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Abstract 32 

Amino acid auxotrophies are prevalent among bacteria. They can govern ecological 33 

dynamics in microbial communities and indicate metabolic cross-feeding interactions 34 

among coexisting genotypes. Despite the ecological importance of auxotrophies, their 35 

distribution and impact on the diversity and function of the human gut microbiome remain 36 

poorly understood. This study performed the first systematic analysis of the distribution of 37 

amino acid auxotrophies in the human gut microbiome using a combined metabolomic, 38 

metagenomic, and metabolic modeling approach. Results showed that amino acid 39 

auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being 40 

the most common. Auxotrophy frequencies were higher for those amino acids that are also 41 

essential to the human host. Moreover, a higher overall abundance of auxotrophies was 42 

associated with greater microbiome diversity and stability, and the distribution of 43 

auxotrophs was found to be related to the human host's metabolome, including 44 

trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results 45 

suggest that amino acid auxotrophies are important factors contributing to microbiome 46 

ecology and host-microbiome metabolic interactions.  47 
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Background 48 

The metabolic processes performed by the human gut microbiota have a crucial impact on 49 

human metabolism and health(1–3). For instance, various human gut bacteria produce the 50 

short-chain fatty acid butyrate. Butyrate is a primary energy source for human 51 

colonocytes(1) and intersects with host immunological processes by mediating anti-52 

inflammatory effects(4,5). Another notable metabolic interaction between the human host 53 

and its gastrointestinal microbiota is the microbial transformation of aromatic amino acids 54 

into various metabolites. Recent studies suggest that aromatic amino acid-derived 55 

metabolites such as the auxins indole-3-propionic acid and indole-3-acetic acid can 56 

modulate the host immune system(6,7). Thus, these and several further studies provide 57 

evidence that gut microbial metabolites are essential factors in the pathophysiology of 58 

inflammatory diseases and the efficacy of immunomodulatory therapies(7–10). 59 

 60 

The repertoire of molecules synthesized and eventually released by individual gut microbes 61 

comprises metabolic by-products that serve the dual purpose of energy metabolism and 62 

facilitating the biosynthesis of essential metabolites necessary for cellular maintenance and 63 

proliferation. However, often not all metabolites required for growth and survival (i.e., 64 

nucleotides, vitamins, amino acids) can be de-novo synthesized by gut-dwelling 65 

microorganisms, rendering those organisms dependent (termed auxotrophic) on the uptake 66 

of the focal metabolite from the microbial cell’s nutritional environment. Several in silico 67 

studies have applied genome-mining approaches, suggesting that most analyzed gut 68 

bacteria lack biosynthetic pathways for producing at least one proteinogenic amino 69 

acid(11,12) or a growth-essential vitamin(13,14). In addition, in vitro growth experiments 70 

have confirmed specific amino acid and vitamin auxotrophies in common human gut 71 

bacteria(13,15,16). 72 

 73 

The prevalence of auxotrophs in the human gut microbiome raises the question of the 74 

source of the required metabolites in the gastrointestinal growth environment. There are 75 

three potential sources of essential nutrients for microbial growth: (i) Required metabolites 76 

could be diet-derived. However, amino acids and vitamins are usually efficiently absorbed 77 

by the human host in the small intestine(17), limiting the accessibility of diet-derived 78 
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essential nutrients for the majority of the gut microbial community, which resides in the 79 

colonic region(18). (ii) Metabolites required by auxotrophic microorganisms in the 80 

gastrointestinal tract may be host-derived, e.g., from proteins and peptides secreted by the 81 

gut epithelium into the gut lumen or from apical proteins of the host epithelial cell layer 82 

accessible to gut microorganisms(15). (iii) Auxotrophic members of the gut microbial 83 

community might obtain essential nutrients via cross-feeding interactions with prototrophic 84 

organisms within their microbial community(19,20). 85 

 86 

While the exchange of electron donor metabolites (e.g., acetate- or lactate cross-feeding) 87 

between different microorganisms is well-documented for the human gut microbiome(21–88 

23), the extent of cross-feeding interactions via the exchange of essential nutrients such as 89 

amino acids and vitamins remains still unknown. However, in vitro experiments of synthetic 90 

microbial communities suggest that co-cultured microorganisms, which are auxotrophic for 91 

different compounds, can support each other’s growth by exchanging the focal 92 

metabolites(24). Furthermore, theoretical ecological models suggest that cross-feeding 93 

interactions between auxotrophic organisms within complex communities can increase 94 

community diversity through metabolic niche expansion(25) and community robustness to 95 

ecological perturbance(26), such as changes in the composition of the chemical 96 

environment. Thus, cross-feeding of amino acids and vitamins between different members 97 

of the human gut microbiota could be crucial determinants of microbiome dynamics, 98 

resilience, and the contribution of gut microbes to human metabolism and health. 99 

 100 

In this study, we applied genome-scale metabolic modeling to predict the distribution and 101 

diversity of amino acid auxotrophies in the human gut microbiome. The predictions were 102 

combined with stool metagenomic sequencing and targeted serum metabolomics from 103 

observational human cohort studies to estimate auxotrophy frequencies and their impact 104 

on the human metabolome. We found that amino acids that are essential to the human 105 

host are also the most common auxotrophies in the human gut microbiome. Intriguingly, a 106 

higher frequency of auxotrophies was associated with long-term stability of the microbiome 107 

community composition. Furthermore, a higher number of auxotrophies among gut bacteria 108 

was associated with higher diversity of the gut bacteria and increased levels of aromatic 109 

compounds of putative microbial origin in the human serum metabolome.  110 
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Results 111 

Prediction and validation of auxotrophies with genome-scale 112 

metabolic modeling 113 

To estimate the overall distribution of amino acid auxotrophies in the human gut 114 

microbiome, we predicted the amino acid production capacities using genome-metabolic 115 

modeling for all bacterial genomes (n=5 414) from the ‘Human Reference Gut Microbiome 116 

