect of auxotrophies on gut microbiome stability.
301 Further, the data suggest that amino acid cross-feeding may contribute to the compositional
302 stability of the gut microbiome. Surprisingly, we found no evidence of diet's effect on
303 auxotrophy frequencies.

304

305 Discussion

306 Auxotrophies are widespread among microorganisms (11,34). The obligate nutritional
307 requirements can have far-reaching consequences for the auxotrophic strains and the entire
308 microbial community in the ecosystem (35). On the one hand, each auxotrophy for a specific
309 essential nutrient (e.g., amino acids) increases the organism's dependence on the
310 nutritional environment, coupling the organism's survival and proliferation to the
311 availability of the specific compound (35). On the other hand, if the focal metabolite is
312 available, auxotrophic genotypes might gain a selective advantage over prototrophic
313 genotypes by saving metabolic costs (36). In microbial communities, auxotrophies can affect
314 the interactions between microorganisms and their hosts, where auxotrophs could act as
315 *recyclers* of metabolites that other community members release as by-products of their
316 metabolism (37). In addition, organisms that are auxotrophic for different metabolites could
317 engage in cooperative cross-feeding interactions (38–40). Despite the ecological relevance
318 of auxotrophies, their role in the human gut microbiome is largely unknown. More
319 specifically, Ashniev et al. 2022 showed that several human gut bacterial isolates are indeed
320 amino acid auxotrophs using genome analysis and a comprehensive literature review of
321 experimentally determined auxotrophies and prototrophies (29). Still, the overall
322 distribution and variation of auxotrophies in the human gut microbiome remain elusive.
323 Here, we systematically analyzed the distribution of amino acid auxotrophies in the human
324 gut microbiome using genome-scale metabolic modeling. Moreover, we statistically
325 assessed the associations of inferred auxotrophy frequencies with overall microbiome
326 diversity, long-term stability, and microbial contribution to the human metabolome.

327

328 *Ubiquity of auxotrophies indicates a high prevalence of cross-feeding*

329 Overall, high frequencies of auxotrophies were found in the human gut microbiome. For
330 instance, we found that 54%(median) of organisms in the gut microbial communities of
331 healthy adults are auxotrophic for tryptophan. Interestingly, the most frequent
332 auxotrophies for amino acids in the human gut microbiome are also essential nutrients for
333 the human host (Fig. 4A). While auxotrophies in human gut bacteria were reported before,
334 the sources of amino acids for auxotrophic genotypes remain unknown. There are three
335 potential sources of amino acids of auxotrophic members of the gut microbiome:

336 First, amino acids might be acquired from dietary proteins (41). However, most diet-derived
337 protein is broken down in the upper gastrointestinal tract, and amino acids are absorbed by
338 the human host, limiting protein and amino acid passage to the colon, where most of the
339 gut microbiome resides (41). While most dietary free amino acids do not reach the colon,
340 some dietary proteins that escape digestion in the small intestine can provide a nutrient
341 source for the auxotrophic colonic microbiome(42). Our predictions are based on genomes
342 from stool samples, which predominantly reflect the microbiome composition in the large
343 intestine. Therefore, we argue that the high frequency of amino acid auxotrophies predicted
344 for the colon microbiome in this study is unlikely to be explained by dietary sources of
345 amino acids alone. Plus, we did not find any statistical associations between the dietary
346 intake of amino acids of 79 adults and the frequency of auxotrophies in the microbiome
347 (Supplementary Fig. S7), which further indicates that auxotrophic genotypes acquire their
348 amino acids from other sources. Another study supports our conclusion, as varying dietary
349 concentrations of essential nutrients did not alter the frequency of auxotrophy in the gut
350 (43).

351 Second, auxotrophs might obtain their essential amino acids by cross-feeding interactions
352 with prototrophic genotypes. Cross-feeding between strains that are auxotrophic for
353 different amino acids has been demonstrated in synthetic (40) and naturally occurring
354 microbial communities (34). Furthermore, a recent study showed that amino acids
355 synthesized by the colonic microbiome stay in the gut and are not absorbed via the
356 mucosa(42). Cross-feeding as a potential source of amino acids for auxotrophic bacteria
357 requires that prototrophic bacteria in the microbial community secrete the respective
358 amino acids. In fact, amino acid biosynthesis and the release into their growth environment
359 have been reported for several gut bacterial species, including members of the genus
360 *Bacteroides*(44) and the species *Bifidobacterium longum*(45). Thus, cross-feeding enables
361 the growth of auxotrophic organisms even in environments where the focal nutrient is
362 unavailable. Our results suggest a wide diversity of auxotrophic profiles between coexisting
363 genotypes (Fig. 4D), indicating metabolic complementarity and amino acid cross-feeding in
364 gut microbial communities.

365 Host-derived metabolites are the third potential source of amino acids for auxotrophic gut
366 microbes. Yet, evidence reported in the scientific literature for gut microbial uptake of host-
367 derived amino acids is scarce (42,46). An interesting case where an auxotrophic gut

368 bacterium covers its demand for the focal amino acid might be *Akkermansia muciniphila*.
369 Our predictions show that this bacterium is auxotrophic for threonine, which is in
370 agreement with previous cultivation experiments (15). *A. muciniphila* is a known degrader
371 of host mucins and resides in the mucus layer. Besides glycans, mucin consists of a core
372 protein scaffold rich in proline, threonine, and serine (47). Thus, the threonine auxotrophy
373 of *A. muciniphila* may indicate that this species also utilizes host-derived threonine.

374

375 *Auxotrophies might promote ecological diversity and microbiome stability*
376 A major result of our study is the positive associations between auxotrophies and diversity
377 of the human gut microbiome. Earlier studies that used theoretical approaches suggested
378 that auxotrophies can increase and maintain diversity in microbial communities by creating
379 niches for different organisms to occupy through metabolite cross-feeding (25,37). Thus, we
380 conclude that in communities with more auxotrophic members, more cross-feeding may
381 take place, which could promote diversity. Our results support this theory since we
382 observed a positive association between microbiome diversity and auxotrophic profile
383 differences among coexisting genotypes.

