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Abstract 

The functional connectome of the human brain represents the fundamental network architecture 

of neural activity, but its normative growth trajectory over the life course remains unknown. 

Here, we aggregate the largest, quality-controlled multimodal neuroimaging dataset across 119 

global sites, including 33,809 task-free fMRI and structural MRI scans of 32,328 individuals 

aged from 32 postmenstrual weeks to 80 years old. The lifespan growth charts of the connectome 

are quantified at the whole cortex, system, and regional levels using generalized additive models 

for location, scale, and shape. We find critical inflection points in the nonlinear growth 

trajectories of the whole-brain functional connectome, notably peaking in the fourth decade of 

life. After establishing the first fine-grained, lifespan-spanning suite of system-level brain atlases, 

we generate person-specific parcellation maps and further elucidate distinct timelines of 

maturation for functional segregation within various subsystems. We identify a spatiotemporal 

gradient axis that governs the life-course growth of regional connectivity, transitioning from 

primary sensory cortices to higher-order association regions. Using the connectome-based 

normative model, we demonstrate substantial individual heterogeneities at the network level in 

patients with autism spectrum disorder and patients with major depressive disorder, respectively. 

Our findings shed light on the functional connectome’s life-course evolution, serving as 

normative references for understanding network growth principles of the human brain and 

assessing individual variations of patients with neuropsychiatric conditions.  
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Introduction 

The resting human brain, characterized by intrinsic or spontaneous cortical-cortical interactions, 

has been increasingly understood through the perspective of the connectome over the past two 

decades 1-5. The emergence, development, and aging of intrinsic connectome architecture enable 

the dynamic reorganization of functional specialization and integration throughout the entire 

lifespan, contributing to continuous changes in human cognition and behavior 6-9. Understanding 

the spatiotemporal growth process in the typical functional connectome is critical for grasping 

network-level evolving principles in healthy individuals and pinpointing periods of heightened 

vulnerability or potential. Disruption of these normative connectome patterns, especially during 

specific time windows, can predispose individuals to a spectrum of neurodevelopmental 10-12, 

neurodegenerative 13, and psychiatric disorders 14-16. The growth chart framework offers an 

invaluable tool for charting normative reference curves in the human brain 17-20. Very recently, 

Bethlehem et al. 18 delineated the life-cycle growth curves of brain morphometry by aggregating 

the largest multi-site structural MRI dataset to date (123,984 scans from 101,457 human 

participants), marking a significant stride toward reproducible and generalizable brain charts. 

However, it remains unknown about the normative growth trajectory of functional brain 

connectome over the human life course. 

Previous studies employing task-free functional MRI (fMRI) data have reported the age-related 

characteristics of the functional connectome 21-23. However, most of these investigations were 

limited to specific growth stages with narrow age intervals. For instance, data from perinatal and 

early postnatal periods (e.g., 0-6 years) are rarely integrated into studies involving childhood, 

adolescence, and adulthood; thus, the opportunity to depict continuous life-cycle dynamic 

evolution from gestation through older age is lost. Although a few studies have attempted to 

encompass a broader age range from the childhood stage to late adulthood, they suffered from 

challenges to robust estimation of normative growth curves due to limited sample sizes (usually 

< 1,000) 24-29. Moreover, there are great inconsistencies in the literature regarding functional 

connectivity trajectories, with no consensus emerging on the developmental directions and 

growth milestones. Specifically, Cao et al. 25 reported the peak of global functional connectivity 

across the entire brain at approximately 30 years of age, while other investigations suggest 

earlier peaks 24 or depict a continuous decline over the lifespan 30. Divergent trends were 

observed for sensorimotor regions, with reports showing ascending 31, descending 32, and stable 
33 developmental trajectories from childhood to adolescence. Similarly, connectivity patterns 

between the default and frontoparietal networks have been reported to both increase 34 and 

decrease 35, 36 during this phase. Such result discrepancies across studies are probably due to the 

pronounced sensitivity of high-dimensional fMRI data to variation in scanner platforms and 

sequences, image quality, data processing and statistical methods, as well as the cohort’s 

population heterogeneity 6. This highlights the paramount importance of large sample sizes, 

rigorous data quality control processes, unified data processing protocols, and standardized 

statistical modeling frameworks in accurately characterizing growth curves of the life-course 

functional connectome. 

To address this gap, we aggregated the largest and rigorously quality-controlled multimodal 

neuroimaging dataset across 119 global sites, consisting of 33,809 task-free fMRI and structural 

MRI scans from 32,328 individuals ranging in age from 32 postmenstrual weeks to 80 years. We 

undertook a comprehensive network modeling analysis to delineate the nonlinear trajectories of 
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the functional connectome across multiple scales. We began by characterizing the lifespan 

changes and the rates of changes in the overall patterns of the whole-brain functional 

connectome, uncovering important life-course milestones. Subsequently, we established the first 

set of continuous age-related, system-level atlases across the lifespan and provided an unreported 

portrayal of the distinct growth patterns across brain systems. Next, we sought to elucidate the 

spatiotemporal principles governing connectome growth at a finer vertex-level resolution. 

Finally, to explore the potential clinical application of our life-course normative model, we 

presented a multiscale characterization to quantify the heterogeneity of participants with autism 

spectrum disorder (ASD) (N = 653) and major depressive disorder (MDD) (N = 622) using 

individualized deviation scores. 

Results 

We initially collected 45,525 scans from 43,377 participants with multimodal structural MRI and 

task-free fMRI data in total. After a stringent quality control process (for details, see the Methods 

and Supplementary Fig. 1), we obtained a final sample of 35,084 scans with high-quality 

imaging data, which included 33,809 scans of healthy individuals (N = 32,328) and 1,275 scans 

of patients (N = 1,275) (Fig. 1a). For the detailed acquisition parameters and demographics of the 

datasets, see Supplementary Table 1. Using the standardized and highly unified processing 

pipeline (Methods and Supplementary Fig. 2), for each individual we obtained the surface-based 

preprocessed blood oxygenation level-dependent (BOLD) signals in fsaverage4 space (4,661 

vertices in total). Then, we constructed a vertex-wise 4,6614,661 functional connectome 

matrix by calculating the Pearson correlation coefficient between the time courses of each vertex. 

Fig. 1b illustrates the functional connectome matrices of representative subjects at various age 

points. Then, we comprehensively examined the individual connectome at the whole-brain, 

system, and regional levels, harmonizing all measures across sites. Guided by the 

recommendations from the World Health Organization 37, we utilized generalized additive 

models for location, scale, and shape (GAMLSS) 37, 38 to elucidate the age-related nonlinear 

trajectories for healthy populations, with sex and in-scanner head motion as fixed effects. 

GAMLSS offers a robust framework for modeling nonlinear growth charts and is widely 

employed in neurodevelopmental studies 18, 39-41. To evaluate the rate of change (velocity) and 

inflection points, we calculated the first derivatives of the trajectories. Detailed GAMLSS 

specification, model estimation, and sensitivity analyses of model stability and robustness are 

presented in the Methods. 

Mapping normative growth of the whole-brain functional connectome over the lifespan 

To provide basic developmental and aging insight into the overall functional connectome, we 

first characterized the normative trajectories of global mean and variance (estimated by standard 

deviation) of the whole-brain connectome matrix. The lifespan curve of the mean functional 

connectivity across the entire brain (Fig. 1c) showed a nonlinear increase from 32 postmenstrual 

weeks onward, peaking at 40.0 years (95% bootstrap confidence interval (CI) 39.4-40.5), 

followed by a subsequent nonlinear decline. The peak of the increased growth rate occurred at 

18.0 years (95% bootstrap CI 15.1-20.2), while the maximum rate of decline was observed at 

57.4 years (95% bootstrap CI 55.8-59.8). The global variance in whole-brain functional 

connectivity (Fig. 1d) also exhibited a nonlinear growth pattern, peaking in adulthood at 34.7 

years (95% bootstrap CI 33.0-36.4), with maximum rates of increase and decline occurring at 32 
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postmenstrual weeks (95% bootstrap CI 32 week-32 week) and 59.0 years (95% bootstrap CI 

57.8-61.1), respectively. These nonlinear trajectories signified that whole-brain connection 

strength and connection diversity evolve in a temporally coordinated manner across the lifespan. 

 
Fig. 1 | Data samples, functional connectome, and global growth of the connectome over the lifespan. a, 

Quality-controlled MRI data from 119 scanning sites comprising 35,084 scans (N = 33603) of individuals who 

collectively spanned the age range from 32 postmenstrual weeks to 80 years. Box plots show the age 

distribution of individuals for each site of data acquisition. Detailed acquisition parameters and demographics 

of each site are provided in Supplementary Table 1. b, The functional connectivity (FC) matrices of 

representative subjects at different developmental ages. c, Normative trajectory (left panel) and growth rate 

(right panel) of whole-brain mean FC as estimated by GAMLSS. The median (50% centile) is represented by a 

solid line, while the 5%, 25%, 75%, and 95% centiles are indicated by dotted lines. The growth velocity is 

characterized by the first derivative of the trajectory. Critical milestones in the lifespan developmental 

trajectory include a stabilization of growth rate at 40.0 years (95% bootstrap confidence interval (CI) 39.4-

40.5), a maximum increase at 18.0 years (95% bootstrap CI 15.1-20.2), and a maximum decline at 57.4 years 

(95% bootstrap CI 55.8-59.8). d, Normative trajectory and growth rate of variance in whole-brain FC, with a 

peak age at 34.7 years (95% bootstrap CI 33.0-36.4), a maximum increase occurring at 32 postmenstrual 

weeks (95% bootstrap CI 32 week-32 week), and a maximum decline occurring at 59.0 years (95% bootstrap 

CI 57.8-61.1). wk, week; mon, month; yr, year. 