(HRGM)’ collection(27). Auxotrophies were predicted for the 20 proteinogenic amino acids 117 

by comparing the model's growth with and without the amino acid using flux-balance 118 

analysis. If the model was not able to grow without the amino acid, then an auxotrophy was 119 

predicted (Fig. 1). To exclude an overprediction of auxotrophies due to genome 120 

incompleteness, we correlated the genome completeness and the number of auxotrophies 121 

predicted. Results showed a negative relationship between genome completeness and the 122 

number of auxotrophies per genome (Supplementary Fig. S1, ρ=-0.50, pf2.2e-16). To 123 

combat this, the genomes were filtered for completeness g85% and contamination f2%. 124 

Only the filtered metabolic models (n=3 687) were used to predict auxotrophies and 125 

ongoing analysis. All auxotrophies predicted for HRGM models are in the supplementary 126 

material (Supplementary Table S1). 127 

A recent study has reported discrepancies between in silico predictions using metabolic 128 

models reconstructed with carveme (28) and in vitro studies of amino acid auxotrophies in 129 

bacteria(13). To validate our gapseq-based auxotrophy predictions, we compared the 130 

predictions on strain level with in vitro experimentally verified auxotrophies as reported in 131 

previous studies for a total of 36 gut bacteria (Supplementary Table S2), of which most were 132 

already summarized by Ashniev et al. 2022 (29). If a genome assembly of the experimentally 133 

tested strain was available on NCBI RefSeq, we reconstructed the genome-scale metabolic 134 

model and predicted the auxotrophies. In addition to auxotrophy predictions using our 135 

gapseq model collection (Supplementary Table S1), we also tested models from the 136 

AGORA2 collection (Supplementary Table S3). Auxotrophy predictions using gapseq models 137 

had a sensitivity of 75.5%, a specificity of 95.9%, and an accuracy of 93%. The auxotrophies 138 

predicted by the AGORA2 models showed a lower degree of agreement with the 139 

experimental data: sensitivity (43.4%), specificity (92.3%), and accuracy (81.7%). In addition, 140 

we reconstructed genome-scale metabolic models for 124 bacterial genotypes known to be 141 
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prototrophic for all 20 proteinogenic amino acids(28) to further validate our auxotrophy 142 

predictions (Supplementary Table S4). We note that the 124 prototrophic genotypes are 143 

isolates from diverse isolation sources and not from the human gut. However, the resource 144 

can be used to estimate the rate of false auxotrophy predictions(28). In total, 99.1% of all 145 

predictions coincided with the known amino acid prototrophies of the organisms, thus 146 

suggesting a false auxotrophy prediction rate of less than 1%. In general, the frequency of 147 

auxotrophy predictions among genomes from human gut bacteria is generally higher 148 

compared to the collection of 124 prototrophic genomes (Supplementary Fig. S2), indicating 149 

that the high frequency of auxotrophies cannot be explained by a false-positive rate 150 

associated with potential pitfalls in the model reconstruction workflow.  151 

 152 

Amino acid auxotrophies are common in the human gut 153 

microbiome 154 

Auxotrophies for tryptophan were the most prevalent, at 63.9% of the genomes in the 155 

HRGM catalog(Fig. 2). Isoleucine, leucine, and valine (BCAA, branched-chain amino acids) 156 

auxotrophies were also detected with a high abundance (40.1%, 40%, 41.1%, respectively). 157 

No auxotrophies were detected for alanine, aspartate, and glutamate. We further analyzed 158 

the observed auxotrophies at the taxonomy level by comparing the proportion and number 159 

of auxotrophies on phylum and order level (Supplementary Fig. S3). Actinobacteriota were 160 

shown to have a higher proportion of BCAA auxotrophies compared to prototrophies 161 

(Supplementary Fig. S3). For tryptophan, a higher proportion of auxotrophic to prototrophic 162 

bacteria was observed in Firmicutes, Actinobacteriota, and Fusobacteriota. Fusobacteriota 163 

generally had a higher auxotrophic to prototrophic ratio for almost all amino acids, whereas 164 

the opposite was predicted for Proteobacteria. This observation is further supported by the 165 

number of auxotrophies found per genome for Proteobacteria and Fusobacteriota 166 

(Supplementary Fig. S4). Additionally, the results suggest that auxotrophic genotypes have 167 

lost the genes for most of the enzymes required for the biosynthesis of the focal amino acid 168 

(Supplementary Fig. S5). 169 

Taken together, the results indicate that amino acid auxotrophies are prevalent in the 170 

human gut microbiome. 171 

 172 
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Amino acid auxotrophies are associated with the profile of 173 

fermentation products  174 

Amino acid biosynthesis pathways and pathways producing fermentation products share 175 

common precursor metabolites (Fig. 3B). For example, pyruvate is a central metabolite that 176 

is utilized for the biosynthesis of the BCAA as well as in some gut bacterial species for 177 

lactate formation, underlining the interconnection of amino acids and energy metabolism in 178 

the metabolic network. 179 

Here, we investigated whether bacteria that are auxotrophic for specific amino acids are 180 

commonly associated with specific profiles of fermentation products. Therefore, we 181 

predicted the metabolic by-products of cell growth and compared those results with the 182 

auxotrophy predictions for the corresponding organisms (Fig. 3A). BCAA auxotrophic 183 

bacteria were more likely to produce lactate in comparison to prototrophic bacteria 184 

