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Abstract:  

Mutations in the LRRK2 gene are an important genetic cause for familial Parkinson’s Disease (LRRK2-

PD) and clinical trials are ongoing to evaluate the benefits associated with the therapeutical reduction 

of LRRK2 kinase activity. In this study, we aimed at modelling the molecular milieu surrounding LRRK2 

and describe the changes that occur during disease with the aim of contrasting and comparing 

sporadic PD and LRRK2-PD. We analysed the molecular expression profiles (whole blood mRNA) of 

LRRK2’s protein interactors in the sporadic vs familial PD conditions and found interesting differences 

between the 2 scenarios. Our results showed that LRRK2 interactors not only presented different 

alterations in expression levels in sporadic and familial PD while compared to controls; they also 

exhibited distinct co-expression behaviours in the 2 PD conditions. These results suggest that, albeit 

being classified as the same disease based on clinical features, LRRK2-PD and sporadic PD show 

significant differences from a molecular perspective.  

 

Introduction 

Leucine-rich repeat kinase 2 is a large (over 250 kDa), multifunctional enzyme encoded by the LRRK2 

gene, possessing 2 enzymatic (GTPase and Kinase) and 4 scaffold (Armadillo, Ankyrin, LRR and WD40 

motifs) domains (Berwick et al., 2019). LRRK2 is able to interact with a vast number of protein partners 

(Zhao et al., 2023) and is involved in a large number of biological processes such as vesicular transport, 

autophagy, regulation of cellular response to stress, regulation of cell cycle, etc (Albanese et al., 2019; 

Chen et al., 2017; Hsu et al., 2010; Sanna et al., 2012).  Mutations in LRRK2 are an important genetic 

cause of familial PD (fPD) overall with 1 to 40% of fPD cases associated with LRRK2 depending on the 

population under study (Bras et al., 2005; Greggio et al., 2008; Lesage et al., 2006; Ozelius et al., 2006). 

Since 2004, when a missense change on the LRRK2 gene was firstly associated with fPD, numerous 

coding and non-coding variants of LRRK2 have been identified in PD families, among which the G2019S 

and R1441C/G mutations are the 2 most common pathogenic variants occurring on the kinase and 

GTPase domains of the LRRK2 protein respectively (Dauer & Ho, 2010; Esteves et al., 2014; Giesert et 

al., 2017; Henry et al., 2015; Paisán-Ruiz et al., 2013). However, how these pathogenic changes 

contribute to fPD is still unclear. Additionally, polymorphisms, mainly in the promoter of LRRK2, have 
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been linked to sporadic PD (sPD) (Nalls et al., 2019) and upregulated LRRK2 kinase activity has also 

been related with sPD. For example, PD-related inflammation both in the Central Nervous System 

(CNS) and at the periphery, was linked to an increased LRRK2 expression level and strengthened LRRK2 

kinase activity in microglia and peripheral immune cells in sPD patients as compared to controls (Cook 

et al., 2017; Di Maio et al., 2018). All the above-mentioned findings indicate that LRRK2 is crucial for 

the understanding of PD etiopathogenesis, additionally LRRK2 might constitute a link between familial 

and sporadic forms of the disease.  

However, from a clinical perspective, LRRK2-PD and sPD have been reported with some distinct 

features. Despite having similar motor-symptoms (such as bradykinesia, tremor, rigidity, and postural 

instability) as well as sharing some of the non-motor symptoms (Haugarvoll et al., 2008; Healy et al., 

2008; Kluss et al., 2019), patients with LRRK2-PD show slower decline considering both movement and 

cognitive impairment (Alcalay et al., 2015; Srivatsal et al., 2015). In addition, LRRK2-PD and sPD show 

slightly different pathological features. For example, LRRK2-PD patients exhibit less α-synuclein 

aggregation in Cerebrospinal Fluid (CSF), feature that is a hallmark of sPD  (Garrido et al., 2019; Rivero-

Ríos et al., 2020) as well as increased basal forebrain volume, which is probably as a compensation in 

the cholinergic system (Batzu et al., 2023). Such differences might highlight an intrinsic variation at 

the molecular level between these 2 forms of PD thus suggesting different model systems might be 

required to investigate them. Also, this consideration may pose a problem in translational research, 

for example the use of LRRK2 inhibitors in clinical trials (Tolosa et al., 2020) might require patient 

stratification.  

In this study we hypothesized that despite being generally regarded as the same disease, sPD and 

LRRK2-PD might have a different molecular signature and therefore the molecular alterations 

contributing to disease onset and progression might be functionally different. We constructed the 

protein-protein interaction (PPI) network around LRRK2 (LRRK2net) and evaluated the expression 

changes within the LRRK2net (absolute level of expression as well as co-expression) in a cohort of sPD 

and LRRK2-PD patients in comparison with healthy controls.  The results provide a bioinformatic proof 

that the signature of expression changes in the LRRK2net is dissimilar in sPD vs LRRK2-PD showing 

significant differences in both gene expression and co-expression, suggesting the molecular pathways 

at the base of these two conditions might be different. This is relevant for the understanding of the 

different molecular mechanisms of PD and it highlights the necessity for patient stratification in both 

discovery research and clinical trials, suggesting different therapeutic approaches might be needed if 

we intend to move from symptomatic to effective disease treatment.   