384 Microbe-microbe interactions via metabolite exchanges may also promote microbiome
385 stability (48). Here, we tested if having more auxotrophies as an indicator for metabolite
386 cross-feeding in the gut microbiome is linked to greater stability in healthy adults over three
387 to four years. Indeed, our findings from two independent cohorts indicate that microbiomes
388 with a higher average frequency of auxotrophies at the beginning of the study period
389 remained more stable throughout the duration of the studies (Fig. 5). The association of
390 auxotrophies with microbiome stability was even more pronounced when considering the
391 dissimilarity of auxotrophy profiles of coexisting genotypes as a proxy for amino acid cross-
392 feeding. This result is in line with a theoretical study by Oña and Kost, which demonstrates
393 that cross-feeding between auxotrophs can facilitate that the community structure returns
394 to equilibrium after ecological perturbation (26). Moreover, Sharma *et al.* (2019) reported
395 that B-vitamin auxotrophies in the human microbiome are prevalent and suggest that cross-
396 feeding B-vitamins between prototrophic and auxotrophic genotypes contributes to gut
397 bacterial population dynamics. The authors also base their conclusion on experimental
398 results, where gnotobiotic mice were colonized by a human fecal microbial community. In
399 these experiments, varying dietary B vitamin intake in mice did not result in appreciable

400 changes in gut microbial community structure, including the proportion of B vitamin-
401 auxotrophic subpopulations, which further suggests cross-feeding as a source of essential
402 nutrients for auxotrophic bacteria in the gut environment and supports our hypothesis that
403 higher auxotrophy frequencies contribute to microbiome stability (Fig 5AB).
404 Since a reduction in gut microbiome diversity has been reported for several chronic
405 diseases(49–51), our results and the methodology to predict auxotrophy frequencies may
406 guide the development of novel personalized treatment strategies by targeting ecological
407 interactions between coexisting gut microorganisms. For instance, oral administration of
408 microencapsulated amino acids with delayed content release could be used to specifically
409 promote the growth of beneficial subpopulations of the large intestine microbial
410 community, which are auxotrophic for the focal compound (52).
411 There is an ongoing debate about how different types of cell interactions (i.e., cooperation
412 and competition) contribute to the stability of multi-species communities (20,26,53–55). We
413 want to emphasize that we do not claim that cooperative interactions are stronger than
414 competitive interactions in stabilizing microbiomes, also because we focused in this study
415 on one type of interaction (amino acid cross-feeding) and not on the prevalence of other
416 kinds of interactions or the exchange of other metabolites. Instead, we argue that our
417 results provide evidence that auxotrophies and potential amino acid cross-feeding
418 contribute to maintaining microbiome composition.
419

420 *Auxotrophy associations with the human metabolome*
421 Pathways of amino acid biosynthesis and fermentation by-product biosynthesis share
422 common precursors. Therefore, the loss of biosynthetic genes for amino acids might affect
423 the flux distribution in the metabolic network (36). Fermentation by-products such as the
424 organic acids butyrate, acetate, and propionate have implications for human physiology (1).
425 Hence, we wanted to investigate whether specific amino acid auxotrophies are associated
426 with the profile of fermentation products released by gut bacteria. Comparison of the
427 fermentation by-product profile of auxotrophic and prototrophic bacteria revealed
428 statistically significant associations (Fig. 3A), which may be due to the structure of the
429 metabolic network. For example, BCAA auxotrophic bacteria are more likely to be lactate
430 producers, which might be attributed to the fact that the common precursor of BCAA
431 synthesis and lactate synthesis, pyruvate, is no longer used for BCAA synthesis in BCAA

432 auxotrophic bacteria but can be used for lactate formation. The altered fermentation profile
433 in auxotrophic bacteria may, therefore, indicate the importance of the nutritional
434 requirements of gut bacteria for the microbiome's contribution to the human metabolome.
435 Indeed, when we tested for associations of the relative abundance of amino acid
436 auxotrophs with compounds of the human metabolome, we found several significant
437 correlations (Fig. 4E). In particular, the frequencies of several auxotrophies were correlated
438 with phenyllic and indolic metabolites, namely hippuric acid, p-cresol sulfate, 3-indole acetic
439 acid (IAA), and 3-indole propionic acid (IPA). These compounds were previously reported to
440 be of microbial origin or are derived from gut microbially-produced metabolites (56). For
441 instance, hippuric acid and p-cresol sulfate levels were reported to strongly correlate with
442 the microbiome alpha diversity in a large human cohort study (57). P-cresol is known to be
443 produced by gut bacteria that metabolize tyrosine (58), and we found an association with
444 tyrosine auxotrophic gut bacteria. Moreover, the tryptophan-derived IAA is a known agonist
445 of the epithelial human aryl hydrocarbon receptor, an important regulator of intestinal
446 immunity(59). In summary, our results suggest that the contribution of phenyllic and indolic
447 compounds to the human metabolome is linked to metabolic processes performed by
448 amino acid auxotrophic gut bacteria.

449

450 *Limitations*

451 The method of our study is subject to certain limitations. In our study, auxotrophies were
452 predicted with reconstructed genome-scale metabolic models. Discrepancies between
453 metabolic modelling-based predictions and results from *vitro* assessments have been
454 reported and discussed previously (13,28,60). Thus, it is crucial to validate *in silico* prediction
455 with *in vitro* results of auxotrophies. Here, we compared our *in silico* results with *in vitro*
456 results for 36 gut bacterial strains and found a sensitivity of 75% for auxotrophy predictions
457 with *gapseq*- reconstructed genome-scale metabolic models. In addition, we performed
458 auxotrophy prediction for 124 genomes from bacterial strains that are not human gut
459 bacteria but known from cultivation experiments to be prototrophic for all 20 proteinogenic
460 amino acids. This test showed that 99.1% of our prototrophy predictions are in line with the
461 experimental data, suggesting that the high prevalence of predicted auxotrophies among
462 the human gut bacterial genomes is not due to a potential technical bias in the *in silico*
463 approach.

464

465 *Conclusion*

466 Our study demonstrates the prevalence and impact of auxotrophs in the human gut
467 microbiome. Auxotrophies are common in the human gut microbiome, and interestingly,
468 amino acids essential to the human host are also commonly essential for large fractions of
469 the gut microbiome. Furthermore, human gut microbiomes with high frequencies of
470 auxotrophies were characterized by higher alpha diversity and were more stable over time.
471 Since gut microbial communities commonly display reduced diversity during chronic
472 diseases, auxotrophy frequencies in the human gut microbiome could indicate a healthy gut
473 microbiome. In addition, our results suggest that metabolite cross-feeding networks in gut
474 bacterial communities may be an important factor for stability and maintaining diversity.
475 From a more technical point of view, previous studies have suggested a cautious
476 interpretation of *in silico*-predicted auxotrophies. Therefore, we validated our *in silico*
477 results with experimentally determined auxotrophies reported in scientific literature. This
478 validation indicated the high predictive performance of our method, which used automatic
479 genome-scale metabolic network reconstruction without the need for manual curation of
480 individual genotypes. Thus, the approach can also be applied to microbial communities
481 other than the human gut microbiome.

482 **Material and Methods**

483

484 **Reconstruction of genome-scale metabolic models**

485 Genome-scale metabolic models were reconstructed for bacterial genomes from the Human
486 Reference Gut Microbiome (HRGM) genome collection(27,61). The HRGM collection
487 combines isolate and metagenome-assembled genomes (MAGs) from several data sources
488 to summarize genome sequences obtained from human fecal samples. Metabolic models
489 were reconstructed using *gapseq* version 1.2(62). A detailed description of the genome-
490 scale metabolic model reconstruction workflow can be found in the Supplementary
491 Information and Supplementary Table S6.