(Fisher’s exact test for count data,-log2(Odds Ratio (OR)) = 2.0- 2.8, FDR-corrected p-185 

value<0.05). Propionate production was commonly predicted for glutamine auxotrophic gut 186 

bacteria (-log2(OR)= 2.4, FDR-corrected p-value<0.05) and by cysteine auxotrophs (-187 

log2(OR)= 1.9, FDR-corrected p-value <0.05). Succinate is predominantly produced by 188 

asparagine auxotrophic gut bacteria (-log2(OR)= 2.2, FDR corrected p-value <0.05). For 189 

butyrate, there was a higher association with glutamine auxotrophic bacteria (-190 

log2(OR)= 1.6, FDR-corrected p-value <0.05).  191 

The association of auxotrophic bacteria with the production of organic acids might be 192 

explained by the distribution of reaction fluxes through the metabolic network. For 193 

instance, pyruvate is a metabolic precursor for the de novo biosynthesis pathways for BCAA 194 

but also for lactate formation (Fig. 3B). Pyruvate not used for BCAA biosynthesis in 195 

auxotrophic genotypes might be redirected towards lactate production. Thus, our findings 196 

suggest a plausible interplay in resource allocation between a microorganism's energy 197 

metabolism strategy and its auxotrophy profile. 198 

 199 

More diverse gut microbiomes are characterized by a higher 200 

auxotrophy frequency 201 

To estimate the frequency of auxotrophies in the gut microbiome of individual persons, we 202 

quantified the relative abundance of gut bacterial genotypes from the HRGM catalog using 203 
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stool metagenomes of 185 healthy adults . As mentioned above, we found a negative 204 

correlation between the number of auxotrophies and genome completeness levels 205 

(Supplementary Fig. S1). To validate that higher genome completeness levels do not affect 206 

the general pattern in the auxotrophy distribution of individual microbiomes, we 207 

determined auxotrophy frequencies with different cutoff values for completeness (80%- 208 

95%) of the reference genomes used for quantification. Overall, the distribution of 209 

auxotrophy frequencies remained robust to increasing genome completeness levels 210 

(Supplementary Fig. S6). Therefore, we decided to keep the 85% completeness level 211 

described above. 212 

Strikingly, auxotrophies for amino acids that are essential to the human organism were 213 

more frequent than non-essential amino acids (Fig. 4A). The highest percentage of bacteria 214 

were auxotrophic for tryptophan, followed by isoleucine and histidine (median: 54%, 28.7%, 215 

28%, respectively). Auxotrophies for leucine, methionine, phenylalanine, arginine, and 216 

valine were found with a median frequency of >20% (Fig. 4A). The lowest frequencies were 217 

detected for serine, lysine, asparagine, aspartate, alanine, and glutamate auxotrophies. 218 

Additionally, we were interested in the relationship between the proportion of auxotrophic 219 

bacteria in the human gut and the overall microbiome diversity calculated as the Shannon 220 

index (Fig. 4B-C). Overall, increasing frequencies of almost all amino acid auxotrophies are 221 

accompanied by increasing microbiome diversity (Spearman correlation, Fig. 4B). Further, 222 

we correlated the Shannon diversity with the abundance-weighted average of the number 223 

of auxotrophies per metagenome sample, which takes the relative abundance of each 224 

genome and its total number of amino acid auxotrophies into account. With an increasing 225 

number of auxotrophies, an increase in the diversity was observed (Fig. 4C, ρ=0.27, 226 

p=0.00018). This result may point towards a positive influence of auxotrophic bacteria on 227 

the microbial diversity in the gut, presumably via a higher degree of amino acid cross-228 

feeding interactions between genotypes that are auxotrophic for different amino acids. To 229 

test this, we calculated the pairwise dissimilarity (Hamming distance) between the binary 230 

auxotrophy profiles of genomes and the means of those differences per metagenome 231 

sample as an indicator for potential cross-feeding in the respective gut microbial 232 

community. An increasing average Hamming distance was positively associated with 233 

increased gut diversity (Fig. 4D, ρ=0.32, p=0.00001). Overall, a higher number of 234 

auxotrophies in the gut community is positively correlated with a higher diversity. 235 
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 236 

Associations of gut bacterial auxotrophies for amino acids with 237 

host health markers and the serum metabolome 238 

The involvement of microbial metabolism in host health has been examined in several other 239 

studies (30,31) but not yet for the frequency of gut microbial amino acid auxotrophies. Our 240 

results showed that several amino acid auxotrophic bacteria are inversely associated with 241 

the stool donor’s BMI (Fig. 4B, partial Spearman correlation). No statistically significant 242 

associations with blood cell counts were found (Fig. 4B). Additionally, we correlated 243 

targeted metabolomics data from serum samples with the frequencies of specific amino 244 

acid auxotrophies (Fig. 4E, partial Spearman correlation). Positive correlations were found 245 

between the tryptophan-derived 3-indoleacetic acid (3-IAA) as well as 3-indolepropionic 246 

acid (3-IPA) and tryptophan auxotrophic gut bacteria. Additionally, several other amino acid 247 

auxotrophies showed positive correlations with these metabolites. P-cresol sulfate was 248 

positively correlated with many amino acid auxotrophies. Further, several significant 249 

associations were detected with metabolites from bile acid metabolism. Negative 250 

correlations were observed for glycoursodeoxycholic acid (GUDCA), a conjugated secondary 251 

bile acid metabolite, and several amino acid auxotrophies. Further, negative correlations 252 

with the bile acid metabolite deoxycholic acid (DCA) were found for the frequencies of 253 

tyrosine, threonine, and cysteine auxotrophies. Positive associations were also observed for 254 

hippuric acid and TMAO with several amino acid auxotrophies. Interestingly, no significant 255 

associations were found for serum levels of amino acids and amino acid-related compounds 256 

(Fig. 4E). 257 

Taken together, the frequency of auxotrophic bacteria is related to serum levels of several 258 

metabolites. The gut microbial contribution to serum metabolite levels was predominantly 259 

found for metabolites previously reported to be of microbial origin (e.g., 3-IAA) or derived 260 

from gut microbially-produced compounds (e.g., TMAO). 261 

 262 

Analysis of longitudinal microbial composition data suggests a 263 

positive influence of auxotrophies on gut microbiome stability  264 

So far, our results suggest an involvement of auxotrophic bacteria on the gut microbial 265 

diversity. Based on this observation, we further wanted to analyze whether the frequency of 266 
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auxotrophies also impacts the microbiome's long-term stability using data from two 267 

longitudinal studies. Therefore, we re-analyzed recently published metagenomic data from 268 

two human cohort studies (32,33). Troci et al. included two stool metagenomes from 79 269 

healthy individuals each where stool samples were three years apart(32). The longitudinal 270 

study of Chen et al. involved two stool metagenomes from 338 individuals with a time 271 

difference between samples of four years(33). Microbiome stability over the time periods 272 

was assessed by calculating the UniFrac distance for the microbial composition between the 273 

two time points for each participant. Since the UniFrac distance ranges between 0 (lowest 274 

possible dissimilarity) and 1 (highest dissimilarity), we calculated the inverse values (1-275 