 

Method 

Construction of LRRK2 PPI Network 

PPIs (edges) connecting LRRK2 with its direct interactors were defined as “1st-layer” interactions and 

were downloaded via PINOT v1.1 (http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html), HIPPIE 

v2.3 (http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/index.php) and MIST v5.0 

(https://fgrtools.hms.harvard.edu/MIST/)  (Alanis-Lobato et al., 2017; Hu et al., 2018; Tomkins et al., 

2020) on 16th March 2023 and the LRRK2 interactome was built following the pipeline in (Zhao et al., 

2023). In summary: to access the most comprehensive set of LRRK2 interactors, “Lenient” filter level 

was applied in PINOT; while no filter was applied for HIPPIE and MIST to download the entire set of 

raw interaction to be filtered in a second step. Interactors retrieved from the 3 tools were merged and 

quality-controlled to identify interactors with missing publication identifier, missing interaction 
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detection method, no conversion to a standard gene identifier, and with low interaction confidence 

score. The “2nd-layer” interactions were identified as PPIs (edges) among LRRK2 interactors (other than 

LRRK2 itself) and were downloaded via HIPPIE (v2.3) on 16th March 2023. Of note, only PPIs with high 

confidence score (≥ 0.72) were kept for further analysis in the 2nd layer. The LRRK2 PPI network 

(LRRK2net) was constructed by combining the “1st-layer” and “2nd-layer” interactions. Centrality 

measures on the LRRK2net were derived considering the degree of each node and by the Cytoscape 

measure plug-in. 

PPMI Whole blood RNA-Seq data download  

Transcript-QC: whole blood mRNA data (read counts) for LRRK2 interactors at baseline (BL = time at 

diagnosis) were retrieved using Ensembl gene ID from the Parkinson’s Progression Marker Initiative 

(PPMI) dataset on 24th January 2023. PPMI – a public-private partnership – is funded by The Michael 

J. Fox Foundation for Parkinson’s Research and funding partners, including those reported at 

https://www.ppmi-info.org/about-ppmi/who-we-are/studysponsors. Transcripts of LRRK2 

interactors with read counts ≤ 15 in more than 75% samples were removed. Sample-QC: PPMI is an 

ongoing observational, international, multicenter cohort study aimed at identifying the biomarkers of 

PD progression in a large cohort of participants (https://www.ppmi-info.org/). PPMI cohorts of “de 

novo PD” and “healthy control” were included in this study. Subjects from the 2 cohorts were further 

filtered to keep only those with robust genetic status records using the following criteria: confirmed 

by at least 3 out of 6 detection techniques (WGS, WES, RNA-Seq, GWAS, CLIA, SANGER) of which 1 

should be a next generation sequencing technique (WGS, WES, RNA-Seq) and 1 should be a screening 

technique (GWAS, CLIA, SANGER). Of note, subjects with mutations in PD genes other than LRRK2 

(GBA, PINK, Parkin and SNCA) were excluded to avoid potential bias. QC-ed subjects were allocated 

into 3 cohorts: Control, Sporadic PD (sPD, with no LRRK2 or other gene mutations in record) and 

LRRK2-PD (only with LRRK2 mutations considered to be pathogenetic – i.e., G2019S, R1441C/G). Read 

counts retrieved from PPMI were extracted for the 3 cohorts, thereby forming the “PPMI_Matrix”.  

Differential Expression Analysis (DEA) and Co-expression analysis (CEA) 

The “PPMI_Matrix” was QC-ed using the R package “WGCNA” (function: “goodSampleGenes”) 

(Langfelder & Horvath, 2008). The PPMI_Matrix was utilised to perform DEA to compare the 

expression levels of LRRK2 interactors in the control, sPD and LRRK2-PD cohorts using the R package 

“DESeq2” and calculating fold change (FC) for each of the LRRK2 interactors (i) in [sPD vs control] and 

[LRRK2-PD vs control]. Data normalisation and p-value adjustment for multiple comparisons were 

performed automatically by “DESeq2”. Of note, results from DEA were adjusted for sex. LRRK2 

interactors were considered up(down) regulated when log2FC > 0 (log2FC < 0) and adjusted-p < 0.05 

in [sPD vs control] or [LRRK2-PD vs control]. Upregulated interactors received a score of 1 and 

downregulated interactors received a score of -1. Interactors whose expression level was not changed 

in comparison with controls received a score = 0. 