 

Lifespan growth of system-specific cortical organization in the functional connectome 

Functional segregation and integration are two fundamental organizational principles of human 

brain connectomes 1. To understand lifespan growth patterns of functional segregation and 

integration, we established the normative trajectories of functional connectome at the system 
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level. The initial step entailed parcellating the cortical cortex into distinct functional systems for 

each individual. Convergent evidence has demonstrated that relying on population-level atlases 

for individual analysis disregards the crucial intersubject variability in functional topography 

organization 42-45. Such oversight leads to misinterpretation of spatial distribution differences as 

system-level disparities 43, 46, thereby risking inaccuracies in mapping both intra- and inter-

system connectivity. Moreover, although prior studies on fetal and infant brains have illuminated 

the early emergence of basic forms of large-scale functional systems, including visual 47-50, 

somatomotor 47-50, dorsal attention 51, 52, ventral attention 47, frontoparietal 48, 50, 52, and default 

mode networks 47-50, 52, the functional architecture of an individual’s system undergoes dramatic 

refinement and reorganization throughout the protracted life course 21, 53. To enhance the 

precision of constructing individual-specific functional networks, it is imperative to establish a 

series of continuous growth atlases with accurate system correspondences over the life course.  

To address this issue, here we proposed a Gaussian-weighted iterative age-specific group atlas 

(GIAGA) generation approach (Methods and Supplementary Fig. 3a). Central to this approach is 

the iterative refinement process: Yeo’s adult atlas 54 was utilized as a prior to generate 

personalized parcellation for each participant in a given age group. Subsequently, these 

personalized parcellations were aggregated to construct an age-specific population-level atlas, 

wherein the participants' contribution was weighted according to their age’s position within a 

Gaussian probability distribution. This process was reiterated until the age-specific population-

level atlas converged. By dividing participants from 32 postmenstrual weeks to 80 years into 26 

distinct age groups, we established the first set of age-specific brain atlases that cover the 

lifespan (Fig. 2a). Each of the 26 brain atlases was parcellated into seven canonical functional 

networks. For each network, we calculated the network size ratio, measured by the proportion of 

vertices, and the distributed score, defined by the number of spatially discontinuous subregions 

(Fig. 2b). We noted that the default mode (DM), frontoparietal (FP), and ventral attention (VA) 

networks exhibited a slight expansion in network size during the first month of life, while their 

distribution scores developed until late childhood. In contrast, the somatomotor (SM), visual 

(VIS), and dorsal attention (DA) networks displayed a relatively stable pattern in network size 

and network discretization throughout the lifespan. To quantify the growth patterns of the whole-

brain atlas and across diverse networks, we computed the network similarity using the overlay 

index and Dice coefficient between each atlas and the designated reference atlas (Methods). 

Here, the reference atlas was derived from the average of several adult-like atlases (spanning 

from the 18- to 70-year atlas) that exhibited high alignment due to clustering (Methods and 

Supplementary Fig. 5). We found that the whole-brain atlas similarity rapidly increased during 

the first two decades of life and plateaued before declining in old age (Fig. 2c). At the system 

level, we noted that both the VIS and SM networks displayed adult-resembling patterns 

(similarity of 80%) in neonate stages, whereas DM, FP, DA, and VA networks developed adult-

resembling patterns (similarity of 80%) at age 4 (Fig. 2d and 2e). To map individual-specific 

functional systems for each participant, we leveraged an iterative parcellation procedure 

(Supplementary Fig. 3b) proposed by Wang et al. 55 which has been proven to accurately identify 

personalized functional networks in healthy 43, 55 and diseased individuals 56-58. Consistent with 

the developmental pattern of the age-specific atlas, the normative growth trajectories revealed 

that individualized atlas similarity with the reference increased from 32 postmenstrual weeks, 

peaking at 30.0 years (95% bootstrap CI 29.2-30.7); keeping a stable level to 54 years (95% 

bootstrap CI 53.0-56.0) and then decline accelerated continuously until 80 years of age (Fig. 2f 

and 2g). 
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We characterized the growth trajectories of within-system connectivity (functional segregation) 

and between-system connectivity (functional integration) (Supplementary Fig. 6) by leveraging 

person-specific network assignments. To further quantify the differences in the within-system 

connectivity in relation to the between-system connectivity, for each brain system we calculated 

the system segregation index 59. This index measures the difference between mean within-system 

connectivity and mean between-system connectivity as a proportion of mean within-system 

connectivity 59 (Methods). Intriguingly, the whole-brain system segregation across all systems 

peaked at 23.5 years (95% bootstrap CI 20.7-24.3) and showed a more significant accelerated 

decline around the sixth decade of life (Fig. 3a). At the system level, the primary VIS network 

consistently showcased the largest segregation throughout all age points (Fig. 3b), suggesting 

that the VIS network is more efficient in its in-network communication and relatively less 

integrated in its cross-network communication compared to other systems. Notably, distinct 

networks manifested heterochronous growth patterns (Fig. 3b and 3c). The VIS and DA networks 

exhibited similar life-cycle trajectories, both peaking early at approximately 10-11 years of age 

(VIS peak at 11.3 years (95% bootstrap CI 10.8-11.7); DA peak at 9.8 years (95% bootstrap CI 

9.4-10.1)). Conversely, the DM and FP networks reached their peak late in the fourth decade 

(34.3 years, 95% bootstrap CI 29.6-57.8) and sixth decade (53.9 years, 95% bootstrap CI 48.3-

57.3), respectively. Other networks reach their inflection points between late adolescence and 

early adulthood. In addition, the quantitative analysis of the growth rate illuminated that growth 

in the DM and FP networks increased faster in the early stages of neurodevelopment and 

declined faster in the late stages of senescence (Fig. 3b and 3d). 

 
Fig. 2 | Population-level and individual-level functional atlases throughout the lifespan. a, Employing the 

Gaussian-weighted iterative group atlas generation approach (for details, see Methods and Supplementary Fig. 
3), the first life-cycle set of functional seven-network atlases from 32 postmenstrual weeks to 80 years was 

established (26 atlases in total). Only the left hemisphere is displayed here; for the full-brain atlas, refer to 
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Supplementary Fig. 4. Labels of each system were mapped into the HCP fs_LR_32k surface and visualized 

using BrainNet Viewer 60. b, Network size ratio and network distributed score of each system in all 

developmental atlases. The network size ratio was calculated as the vertex number of the system divided by the 

total cortical vertex number. The network distributed score was measured by the spatially discontinuous 

subregion (≥ 5 vertices) number of the system. c, Whole-brain similarity of each age-specific atlas with the 

reference atlas. d, System similarity of each age-specific atlas with the corresponding system in the reference 

atlas. e, The age when the system similarity of each age-specific atlas reaches 0.8 and 0.98. f-g, Normative 

trajectory and growth rate of individualized atlas similarity with the reference atlas. The similarity increased 

from 32 postmenstrual weeks, peaking at 30.0 years (95% bootstrap CI 29.2-30.7), and undergoing a 

continually accelerated decline starting at approximately 54 years (95% bootstrap CI 53.0-56.0) until 80 years 

of age. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, 

frontoparietal; DM, default mode. wk, week; mon, month; yr, year. 

 

 
Fig. 3 | Life-course normative trajectories of individualized brain system segregation. a, Normative 

trajectory and growth rate of whole-brain system segregation. The developmental peak occurred at 23.5 years 

(95% bootstrap confidence interval 20.7-24.3). b-c, Normative trajectory and growth rate of system 

segregation for each network. The median (50% centile) is represented by a solid line, while the 5%, 25%, 

75%, and 95% centiles are indicated by dotted lines. Developmental inflection points are marked in blue font. 

d, Growth rate of system segregation visualized in the cortex, with black lines depicting system boundaries. 

Values of each system are mapped and visualized in the HCP fs_LR_32k surface. VIS, visual; SM, 

somatomotor; DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. 

wk, week; mon, month; yr, year. 