UniFrac) as a microbiome stability measure. The abundance-weighted average of 276 

auxotrophies per genotype was positively correlated with microbiome stability in both 277 

cohorts (Fig. 5A, Spearman rank sum correlation test, Troci et al.: ρ=0.31, p=0.006, n =79; 278 

Chen et al.: ρ=0.14, p=0.0094, n = 338). We also correlated individual amino acid 279 

auxotrophy frequencies with microbiome stability to understand the impact of individual 280 

amino acid auxotrophies on long-term stability. A statistically significant positive correlation 281 

was found in both cohorts for many amino acid auxotrophies, while no negative correlation 282 

was observed (Fig. 5C). 283 

Next, long-term microbiome stability was also tested for a statistical association with the 284 

average Hamming distance with samples, which represents a measure of the dissimilarity 285 

between the auxotrophy profile of co-existing genotypes and a potential indicator for the 286 

degree of amino acid cross-feeding in the microbial community. A notable positive 287 

correlation was observed for the average Hamming distance with microbiome stability in 288 

both cohorts (Fig. 5B, Troci et al.: ρ=0.33, p=0.0033, n =79; Chen et al.: ρ=0.21, p=0.00014, n 289 

= 338.), suggesting a potential positive impact of amino acid cross-feeding among 290 

auxotrophy genotypes on the long-term stability of microbiome composition. 291 

Auxotrophic bacteria have a high dependence on their nutritional environment. Here, we 292 

wanted to test if a higher dietary intake of amino acids affects the relative abundance of 293 

amino acid auxotrophic bacteria in the gut. Therefore, we used the dietary intake data 294 

obtained from food frequency questionnaires from Troci et al.(32). For both study time 295 

points, the intake of amino acids was tested for correlation with the frequency of amino 296 

acid auxotrophies in the microbiomes. No significant correlations between the frequency of 297 
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auxotrophic bacteria and the dietary intake of amino acids were observed (Supplementary 298 

Fig. S7). 299 

In sum, our results suggest a positive effect of auxotrophies on gut microbiome stability. 300 

Further, the data suggest that amino acid cross-feeding may contribute to the compositional 301 

stability of the gut microbiome. Surprisingly, we found no evidence of diet's effect on 302 

auxotrophy frequencies. 303 

  304 
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Discussion 305 

Auxotrophies are widespread among microorganisms (11,34). The obligate nutritional 306 

requirements can have far-reaching consequences for the auxotrophic strains and the entire 307 

microbial community in the ecosystem (35). On the one hand, each auxotrophy for a specific 308 

essential nutrient (e.g., amino acids) increases the organism’s dependence on the 309 

nutritional environment, coupling the organism’s survival and proliferation to the 310 

availability of the specific compound (35). On the other hand, if the focal metabolite is 311 

available, auxotrophic genotypes might gain a selective advantage over prototrophic 312 

genotypes by saving metabolic costs (36). In microbial communities, auxotrophies can affect 313 

the interactions between microorganisms and their hosts, where auxotrophs could act as 314 

recyclers of metabolites that other community members release as by-products of their 315 

metabolism (37). In addition, organisms that are auxotrophic for different metabolites could 316 

engage in cooperative cross-feeding interactions (38–40). Despite the ecological relevance 317 

of auxotrophies, their role in the human gut microbiome is largely unknown. More 318 

specifically, Ashniev et al. 2022 showed that several human gut bacterial isolates are indeed 319 

amino acid auxotrophs using genome analysis and a comprehensive literature review of 320 

experimentally determined auxotrophies and prototrophies (29). Still, the overall 321 

distribution and variation of auxotrophies in the human gut microbiome remain elusive. 322 

Here, we systematically analyzed the distribution of amino acid auxotrophies in the human 323 

gut microbiome using genome-scale metabolic modeling. Moreover, we statistically 324 

assessed the associations of inferred auxotrophy frequencies with overall microbiome 325 

diversity, long-term stability, and microbial contribution to the human metabolome. 326 

 327 

Ubiquity of auxotrophies indicates a high prevalence of cross-feeding 328 

Overall, high frequencies of auxotrophies were found in the human gut microbiome. For 329 

instance, we found that 54%(median) of organisms in the gut microbial communities of 330 

healthy adults are auxotrophic for tryptophan. Interestingly, the most frequent 331 

auxotrophies for amino acids in the human gut microbiome are also essential nutrients for 332 

the human host (Fig. 4A). While auxotrophies in human gut bacteria were reported before, 333 

the sources of amino acids for auxotrophic genotypes remain unknown. There are three 334 

potential sources of amino acids of auxotrophic members of the gut microbiome: 335 
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First, amino acids might be acquired from dietary proteins (41). However, most diet-derived 336 

protein is broken down in the upper gastrointestinal tract, and amino acids are absorbed by 337 

the human host, limiting protein and amino acid passage to the colon, where most of the 338 

gut microbiome resides (41). While most dietary free amino acids do not reach the colon, 339 

some dietary proteins that escape digestion in the small intestine can provide a nutrient 340 

source for the auxotrophic colonic microbiome(42). Our predictions are based on genomes 341 

from stool samples, which predominantly reflect the microbiome composition in the large 342 

intestine. Therefore, we argue that the high frequency of amino acid auxotrophies predicted 343 

for the colon microbiome in this study is unlikely to be explained by dietary sources of 344 

amino acids alone. Plus, we did not find any statistical associations between the dietary 345 

intake of amino acids of 79 adults and the frequency of auxotrophies in the microbiome 346 

(Supplementary Fig. S7), which further indicates that auxotrophic genotypes acquire their 347 

amino acids from other sources. Another study supports our conclusion, as varying dietary 348 

concentrations of essential nutrients did not alter the frequency of auxotrophy in the gut 349 