492

493 **Prediction of amino acid auxotrophies**

494 Amino acid auxotrophies were predicted with flux balance analysis(63), where the objective
495 function was set to the flux through the biomass formation reaction. In detail, each model
496 was tested for its ability to form biomass under two different environmental conditions:
497 First, with the growth medium predicted with *gapseq* (see Supplementary Information), and
498 second, with the same medium but where the amino acid of interest was removed. An
499 organism was defined as auxotrophic for a specific amino acid if the organism was able to
500 form biomass in the original medium but not in the medium without the amino acid of
501 interest. Flux balance analysis was performed in R (v4.1.2), the R package *sybil* v2.2.0 (64),
502 and IBM ILOG CPLEX optimizer as linear programming solver. We validated our auxotrophy
503 predictions for 150 organisms (36 from the human gut, 124 known prototrophs from
504 different environments), for which experimental data for amino acid auxotrophies and
505 prototrophies were available in scientific literature (see Supplementary Information for
506 details).

507 When assessing the distribution of amino acid auxotrophies in sampled individual
508 microbiomes, it is important to consider the relative abundance of different genotypes. To
509 this end, we combined the estimated relative abundances of reference genomes (see
510 'Metagenome data processing') and predicted auxotrophies in the corresponding genomes
511 to calculate the relative auxotrophy abundance $y_{j,k}$ of amino acid k in sample j using the
512 equation:

$$y_{j,k} = \sum_{i \in M} p_{i,j} b_{i,k}$$

513 Where M is the set of all reference genomes, p_{ij} the relative abundance of genome i in
514 sample j , and $b_{i,k}$ the auxotrophy prediction with “1” if genotype i is auxotrophic for amino
515 acid k and “0” otherwise.

516

517 **Prediction of metabolic by-products**

518 For comparison of auxotrophic to prototrophic bacteria, the production rates of
519 fermentation by-product formation were predicted. We undertook this analysis based on
520 the demonstrated accuracy of gapseq in predicting fermentation products of anaerobically
521 cultured gut bacteria(62). Given the potential correlation between auxotrophies and the
522 generation of metabolic by-products, investigating auxotrophy distributions could offer new
523 insights into gut microbial metabolism and ecology. Metabolic by-products were predicted
524 with flux-balance-analysis(63) using the flux through the biomass reaction as objective
525 function (i.e., maximization) and subsequently analyzing the fluxes through exchange
526 reactions. Metabolite production rates ($\text{mmol} * \text{gDW}^{-1} * \text{hr}^{-1}$) were normalized by growth rates
527 (hr^{-1}), resulting in the unit mmol/gDW . Production rates $> 1 \text{ mmol/gDW}$ were considered as
528 microbial production. The production of the two enantiomers, D- and L-lactate, were
529 combined since their production rates were interchangeable in the FBA solution.

530

531 **Cohorts**

532 Data from three human population cohorts were analyzed for the present study. The first
533 cohort comprised paired stool metagenomes and serum metabolomes from 185
534 participants. This cohort was recruited at the University Hospital Schleswig Holstein,
535 Campus Kiel 2016, and included detailed phenotypic and health-related data. The study was
536 approved by the local ethics committee in Kiel (D441). None of the participants had received
537 antibiotics or other medication two months before inclusion.

538 The second cohort (Trocí et al., 2022) comprised longitudinal stool metagenomes from 79
539 study participants. Data from this cohort were already part of a previous study (32), which
540 were reanalyzed in the present study. For each participant from this cohort, two
541 metagenomes were sequenced from stool samples that were three years apart. In addition,

542 for each sampling time point, data from food frequency questionnaires were available. In
543 brief, the questionnaire, originally designed and validated for use in the German EPIC study
544 (65), comprised 112 food items and aimed to collect the intake frequency and amount of
545 various types of foods. The average energy intake and other nutrients per day were
546 calculated with data from the German Food Code and Nutrient Data Base (BLS version II.3
547 (66)). Further information about the sampling method, study design, and sequencing
548 method of the Troci et al. 2022 study can be found in the original publication (32).
549 The third cohort integrates fecal metagenomes from the 2021 publication by Chen et al.,
550 involving 338 Dutch study participants(33). Like the second cohort, the Chen et al. cohort is
551 designed longitudinally, incorporating two fecal metagenomic samples per participant over
552 a four-year interval.

553

554 **Metagenome sequencing**

555 DNA of stool samples was extracted using the QIAamp DNA fast stool mini kit automated on
556 the QIAcube (Qiagen, Hilden, Germany) with a prior bead-beating step as described earlier
557 (66). DNA extracts were used for metagenomic library preparation as described previously
558 (32) using Illumina Nextera DNA Library Preparation Kit (Illumina, San Diego, CA) and
559 sequenced with 2x150 bp paired-end reads on a NovaSeq platform (Illumina).

560

561 **Metagenome data processing**

562 Metagenomic reads were quality filtered using the 'qc' workflow from the metagenome-
563 atlas pipeline tool v2.9.0(67) with default parametrization if not stated otherwise in the
564 Supplementary Information. Quality-controlled (QC) reads were used to estimate the
565 relative abundance of genomes from the HRGM catalog(27) using coverM v0.6.1(68). Across
566 all three analyzed metagenome data sets, a median of 76% QC reads mapped to HRGM
567 reference genomes (Supplementary Fig. S8).

568

569 **Targeted metabolomics of blood samples**

570 Metabolite quantification for serum was performed by liquid chromatography tandem mass
571 spectrometry (LC-MS-MS) using the MxP Quant 500 kit (Biocrates Life Sciences AG,
572 Innsbruck, Austria) according to the manufacturer's instructions. Please refer to the

573 Supplementary Information document for blood sample preparation and metabolite
574 quantification details.

575

576 **Statistical data analysis**

577 All data analysis steps and statistical tests were performed using R (v4.1.2). Flow charts (Fig.
578 1. and 3A) were created and rendered using Flowchart Designer 3. P-values were corrected
579 for multiple testing using the Benjamini and Hochberg method (69). In all statistical tests, an
580 adjusted p-value of <0.05 was considered as significance threshold. UniFrac distances(70)
581 were calculated using relative abundances of genomes using the R-package abdiv, v0.2.0
582 (71).

583 Alpha diversity was calculated using the Shannon index as implemented in the R-package
584 'vegan' v2.6-2 (72). The average pairwise Hamming distance between auxotrophic profiles
585 of co-occurring genomes was calculated per sample to study the effect of metabolic
586 dissimilarity on diversity. In other words, the Hamming distance is the number of amino
587 acids for which the two genotypes had different auxotrophy predictions. In addition to the
588 Hamming distance, we also calculated the abundance-weighted average of auxotrophies per
589 genome y_j for each sample j using the equation:

$$y_j = \sum_{i \in M} a_i p_{ij}$$

590 Where M is the set of all genomes, a_i the number of auxotrophies in genome i , and p_{ij} the
591 relative abundance of genome i in sample j .