Weighted Gene Co-expression Network Analyses (WGCNA) were performed on the PPMI_Matrix to 

identify co-expression modules within the LRRK2net for the sPD and LRRK2-PD cohorts (hereby referred 

as “M_sPD” and “M_LPD”). The modules in M_sPD and M_LPD were compared in terms of their 

composition of LRRK2 interactors to identify conservation across the cohorts. For every 2 co-

expression modules, the number of overlapping proteins (test_overlap) was compared to the overlap 

count distribution generated by 1000 pairs of randomly sampled protein lists from the LRRK2net 

(random_overlap). A significant overlap between 2 modules was defined as:  1) test_overlap > 95% of 

the points in the random overlap distribution curve and 2) the percentage of overlapped interactors 
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(Overlap Rate) in both of the 2 modules > 60%. The random_overlap distribution curve was considered 

as normally distributed.  

Weighted Network Analysis  

Topological clusters in the LRRK2net were extracted using the Fast Greedy Clustering algorithm (after 

removing: i) LRRK2 itself, ii) nodes with degree of 1, and iii) triangle motifs) on the basis of edge 

betweenness. Topological clustering and network visualisation was performed using Cytoscape 

(Shannon et al., 2003b).  The edges in each of the obtained topological cluster were classified in 

up/downregulated edges based on the following criteria: A) upregulated edge= i) at least 1 of the 2 

nodes connected by the edge had increased expression level in sPD and/or LRRK2-PD vs controls or ii) 

a strong positive co-expression (Pearson’s coefficient > 0.6) was observed for the 2 nodes connected 

via the edge in sPD and/or LRRK2-PD but not in controls; B) downregulated edge= i) at least 1 of the 2 

nodes connected by the edge presented decreased expression level in sPD and/or LRRK2-PD vs 

controls or ii) a strong positive co-expression (Pearson’s coefficient > 0.6) for the 2 nodes connected 

via the edge was observed in the controls but not in sPD and/or LRRK2-PD cases. The percentage of 

upregulated, downregulated and unchanged edges for each single topological cluster were calculated 

for the sPD and the LRRK2-PD scenarios and compared via One Sample Proportion Test to identify the 

trend of each topological cluster and qualitatively define whether a cluster was mainly up/down 

regulated or unchanged in sPD or LRRK2-PD vs controls.  

Finally, to better quantify the alteration of cluster A in sPD vs LRRK2-PD, each edge was weighted (𝑆(𝑖,𝑗)) 

using the following: 𝑆(𝑖,𝑗) =  𝑆𝐶𝑜𝑒𝑥(𝑖,𝑗) + 0.5 × 𝑆𝐷𝐸𝐴(𝑖) + 0.5 × 𝑆𝐷𝐸𝐴(𝑗), in which  𝑆𝐶𝑜𝑒𝑥(𝑖,𝑗) represents 

the co-expression score between genes i and j (if Pearson’s Coefficient > 0.6, 𝑆𝐶𝑜𝑒𝑥(𝑖,𝑗) = 1; otherwise 

𝑆𝐶𝑜𝑒𝑥(𝑖,𝑗) = 0); 𝑆𝐷𝐸𝐴(𝑖) and 𝑆𝐷𝐸𝐴(𝑗) represent the DEA score of interactor i and j in the sPD or LRRK2-

PD cohorts vs controls. Of note, the correlation values were binarized in order to make them 

comparable with the DEA expression values and give both the same weight. Following this definition, 

edges with |𝑆(𝑖,𝑗)| = 0.5 are mildly affected by PD (up-regulated/down-regulated), i.e., with only one 

interactor changed in expression level; edges with |𝑆(𝑖,𝑗)| = 1 are moderately affected, i.e., with both 

of the interactors changed in expression level or a damaged co-expression linkage between the 2 

interactors; edges with |𝑆(𝑖,𝑗) | ≥ 1.5 are highly affected by the disease condition, i.e., with ≥ 1 

interactors changed in expression level and a damaged co-expression linkage. 

Functional enrichment analysis 

Functional annotation was performed via g:Gost from the g:Profiler toolset (Raudvere et al., 2019) 

considering Gene Ontology Biological Processes (GO-BP). The number of significantly enriched GO-BP 

terms (Bonferroni corrected p-value < 0.05) was counted as “Enrichment Score” (ES). Significantly 

enriched terms were processed via text mining to highlight the re-occurring key words via the R 

package “Wordcloud”. Semantically similar words exacted via text mining were manually combined, 

e.g., “necrotic”, “necroptotic” and “necroptosis” were considered as the same functional word and 

the frequencies were thereby combined. Additionally, general words were excluded as they are not 

able to represent the specific functions of the topological cluster, e.g., “of”, “in”, “biological”, 

“involved”, etc. The top 10 words with the highest frequency in functional annotation were defined 

as “key words” for a given topological cluster, thereby representing the main biological processes 

sustain by the cluster of LRRK2 interactors.  

Software 
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Data processing was performed in Excel and with R and Python packages. Cytoscape (Shannon et al., 

2003a) was used to draw the networks. 