(43). 350 

Second, auxotrophs might obtain their essential amino acids by cross-feeding interactions 351 

with prototrophic genotypes. Cross-feeding between strains that are auxotrophic for 352 

different amino acids has been demonstrated in synthetic (40) and naturally occurring 353 

microbial communities (34). Furthermore, a recent study showed that amino acids 354 

synthesized by the colonic microbiome stay in the gut and are not absorbed via the 355 

mucosa(42). Cross-feeding as a potential source of amino acids for auxotrophic bacteria 356 

requires that prototrophic bacteria in the microbial community secrete the respective 357 

amino acids. In fact, amino acid biosynthesis and the release into their growth environment 358 

have been reported for several gut bacterial species, including members of the genus 359 

Bacteroides(44) and the species Bifidobacterium longum(45). Thus, cross-feeding enables 360 

the growth of auxotrophic organisms even in environments where the focal nutrient is 361 

unavailable. Our results suggest a wide diversity of auxotrophic profiles between coexisting 362 

genotypes (Fig. 4D), indicating metabolic complementarity and amino acid cross-feeding in 363 

gut microbial communities. 364 

Host-derived metabolites are the third potential source of amino acids for auxotrophic gut 365 

microbes. Yet, evidence reported in the scientific literature for gut microbial uptake of host-366 

derived amino acids is scarce (42,46). An interesting case where an auxotrophic gut 367 
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bacterium covers its demand for the focal amino acid might be Akkermansia muciniphila. 368 

Our predictions show that this bacterium is auxotrophic for threonine, which is in 369 

agreement with previous cultivation experiments (15). A. muciniphila is a known degrader 370 

of host mucins and resides in the mucus layer. Besides glycans, mucin consists of a core 371 

protein scaffold rich in proline, threonine, and serine (47). Thus, the threonine auxotrophy 372 

of A. muciniphila may indicate that this species also utilizes host-derived threonine. 373 

 374 

Auxotrophies might promote ecological diversity and microbiome stability 375 

A major result of our study is the positive associations between auxotrophies and diversity 376 

of the human gut microbiome. Earlier studies that used theoretical approaches suggested 377 

that auxotrophies can increase and maintain diversity in microbial communities by creating 378 

niches for different organisms to occupy through metabolite cross-feeding (25,37). Thus, we 379 

conclude that in communities with more auxotrophic members, more cross-feeding may 380 

take place, which could promote diversity. Our results support this theory since we 381 

observed a positive association between microbiome diversity and auxotrophic profile 382 

differences among coexisting genotypes. 383 

Microbe-microbe interactions via metabolite exchanges may also promote microbiome 384 

stability (48). Here, we tested if having more auxotrophies as an indicator for metabolite 385 

cross-feeding in the gut microbiome is linked to greater stability in healthy adults over three 386 

to four years. Indeed, our findings from two independent cohorts indicate that microbiomes 387 

with a higher average frequency of auxotrophies at the beginning of the study period 388 

remained more stable throughout the duration of the studies (Fig. 5). The association of 389 

auxotrophies with microbiome stability was even more pronounced when considering the 390 

dissimilarity of auxotrophy profiles of coexisting genotypes as a proxy for amino acid cross-391 

feeding. This result is in line with a theoretical study by Oña and Kost, which demonstrates 392 

that cross-feeding between auxotrophs can facilitate that the community structure returns 393 

to equilibrium after ecological perturbance (26). Moreover, Sharma et al. (2019) reported 394 

that B-vitamin auxotrophies in the human microbiome are prevalent and suggest that cross-395 

feeding B-vitamins between prototrophic and auxotrophic genotypes contributes to gut 396 

bacterial population dynamics. The authors also base their conclusion on experimental 397 

results, where gnotobiotic mice were colonized by a human fecal microbial community. In 398 

these experiments, varying dietary B vitamin intake in mice did not result in appreciable 399 
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changes in gut microbial community structure, including the proportion of B vitamin-400 

auxotrophic subpopulations, which further suggests cross-feeding as a source of essential 401 

nutrients for auxotrophic bacteria in the gut environment and supports our hypothesis that 402 

higher auxotrophy frequencies contribute to microbiome stability (Fig 5AB). 403 

Since a reduction in gut microbiome diversity has been reported for several chronic 404 

diseases(49–51), our results and the methodology to predict auxotrophy frequencies may 405 

guide the development of novel personalized treatment strategies by targeting ecological 406 

interactions between coexisting gut microorganisms. For instance, oral administration of 407 

microencapsulated amino acids with delayed content release could be used to specifically 408 

promote the growth of beneficial subpopulations of the large intestine microbial 409 

community, which are auxotrophic for the focal compound (52). 410 

There is an ongoing debate about how different types of cell interactions (i.e., cooperation 411 

and competition) contribute to the stability of multi-species communities (20,26,53–55). We 412 

want to emphasize that we do not claim that cooperative interactions are stronger than 413 

competitive interactions in stabilizing microbiomes, also because we focused in this study 414 

on one type of interaction (amino acid cross-feeding) and not on the prevalence of other 415 

kinds of interactions or the exchange of other metabolites. Instead, we argue that our 416 

results provide evidence that auxotrophies and potential amino acid cross-feeding 417 

contribute to maintaining microbiome composition. 418 

 419 

Auxotrophy associations with the human metabolome 420 

Pathways of amino acid biosynthesis and fermentation by-product biosynthesis share 421 

common precursors. Therefore, the loss of biosynthetic genes for amino acids might affect 422 

the flux distribution in the metabolic network (36). Fermentation by-products such as the 423 

organic acids butyrate, acetate, and propionate have implications for human physiology (1). 424 

Hence, we wanted to investigate whether specific amino acid auxotrophies are associated 425 

with the profile of fermentation products released by gut bacteria. Comparison of the 426 

fermentation by-product profile of auxotrophic and prototrophic bacteria revealed 427 

statistically significant associations (Fig. 3A), which may be due to the structure of the 428 

metabolic network. For example, BCAA auxotrophic bacteria are more likely to be lactate 429 

producers, which might be attributed to the fact that the common precursor of BCAA 430 

synthesis and lactate synthesis, pyruvate, is no longer used for BCAA synthesis in BCAA 431 
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auxotrophic bacteria but can be used for lactate formation. The altered fermentation profile 432 

in auxotrophic bacteria may, therefore, indicate the importance of the nutritional 433 

requirements of gut bacteria for the microbiome’s contribution to the human metabolome. 434 