 

Lifespan growth of regional-level functional connectivity reveals a spatial gradient pattern 

Having identified distinct growth trajectories across various brain systems, we further explored 

the more nuanced spatial-temporal developmental patterns of the functional connectome at the 
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regional level. First, we charted the normative trajectory of each vertex's functional connectivity 

strength (FCS) by calculating the average connectivity with all other vertices. Fig. 4a presents 

the trajectories for several vertices located in diverse brain regions, and Fig. 4b shows the fitted 

FCS and its growth rate across the cortex. Notably, the most pronounced changes in regional-

level functional connectivity occurred within the first decade of life. Subsequently, we sought to 

elucidate how the entire growth trajectories spatially varied across the cortical cortex by mapping 

the primary spatial axis of FCS development. To this end, we utilized a principal component 

analysis (PCA) on the zero-centered 50% centiles of growth curves. The first PC, accounting for 

66% of the variance, could be identified as the dominant axis of regional functional connectivity 

development (Fig. 4c). This axis captured a hierarchical spatial transition, commencing from 

primary sensorimotor and visual cortices and culminating in higher-order association regions, 

including the angular gyrus, precuneus, temporal, and prefrontal cortices. To illustrate the 

spatial-temporal pattern of developmental trajectories throughout the cortex more clearly, we 

segmented the principal developmental axis into 20 equal bins and averaged the trajectories for 

vertices within each bin. A continuous spectrum of trajectories along the life-cycle axis is 

presented in Fig. 4d.  

The cortical landscape of the human brain is organized by a foundational gradient known as the 

sensorimotor-association (S-A) axis 61. This axis spans from primary cortices, which are crucial 

for sensory and motor functions, to advanced transmodal regions responsible for complex 

cognitive and socio-emotional tasks. It has been widely shown to be instrumental in shaping 

neurodevelopmental processes 62-64. Here, we aimed to investigate the extent to which our 

defined developmental axis aligns with the classical S-A axis as formulated by Sydnor et al 62. 

(Fig. 4e). Utilizing a spin-based spatial permutation test 65, we found a significant association 

between the life-course principal growth axis and the S-A axis (r = 0.67; Pspin < 0.0001) (Fig. 4f). 

This finding suggested that canonical sensorimotor-association organization exerts a profound 

influence on the spatiotemporal growth of functional connectome throughout the human lifespan.  

Sexual differences in lifespan trajectories 

Sexual difference is increasingly recognized for its significant impact on brain development and 

aging 66, 67. In GAMLSS modeling, we included a sex effect as another feature for establishing 

lifespan trajectories. The sex-stratified growth curves for individual metrics of the functional 

connectome are illustrated in Supplementary Fig. 7. These curves offer profound insights into the 

similar and distinct sex-dependent effects on the brain's functional connectome across the 

lifespan. Generally, both males and females showed similar nonlinear lifespan growth curves in 

multiple metrics of functional connectome. However, some differences were also observed. 

Specifically, the global mean connectivity was higher in males than females, validating and 

broadening conclusions from previous studies confined to restricted age ranges 68, 69. While 

females displayed higher global system segregation, particularly in adulthood. At the system 

level, females presented higher system segregation in the DM and VA networks and lower 

system segregation in the SM and LIM networks throughout the lifespan as compared to males. 
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Fig. 4 | Lifespan normative trajectories of regional functional connectivity strength (FCS). a, Normative 

trajectories of example vertices from different regions. b, The fitted 50% centiles (top panel) and their growth 

rates (bottom panel) for all vertices at several key age points. c, The life-course developmental axis of brain 

functional connectivity, represented by the first principal component from a PCA on vertex-level FCS 

trajectories. d, Based on the lifespan principal axis, all vertices across the brain were equally divided into 20 

bins. The zero-centered trajectories of all vertices within each bin were averaged. The first vigintile (depicted 

in darkest yellow) represents one pole of the axis, while the twentieth vigintile represents the opposite pole 

(depicted in darkest blue). The patterns of developmental trajectories vary continuously along the axis, with the 

greatest differences observed between the two poles. e, The sensorimotor-association (S-A) axis, as formulated 

by Sydnor et al. 62, represents a cortical continuum that transitions from primary regions to transmodal areas. f, 

A strong correlation was observed between the life-course principal developmental axis and the S-A axis (r = 

0.67; Pspin < 0.0001) (linear association shown with a 95% confidence interval). All brain maps were mapped 

to the HCP fs_LR_32k surface for visualization. wk, week; mon, month; yr, year. 

 

Identification of individual variation in brain disorders using connectome-based normative 

models 

Recent literature has underscored the potential of normative models in disentangling the inherent 

heterogeneity in clinical cohorts by affording statistical inferences at the individual level 18, 70-76. 

By benchmarking individual brain phenotypes against population-based standards, this approach 

allows for the quantification of individualized deviations from normative expectations, providing 

unique insights into the typicality or atypicality of each individual's brain structure or function. 

Based on the GAMLSS modeling framework, we comprehensively characterized the 

individualized deviation z score (age- and sex-specific) of each functional metric at the whole-

brain, system, and regional levels in MDD patients (N = 622) and ASD patients (N = 653) 

(Methods). Deviation scores for healthy individuals were assessed using a 10-fold cross-

validation strategy. The extreme deviations were defined as z > |2.6| (corresponding to a p < 

0.005), consistent with the criteria employed in prior studies 70, 71, 73. 

Compared to the healthy control (HC) group, patients with MDD showed significant differences 

in deviation scores for global mean and variance of functional connectome (p < 0.001, false 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.557193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557193
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

discovery rate (FDR) corrected, Fig. 5a). MDD patients exhibited significant differences in 

deviation scores across 17 of 18 connectomic metrics at the whole-brain and system level, (p < 

0.001, FDR corrected), and ASD patients exhibited significant differences in 10 metrics (p < 

0.001, FDR corrected). Notably, all these significant deviations were negative, suggesting a 

disruption in the system's functional organization in both diseases. At the regional level, MDD 

patients had significantly larger deviations than HCs in 44.4% vertexes (p < 0.05, FDR 

corrected), with positive deviations (1.6% vertexes) in the bilateral supramarginal gyrus cortex 

and negative deviations (42.8% vertexes) mainly in the visual, sensorimotor, precuneus, and 

superior parietal cortex. For ASD patients, 15.4% of vertexes had significantly larger deviations 

than in HCs (p < 0.05, FDR corrected), with positive deviations (7.0% vertexes) in the prefrontal 

and precuneus cortex and negative deviations (8.4% vertexes) mainly in the sensorimotor cortex. 

To access the interindividual heterogeneity, we calculated the overall negative and positive 

extreme deviations across all metrics (at the whole-brain, system, and regional levels) in each 

participant. For MDD patients, 98.9% showed at least one negative extreme deviation, and 

52.7% showed at least one positive extreme deviation (Supplementary Fig. 8). For ASD patients, 

the ratios were 98.3% and 35.1%. To access inter-metric heterogeneity, we calculated the 

proportion of extreme deviations across all participants in each metric. In most whole-brain and 

system-level connectomic metrics, the proportion of subjects with extreme negative deviations 

exceeded those with extreme positive deviations (Fig. 5b, left panel). For the functional metrics 

at the regional level (Fig. 5b, right panel), the extreme positive deviations in MDD patients were 

mostly located in the bilateral prefrontal cortex, angular gyrus, and temporal cortex, and extreme 

negative deviations were widespread over the whole brain, especially in the precuneus and 

temporal cortex. For ASD patients, the extreme positive deviations were in the precuneus, 

prefrontal, and angular gyrus cortex, and extreme negative deviations were also widespread over 

the whole brain. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.557193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557193
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

 
Fig. 5 | Individual variations of multiple connectome metrics in MDD and ASD patients. a, Individualized 

deviation scores of MDD (N = 622) and ASD (N = 653) patients compared to the median of health controls. 

For each metric, the significance of the median differences between each disease group and health controls was 

assessed using the Mann-Whitney U test. P values were adjusted for multiple comparisons using the 

Benjamini-Hochberg false discovery rate (FDR) correction across all possible pairwise tests. The violin-box-

hybrid plots from left to right represent the patient’s deviation score distributions for whole-brain functional 

connectivity (FC), individualized atlas similarity, and individualized system segregation, respectively, wherein 

the median of the control group is depicted as a horizontal blue dotted line. The right panel illustrates case-

control group differences in deviation scores of regional FC. Vertices that passed FDR correction were 

visualized as Z values, with higher absolute Z values indicating more significant median differences (positive 

Z values signifying a positive deviation). b, Percentage of patients with extreme deviations. Subplots from left 

to right display the percentage of subjects with extreme deviations in MDD and ASD populations for whole-

brain FC, individualized atlas similarity, individualized system segregation, and regional FC. Red represents 

extreme positive deviations, while blue indicates extreme negative deviations. All brain maps were mapped to 

the HCP fs_LR_32k surface for visualization. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral 

attention; LIM, limbic; FP, frontoparietal; DM, default mode. 

 

Discussion 

In this study, we assembled, to our knowledge, the most extensive multimodal imaging dataset to 

date, spanning the human lifespan, to comprehensively chart the growth trajectories of the 

functional connectome. Through systematic analysis at the whole-brain, system, and regional 

levels, we mapped the multiscale nonlinear trajectories of functional organization and unveiled 

previously unidentified, key growth milestones from a network perspective. To provide a 

lifespan characterization of large-scale functional systems, we established age-specific atlases 
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spanning 32 postmenstrual weeks to 80 years of age, serving as a foundational resource for 

future research on brain network development and aging. By leveraging two large disease 

datasets, ABIDE for Autism Spectrum Disorder (N=653) and DIDA-MDD for Major Depressive 

Disorder (N=622), we explored the utility of the connectome-based normative model in 

capturing individual heterogeneity within these clinical populations, thereby underscoring its 

potential for advancing our understanding of neuropsychiatric disorders. 