 

Results 

LRRK2net Construction 

LRRK2 interactors (N = 418, Table S1) were downloaded via an in-house pipeline (Zhao et al., 2023) 

and they constituted the 1st-layer of interactions within the LRRK2net as they all connected to a single 

node only (i.e., LRRK2). The 2nd-layer of interactions was built by considering the edges linking across 

all the 418 LRRK2 interactors. To build this 2nd-layer, a total of 4860 PPIs among LRRK2 interactors 

were extracted via HIPPIE (v2.3), among which 1466 (30.2%) presented high confidence score (≥ 0.72) 

and were retained (Table S2). After removing self-interactions (n = 121), a total number of 1345 QC-

ed 2nd-layer PPIs were kept for network construction. By combining the 1st-layer and the 2nd-layer 

interactions, a PPI network was constructed around LRRK2, which contained 418 nodes and 1762 

edges (LRRK2net, Figure 1A). Centrality analysis showed that the degree distribution of the LRRK2net 

followed the power law: 84.8% interactors (N = 357) were associated with low degrees (≤ 14); while 

9.8% interactors (N = 41) were characterized by moderate degrees (between 15 and 24). Finally, only 

a total of 21 interactors (5.0%) presented high degrees (≥ 25), thereby forming the denser portion of 

the LRRK2net (named “backbone”, Figure 1B). The nodes within the backbone of the LRRK2net were 

defined as “sub-hub proteins” of the LRRK2net (with LRRK2 being the central hub due to network 

construction), among which TP53 (degree = 69), CDK2 (degree = 49), HSPA8 (degree = 47), HSP90AB1 

(degree = 45), HSP90AA1 (degree = 44), YWHAZ/14-3-3Z (degree = 44), and LAPR7 (degree = 40) 

presented with the highest degree centrality, suggesting their potential role as central mediators in 

LRRK2 signalling pathways.  

 

Figure 1. The LRRK2net A) The LRRK2net contains a total of 418 interactors (represented as nodes) and 

1762 PPIs (represented as edges). Interactors were colour-coded based on their Final Scores (FS) 

calculated from the QC pipeline as the total number of publications + the total number of detection 

methods with which an interactor was reported in literature. FS is therefore a measure indicating the 
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reproducibility of each interactor. The darker the colour, the higher the FS, the larger the amount of 

evidence in literature for the interactor. Of note, all the 418 interactors have a FS ≥ 3 (i.e., reported at 

least in > 1 publication or with > 1 detection method). The design of the network highlights the nodes 

with degree = 1 (nodes to the right side of LRRK2), these nodes connect only with LRRK2 but not with 

the other nodes in the network. Two triangle motifs were identified in the LRRK2net (marked with blue 

arrows). A triangle motif includes LRRK2 and 2 other interactors linked with each other but not 

connected with the rest of the network. B) Centrality analysis showed that the degree distribution of 

the LRRK2net follows the power law: only 21 (5.0%) interactors presented with high degrees (≥ 25) 

constituting the “backbone” of LRRK2net.  

 

Differential Expression Analysis (DEA) of the LRRK2net in PD cases vs controls  

RNA-Seq read counts (rc) were retrieved for 415 (out of 418) LRRK2 interactors and for 657 PPMI 

subjects (controls = 170; sPD cases = 371; and LRRK2-PD cases = 116). A total of 38 interactors were 

removed due to low rc. Rc for the remaining 377 interactors formed the PPMI_Matrix. DEA results 

showed that: the mRNA levels of 64 interactors (17.0%) were significantly altered in the LRRK2-PD 

condition (in comparison to controls), with 36 down-regulated and 28 up-regulated interactors 

(adjusted-p < 0.05, Figure 2A, Table S3). A total of 53 interactors (14.0%) presented significant changes 

in expression levels in sPD in comparison with controls, including 29 down-regulated and 24 up-

regulated interactors (adjusted-p < 0.05, Figure 2B). Down-regulated interactors in the LRRK2-PD 

condition (N = 36) presented a significantly larger decrease in expression level as compared to the 

ones down-regulated in the sPD condition (N = 24) (mean log2FC = -0.19 vs. -0.15 respectively; t-test 

p = 0.031); while no significant difference was observed for up-regulated interactors (Figure 2C) 

meaning that if LRRK2 interactors are downregulated, they are globally more downregulated in LRRK2-

PD as compared to sPD. Of note, only a total of 17 interactors presented with the same alteration in 

LRRK2-PD and sPD, in which 14 interactors were down-regulated while 3 interactors were up-

regulated, suggesting these LRRK2 interactors are consistently affected during PD progression 

regardless of the existence of a LRRK2 mutation (Figure 2D). GO-BP enrichment analysis showed that 

these 17 interactors were associated with biosynthesis, metabolism and translation processes (Figure 

2E). Of note, no interactors exhibited opposite trend of differential expression in sPD vs LRRK2-PD (i.e., 

upregulated vs downregulated).  
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Figure 2.  DEA for the LRRK2net  A) The volcano plot shows DEA results for the 377 LRRK2 interactors 

whose whole blood RNA expression levels were available comparing  the LRRK2-PD cohort vs controls. 