Indeed, when we tested for associations of the relative abundance of amino acid 435 

auxotrophs with compounds of the human metabolome, we found several significant 436 

correlations (Fig. 4E). In particular, the frequencies of several auxotrophies were correlated 437 

with phenylic and indolic metabolites, namely hippuric acid, p-cresol sulfate, 3-indole acetic 438 

acid (IAA), and 3-indole propionic acid (IPA). These compounds were previously reported to 439 

be of microbial origin or are derived from gut microbially-produced metabolites (56). For 440 

instance, hippuric acid and p-cresol sulfate levels were reported to strongly correlate with 441 

the microbiome alpha diversity in a large human cohort study (57). P-cresol is known to be 442 

produced by gut bacteria that metabolize tyrosine (58), and we found an association with 443 

tyrosine auxotrophic gut bacteria. Moreover, the tryptophan-derived IAA is a known agonist 444 

of the epithelial human aryl hydrocarbon receptor, an important regulator of intestinal 445 

immunity(59). In summary, our results suggest that the contribution of phenylic and indolic 446 

compounds to the human metabolome is linked to metabolic processes performed by 447 

amino acid auxotrophic gut bacteria. 448 

 449 

Limitations 450 

The method of our study is subject to certain limitations. In our study, auxotrophies were 451 

predicted with reconstructed genome-scale metabolic models. Discrepancies between 452 

metabolic modelling-based predictions and results from vitro assessments have been 453 

reported and discussed previously (13,28,60). Thus, it is crucial to validate in silico prediction 454 

with in vitro results of auxotrophies. Here, we compared our in silico results with in vitro 455 

results for 36 gut bacterial strains and found a sensitivity of 75% for auxotrophy predictions 456 

with gapseq- reconstructed genome-scale metabolic models. In addition, we performed 457 

auxotrophy prediction for 124 genomes from bacterial strains that are not human gut 458 

bacteria but known from cultivation experiments to be prototrophic for all 20 proteinogenic 459 

amino acids. This test showed that 99.1% of our prototrophy predictions are in line with the 460 

experimental data, suggesting that the high prevalence of predicted auxotrophies among 461 

the human gut bacterial genomes is not due to a potential technical bias in the in silico 462 

approach. 463 
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 464 

Conclusion 465 

Our study demonstrates the prevalence and impact of auxotrophs in the human gut 466 

microbiome. Auxotrophies are common in the human gut microbiome, and interestingly, 467 

amino acids essential to the human host are also commonly essential for large fractions of 468 

the gut microbiome. Furthermore, human gut microbiomes with high frequencies of 469 

auxotrophies were characterized by higher alpha diversity and were more stable over time. 470 

Since gut microbial communities commonly display reduced diversity during chronic 471 

diseases, auxotrophy frequencies in the human gut microbiome could indicate a healthy gut 472 

microbiome. In addition, our results suggest that metabolite cross-feeding networks in gut 473 

bacterial communities may be an important factor for stability and maintaining diversity. 474 

From a more technical point of view, previous studies have suggested a cautious 475 

interpretation of in silico-predicted auxotrophies. Therefore, we validated our in silico 476 

results with experimentally determined auxotrophies reported in scientific literature. This 477 

validation indicated the high predictive performance of our method, which used automatic 478 

genome-scale metabolic network reconstruction without the need for manual curation of 479 

individual genotypes. Thus, the approach can also be applied to microbial communities 480 

other than the human gut microbiome.  481 
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Material and Methods 482 

 483 

Reconstruction of genome-scale metabolic models 484 

Genome-scale metabolic models were reconstructed for bacterial genomes from the Human 485 

Reference Gut Microbiome (HRGM) genome collection(27,61). The HRGM collection 486 

combines isolate and metagenome-assembled genomes (MAGs) from several data sources 487 

to summarize genome sequences obtained from human fecal samples. Metabolic models 488 

were reconstructed using gapseq version 1.2(62). A detailed description of the genome-489 

scale metabolic model reconstruction workflow can be found in the Supplementary 490 

Information and Supplementary Table S6. 491 

 492 

Prediction of amino acid auxotrophies 493 

Amino acid auxotrophies were predicted with flux balance analysis(63), where the objective 494 

function was set to the flux through the biomass formation reaction. In detail, each model 495 

was tested for its ability to form biomass under two different environmental conditions: 496 

First, with the growth medium predicted with gapseq (see Supplementary Information), and 497 

second, with the same medium but where the amino acid of interest was removed. An 498 

organism was defined as auxotrophic for a specific amino acid if the organism was able to 499 

form biomass in the original medium but not in the medium without the amino acid of 500 

interest. Flux balance analysis was performed in R (v4.1.2), the R package sybil v2.2.0 (64), 501 

and IBM ILOG CPLEX optimizer as linear programming solver. We validated our auxotrophy 502 

predictions for 150 organisms (36 from the human gut, 124 known prototrophs from 503 

different environments), for which experimental data for amino acid auxotrophies and 504 

prototrophies were available in scientific literature (see Supplementary Information for 505 

details). 506 

When assessing the distribution of amino acid auxotrophies in sampled individual 507 

microbiomes, it is important to consider the relative abundance of different genotypes. To 508 

this end, we combined the estimated relative abundances of reference genomes (see 509 

‘Metagenome data processing’) and predicted auxotrophies in the corresponding genomes 510 

to calculate the relative auxotrophy abundance ��,� of amino acid � in sample � using the 511 

equation: 512 
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��,� � � ��,���,�

� � �

 