592 For the longitudinal cohorts, the UniFrac distance was correlated with the abundance-
593 weighted average of auxotrophies per genome at the first time point using the Spearman
594 correlation. Further, the Spearman correlation was used to determine the association
595 between the UniFrac distance and the Hamming distance. With food frequency
596 questionnaires, the total dietary intake of amino acids per day was summed up for every
597 individual, and the energy percentage was then calculated based on the total energy intake
598 per day. The Spearman correlation was used to study an association between the total
599 dietary intake of amino acids relative to the total consumed energy (E%) and the frequency
600 of amino acid auxotrophic bacteria. The correlation between the intake of amino acids and
601 frequencies of amino acid auxotrophic bacteria was studied separately for both time points.

602

603 **Data availability**

604 The reconstructed genome-scale metabolic models from the HRGM catalog are available via
605 *Zenodo* (73). Further, metabolic model reconstructions for 124 prototrophic genotypes and
606 36 gut bacterial genotypes with amino acid auxotrophy/prototrophy status known from
607 laboratory experiments are available via *Zenodo* (74,75). Metagenome sequencing data are
608 provided via the European Nucleotide Archive 'ENA' for our study cohort and the cohort
609 from Troci et al. (this study accession: PRJEB60573, Troci et al.: PRJEB48605). Metagenome
610 sequencing data from Chen et al. 2021 (33) are available upon request via the European
611 Genome-Phenome Archive (accession: EGAD00001006959).

612

613 **Code availability**

614 The code for analysis of the data can be found in the GitHub repositories
615 https://github.com/SvBusche/Auxo_manuscript_2023 (main results) and
616 https://github.com/Waschina/AGORA2_auxotrophies (for auxotrophy predictions from
617 AGORA2 metabolic models).

618

619 **Competing interests**

620 The authors declare no conflicts of interest related to this work.

621

622 **Funding**

623 This work was supported by the DFG Cluster of Excellence "Precision medicine in chronic
624 inflammation (PMI)" RTF V and TI-1 (K.A, S.W., P.R.), the PMI Miniproposal funding (S.W.),
625 the EKFS (Clinician Scientist Professorship, K.A.), the BMBF (eMED Juniorverbund "Try-IBD"
626 01ZX1915A, K.A.), the DFG RU5042 (A.F., K.A., P.R.), DZHK (N.F.), and DFG FR 1289/17-1
627 (N.F.). This research was further supported through high-performance computing resources
628 available at the Kiel University Computing Centre, which received funding from the German
629 Research Foundation (DFG project number 440395346).

630

631

632 **References**

- 633 1. Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, Dijkstra G, et al.
634 Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its
635 Relevance for Inflammatory Bowel Diseases. *Front Immunol.* 2019 Mar 11;10:277.
- 636 2. Neis E, Dejong C, Rensen S. The Role of Microbial Amino Acid Metabolism in Host
637 Metabolism. *Nutrients.* 2015 Apr 16;7(4):2930–46.
- 638 3. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. *Nat*
639 *Commun.* 2018 Dec;9(1):3294.
- 640 4. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer.
641 *Nat Rev Microbiol.* 2014 Oct;12(10):661–72.
- 642 5. Hinrichsen F, Hamm J, Westermann M, Schröder L, Shima K, Mishra N, et al. Microbial
643 regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. *Cell*
644 *Metabolism.* 2021 Dec;33(12):2355-2366.e8.
- 645 6. Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A
646 gut bacterial pathway metabolizes aromatic amino acids into nine circulating
647 metabolites. *Nature.* 2017 Nov;551(7682):648–52.
- 648 7. Tintelnot J, Xu Y, Lesker TR, Schönlein M, Konczalla L, Giannou AD, et al. Microbiota-
649 derived 3-IAA influences chemotherapy efficacy in pancreatic cancer. *Nature.* 2023 Mar
650 2;615(7950):168–74.
- 651 8. Nikolaus S, Schulte B, Al-Massad N, Thieme F, Schulte DM, Bethge J, et al. Increased
652 Tryptophan Metabolism Is Associated With Activity of Inflammatory Bowel Diseases.
653 *Gastroenterology.* 2017 Dec;153(6):1504-1516.e2.
- 654 9. Effenberger M, Reider S, Waschyna S, Bronowski C, Enrich B, Adolph TE, et al. Microbial
655 Butyrate Synthesis Indicates Therapeutic Efficacy of Azathioprine in IBD Patients. *Journal*
656 *of Crohn's and Colitis.* 2021 Jan 13;15(1):88–98.
- 657 10. Pryor R, Norvaisas P, Marinos G, Best L, Thingholm LB, Quintaneiro LM, et al. Host-
658 Microbe-Drug-Nutrient Screen Identifies Bacterial Effectors of Metformin Therapy. *Cell.*
659 2019 Sep;178(6):1299-1312.e29.
- 660 11. D'Souza G, Waschyna S, Pande S, Bohl K, Kaleta C, Kost C. LESS IS MORE: SELECTIVE
661 ADVANTAGES CAN EXPLAIN THE PREVALENT LOSS OF BIOSYNTHETIC GENES IN
662 BACTERIA: ADAPTIVE LOSS OF BIOSYNTHETIC GENES IN BACTERIA. *Evolution.* 2014
663 Sep;68(9):2559–70.
- 664 12. Heinken A, Khan MT, Paglia G, Rodionov DA, Harmsen HJM, Thiele I. Functional
665 Metabolic Map of *Faecalibacterium prausnitzii*, a Beneficial Human Gut Microbe. *J*
666 *Bacteriol.* 2014 Sep 15;196(18):3289–302.

667 13. Soto-Martin EC, Warnke I, Farquharson FM, Christodoulou M, Horgan G, Derrien M, et
668 al. Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding
669 in Synthetic Microbial Communities. Relman DA, editor. *mBio*. 2020 Aug
670 25;11(4):e00886-20.

671 14. Xavier JC, Patil KR, Rocha I. Integration of Biomass Formulations of Genome-Scale
672 Metabolic Models with Experimental Data Reveals Universally Essential Cofactors in
673 Prokaryotes. *Metabolic Engineering*. 2017 Jan;39:200–8.

674 15. van der Ark KCH, Aalvink S, Suarez-Diez M, Schaap PJ, de Vos WM, Belzer C. Model-
675 driven design of a minimal medium for *Akkermansia muciniphila* confirms mucus
676 adaptation. *Microb Biotechnol*. 2018 May;11(3):476–85.

677 16. Tramontano M, Andrejev S, Pruteanu M, Klünemann M, Kuhn M, Galardini M, et al.
678 Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. *Nat
679 Microbiol*. 2018 Apr;3(4):514–22.

680 17. Kiela PR, Ghishan FK. Physiology of Intestinal Absorption and Secretion. *Best Practice &
681 Research Clinical Gastroenterology*. 2016 Apr;30(2):145–59.

682 18. Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on
683 human–microbe mutualism and disease. *Nature*. 2007 Oct;449(7164):811–8.

684 19. Weiss AS, Burrichter AG, Durai Raj AC, von Strelitz A, Meng C, Kleigrewe K, et al. In
685 vitro interaction network of a synthetic gut bacterial community. *ISME J*. 2021 Dec 2;1–
686 15.