At the whole-brain level, we observed continuous nonlinear changes in the global mean and 

variance in functional connectivity across the life cycle, reaching peaks in the fourth decade with 

a relatively narrow CI. Likewise, the developmental trajectory in global brain structure shows a 

pattern of increase followed by decline, albeit peaking earlier 18. These functional and anatomical 

findings collectively suggest that the human brain remains in a state of dynamic adaptation 

throughout its lifespan. At the system level, one intriguing observation is that, relative to other 

networks, the DM and FP networks undergo more rapid development of system segregation 

during infancy, childhood, and adolescence, reach their peaks later, and exhibit a more 

precipitous decline during aging. The accelerated early development of these networks can be 

attributed to their initially less organized functional architecture in utero 49, 77 and the subsequent 

imperative for rapid postnatal development to support the emergence and evolution of advanced 

cognitive functions 8, 78, 79. Moreover, the heightened susceptibility of these networks to 

accelerated decline in the aging phase may be compounded by their increased sensitivity to 

environmental, genetic, and lifestyle factors, as well as neurodegenerative agents such as 

amyloid-β and tau 80-83. At the regional level, our results validated and extended the replicable 

findings reported by Luo and colleagues 31, who observed an increase in FCS in primary regions 

and a decrease in higher-order areas from childhood to adolescence using four independent 

datasets. Furthermore, the life-cycle growth trajectory of regional FCS is constrained by its 

position along the S-A axis, underscoring the role of the S-A axis as a key organizational 

principle that influences cortical development and aging 62. 

Emerging evidence increasingly implicates aberrant interregional brain communication and 

global network dysfunction as critical factors in the pathogenesis of diverse neuropsychiatric 

disorders 13, 15, 16. After constructing lifespan growth curves, we focused on characterizing the 

degree to which individual functional metrics deviated from established norms of the population. 

This provides preliminary insights into the clinical utility of our functional normative model. By 

employing age- and sex-normalized metrics, we revealed individual heterogeneity in functional 

brain deviations at the whole-brain, system, and regional levels in two clinically relevant 

populations: ASD and MDD. Our results elucidated patterns of deviations across different 

metrics for these two disorders. For instance, regions displaying extreme positive deviations in 

FCS were broadly consistent between ASD and MDD patients, whereas those showing extreme 

negative deviations differed. Across both whole-brain and system levels, individuals with 

extreme negative deviations were generally more prevalent than those with extreme positive 

deviations in both conditions. Further exploration into the underlying causes of these extreme 

positive and negative functional deviations could yield valuable insights into the commonalities 

and distinctions between these disparate clinical disorders 73. Note that, substantial work remains 

to translate growth charts and their derived heterogeneity metrics effectively into clinical utility 
18, 84, 85. For example, using the individual deviation scores across multiscale functional metrics, 

we could identify biological subtypes with shared connectome patterns. Assessing whether 

extreme deviations in functional metrics are associated with symptom severity or cognition is 
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crucial. Therapeutically, incorporating individual functional deviations along with finely 

stratified subtypes might improve the efficacy of interventions through the connectome-guided 

transcranial magnetic stimulation 86. Finally, future studies could be conducted by encompassing 

more disease cohorts with large sample sizes to enable transdiagnostic comparisons among 

disorders. In summary, the integration of the connectomic framework with normative growth 

trajectories offers an unprecedented opportunity for the investigation of brain network 

dysfunction in clinical populations. 

In addition, an intriguing avenue to explore in future research is the interaction between brain 

networks' life-span trajectories under different modalities—specifically, how various 

connectivity metrics coevolve throughout the lifespan and whether similar or variable temporal 

key points exist within these trajectories. It is necessary to determine whether structural 

connectome milestones precede those of functional connectome, thereby providing an 

anatomical scaffold for the dynamic maturation of functional communication. Moreover, 

uncovering the critical physiological factors that shape life-course growth trajectories is complex 

but essential. Recent findings indicated that the population-based life-cycle trajectories of 

cortical thickness align with the patterns of molecular and cellular organizations, with varying 

degrees of biological explanations at different life stages 87. A genome-wide association meta-

analysis performed by Liu et al. 88 identified common genetic variants that influence the rates of 

change in cortical morphology growth or atrophy across the lifespan. These insights emphasize 

the importance of adopting a multidimensional approach—encompassing anatomy, genetics, 

molecular, and metabolism—to decode the intricate factors governing the typical and atypical 

changes in the human brain connectome. 

Several challenges warrant further consideration. First, in the current study, the data used for 

delineating lifespan growth trajectories were aggregated from existing neuroimaging datasets, 

which are disproportionately derived from European, North American, Asian, and Australian 

populations. Inevitably, this geographic bias was also found in other neuroimaging normative 

references or big data studies, such as those involving cortical morphology growth charts 18 and 

genome-wide association studies of brain structure across the lifespan 88. Future efforts should 

incorporate more neuroimaging cohort studies designed to achieve a balanced representation of 

diverse ethnic populations 89. Additionally, it is critical to consider the diversity of environmental 

factors such as socio-economic status, education level, industrialization, and regional culture, in 

posing potential challenges for the application of developmental trajectories. Second, similar to 

the limitations outlined by Bethlehem et al. 18, we also encountered challenges related to uneven 

age distribution in the neuroimaging sample, particularly with underrepresentation in the infant 

and middle-aged (30-40 years) populations. Functional changes are dramatic in the utero brain, 

but the scarcity of available fetal fMRI data limits our understanding of this critical period. 

Future research should augment our current models with functional neurodevelopment data from 

fetal stages. In the present study, we aggregated the largest data sample of task-free fMRI to date, 

with 33,809 brain scans from 32,328 individuals across the lifespan. Nonetheless, the majority of 

the data is still cross-sectional, which could in part underestimate age-related actual changes in 

functional connectome observed in longitudinal measurements 90. Therefore, the integration of 

more densely collected longitudinal data is imperative for a precise characterization of life-cycle 

developmental trajectories. Finally, we anticipate that the connectome-based growth charts 

established herein will serve as a dynamic resource. We will continue to update the lifespan 

growth model as more high-quality, multimodal connectome datasets become available. 
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Methods 

Datasets and participants 

To curve the normative growth of the functional connectome in the human brain, we sought to 

aggregate the available multi-site neuroimaging scans, each featuring both 3T structural and task-

free fMRI data. For subjects with multiple test-retest scans, only the first session was included. 

In cases where longitudinal scans were available, all scans were incorporated into the analysis. In 

total, our dataset comprised 45,525 scans (N = 43,377) from individuals ranging in age from 32 

postmenstrual weeks to 80 years, and across 148 sites in 24 datasets. Detailed scanning 

parameters and demographic information for each dataset are provided in Supplementary Table 

1. Written informed consent of participants or their guardians was approved by the local ethics 

committees for each dataset. 

 

Image quality control process 

The implementation of a rigorous and standardized procedure for quality control is essential to 

guarantee the authenticity of neuroimaging data, thus enhancing the credibility of growth curves. 

Previous research has shown that inadequate quality control of MRI scans can diminish the 

advantages of large sample size in detecting meaningful associations 91. In this study, we adopted 

a comprehensive four-step data quality control framework, combining automated assessment 

tools and expert manual review, to assess both structural and functional images across all 45,525 

scans (Supplementary Fig. 1). This strict framework effectively identified imaging artifacts or 

errors, thereby ensuring the accuracy and reliability of our neuroimaging data. 

Step 1: Quality control for raw images. First, we conducted preliminary quality control to filter 

out low-quality scans with problematic acquisitions. For several publicly available datasets 

(dHCP, HCP-Development, HCP-Aging, HCP-Young Adult, and ABCD) that provide imaging 

quality information, we performed initial quality control according to their recommended 

inclusion criteria. For other datasets, we employed automated quality assessments using the MRI 

Quality Control (MRIQC) tools 92, which extracted no-reference quality metrics for each 

structural (T1w and T2w) and fMRI image. In each dataset, structural images were excluded if 

they were marked as outliers (over 1.5x the interquartile range (IQR) in the adverse direction) in 

at least three of the following quality metrics: entropy-focus criterion (EFC), foreground-

background energy ratio (FBER), coefficient of joint variation (CJV), contrast-to-noise 

ratio (CNR), signal-to-noise ratio (SNR), and Dietrich’s SNR (SNRd). Similarly, functional 

images were excluded if they were marked as outliers in three or more of the following quality 

metrics: AFNI’s outlier ratio (AOR), AFNI’s quality index (AQI), DVARS_std, DVARS_vstd, 

SNR, temporal signal-to-noise ratio (tSNR). This step led to the exclusion of 818 structural and 

941 functional images. 