The X-axis represents log2 Fold Change (log2FC); the Y-axis represents -log10 transformed adjusted-p 

values. The red horizonal line represents the threshold of adjusted-p = 0.05. LRRK2 interactors in the 

red area (on the right side) were considered upregulated (N = 28) while those in blue area (on the left 

side) were considered downregulated (N = 36). B) The volcano plot shows DEA results for LRRK2 

interactors comparing the sPD cohort vs controls. LRRK2 interactors in the red area (on the right side) 

were considered upregulated (N = 29) while those in blue area (on the left side) were considered 

downregulated (N = 24) C) The bar graph shows the average log2FC for the interactors with 

significantly down or up-regulated expression levels in sPD and LRRK2-PD; a significantly larger 

decrease was observed in the LRRK2-PD cohort as compared to the sPD cohort (t-test p = 0.031); while 

upregulated interactors were affected to the same extent. D) The Venn graph and the network graph 

show 17 LRRK2 interactors presenting the same differential expression pattern in the LRRK2-PD and 

the sPD cohorts in comparison with controls. In the network graph, interactors were colour-coded 

based on upregulation (red) and downregulation (blue). E) The word cloud represents the functional 

keywords returned by GO-BP enrichment on the 17 interactors that presented same differential 

expression pattern in the 2 PD conditions. The larger the text is, the higher the frequency the keyword 

appeared in the enrichment results. 

 

Co-expression Analysis (CEA) of the LRRK2net  

WGCNA was performed using the PPMI_Matrix to identify co-expressed modules across the LRRK2 

interactors in the 3 conditions under evaluation (i.e sPD, LRRK2-PD and controls). Five co-expression 

modules were identified in both PD cohorts: M1-5_sPD and M1-5_LPD (Figure 3A, Table S4, Figure 

S1A,B). These 10 modules were compared to assess similarity based on node composition.  M1_sPD 

(number of LRRK2 interactors in the module = N = 94) and M1_LPD (N = 95) showed significant overlap 

(p < 0.001), with 69 conserved LRRK2 interactors across the 2 PD cohorts (Overlap Rate = 73.4% and 

72.6%, respectively), suggesting that the interactors in these 2 modules have conserved co-expression 

behaviour in spite of the presence of the LRRK2 mutation (Figure 3B, Table S5). GO-BP enrichment 
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analysis showed that the conserved M1_sPD and M1_LPD are associated with protein localisation, 

response to stress and metabolism (Table S6). Similarly, M2_sPD (N = 85) and M5_LPD (N = 59) 

exhibited a significant overlap of 53 interactors (Overlap Rate = 62.4% and 89.8%, respectively; p < 

0.001) with association with ribosomal functionality based on GO-BPs enrichment analysis (Figure 3C, 

Table S5, S6). Of note, 30 out of the 53 shared interactors were ribosomal proteins. In addition, 21 of 

them presented similar alterations in sPD and LRRK2-PD as identified in DEA. The remaining 3 sPD and 

3 LRRK2-PD modules presented certain levels of overlap but none was significant (p > 0.05 and/or 

Overlap Rate < 60%). Of note, the hub protein LRRK2 was contained in the modules M4_LPD (N = 35) 

and M5_sPD (N = 49), suggesting that the interactors within these specific modules are the ones that 

are preferentially co-expressed with LRRK2 in the LRRK2-PD and sPD condition, respectively (Figure 

3D); of note these 2 models are statistically different between the 2 PD conditions. GO-BP enrichment 

showed that both M4_LPD and M5_sPD were related to organelle organisation, while M5_sPD only 

was also associated with cell division, cell death, signal transduction and cytoskeleton organisation 

(Table S6).  

In summary, even though some module overlaps were identified, the 5 modules isolated via WGCNA 

in sPD and LRRK2-PD were not composed of the same proteins suggesting that even if some co-

expression changes are similar in the 2 PD conditions (2 out of 5 modules do present a significant 

overlap) there are also a number of co-expression changes in the LRRK2 interactome that are unique 

to sPD or to LRRK2-PD (3 out of 5 modules are unique to the condition). 

 

 

Figure 3. Co-expression modules in LRRK2net A) The bar graph shows the co-expression modules 

identified by WGCNA in the sPD and LRRK2-PD cohorts (numbered from 1 to 5). Modules identified 

with * or $ are statistically similar in node composition. B, C) The Venn graph shows 2 pairs of co-

expression modules (M1_sPD vs. M1_LPD and M2_sPD vs. M5_LPD) that significantly overlap (p < 

0.05 and Overlap Rate (OR) > 60%). The word clouds represent the summary of the functional 

keywords returned from GO-BP enrichment analysis. The larger the text, the more often it showed in 

the enrichment results. D) The Venn graph shows the pair of co-expression modules (M5_sPD vs. 
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M4_LPD) containing LRRK2 itself, of not the overlap of these modules is not statistically significant, 

thus these 2 modules are different in terms of node composition. 