Where � is the set of all reference genomes, ��� the relative abundance of genome 	 in 513 

sample �, and ��,� the auxotrophy prediction with <1= if genotype 	 is auxotrophic for amino 514 

acid � and <0= otherwise. 515 

 516 

Prediction of metabolic by-products 517 

For comparison of auxotrophic to prototrophic bacteria, the production rates of 518 

fermentation by-product formation were predicted. We undertook this analysis based on 519 

the demonstrated accuracy of gapseq in predicting fermentation products of anaerobically 520 

cultured gut bacteria(62). Given the potential correlation between auxotrophies and the 521 

generation of metabolic by-products, investigating auxotrophy distributions could offer new 522 

insights into gut microbial metabolism and ecology. Metabolic by-products were predicted 523 

with flux-balance-analysis(63) using the flux through the biomass reaction as objective 524 

function (i.e., maximization) and subsequently analyzing the fluxes through exchange 525 

reactions. Metabolite production rates (mmol*gDW-1*hr-1) were normalized by growth rates 526 

(hr-1), resulting in the unit mmol/gDW. Production rates > 1 mmol/gDW were considered as 527 

microbial production. The production of the two enantiomers, D- and L-lactate, were 528 

combined since their production rates were interchangeable in the FBA solution.  529 

 530 

Cohorts 531 

Data from three human population cohorts were analyzed for the present study. The first 532 

cohort comprised paired stool metagenomes and serum metabolomes from 185 533 

participants. This cohort was recruited at the University Hospital Schleswig Holstein, 534 

Campus Kiel 2016, and included detailed phenotypic and health-related data. The study was 535 

approved by the local ethics committee in Kiel (D441). None of the participants had received 536 

antibiotics or other medication two months before inclusion.  537 

The second cohort (Troci et al., 2022) comprised longitudinal stool metagenomes from 79 538 

study participants. Data from this cohort were already part of a previous study (32), which 539 

were reanalyzed in the present study. For each participant from this cohort, two 540 

metagenomes were sequenced from stool samples that were three years apart. In addition, 541 
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for each sampling time point, data from food frequency questionnaires were available. In 542 

brief, the questionnaire, originally designed and validated for use in the German EPIC study 543 

(65), comprised 112 food items and aimed to collect the intake frequency and amount of 544 

various types of foods. The average energy intake and other nutrients per day were 545 

calculated with data from the German Food Code and Nutrient Data Base (BLS version II.3 546 

(66)). Further information about the sampling method, study design, and sequencing 547 

method of the Troci et al. 2022 study can be found in the original publication (32). 548 

The third cohort integrates fecal metagenomes from the 2021 publication by Chen et al., 549 

involving 338 Dutch study participants(33). Like the second cohort, the Chen et al. cohort is 550 

designed longitudinally, incorporating two fecal metagenomic samples per participant over 551 

a four-year interval. 552 

 553 

Metagenome sequencing 554 

DNA of stool samples was extracted using the QIAamp DNA fast stool mini kit automated on 555 

the QIAcube (Qiagen, Hilden, Germany) with a prior bead-beating step as described earlier 556 

(66). DNA extracts were used for metagenomic library preparation as described previously 557 

(32) using Illumina Nextera DNA Library Preparation Kit (Illumina, San Diego, CA) and 558 

sequenced with 2x150 bp paired-end reads on a NovaSeq platform (Illumina). 559 

 560 

Metagenome data processing 561 

Metagenomic reads were quality filtered using the ‘qc’ workflow from the metagenome-562 

atlas pipeline tool v2.9.0(67) with default parametrization if not stated otherwise in the 563 

Supplementary Information. Quality-controlled (QC) reads were used to estimate the 564 

relative abundance of genomes from the HRGM catalog(27) using coverM v0.6.1(68). Across 565 

all three analyzed metagenome data sets, a median of 76% QC reads mapped to HRGM 566 

reference genomes (Supplementary Fig. S8). 567 

 568 

Targeted metabolomics of blood samples 569 

Metabolite quantification for serum was performed by liquid chromatography tandem mass 570 

spectrometry (LC-MS-MS) using the MxP Quant 500 kit (Biocrates Life Sciences AG, 571 

Innsbruck, Austria) according to the manufacturer's instructions. Please refer to the 572 
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Supplementary Information document for blood sample preparation and metabolite 573 

quantification details. 574 

 575 

Statistical data analysis 576 

All data analysis steps and statistical tests were performed using R (v4.1.2). Flow charts (Fig. 577 

1. and 3A) were created and rendered using Flowchart Designer 3. P-values were corrected 578 

for multiple testing using the Benjamini and Hochberg method (69). In all statistical tests, an 579 

adjusted p-value of <0.05 was considered as significance threshold. UniFrac distances(70) 580 

were calculated using relative abundances of genomes using the R-package abdiv, v0.2.0 581 

(71). 582 

Alpha diversity was calculated using the Shannon index as implemented in the R-package 583 

‘vegan’ v2.6-2 (72). The average pairwise Hamming distance between auxotrophic profiles 584 

of co-occurring genomes was calculated per sample to study the effect of metabolic 585 

dissimilarity on diversity. In other words, the Hamming distance is the number of amino 586 

acids for which the two genotypes had different auxotrophy predictions. In addition to the 587 

Hamming distance, we also calculated the abundance-weighted average of auxotrophies per 588 

genome �� for each sample �  using the equation: 589 

�� � � 
����

� � �

 

Where �  is the set of all genomes, 
�  the number of auxotrophies in genome 	, and ���  the 590 

relative abundance of genome 	 in sample �. 591 

For the longitudinal cohorts, the UniFrac distance was correlated with the abundance-592 

weighted average of auxotrophies per genome at the first time point using the Spearman 593 

correlation. Further, the Spearman correlation was used to determine the association 594 

between the UniFrac distance and the Hamming distance. With food frequency 595 

questionnaires, the total dietary intake of amino acids per day was summed up for every 596 

individual, and the energy percentage was then calculated based on the total energy intake 597 

per day. The Spearman correlation was used to study an association between the total 598 

dietary intake of amino acids relative to the total consumed energy (E%) and the frequency 599 

of amino acid auxotrophic bacteria. The correlation between the intake of amino acids and 600 

frequencies of amino acid auxotrophic bacteria was studied separately for both time points. 601 
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Data availability 603 