687 20. Van Vliet S, Hauert C, Fridberg K, Ackermann M, Dal Co A. Global dynamics of microbial
688 communities emerge from local interaction rules. Grilli J, editor. *PLoS Comput Biol*. 2022
689 Mar 4;18(3):e1009877.

690 21. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy:
691 interaction for the common good. *FEMS Microbiol Rev*. 2013 May;37(3):384–406.

692 22. Rivière A, Gagnon M, Weckx S, Roy D, De Vuyst L. Mutual Cross-Feeding Interactions
693 between *Bifidobacterium longum* subsp. *longum* NCC2705 and *Eubacterium rectale*
694 ATCC 33656 Explain the Bifidogenic and Butyrogenic Effects of Arabinoxylan
695 Oligosaccharides. Schloss PD, editor. *Appl Environ Microbiol*. 2015 Nov 15;81(22):7767–
696 81.

697 23. Shetty SA, Kostopoulos I, Geerlings SY, Smidt H, de Vos WM, Belzer C. Dynamic
698 metabolic interactions and trophic roles of human gut microbes identified using a
699 minimal microbiome exhibiting ecological properties. *ISME J*. 2022 Sep;16(9):2144–59.

700 24. Giri S, Oña L, Waschina S, Shitut S, Yousif G, Kaleta C, et al. Metabolic dissimilarity
701 determines the establishment of cross-feeding interactions in bacteria. *Current Biology*.
702 2021 Dec;31(24):5547–5557.e6.

703 25. Oña L, Giri S, Avermann N, Kreienbaum M, Thormann KM, Kost C. Obligate cross-feeding
704 expands the metabolic niche of bacteria. *Nat Ecol Evol.* 2021 Sep;5(9):1224–32.

705 26. Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial
706 cross-feeding networks. *Ecology Letters.* 2022 Jun;25(6):1410–20.

707 27. Kim CY, Lee M, Yang S, Kim K, Yong D, Kim HR, et al. Human reference gut microbiome
708 catalog including newly assembled genomes from under-represented Asian
709 metagenomes. *Genome Med.* 2021 Dec;13(1):134.

710 28. Price M. Erroneous predictions of auxotrophies by CarveMe. *Nat Ecol Evol.* 2023
711 Feb;7(2):194–5.

712 29. Ashniev GA, Petrov SN, lablokov SN, Rodionov DA. Genomics-Based Reconstruction and
713 Predictive Profiling of Amino Acid Biosynthesis in the Human Gut Microbiome.
714 *Microorganisms.* 2022 Apr;10(4):740.

715 30. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum
716 metabolome alterations in obesity and after weight-loss intervention. *Nat Med.* 2017
717 Jul;23(7):859–68.

718 31. Davenport M, Poles J, Leung JM, Wolff MJ, Abidi WM, Ullman T, et al. Metabolic
719 Alterations to the Mucosal Microbiota in Inflammatory Bowel Disease: Inflammatory
720 Bowel Diseases. 2014 Apr;20(4):723–31.

721 32. Troci A, Rausch P, Waschyna S, Lieb W, Franke A, Bang C. Long-Term Dietary Effects on
722 Human Gut Microbiota Composition Employing Shotgun Metagenomics Data Analysis.
723 *Molecular Nutrition Food Res.* 2022 Jul 5;2101098.

724 33. Chen L, Wang D, Garmaeva S, Kurilshikov A, Vich Vila A, Gacesa R, et al. The long-term
725 genetic stability and individual specificity of the human gut microbiome. *Cell.* 2021
726 Apr;184(9):2302-2315.e12.

727 34. Henriques SF, Dhakan DB, Serra L, Francisco AP, Carvalho-Santos Z, Baltazar C, et al.
728 Metabolic cross-feeding in imbalanced diets allows gut microbes to improve
729 reproduction and alter host behaviour. *Nat Commun.* 2020 Dec;11(1):4236.

730 35. D'Souza G, Shitut S, Preussger D, Yousif G, Waschyna S, Kost C. Ecology and evolution of
731 metabolic cross-feeding interactions in bacteria. *Nat Prod Rep.* 2018;35(5):455–88.

732 36. Waschyna S, D'Souza G, Kost C, Kaleta C. Metabolic network architecture and carbon
733 source determine metabolite production costs. *FEBS J.* 2016 Jun;283(11):2149–63.

734 37. Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: Evolution of Dependencies
735 through Adaptive Gene Loss. *mBio.* 2012 May 2;3(2):e00036-12.

736 38. Garcia SL, Buck M, McMahon KD, Grossart HP, Eiler A, Warnecke F. Auxotrophy and
737 intrapopulation complementary in the ‘interactome’ of a cultivated freshwater model
738 community. *Mol Ecol.* 2015 Sep;24(17):4449–59.

739 39. Pande S, Merker H, Bohl K, Reichelt M, Schuster S, de Figueiredo LF, et al. Fitness and
740 stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria.
741 ISME J. 2014 May;8(5):953–62.

742 40. Pande S, Shitut S, Freund L, Westermann M, Bertels F, Colesie C, et al. Metabolic cross-
743 feeding via intercellular nanotubes among bacteria. Nat Commun. 2015 Feb
744 23;6(1):6238.

745 41. van der Wielen N, Moughan PJ, Mensink M. Amino Acid Absorption in the Large
746 Intestine of Humans and Porcine Models. J Nutr. 2017 Aug;147(8):1493–8.

747 42. Zeng X, Xing X, Gupta M, Keber FC, Lopez JG, Lee YCJ, et al. Gut bacterial nutrient
748 preferences quantified in vivo. Cell. 2022 Sep;185(18):3441-3456.e19.

749 43. Sharma V, Rodionov DA, Leyn SA, Tran D, lablokov SN, Ding H, et al. B-Vitamin Sharing
750 Promotes Stability of Gut Microbial Communities. Front Microbiol. 2019 Jul 2;10:1485.

751 44. Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, et al. A
752 metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature.
753 2021 Jul;595(7867):415–20.

754 45. Sánchez B, Champomier-Vergès MC, Collado M del C, Anglade P, Baraige F, Sanz Y, et al.
755 Low-pH Adaptation and the Acid Tolerance Response of *Bifidobacterium longum*
756 Biotype longum. Applied and Environmental Microbiology. 2007 Oct 15;73(20):6450–9.

757 46. Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR. Influence of retention time on
758 degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage
759 continuous culture system. Journal of Applied Bacteriology. 1989 Nov;67(5):521–7.

760 47. Bansil R, Turner BS. The biology of mucus: Composition, synthesis and organization.
761 Advanced Drug Delivery Reviews. 2018 Jan;124:3–15.

762 48. Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. Gut microbiome
763 stability and resilience: elucidating the response to perturbations in order to modulate
764 gut health. Gut. 2021 Mar;70(3):595–605.