 

Identification of topological clusters in the LRRK2net and weighted network analysis 

The LRRK2net was QC-ed based on topological features considering that 79 out of 418 interactors 

(18.9%) showed a degree = 1, i.e., only possessed connection with LRRK2 but not with the other 

members of the LRRK2 interactome and were thereby discarded for the clustering analysis. In addition, 

2 triangle motifs were identified in the LRRK2net (Figure 1A). Each triangle motif comprised LRRK2 and 

2 other interactors with degree of 2 (interacting between each other but not with the rest of the 

network). The 4 interactors in these triangle motifs were also excluded from further clustering. Finally, 

LRRK2 itself was removed from the network, thereby generating the trimmed-LRRK2net, containing 

338 nodes and 1345 edges. 

A total of 14 topological clusters were identified in the trimmed-LRRK2net using the Fast Greedy 

algorithm based on the measure of edge betweenness (i.e., calculating the number of shortest paths 

between any pair of nodes in the network that pass-through a given edge). A total of 3 clusters 

containing less than 5 interactors each were removed, leaving a total of 11 clusters for further analysis 

(Table S7). Each topological cluster was classified using the values previously calculated from DEA and 

CEA to verify whether the cluster was up/down-regulated (or unaffected) by PD in comparison with 

controls (sPD or LRRK2-PD vs controls). Specifically, edges were scored into 3 categories: up-regulated, 

down-regulated or unmodified edge based on changes in the absolute expression levels or co-

expression behaviour of the 2 nodes each edge connected.  The distribution of the edges across these 

3 categories was compared via One Sample Proportion Test to identified clusters significantly altered 

in expression in sPD or LRRK2-PD in comparison with controls (Figure 4A, B). Among the 11 clusters, 

only cluster A was significantly down-regulated in both sPD and LRRK2-PD vs controls (p < 0.05), with 

72/115 (62.6%) and 57/115 (49.5%) edges down-regulated, respectively. Of note, the downregulation 

was a consequence of reduction in node expression in PD vs controls rather than a reduction of the 

co-expression coefficients (44 edges (61.1%) and 41 edges (71.9%) (Figure 5A). GO-BP enrichment 

analysis returned a total of 42 terms for Cluster A, which related the cluster with functional key words: 

“biosynthesis”, “metabolic” and “rRNA”, suggesting that sPD and LRRK2-PD potentially contribute to 

a decreased gene expression and/or ribosomal function generally regulated by this cluster of LRRK2 

interactors (Figure 5A, Table S8). Cluster H exhibited significant up-regulation in LRRK2-PD only, with 

13/21 (76.2%) edges affected by increased expression level of interactors while 3 affected by 

increased co-expression level between interactors (Figure 5B). Of note, up-regulated PRKN expression 

level contributed to 10/16 altered edges due to its central role in the cluster (degree = 11).  Functional 

enrichment analysis showed that Cluster H was related with functional key words of “mitochondrial”, 

“localisation”, “response” and “autophagy”, suggesting that during LRRK2-PD progression, regulation 

of mitochondrial homeostasis as well as autophagy mechanisms are potentially stimulated. (Figure 5B, 

Table S8). 
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Figure 4. Topological Clustering of the LRRK2net  A) The bar graph shows the impact of expression 

behaviour linked with the sPD condition on the edges of each topological cluster. Upregulated edges 

(in red) were defined as: 1) with ≥ 1 connected interactor exhibiting increased expression level in sPD 

condition as compared to controls; and/or 2) the 2 connected interactors were positively co-expressed 

(with Pearson’s coefficient > 0.6) in sPD condition but not in controls. Downregulated edges (in blue) 

were defined in the opposite way: 1) with ≥ 1 connected interactor exhibiting decreased expression 

level in sPD condition as compared to controls; and/or 2) the 2 connected interactors were positively 

co-expressed (with Pearson’s coefficient > 0.6) in controls but not in sPD. The percentage of 

upregulated, unchanged and downregulated edges were compared within each cluster via One Sample 

Proportion test. Only Cluster A was significantly downregulated in sPD (p < 0.001, *). B) The bar graph 

shows the impact of expression behaviour linked with the LRRK2-PD condition on the edges of each 

topological cluster.  Cluster A was significantly downregulated in LRRK2-PD (p < 0.05, *); while Cluster 

H was significantly upregulated by LRRK2-PD, (p < 0.001, *) in comparison with controls. 