The reconstructed genome-scale metabolic models from the HRGM catalog are available via 604 

Zenodo (73). Further, metabolic model reconstructions for 124 prototrophic genotypes and 605 

36 gut bacterial genotypes with amino acid auxotrophy/prototrophy status known from 606 

laboratory experiments are available via Zenodo (74,75). Metagenome sequencing data are 607 

provided via the European Nucleotide Archive ‘ENA’ for our study cohort and the cohort 608 

from Troci et al. (this study accession: PRJEB60573, Troci et al.: PRJEB48605). Metagenome 609 

sequencing data from Chen et al. 2021 (33) are available upon request via the European 610 

Genome-Phenome Archive (accession: EGAD00001006959). 611 

 612 

Code availability 613 

The code for analysis of the data can be found in the GitHub repositories 614 

https://github.com/SvBusche/Auxo_manuscript_2023 (main results) and 615 

https://github.com/Waschina/AGORA2_auxotrophies (for auxotrophy predictions from 616 

AGORA2 metabolic models). 617 
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Figure legends 896 

 897 

Figure 1. Workflow for the prediction of auxotrophies with genome-scale metabolic 898 

modeling. Gapseq was used to reconstruct genome-scale metabolic models from genomes 899 

of the Human Reference Gut Microbiome (HRGM) catalog(27). The workflow of gapseq to 900 

reconstruct metabolic models consists of five steps: transporter/metabolic pathway 901 

prediction, draft metabolic network construction, growth medium prediction, gap filling, 902 

final model reconstruction. Auxotrophy prediction was performed using flux-balance 903 

analysis and validated by reconstructing gapseq models from experimentally verified 904 

auxotrophic strains. The predicted auxotrophies were compared on strain level from gapseq 905 

and AGORA2 models to experimentally verified auxotrophies. QC reads of cohorts were 906 

mapped on HRGM. Auxotrophy frequencies in cohorts were determined by mapping QC 907 

reads from the metagenomes of the cohorts to genomes from HRGM collection. Icons are 908 

from www.flaticon.com (creators: photo3idea_studio, Freepik, surang, Eucalyp, Voysla, 909 

juicy_fish, smashingstocks, SBTS2018, creative_designer). 910 

 911 

 912 

Figure 2. Abundances of auxotrophies in 3 687 genomes. The predicted amino acid 913 

auxotrophies in HRGM genomes were categorized into human essential and non-essential 914 

amino acids. 915 

 916 

 917 

Figure 3. Associations of auxotrophies and fermentation products. (A) Comparison of 918 

fermentation product production rates in auxotrophic and prototrophic bacteria. 919 

Production rates of fermentation by-products were predicted with flux-balance analysis 920 

(cutoff-value > 1 mmol/gDW) in 3 687 HRGM genomes. The association with the 921 

auxotrophic or prototrophic phenotype was statistically evaluated with the Fisher test for 922 

exact count data by calculating odds ratios. Asterisks denote FDR-corrected p-values <0.05. 923 

(B) Interconnection between the pathways of formation of fermentation products and 924 

amino acids, based on MetaCyc pathways(76). We note that not all the displayed 925 

reactions/pathways occur in every gut bacterial genotype. The metabolic network shown 926 
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displays pathways commonly found in human gut metagenomes and linked to amino acid 927 

biosynthetic pathways. 928 

 929 

 930 

Figure 4. Distribution of auxotrophies in human gut microbiomes from 185 healthy adults, 931 

their association with diversity, and serum metabolite levels. (A) Boxplots display the 932 

abundance of amino acid auxotrophies in the human gut microbiome (n=185 samples). (B) 933 

Partial Spearman correlation between the frequency of auxotrophic gut bacteria and serum 934 

levels of health markers and microbiome Shannon diversity. Dots indicate significant 935 

associations (FDR-corrected p-values < 0.05, adjusted for the potential confounders age, 936 

sex, and BMI). (C) The abundance-weighted average of auxotrophies was calculated and 937 

correlated with the Shannon diversity (Spearman correlation, ρ =0.60, p<2.2e-16). (D) The 938 

average hamming distance was calculated to study the metabolic dissimilarity of auxotrophy 939 

profiles of coexisting genotypes and, therefore, potential cross-feeding interactions within 940 

the microbial communities. With the Spearman correlation, the association between the 941 

calculated average hamming distance and the Shannon diversity in the gut was estimated (ρ 942 

=0.62, p<2.2e-16). (E) Partial Spearman correlations between the serum levels of 943 

metabolites and the frequency of auxotrophic bacteria in the gut microbiome. 944 

Abbreviations for the serum metabolite levels can be found in Supplementary Table S5. Dots 945 

indicate significant associations (FDR-corrected p-values < 0.05, adjusted for confounders 946 

age, sex, and BMI). 947 

 948 

 949 

Figure 5. Influence of auxotrophies on long-term stability of the human gut microbiome. 950 

(A) The stability of the human gut microbiome was calculated as 1 minus the UniFrac 951 

distance between the two time points in the longitudinal studies and correlated with the 952 

abundance-weighted average of auxotrophies at the first time point to study a potential 953 

influence of auxotrophies on the long-term stability of the human gut microbiome. (B) The 954 

average Hamming distance was calculated for the first time point and then correlated with 955 

the 1-UniFrac value to investigate the influence of potential cross-feeding on long-term 956 

stability. (C) The contribution of individual amino acid auxotrophies on the stability was 957 
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calculated with the Spearman correlation between the 1-UniFrac values and individual 958 

amino acid auxotrophy frequencies.  959 
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Tables 960 

Table 1. Cohort characteristics. Age and BMI are given as the median and interquartile 961 

range. 962 

 This study Troci et al., 2022 Chen et al., 2021 

Age (years) 47 [40-52] 53 [45.75-57.25]* 47.5 [40-56] 

BMI 24.5 [22.2-26.4] 25.7 [23.5 -27.5]*  –  

Female (%) 44.9 37.5* 55.6 

Study participants 185 79 338 

 963 

* Missing values/information: 7. 964 
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