765 49. Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased Bacterial
766 Diversity Characterizes the Altered Gut Microbiota in Patients With Psoriatic Arthritis,
767 Resembling Dysbiosis in Inflammatory Bowel Disease: Gut Microbiota in PsA. Arthritis &
768 Rheumatology. 2015 Jan;67(1):128–39.

769 50. Aden K, Rehman A, Waschina S, Pan WH, Walker A, Lucio M, et al. Metabolic Functions
770 of Gut Microbes Associate With Efficacy of Tumor Necrosis Factor Antagonists in
771 Patients With Inflammatory Bowel Diseases. Gastroenterology. 2019 Nov;157(5):1279–
772 1292.e11.

773 51. Lepage P, Hässler R, Spehlmann ME, Rehman A, Zvirbliene A, Begun A, et al. Twin Study
774 Indicates Loss of Interaction Between Microbiota and Mucosa of Patients With
775 Ulcerative Colitis. Gastroenterology. 2011 Jul;141(1):227–36.

776 52. Fangmann D, Theismann EM, Türk K, Schulte DM, Relling I, Hartmann K, et al. Targeted
777 Microbiome Intervention by Microencapsulated Delayed-Release Niacin Beneficially
778 Affects Insulin Sensitivity in Humans. *Diabetes Care*. 2018 Mar 1;41(3):398–405.

779 53. Gonze D, Coyte KZ, Lahti L, Faust K. Microbial communities as dynamical systems.
780 *Current Opinion in Microbiology*. 2018 Aug 1;44:41–9.

781 54. Coyte KZ, Schluter J, Foster KR. The ecology of the microbiome: Networks, competition,
782 and stability. *Science*. 2015 Nov 6;350(6261):663–6.

783 55. Palmer JD, Foster KR. Bacterial species rarely work together. *Science*. 2022 May
784 6;376(6593):581–2.

785 56. Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, et al. Major
786 phenylpropanoid-derived metabolites in the human gut can arise from microbial
787 fermentation of protein. *Mol Nutr Food Res*. 2013 Mar;57(3):523–35.

788 57. Brial F, Chiloux J, Nielsen T, Vieira-Silva S, Falony G, Andrikopoulos P, et al. Human and
789 preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and
790 mediator of metabolic health. *Gut*. 2021 Nov;70(11):2105–14.

791 58. Saito Y, Sato T, Nomoto K, Tsuji H. Identification of phenol- and p-cresol-producing
792 intestinal bacteria by using media supplemented with tyrosine and its metabolites.
793 *FEMS Microbiology Ecology*. 2018 Sep 1;94(9):fiy125.

794 59. Lamas B, Natividad JM, Sokol H. Aryl hydrocarbon receptor and intestinal immunity.
795 *Mucosal Immunology*. 2018 Jul;11(4):1024–38.

796 60. Price MN, Deutschbauer AM, Arkin AP. GapMind: Automated Annotation of Amino Acid
797 Biosynthesis. Hallam SJ, editor. *mSystems*. 2020 Jun 30;5(3):e00291-20.

798 61. Almeida A, Nayfach S, Boland M, Strozzi F, Beracochea M, Shi ZJ, et al. A unified catalog
799 of 204,938 reference genomes from the human gut microbiome. *Nat Biotechnol*. 2021
800 Jan;39(1):105–14.

801 62. Zimmermann J, Kaleta C, Waschyna S. gapseq: informed prediction of bacterial
802 metabolic pathways and reconstruction of accurate metabolic models. *Genome Biol*.
803 2021 Dec;22(1):81.

804 63. Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? *Nat Biotechnol*. 2010
805 Mar;28(3):245–8.

806 64. Gelius-Dietrich G, Desouki AA, Fritzemeier CJ, Lercher MJ. sybil – Efficient constraint-
807 based modelling in R. *BMC Syst Biol*. 2013 Dec;7(1):125.

808 65. Boeing H, Wahrendorf J, Becker N. EPIC-Germany – A Source for Studies into Diet and
809 Risk of Chronic Diseases. *Annals of Nutrition and Metabolism*. 1999 Dec 9;43(4):195–
810 204.

811 66. Thingholm LB, Bang C, Rühlemann MC, Starke A, Sicks F, Kaspari V, et al. Ecology impacts
812 the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban
813 humans. *BMC Microbiol.* 2021 Oct 11;21(1):276.

814 67. Kieser S, Brown J, Zdobnov EM, Trajkovski M, McCue LA. ATLAS: a Snakemake workflow
815 for assembly, annotation, and genomic binning of metagenome sequence data. *BMC*
816 *Bioinformatics.* 2020 Dec;21(1):257.

817 68. Woodcroft BJ. CoverM [Internet]. 2023 [cited 2023 Aug 20]. Available from:
818 <https://github.com/wwood/CoverM>

819 69. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control
820 the false discovery rate. *Biometrika.* 2006 Sep 1;93(3):491–507.

821 70. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance
822 metric for microbial community comparison. *ISME J.* 2011 Feb;5(2):169–72.

823 71. Bittinger K. abdiv: Alpha and Beta Diversity Measures [Internet]. 2020 [cited 2023 Aug
824 21]. Available from: <https://cran.r-project.org/web/packages/abdiv/index.html>

825 72. Jari Oksanen, Gavin L. Simpson, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre,
826 Peter R. Minchin, et al. vegan: Community Ecology Package. R package version 26-2
827 [Internet]. 2022; Available from: <https://CRAN.R-project.org/package=vegan>

828 73. Waschnia S, Zimmermann J, Kaleta C. gapseq reconstructions for 5414 genomes from
829 the HRGM collection [Internet]. Zenodo; 2023 [cited 2023 Aug 25]. Available from:
830 <https://zenodo.org/record/8283247>

831 74. Busche, Svenja, Waschnia, Silvio. gapseq reconstructions for 124 prototrophic
832 genotypes [Internet]. Zenodo; 2023 [cited 2023 May 10]. Available from:
833 <https://zenodo.org/record/7919571>

834 75. Starke S, Waschnia S. gapseq reconstruction for 36 human gut bacterial strains with
835 known amino acid auxotrophy status [Internet]. Zenodo; 2023 [cited 2023 Aug 21].
836 Available from: <https://zenodo.org/record/8269533>

837 76. Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The
838 MetaCyc database of metabolic pathways and enzymes. *Nucleic Acids Research.* 2018
839 Jan 4;46(D1):D633–9.

840

841 **Acknowledgments**

842 We want to thank the staff of the IKMB (*Institute für Klinische Molekularbiologie*)
843 microbiome laboratory and the IKMB sequencing facilities for their excellent technical
844 support.