Step 2: Whether to pass the whole processing pipeline. After the initial quality control step, 

the images were subjected to the preprocessing and postprocessing pipelines. A detailed 

description of the data processing pipelines is provided in the following section. Any scan that 

could not undergo the entire data processing pipeline was excluded, resulting in the removal of 

2,859 structural and 2,914 functional images. 
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Step 3: Surface quality control and head motion control. For structural images, we utilized 

the Euler number to assess the quality of the reconstructed cortical surface. The Euler number is 

a mathematical concept that summarizes the topological complexity of a surface, which can be 

calculated as 2-2n, where n represents the number of defects such as holes or handles. A high 

Euler number represents a surface with fewer defects, indicating high-quality cortical surface 

reconstruction. The Euler number is a reliable and quantitative measure and can be used to 

identify unusable images 18, 91, 93. Similarly, the images with an Euler number magnitude less 

than 1.5x the IQR in the adverse direction from the study-specific distribution (Q1–1.5*IQR) 

were identified as outliers and excluded. For functional images, scans with large head motion 

(mean framewise displacement (FD) > 0.5 mm, or frames with FD over 0.5 mm > 20%) were 

excluded, along with scans having fewer than 100 final time points or the ratio of final time 

points to original time points < 90%. In total, we excluded 2,045 structural images and 3,493 

functional images. 

Step 4: Visual double-check. Finally, we put together a team of four experts to visually double-

check the quality of the images. Specifically, we excluded structural images that failed due to 

issue segmentation, surface reconstruction, surface registration, or myelination distribution and 

excluded functional images that failed due to function-to-structure registration or volume-to-

surface mapping. In this step, 629 structural images and 1,139 functional images were excluded. 

Ultimately, only scans that successfully passed quality control for both functional and structural 

images were retained. 

Applying the above rigorous criteria led to the exclusion of 10,441 scans in 9774 subjects. The 

final sample comprised 35,084 scans with high-quality functional and structural images across 

119 sites, including 33,809 scans (N = 32,328) from HCs, 653 scans (N = 653) from individuals 

diagnosed with ASD, and 622 scans (N = 622) from individuals diagnosed with MDD. 

 

Data processing pipeline 

(i) Structural data preprocessing. While we sought to use a consistent structural preprocessing 

pipeline across all datasets to minimize the impact of varying methods, the considerable changes 

in the human brain across the lifespan made this challenging. This was particularly evident in the 

perinatal and infancy periods, where the anatomical characteristics differ markedly from those in 

adults. For instance, in six-month-old infants, the contrast between gray and white matter is 

extremely subtle, and at approximately six months of age, there is a contrast inversion in the gray 

and white matter. These factors greatly complicate brain tissue segmentation during this period 
94, 95. Due to the lack of a preprocessing pipeline suitable for all life-course stages, it is necessary 

to seek appropriate methods for datasets in early developmental stages while ensuring the 

uniformity of the pipelines in other datasets. 

For individuals aged three years and older, we utilized the publicly available, containerized HCP 

structural preprocessing pipelines (v4.4.0-rc-MOD-e7a6af9) 96, which have been standardized 

through the QuNex platform 97. In brief, this pipeline involves three stages: (1) The 

PreFreeSurfer stage focused on the normalization of anatomical MRI data, involving a sequence 

of preprocessing steps that include brain extraction, denoising, and bias field correction on 

anatomical T1- and T2w MRI data (if T2w data were available). (2) The FreeSurfer stage 

entailed the creation of cortical surfaces from the normalized anatomical data, involving 

anatomical segmentation; the construction of pial, white, and mid-thickness surfaces; and surface 
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registration to the standard atlas. (3) The PostFreeSurfer stage converted the outputs from the 

previous steps into HCP format (CIFTI). The volumes were transformed to a standard template 

space using nonlinear registration, while the surfaces were mapped to the standard fs_LR_32k 

space through spherical registration and surface downsampling. To mitigate the computational 

burden in processing the extensive ABCD dataset, we opted to utilize the community-shared, 

preprocessed data released through the ABCD-BIDS Community Collection 98 (ABCD collection 

3165; https://github.com/ABCD-STUDY/nda-abcd-collection-3165). The neuroimaging data 

underwent preprocessing using the ABCD-HCP pipeline, a variant of the HCP pipeline adapted 

to better suit the ABCD dataset. The modifications in the ABCD-HCP structural pipeline include 

volume registration algorithms and bias field correction methods. Further details regarding these 

adjustments can be found in the online document 

(https://collection3165.readthedocs.io/en/stable/pipelines/).  

For participants within the postmenstrual age range of 32 to 44 weeks from the dHCP study, we 

applied the officially recommended dHCP structural pipelines 99, which have been specifically 

developed to address the substantial differences between neonatal and adult MRI data. This 

HCP-style pipeline comprised the following stages: (1) bias correction and brain extraction 

performed on the motion-corrected, reconstructed T2-weighted images; (2) tissue segmentation; 

(3) cortical reconstruction of the white matter surface; (4) surface topology correction; (5) 

generation of pial and mid-thickness surfaces; (6) generation of inflated surfaces derived from 

the white matter surface through an expansion-based smoothing process; (7) projection of the 

inflated surface onto a sphere for surface registration. Likewise, for participants aged 0-3 years 

from the BCP study, we employed the officially recommended iBEAT V2.0 pipelines 100. This 

pipeline, optimized for early-age neuroimaging data preprocessing based on advanced 

algorithms, has shown superior performance in tissue segmentation and cortical reconstruction 

for BCP datasets compared to alternative approaches. The stages of this pipeline mainly included 

(1) inhomogeneity correction of T1w/T2w images; (2) skull stripping and cerebellum removal 

(for subjects with incomplete cerebellum removal, frame-by-frame manual corrections were 

conducted); (3) tissue segmentation; (4) cortical surface reconstruction; (5) topological 

correction of the white matter surface; (6) final reconstruction of inner and outer cortical 

surfaces.  

Based on the individual cortical surface obtained from the dHCP and iBEAT V2.0 structural 

pipelines, we employed a three-step registration method to align with the fs_LR_32k standard 

space of adults (Supplementary Fig. 2). For participants aged 32 to 44 postmenstrual weeks, we 

implemented the following steps: (1) individual surfaces were registered to their respective 

postmenstrual week templates 101; (2) templates for 32-39 postmenstrual weeks and 41-44 

postmenstrual weeks were registered to the 40-week template; and (3) the 40-week template was 

subsequently registered to the fs_LR_32k surface template. For participants aged 0-36 months, 

the steps involved were as follows: (1) individual surfaces were registered to their corresponding 

monthly age templates 102; (2) all monthly templates were registered to the 12-month template; 

and (3) the 12-month template was then registered to the fs_LR_32k surface template. 

(ii) Functional data preprocessing in volumetric space. For individuals aged three years and 

older, we employed the HCP functional preprocessing pipelines 96. The fMRIVolume stage 

consisted of the following steps. (1) Slice timing correction: This step was applied only for 

single-band acquisitions, as multiband acquisitions did not necessitate slice timing correction. (2) 

Motion correction: EPI images were aligned to the single-band reference image using 6 DOF 
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FLIRT registration. In cases where the single-band imaging data were unavailable, the first frame 

of the fMRI data served as the reference. Motion parameters, including translations, rotations, 

and their derivatives were recorded. The demeaned and linearly detrended parameter is also 

provided for nuisance regression analysis. (3) EPI distortion correction: Geometric distortion 

correction was conducted using the opposite-phase encoding spin-echo images (if LR-RL or AP-

PA encoded acquisitions were available) or through the regular (gradient-echo) fieldmap images 

(if fieldmap acquisitions were available). When neither image was available, this step was 

omitted. (4) Anatomical registration: The fMRI images were registered to the T1w image 

utilizing 6 DOF FLIRT with the boundary-based registration (BBR). (5) Intensity normalization: 

The fMRI data, masked by the final brain mask from the PostFreeSurfer structural pipeline, were 

normalized to a 4D whole-brain mean of 10,000.  

For participants within the postmenstrual age range of 32 to 44 weeks from the dHCP study, we 

applied the dHCP functional pipelines 103. Building upon the foundation of the HCP pipeline and 

the FSL FEAT pipeline, this pipeline was tailored to address the unique challenges inherent to 

neonatal fMRI data. The key components of the pipeline encompassed the following: (1) 

fieldmap preprocessing, which entails estimating the susceptibility distortion field based on the 

opposite-phase encoding spin-echo images and subsequently aligning this field with the 

functional data; (2) registration, which involves BBR of the fieldmap magnitude to the T2w 

image, BBR of the single-band reference image to the T2w image with incorporation of field 

map-based distortion correction, and 6 DOF FLIRT registration of the first volume of the 

functional multiband EPI to the single-band reference image; and (3) susceptibility and motion 

correction, which includes performing slice-to-volume motion correction and motion-by-

susceptibility distortion correction, along with estimating motion nuisance regressors. Through 

these steps, we obtained distortion-corrected and motion-corrected 4D multiband EPI images in 

the T2w native volumetric space. For participants aged 0-3 years from the BCP study, we 

implemented several steps to obtain preprocessed volumetric fMRI data. (1) Motion correction: 

functional images were aligned to the single-band reference image using 6 DOF FLIRT 

registration. When a single-band reference was not available, we used the mean functional 

images (with all frames aligned to the first frame) as the reference. (2) Distortion correction: we 

performed distortion correction based on the opposite-phase encoding (AP-PA) spin-echo 

images. This step was only conducted for participants with available acquisitions. (3) EPI to 

anatomical registration: we aligned the reference image with the anatomical image (T1w or T2w) 

using 6 DOF FLIRT registration. 