Finally, the granular differences in cluster A for sPD and LRRK2-PD were considered, and edges were 

further weighted based on the extent of their up/down-regulation (please refer to material and 

methods). Edges fell into 7 categories ranging from highly up-regulated to highly down-regulated 

(Figure 5C). Edges in Cluster A presented distinct alteration patterns in the sPD and LRRK2-PD 

conditions (Chi-square p-value < 0.001), in which more edges experienced moderate downregulation 

(𝑆(𝑖,𝑗) = -1) in the sPD condition as compared to the LRRK2-PD (N = 28 vs. 14, p = 0.017); while more 

upregulated edges were found in the LRRK2-PD condition as compared to the sPD (N = 25 vs. 6, p < 

0.001), suggesting that although Cluster A presented a similar trend of downregulation overall in 

comparison with controls (average edge score for cluster A = -2.12 in sPD and -2.23 in LRRK2-PD), the 

cluster actually exhibited different granular responses and was differently modulated in the 2 types 

of PD conditions.  
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Figure 5. Significantly altered topological clusters in LRRK2net A) The network graph shows the 

significant downregulation of Cluster A in sPD and LRRK2-PD, in which LRRK2 interactors are 

represented as nodes (N = 45) while PPIs are represented as edges (N = 115). Edges are represented 

with a continuous red line if they are upregulated, with a dotted blue line if they are downregulated. 

The thickness of the edges is proportional to the calculated S (= edge-score/weight). Word cloud shows 

the functional keywords returned for Cluster A. The larger the text, the more often it showed in the 

enrichment results. B)  The network graph shows the significant upregulated Cluster H in LRRK2-PD, 

with interactors represented as nodes (N = 15) and PPIs represented as edges (N = 21). Word cloud 

shows the functional keywords returned for Cluster H. The larger the text, the more often it showed in 

the enrichment results. C) The bar graph shows the granular expression alterations of edges in Cluster 

A in the 2 PD conditions. The overall pattern was compared via Pearson’s Chi-square test, giving a p-

value < 0.001, suggesting the alterations of Cluster A are significantly different in sPD as compared to 

LRRK2-PD. The percentage of edges in each score group was compared via One Sample Proportion test. 

Significant differences were observed in the edge group of “moderately downregulated” and “mildly-

upregulated” (p < 0.05, *).  

 

Discussion 

Complex neurodegenerative disorders present with a complicated aetiopathogenesis, triggered by 

multiple causative events (or risk factors) from the environment and from the genome. An additional 

layer of complexity is due to the cocktail of risk factors being cohort specific. In PD, for example, most 

of the patients have a sporadic form of the disease, with no large effect size mutations contributing 

to it; we generally think these cases are due to a complex set of small effect size genetic risk factors in 

combination with a triggering environmental exposure. On the other hand, a minority of patients is 

considered familial with at least one mutation with effect size large enough to drive disease. The 

sporadic and the genetic forms of PD are, therefore, clearly triggered by different combinations of risk 

factors. It is legitimate to ask whether, despite the similar clinical presentation and the classification 

under the same disease name, sporadic and genetic forms might represent a more nuanced spectrum 
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of disorders. This seemingly philosophical question holds the key to a very practical issue. Sporadic 

disorders are difficult to be modelled in vitro, thus the scientific community relies on genetic models 

based on the familial forms of the same disease to simulate the disease scenario in a test tube. These 

experimental models might not be accurate if we are indeed dealing with a spectrum disorder where 

the same clinical manifestation may be triggered by different molecular scenarios. Similarly, a 

therapeutic approach targeted to the molecular core of the neurodegeneration developed for the 

genetic forms of the disease might not be fully effective on the sporadic disease, thus requiring cohort 

specific interventions.     

In this study, we used systems biology to generate a model and investigate the potential molecular 

differences between sPD and LRRK2-PD, focusing on the transcriptomic expression profile of the 

LRRK2 protein interactome. We considered, in fact, that the LRRK2 functionality is orchestrated by the 

protein interactions that interlink LRRK2 with the cell proteome. It is known that LRRK2 interaction 

behaviour is affected by the presence of mutations (Manzoni et al., 2015); we therefore speculated 

that the presence of PD causing mutations in LRRK2 (LRRK2-PD) will modify the LRRK2 connectivity 

and in turn this will trigger expression changes within the LRRK2 interactome. These changes might 

be specific of the LRRK2-PD scenario since no LRRK2 mutations are present in sPD. However, it is also 

possible that expression changes of the LRRK2 interactome might happen just as a consequence of PD, 

in a feedback response to the molecular alterations induced by the disease; in this case these 

alterations should be evident in both presence (LRRK2-PD) and absence (sPD) of LRRK2 mutations.      

When we checked for alterations in expression levels (cases vs controls) for the LRRK2 interactors, 

26.5% (100/377) of the LRRK2 interactors presented indeed significant alteration in whole blood 

mRNA, among which only 17 showed similar trend of alteration (3 up-regulated and 14 down-

regulated) between sPD and LRRK2-PD. Functional enrichment of these 17 proteins with similar trend 

of alteration in both sPD and LRRK2-PD indicated biological processes related to ribosomal activity and 

protein biosynthesis. It is interesting to note that, among the 100 LRRK2 interactors that were 

significantly altered in expression levels (all cases vs controls), 23 were ribosomal proteins (RP). These 

RPs were all down-regulated in the disease scenario: 6 were down-regulated in LRRK2-PD only; 8 were 

down-regulated in sPD only while 9 were down-regulated in both sPD and LRRK2-PD. This first analysis 

of the model suggested that, globally, sPD and LRRK2-PD possess distinct molecular signature of 

expression changes for the LRRK2 interactors. However, a small overlap in expression change does 

exist between the 2 conditions and this seems associated with those LRRK2 interactors that aid LRRK2 

in its functions in the regulation of protein synthesis and ribosomal activity. 