845

846

847 **Author information**

848 **Authors and Affiliations**

849

850 *Institute of Human Nutrition and Food Science, Kiel University, Department of
851 Nutriinformatics, Kiel, Germany*

852 Svenja Starke, Danielle Harris, Silvio Waschina

853

854 *Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany*

855 Danielle Harris, Mhmd Oumari, Corinna Bang, Philip Rosenstiel, Stefan Schreiber, Andre
856 Franke, Konrad Aden

857

858 *Research Group Evolutionary Ecology and Genetics, Zoological Institute, University of Kiel,
859 Kiel, Germany*

860 Johannes Zimmermann

861

862 *Max Planck Institute for Evolutionary Biology, Plön, Germany*

863 Johannes Zimmermann

864

865 *Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany*

866 Sven Schuchardt

867

868 *Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel,
869 Germany*

870 Derk Frank, Norbert Frey

871

872 *German Centre for Cardiovascular Diseases (DZHK), Partner site Hamburg, Kiel, Lübeck,
873 Germany*

874 Derk Frank

875

876 *Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel,
877 Germany*

878 Stefan Schreiber, Konrad Aden

879

880

881 **Author contribution**

882

883 Conceptualization: S.W.

884 Methodology: Sv.St., Sv.S., S.W.

885 Software: Sv.St., D.H., S.W., J.Z.

886 Validation: D.H., S.W., J.Z.

887 Formal analysis: Sv.St., D.H, M.O.

888 Investigation: Sv.St.

889 Resources: Sv.S., D.F., N.F, A.F., K.A., S.W.

890 Data curation: C.B., M.O., D.F.

891 Writing - Original Draft: Sv.St., S.W.

892 Writing - Review & Editing: Sv.St., D.H., S.W.

893 Visualization: Sv.St., S.W.

894 Project administration: K.A., S.W.

895 Funding acquisition: A.F., N.F., P.R., St.S., K.A., S.W.

896 **Figure legends**

897

898 **Figure 1. Workflow for the prediction of auxotrophies with genome-scale metabolic**
899 **modeling.** *Gapseq* was used to reconstruct genome-scale metabolic models from genomes
900 of the Human Reference Gut Microbiome (HRGM) catalog(27). The workflow of *gapseq* to
901 reconstruct metabolic models consists of five steps: transporter/metabolic pathway
902 prediction, draft metabolic network construction, growth medium prediction, gap filling,
903 final model reconstruction. Auxotrophy prediction was performed using flux-balance
904 analysis and validated by reconstructing *gapseq* models from experimentally verified
905 auxotrophic strains. The predicted auxotrophies were compared on strain level from *gapseq*
906 and AGORA2 models to experimentally verified auxotrophies. QC reads of cohorts were
907 mapped on HRGM. Auxotrophy frequencies in cohorts were determined by mapping QC
908 reads from the metagenomes of the cohorts to genomes from HRGM collection. Icons are
909 from www.flaticon.com (creators: photo3idea_studio, Freepik, surang, Eucalyp, Voysla,
910 juicy_fish, smashingstocks, SBTS2018, creative_designer).

911

912

913 **Figure 2. Abundances of auxotrophies in 3 687 genomes.** The predicted amino acid
914 auxotrophies in HRGM genomes were categorized into human essential and non-essential
915 amino acids.

916

917

918 **Figure 3. Associations of auxotrophies and fermentation products.** (A) Comparison of
919 fermentation product production rates in auxotrophic and prototrophic bacteria.
920 Production rates of fermentation by-products were predicted with flux-balance analysis
921 (cutoff-value > 1 mmol/gDW) in 3 687 HRGM genomes. The association with the
922 auxotrophic or prototrophic phenotype was statistically evaluated with the Fisher test for
923 exact count data by calculating odds ratios. Asterisks denote FDR-corrected p-values <0.05.
924 (B) Interconnection between the pathways of formation of fermentation products and
925 amino acids, based on MetaCyc pathways(76). We note that not all the displayed
926 reactions/pathways occur in every gut bacterial genotype. The metabolic network shown

927 displays pathways commonly found in human gut metagenomes and linked to amino acid
928 biosynthetic pathways.

929

930

931 **Figure 4. Distribution of auxotrophies in human gut microbiomes from 185 healthy adults,**
932 **their association with diversity, and serum metabolite levels.** (A) Boxplots display the
933 abundance of amino acid auxotrophies in the human gut microbiome (n=185 samples). (B)
934 Partial Spearman correlation between the frequency of auxotrophic gut bacteria and serum
935 levels of health markers and microbiome Shannon diversity. Dots indicate significant
936 associations (FDR-corrected p-values < 0.05, adjusted for the potential confounders age,
937 sex, and BMI). (C) The abundance-weighted average of auxotrophies was calculated and
938 correlated with the Shannon diversity (Spearman correlation, $p = 0.60$, $p < 2.2e-16$). (D) The
939 average hamming distance was calculated to study the metabolic dissimilarity of auxotrophy
940 profiles of coexisting genotypes and, therefore, potential cross-feeding interactions within
941 the microbial communities. With the Spearman correlation, the association between the
942 calculated average hamming distance and the Shannon diversity in the gut was estimated (p
943 $= 0.62$, $p < 2.2e-16$). (E) Partial Spearman correlations between the serum levels of
944 metabolites and the frequency of auxotrophic bacteria in the gut microbiome.
945 Abbreviations for the serum metabolite levels can be found in Supplementary Table S5. Dots
946 indicate significant associations (FDR-corrected p-values < 0.05, adjusted for confounders
947 age, sex, and BMI).

948

949

950 **Figure 5. Influence of auxotrophies on long-term stability of the human gut microbiome.**
951 (A) The stability of the human gut microbiome was calculated as 1 minus the UniFrac
952 distance between the two time points in the longitudinal studies and correlated with the
953 abundance-weighted average of auxotrophies at the first time point to study a potential
954 influence of auxotrophies on the long-term stability of the human gut microbiome. (B) The
955 average Hamming distance was calculated for the first time point and then correlated with
956 the 1-UniFrac value to investigate the influence of potential cross-feeding on long-term
957 stability. (C) The contribution of individual amino acid auxotrophies on the stability was

958 calculated with the Spearman correlation between the 1-UniFrac values and individual
959 amino acid auxotrophy frequencies.