(iii) Functional data preprocessing in surface space. In the fMRISurface stage of the HCP 

functional pipeline, the aim was to project the volume time series onto the standard CIFTI 

grayordinates space, which incorporates surface-based cortical data along with volume-based 

subcortical and cerebellar data. For the data from the dHCP and BCP studies, to achieve an 

accurate representation of cortical BOLD signals on the surface, we followed the same steps in 

the HCP preprocessing pipeline. Specifically, the fMRI volumetric data in the cortical cortex 

were separated into left and right hemispheres and mapped onto each participant's mid-thickness 

surfaces using a partial-volume weighted, ribbon-constrained volume-to-surface mapping 

algorithm 96. Subsequently, employing each participant's surface registration transformations 

from the structural preprocessing stage, the time courses were transferred from the individual's 

native space to the fs_LR_32k standard space. 
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(iv) Functional data postprocessing. For ABCD dataset, the ABCD-HCP functional pipeline 

used the DCANBOLDProcessing software 

(https://collection3165.readthedocs.io/en/stable/pipelines/) to reduce spurious variance unlikely 

to reflect neuronal activity. For other datasets, the preprocessed fMRI data were postprocessed 

using SPM12 (v6470) and GRETNA (v2.0.0) with a uniform pipeline. Specifically, we first 

conducted the following steps on the time series for each vertex in fs_LR_32k space (a total of 

59,412 vertices): linear trend removal, nuisance signal (24 head motion parameters, white matter 

signal, cerebrospinal fluid signal, and global signal) regression, and temporal bandpass filtering 

(0.01–0.08 Hz). We implemented scrubbing to mitigate the effects of head motion; volumes with 

FD greater than 0.5 mm and their adjacent volumes (1 prior and 2 subsequent) were replaced 

with linearly interpolated data. Then, surface-based smoothing was applied using a 6-mm full-

width at half-maximum (FWHM) kernel. Ultimately, the data were resampled to a mesh of 2,562 

vertices (corresponding to the fsaverage4 standard space) for each hemisphere using the HCP 

Workbench metric-resample command. Due to the inclusion of the medial wall, the combined 

number of vertices exhibiting BOLD signals on both left and right hemisphere surfaces 

amounted to 4,661. 

 

Construction of the age-specific functional atlas over the lifespan 

(i) Population-level age-specific atlas construction. To enhance the precise mapping of 

individual-specific functional networks across the life course, we first developed a Gaussian-

weighted iterative age-specific group atlas (GIAGA) generation approach (Supplementary Fig. 

3) to establish a set of age-specific population-level functional atlases to guide individual 

iteration (Fig. 2a, Supplementary Fig. 4). Considering the dramatic functional changes during 

early development 53, we prioritized creating a higher number of age-specific atlas for these 

stages compared to later life stages. Specifically, we partitioned all individual scans into 26 

distinct age subgroups spanning from 32 postmenstrual weeks to 80 years of age, and 

constructed a specific functional atlas for each subgroup. We established 9 atlases for the 

perinatal to early infancy stages, including 4 for perinatal development (34-week, 36-week, 38-

week, and 40-week (0-year) atlases) and 5 for the first year of life (1-month, 3-month, 6-month, 

9-month, and 12-month atlases). We developed 2 atlases for toddlers (18-month and 24-month 

atlases), 9 atlases for children to late adolescents (4-year, 6-year, 8-year, 10-year, 12-year, 14-

year, 16-year, 18-year, and 20-year atlases), and 6 atlases for adults and elderly persons (30-year, 

40-year, 50-year, 60-year, 70-year, and 80-year atlases). For the construction of the functional 

atlas for each age subgroup, we randomly selected individual scans from 300 participants. If the 

sample size was less than 300, we included all scans after quality control. Detailed information 

on the age range, number of participants, and sex ratio for each atlas is shown in Supplementary 

Table 2. 

In recent studies of brain functional organization, Yeo’s 7- and 17-networks atlas 54 have been 

widely adopted to map the cortical functional systems 104. By incorporating hand sensorimotor 

areas based on activations in a hand motor task 105, Wang and colleagues extended this classical 

functional parcellation, resulting in an 18-network atlas 55. In line with previous studies 43, 56, 57, 

we utilized this updated classical 18-network map as the initial atlas for constructing age-specific 

functional atlases. The detailed construction process for a given age subgroup (e.g., 17-19 years) 

was as follows. First, to enhance the dataset for this age subgroup, we incorporated the latter half 

of the previous subgroup's scans and the earlier half of the subsequent subgroup's scans. We then 
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employed the individualized parcellation iteration algorithm proposed by Wang and colleagues 55 

to map the 18-network atlas to each participant, generating the initial individualized functional 

parcellations (Step 1 in Supplementary Fig. 3a). Subsequently, we proposed the GIAGA 

approach. Centering around the core age (i.e., 18 years) of this given group, we generated a 

Gaussian probability distribution 𝑁(μ, σ2) with mean μ = 0 and standard deviation σ = 1 

and assigned weights to each participant based on their age’s position in this Gaussian 

distribution. The weight quantified the participant's contribution to the population-level atlas 

construction, with proximity to the core age resulting in a greater contribution. For each vertex, 

we calculated the across-participant cumulative probability belonging to each network, and 

assigned vertex labels to the network with the highest cumulative probability, resulting in an 

initial age-specific population-level atlas (Step 2 in Supplementary Fig. 3a). Finally, we 

iteratively repeated Steps 1 and 2 until the overlap between the current and previous atlases 

exceeded 95% or the total number of iterations surpassed 10, indicating convergence (Step 3 in 

Supplementary Fig. 3a). 

(ii) Individualized atlas construction. For a given participant, we used the same iterative 

parcellation method mentioned above to generate an individualized functional parcellation based 

on the corresponding population-level atlas specific to the participant's subgroup (Supplementary 

Fig. 3b, adjusted from 55). Briefly, the influence of the population-level atlas on the individual 

brain varied among subjects and across brain regions; therefore, this method made flexible 

modifications during the individualized atlas construction based on the distribution of 

intersubject variability in the functional connectome and the tSNR of the functional BOLD 

signals. Throughout the iterations, the weighting of population-based information progressively 

decreased, allowing the concluding individualized map to be completely driven by the 

individual-level BOLD data. More information on this iterative functional parcellation approach 

can be found in the study by Wang and colleagues 55.  

Notably, considering the potential variance for distinct interindividual variability patterns and 

tSNR distributions across different age subgroups, we generated an interindividual variability 

map and a tSNR map for each age subgroup. This was done to enhance the precise mapping of 

both the individualized and population-level atlases. We divided the time series data of each 

participant within each age subgroup into two halves, and for each half, we computed a vertex-

by-vertex functional connectome matrix. This allowed us to obtain the intersubject variability 

and intrasubject variability within the subgroup. By regressing the intrasubject variability from 

the intersubject variability, we obtained a "purified" measure of intersubject variability in the 

functional connectome 106, 107. 

(iii) Constructing reference atlas used for comparison. To mitigate the potential bias 

introduced by specifying a reference atlas for 'mature age', we opted for a data-driven approach 

to construct the reference atlas. Atlas similarity was assessed using the overlap index, which 

quantifies the proportion of vertices with matching labels between two atlases. For instance, if 

two atlases have 4,000 vertices with identical labels out of a total of 4,661 vertices, the overlap 

index would be 4,000/4,661 = 85.8%. We computed the overlap index between each pair of the 

26 atlases, resulting in a 26×26 similarity matrix. Hierarchical clustering was applied to this 

matrix, as illustrated in Supplementary Fig. 5a. We selected a highly congruent subset of atlases, 

including the 18-, 20-, 30-, 40-, 50-, 60-, and 70-year atlases. For each vertex, we assigned the 

label as the system that exhibited the highest occurrence probability across these selected atlases, 

thereby generating the final reference atlas (Supplementary Fig. 5b). 
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Individualized metrics of the functional connectome 

For each pair of vertices among the 4,661 vertices in fsaverage4 space, we computed the Pearson 

correlation coefficient to characterize the region-by-region functional connectivity, resulting in a 

4,661×4,661 functional connectivity matrix for each participant. Any negative functional 

connectivity strengths were reset to zero. For each participant, the overall mean of functional 

connectivity across the whole brain was defined as the average of all 4,661×4,661 connections 

(edges), and the variance in functional connectivity was defined as the standard deviation of all 

4,661×4,661 connections. The FCS of a specific vertex was quantified as the average 

connections with all other vertices. For a designated brain system, an individual's within-system 

functional connectivity 𝐹𝐶𝑤 was defined as the average connection strength among all vertices 

within this personalized system. Conversely, the individual's between-system connectivity 𝐹𝐶𝑏 

was represented by the average strength of connections between this system and all other 

systems. The system segregation 59 was determined by calculating the difference between 𝐹𝐶𝑤 

and 𝐹𝐶𝑏, normalized by 𝐹𝐶𝑤, as described in the following formula: 

System segregation = 
𝐹𝐶𝑤 − 𝐹𝐶𝑏

𝐹𝐶𝑤
 

Similarly, whole-brain system segregation was defined as the difference between whole-brain 

mean within-system connectivity and whole-brain mean between-system connectivity, 

normalized by whole-brain mean within-system connectivity. 