We then analysed the co-expression behaviour of the LRRK2 interactome using the classical WGCNA 

pipeline. We identified 5 co-expression modules in the sPD as well as in the LRRK2-PD LRRK2net. We 

considered the node composition of these 5 modules to verify whether they were consistent between 

the 2 conditions. Results showed that 2 modules were in fact the same between sPD and LRRK2-PD 

while 3 were statistically different. The 2 modules shared between sPD and LRRK2-PD again were 

composed of proteins relevant for processes of protein biosynthesis, protein transport, ribosomal and 

in general metabolic activity. Of interest, 21 out of the 23 significantly altered RB present in the LRRK2 

interactome (91.3%) presented high co-expression between each other and were allocated into the 

same WGCNA module in both sPD and LRRK2-PD, again confirming these processes and players might 

be consistently altered in the 2 disease scenarios. 

The topological clustering algorithm identified 11 clusters in the LRRK2net, these are portions of the 

network that are more connected within each other than the average connection of the entire 

network.  The majority of the RP were, as expected, contained within one cluster and interestingly this 

cluster was the only one whose global change in expression and co-expression was overall statistically 
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significant (cases vs controls) in both sPD and LRRK2-PD. In particular this cluster was significantly 

downregulated, potentially suggesting that the functionality of RPs and ribosomal, protein 

biosynthetic processes are universally reduced during PD. This finding is in accordance with several 

previous functional studies that found similar down-regulation in RPs in whole blood and substantia 

nigra in sPD patients as well as LRRK2-G2019S PD patients as compared to controls (Scherzer et al., 

2007; Garcia-Esparcia et al., 2015; Flinkman et al., 2023; Jang et al., 2023). The other network cluster 

that was significantly modified considering its expression behaviour in cases vs controls contained 15 

LRRK2 interactors with general up-regulation; however, this cluster was only significantly modified in 

LRRK2-PD, not in sPD while compared to control. The function of this cluster was associated with 

Parkin-dependent mitophagy, and indeed PRKN/Parkin was at the centre of the cluster connectivity 

suggesting an interlink between of the effect of LRRK2 mutation (G2019S and/or R1441C) and the 

well-established mitophagy alterations in PD. Multiple lines of evidence have indicated that increased 

LRRK2 kinase activity negatively affects Parkin-dependent mitophagy. For example, structural biology 

study have found that overexpression of LRRK2 and LRRK2-G2019S interrupts the PPI between Parkin 

and other key proteins essential for mitophagy on the outer mitochondrial membrane, and thereby 

interferes with the recruitment of Parkin with disruption of mitophagy (Bonello et al., 2019; Lin et al., 

2021) This may explain the up-regulated PRKN/Parkin expression level cluster as observed in our study 

– as a compensation for reduced interactable Parkin at the mitochondria. Also, the increased co-

expression between PRKN/Parkin and MFN1, TUBG1 as well as RANBP2 may serve as compensation 

mechanism for the altered mitochondrial fusion/fission dynamics in the presence of LRRK2-G2019S, 

which have been reported in several studies (Bradshaw et al., 2021; Gegg et al., 2010). There are a 

few limitations in this study: 1) the sample size of the cohorts are relatively small, especially for the 

LRRK2-PD cohort. Larger sample size would improve statistical power and thereby give more robust 

results; 2) PD cases recruited by PPMI were at the early stages of the disease and the whole blood 

mRNA sequencing was run at the first visit. Therefore, the alterations of some LRRK2 interactors could 

be too subtle to be detected by DEA or WGCNA; 3) the LRRK2-PD cohort includes both G2019S and 

R1441C/G mutations and thereby introduce subtle bias due to genetic variation. 

In conclusion, our study suggests that although sPD and LRRK2-PD clearly share aspects of the PD 

pathology and PD clinical presentation, the molecular pathways at the basis of the 2 conditions might 

be slightly different. There are shared changes of the LRRK2 interactome that can be appreciated at 

the transcriptome level in both the 2 conditions, and these are mainly associated with alterations of 

ribosomal proteins and proteins whose function is important for protein biosynthesis. However, there 

are also large differences between the 2 conditions suggested by the unique transcriptomics 

signatures. This conclusion suggests that LRRK2-PD and sPD should not be treated as the same 

conditions, prompts the request for experimental models to be generated as specific for the condition 

under analysis and confirms the requirement for patient stratification.  
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