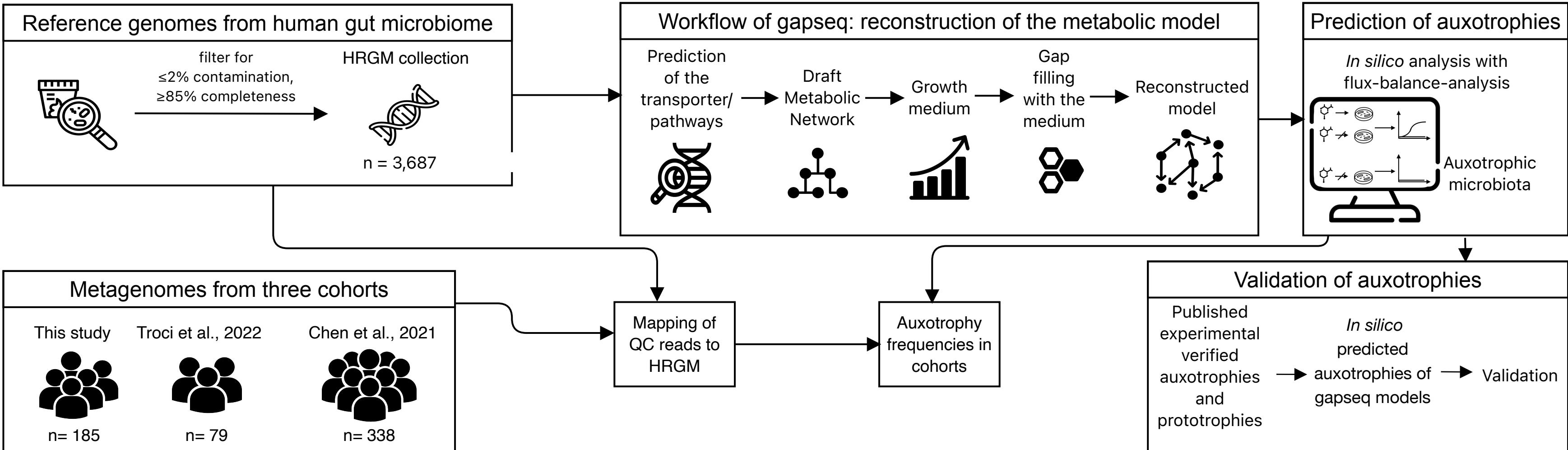
960 **Tables**

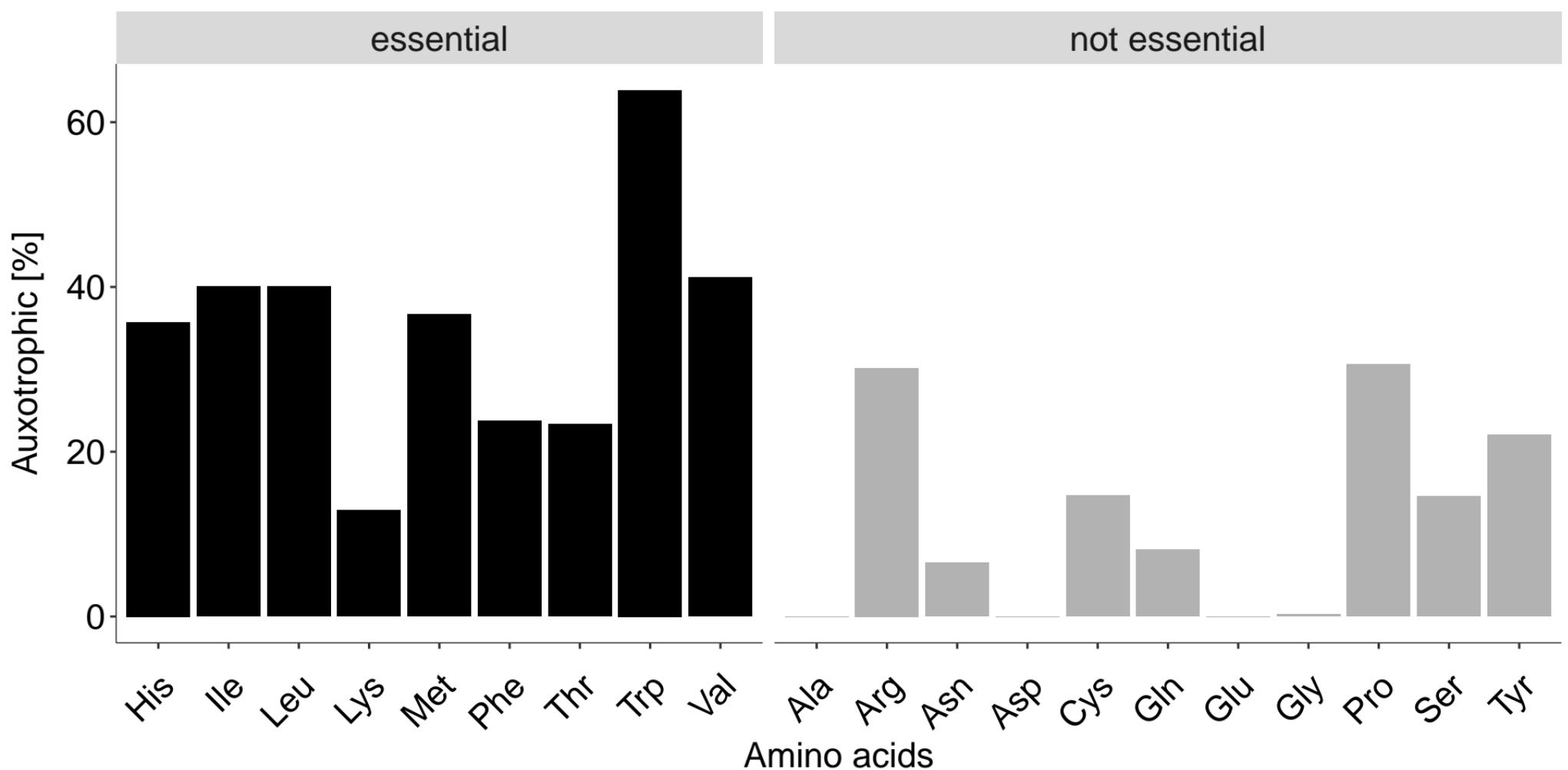
961 **Table 1. Cohort characteristics.** Age and BMI are given as the median and interquartile
962 range.

	This study	Troci <i>et al.</i> , 2022	Chen <i>et al.</i> , 2021
Age (years)	47 [40-52]	53 [45.75-57.25]*	47.5 [40-56]
BMI	24.5 [22.2-26.4]	25.7 [23.5 -27.5]*	–
Female (%)	44.9	37.5*	55.6
Study participants	185	79	338

963

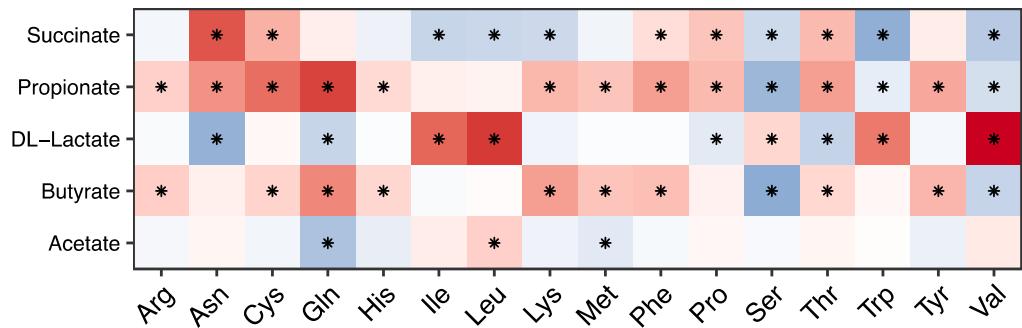
964 * Missing values/information: 7.



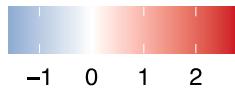


A

Fermentation product



Auxotrophy

log₂ (odds ratio)

* Padj < 0.05

B