The individualized whole-brain atlas similarity was defined by the overlap index with the 

reference atlas. If there were 4,661 vertices with the same label in two atlases, the overlap index 

was 4,661/4,661 = 1. The similarity of an individualized system was quantified using the Dice 

coefficient relative to its corresponding system in the reference atlas. 

 

Multisite data harmonization 

In studies that involve multisite datasets, it is critical to account for and remove site-specific 

effects to ensure that measurements across different sites are directly comparable. The ComBat 

method 108 and its variants 109, 110 are increasingly used for harmonizing neuroimaging data across 

multiple sites. In the present study, we employed ComBat with generalized additive model 

(GAM) for harmonization. We included age, sex, and disease type as the biological variables that 

need to be protected, with age was set as a smooth term109. This approach allowed us to remove 

site-specific differences in individual functional connectome metrics, while retaining the ability 

to conduct downstream nonlinear modeling analyses. 

 

Modeling normative trajectories across the lifespan 

To estimate the normative age-dependent curves for various metrics of the brain functional 

connectome in healthy individuals combined across cohorts, we implemented the GAMLSS 37, 38 

using the gamlss package (version 5.4-3) in R 4.2.0. We established the GAMLSS procedure 

with two steps: the identification of the optimal data distribution, followed by the determination 

of the best-fitting parameters for each functional connectome metric. Utilizing these metric-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.12.557193doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557193
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 

 

specific GAMLSS models, we obtained nonlinear normative trajectories, as well as their first 

derivatives. Moreover, we uncovered sex-stratified developmental patterns. The goodness of 

model fitting is endorsed by model convergence and visualized by traditional Q-Q (quantile-

quantile) plots and detrended transformed Owen’s plots. The reliability and robustness of the 

lifespan growth curves were assessed through bootstrap resampling analysis and leave-one-

study-out analysis. Leveraging these population-level normative trajectories, we established 

benchmarks for each subject using individualized deviation scores. 

(i) Model data distributions. While the World Health Organization provides guidelines for 

anthropometric growth chart modeling (such as head circumference, height, and weight) with the 

Box-Cox t-distribution as a starting point 37, we recognized that the trajectories of brain 

neuroimaging metrics might not necessarily adhere to the same underlying distributions. For 

instance, Bethlehem et al. reported that the generalized gamma distribution offered the best fit 

for brain tissue volumes 18. Consequently, we evaluated all continuous distribution families 

(n=51) for model fitting. To discern the optimal distribution, we fitted GAMLSS with different 

distributions to four representative whole-brain functional metrics (global mean of functional 

connectivity, global variance in functional connectivity, whole-brain atlas similarity, and whole-

brain system segregation) and assessed model convergence. We used the Bayesian Information 

Criterion (BIC) to compare model fits among the converged models, with a lower BIC indicating 

a better fit. As depicted in Supplementary Fig. 9, the Johnson's Su (JSU) distribution consistently 

provided the best fit across all evaluated models.  

(ii) GAMLSS framework. We constructed the GAMLSS procedure with the functional 

connectome metric as the dependent variable, age as a smooth term (using the B-spline basis 

function), and sex and in-scanner head motion (HM) as other fixed effects. The JSU distribution, 

which has four parameters: median (𝜇), coefficient of variation (𝜎), skewness (𝜈), and kurtosis 

(𝜏), was chosen to accommodate the data distribution. Each functional connectome metric, 

denoted with 𝑦, was modeled as: 

𝑦 = 𝐽𝑆𝑈(𝜇, 𝜎, 𝜈, 𝜏), 

𝜇 = 𝑓𝜇
1(𝑎𝑔𝑒) + 𝑓𝜇

2(𝑠𝑒𝑥) + 𝑓𝜇
3(𝐻𝑀), 

𝜎 = 𝑓𝜎
1(𝑎𝑔𝑒) + 𝑓𝜎

2(𝑠𝑒𝑥) + 𝑓𝜎
3(𝐻𝑀),  

𝜈 = 𝛽𝜈 , 

𝜏 = 𝛽𝜏. 

Considering the developmental complexity throughout the life cycle, we sought to capture the 

underlying age-related trends by exploring a range of model specifications. We fitted ten distinct 

GAMLSS models with different configurations of degrees of freedom (df = 3-6) for the B-spline 

basis functions in the location (𝜇) and scale (𝜎) parameters. Following the practice of previous 

studies 18, 75, only an intercept term was included for the 𝜈 or 𝜏 parameters. For model estimation, 

we used the default convergence criterion of log-likelihood = 0.001 between model iterations and 

set the maximal iteration cycles as 100. Finally, the optimal model of a given functional metric 

was selected based on the lowest BIC value among all convergent models. Supplementary Fig. 

10 shows the BIC of model selection for the representative whole-brain functional metrics.  

(iii) Goodness of model fit. On the one hand, model convergence after iterative fitting can be 

used as an indicator of the goodness of model fit. In our study, we observed no instances of 

nonconvergence in the GAMLSS models for all metrics, including those employed in sensitivity 
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analyses. Furthermore, we checked the normalized quantile residuals of our normative model to 

evaluate the goodness of fit by utilizing two diagnostic methods. First, we visually inspected four 

plots related to residuals. As shown in Supplementary Fig. 11, the residuals against the fitted 

values of 𝜇 and the index were evenly distributed around the horizontal line at 0. Moreover, the 

kernel density estimation of the residuals displayed an approximate normal distribution, and the 

normal quantile-quantile (Q-Q) plots exhibited an approximately linear trend with an intercept of 

0 and a slope of 1. Second, we used the detrended transformed Owen’s plots of the fitted 

normalized quantile residuals to evaluate the performance of the models. The function uses 

Owen's method to construct a nonparametric confidence interval for the true distribution. As 

shown in the resulting plots (Supplementary Fig. 12), the zero horizontal line was within the 

confidence intervals, suggesting that the residuals followed a normal distribution. Taken together, 

these results showed that our model fits the sample data appropriately. 

(iv) Sensitivity analyses of GAMLSS. To validate the reliability and robustness of our life-

course developmental trajectory model, we first performed a series of leave-one-study-out 

analyses. Specifically, we iteratively excluded the dataset from a single study (e.g., the ABCD 

study) from primary studies, refitted the GAMLSS model, evaluated all model parameters, and 

then extracted developmental trajectories. We then compared these alternative trajectories to 

those derived from the full dataset for the whole-brain functional metrics. Our results showed 

remarkable consistency, with a very high correlation between the trajectories derived from the 

primary full dataset and those from the subsets (all r > 0.98), even when large datasets such as 

ABCD and UKB were excluded (Supplementary Fig. 13).  

To further assess the reliability of lifespan trajectories and obtain their confidence intervals, we 

performed bootstrap resampling analysis. Specifically, we conducted 1000 bootstrap iterations 

with replacement sampling. To ensure that the bootstrap replicates preserved the original studies' 

age and sex proportionality, we segmented the lifespan (from 32 weeks to 80 years) into 10 equal 

intervals and then conducted stratified sampling based on both age and sex. For each functional 

metric, we refitted 1000 trajectories and computed 95% CI for both the 50th centile curve and the 

developmental inflection points. Supplementary Fig. 14 depicts the CI for the developmental 

trajectories (50th percentile), underscoring the stability of our lifespan modeling framework. 

(v) Sexual difference in lifespan trajectories. In GAMLSS modeling, we included a sex effect 

as another important feature for establishing lifespan growth of the functional connectome. For 

the individual1metrics of the functional connectome, the sex-stratified growth curves are shown 

in Supplementary Fig. 7. These growth curves stratified by sex provide crucial insights into the 

differential effects of sex on the functional brain connectome across the lifespan. 

(iv) Individualized deviation z scores. After establishing normative reference ranges using the 

GAMLSS model, we calculated individual deviation scores (z scores) for patients with MDD and 

ASD. Specifically, we first estimated the individual centile scores relative to the normative 

curves. The deviation z scores were derived by employing the quantile randomized residuals 111, 

an approach that transforms quantiles of the fitted JSU distribution into standard Gaussian 

distribution z scores. For healthy subjects, we employed a cross-validation approach to estimate 

individual deviation scores 73, 75. During each iteration of the 10-fold cross-validation, we trained 

a GAMLSS model on the training set, containing 90% of the total sample. We then applied the 

fitted model parameters (𝜇, 𝜎, 𝜈, 𝜏) to the testing set (remaining 10% of the sample) to generate 

estimated individual centiles. Deviation z scores were subsequently calculated using the quantile 
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randomized residuals approach as well. The normality of the distribution of computed z scores 

was assessed and endorsed using a two-sided Kolmogorov-Smirnov test, with P values exceeding 

0.05 for all functional metrics. 

 

Data availability  

The MRI data listed in Supplementary Table 1 are partly available at the 

Adolescent Brain Cognitive Development Study (https://nda.nih.gov/), the Autism Brain Imaging 

Data Exchange Initiative (https://fcon_1000.projects.nitrc.org/indi/abide/), the Alzheimer’s 

Disease Neuroimaging Initiative (https://adni.loni.usc.edu/), the Age_ility Project 

(https://www.nitrc.org/projects/age-ility), the Baby Connectome Project (https://nda.nih.gov/), 

the Brain Genomics Superstruct Project (https://doi.org/10.7910/DVN/25833), the Calgary 

Preschool MRI Dataset (https://osf.io/axz5r/), the Cambridge Centre for Ageing and 

Neuroscience Dataset (https://www.cam-can.org/index.php?content=dataset), the Developing 

Human Connectome Project (http://www.developingconnectome.org/data-release/second-data-

release/), the Human Connectome Project (https://www.humanconnectome.org), the Lifespan 

Human Connectome Project (https://nda.nih.gov/), the Nathan Kline Institute-Rockland Sample 

Dataset (https://fcon_1000.projects.nitrc.org/indi/pro/nki.html), the Neuroscience in Psychiatry 

Network Dataset (https://nspn.org.uk/), the Pixar Dataset 

(https://openfmri.org/dataset/ds000228/), the Southwest University Adult Lifespan Dataset 

(http://fcon_1000.projects.nitrc.org/indi/retro/sald.html), the Southwest University Longitudinal 

Imaging Multimodal Brain Data Repository 

(http://fcon_1000.projects.nitrc.org/indi/retro/southwestuni_qiu_index.html), and the UK 

Biobank Brain Imaging Dataset (https://www.ukbiobank.ac.uk/). The cortical surface atlases in 

dhcpSym space from 32 to 44 weeks’ postmenstrual age is available at https://brain-

development.org/brain-atlases/atlases-from-the-dhcp-project/cortical-surface-template/. The 

UNC 4D infant cortical surface atlases is available at https://bbm.web.unc.edu/tools/. The 

fs_LR_32k surface atlas is available at https://balsa.wustl.edu/. The pre-trained models, brain 

charts, and lifespan developmental atlases are shared online via GitHub 

(https://github.com/sunlianglong/BrainChart-FC-Lifespan). 

 

Code availability 

The codes for this manuscript are available on GitHub 

(https://github.com/sunlianglong/BrainChart-FC-Lifespan). Software packages used in this 

manuscript include MRIQC v0.15.0 (https://github.com/nipreps/mriqc), QuNex v0.93.2 

(https://gitlab.qunex.yale.edu/), HCP pipeline v4.4.0-rc-MOD-e7a6af9 

(https://github.com/Washington-University/HCPpipelines/releases), iBEAT pipeline v1.0.0 

(https://github.com/iBEAT-V2/iBEAT-V2.0-Docker), MSM v3.0 

(https://github.com/ecr05/MSM_HOCR), FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), 

FSL v6.0.2 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), Connectome Workbench v1.4.2 

(https://www.humanconnectome.org/software/connectome-workbench), MATLAB R2018b 

(https://www.mathworks.com/products/matlab.html), SPM12 toolbox v6470 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12), GRETNA toolbox v2.0.0 

(https://www.nitrc.org/projects/gretna), BrainNet Viewer toolbox v 20191031 
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(https://www.nitrc.org/projects/bnv), cifti-matlab toolbox v2 (https://github.com/Washington-

University/cifti-matlab), HFR_ai toolbox v1.0-beta-20181108 

(https://github.com/MeilingAva/Homologous-Functional-Regions), System segregation code 

(https://github.com/mychan24/system-segregation-and-graph-tools), Python v3.8.3 

(https://www.python.org), neuroharmonize package v2.1.0 

(https://github.com/rpomponio/neuroHarmonize), scikit-learn package v1.1.3 (https://scikit-

learn.org). R v4.2.0 (https://www.r-project.org), GAMLSS package v5.4-3 

(https://www.gamlss.com/),and ggplot2 package v3.4.2 (https://ggplot2.tidyverse.org/). 
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global metrics 
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Supplementary Figure 12. Detrended transformed Owen’s plots from the GAMLSS model of 

whole-brain functional metrics 

Supplementary Figure 13. The GAMLSS trajectories excluding the ABCD study or the UK 

Biobank study 

Supplementary Figure 14. Bootstrap-derived 95% CI for normative trajectories of whole-brain 

functional metrics 
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Supplementary Table 2. The detailed information of the age range, number of 

participants, and sex ratio for each atlas. 

Atlas name Age range Number of subjects Male (%) 

34-week atlas 32-35 postmenstrual weeks 25 15 (60) 

36-week atlas 35-37 postmenstrual weeks 29 20 (69) 

38-week atlas 37-39 postmenstrual weeks 38 26 (68) 

0-year (40-week) atlas 39-41 postmenstrual weeks 122 72 (59) 

1-month atlas 0.25-1.5 months  167 83 (50) 

3-month atlas 1.5-4.5 months 33 14 (42) 

6-month atlas 4.5-7.5 months 48 21 (44) 

9-month atlas 7.5-10.5 months 57 24 (42) 

12-month atlas 10.5-13.5 months 60 25 (42) 

18-month atlas 13.5-21 months 99 49 (49) 

24-month atlas 21-27 months  57 25 (44) 

4-year atlas 2.25-5 years 121 60 (50) 

6-year atlas 5-7 years  110 57 (52) 

8-year atlas 7-9 years 300 146 (49) 

10-year atlas 9-11 years 300 157 (52) 

12-year atlas 11-13 years 300 188 (63) 

14-year atlas 13-15 years  300 170 (57) 

16-year atlas 15-17 years 300 183 (61) 

18-year atlas 17-19 years 300 132 (44) 

20-year atlas 19-21 years 300 132 (44) 

30-year atlas 25-35 years  300 143 (48) 

40-year atlas 35-45 years 300 124 (41) 

50-year atlas 45-55 years 300 112 (37) 

60-year atlas 55-65 years  300 143 (48) 

70-year atlas 65-75 years 300 145 (48) 

80-year atlas 75-80 years 174 75 (43) 
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Supplementary Figure 1. The quality control framework of imaging data. Applying the 

rigorous four-step quality control process led to the total exclusion of 10,441 scans from 9774 

subjects. The final sample comprised 35,084 scans with high-quality functional and structural 

images, including 33,809 scans (N = 32,328) from healthy controls (HCs), 653 scans (N = 653) 

from patients with ASD, and 622 scans (N = 622) from patients with MDD. 
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Supplementary Figure 2. Schematic overview of the cortical surface registration. The surface 

registration process aimed for precise alignment with the fs_LR_32k standard space. For 

participants aged 32 to 44 postmenstrual weeks, a three-step procedure was employed: (1) 

individual surfaces were mapped to their corresponding postmenstrual week templates; (2) the 

32-39 and 41-44 postmenstrual week templates were registered to the 40-week template 1; and 

(3) the 40-week template was registered to the fs_LR_32k surface template. For participants 

aged 0-36 months: (1) surfaces were aligned with their monthly age templates 2; (2) all monthly 

templates were registered into the 12-month template; and (3) this 12-month template was then 

mapped to the fs_LR_32k surface template. For participants aged three years and older, the 

individual surfaces were mapped to the fs_LR_32k space. The transformations involving adult 

templates — from individual to fsaverage space, then from fsaverage space to Conte69 space, 

and finally downsampled to the fs_LR_32k space — are not illustrated in the figure. wk, week; 

M, month. 
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Supplementary Figure 3. Schematic overview of the system-level atlas construction. a, 

Population-level age-specific atlas construction. We segmented all individual scans into 26 

distinct age subgroups spanning from 32 postmenstrual weeks to 80 years of age, and 

constructed a specific functional atlas for each subgroup. For a given age subgroup, the atlas 

generation process involved the following steps. (1) Constructing an individualized atlas: we 

used an individualized parcellation iteration algorithm to map the classical 18-network atlas to 

each participant. (2) Constructing a population-level atlas: We assigned weights to each 

participant based on their age’s position within a Gaussian distribution (mean μ = 0 and 

standard deviation σ = 1). The weight quantified the participant's contribution to the population-

level atlas construction, with proximity to the target age of atlas resulting in a greater 

contribution. For each vertex, we calculated the across-participant cumulative probability 

belonging to each network, and assigned vertex labels to the network with the highest cumulative 

probability, resulting in an initial age-specific population-level atlas. (3) Iteration to convergence: 

we iteratively repeated steps 1 and 2 until the overlap between the current and previous atlases 

exceeded 95% or the total number of iterations surpassed 10, indicating convergence. Finally, 

according to the correspondence between 18- and 7- networks, we obtained the age-specific 7-

network atlas. b, Individualized atlas construction (reproduced from 3). (1) Personalized mapping 

and reference signal establishment: the age-specific population-level atlas was mapped onto an 

individual participant’s cortical surface. The mean BOLD signal time series of a network was 

averaged across its vertices, providing atlas-based reference signals essential for the upcoming 

optimization phase. (2) Correlation and vertex reassignment: for a given vertex, the BOLD signal 

underwent a correlation analysis with the 18 reference signals. The network with the highest 

correlation was assigned to this vertex. (3) Signal averaging and iterative refinement: a combined 

reference signal was generated by weighted averaging the signal from step (2) and the initial 

reference signals from step (1). Factors influencing this averaging included intersubject 

variability, tSNR, and iteration counts. This combined signal then served as an updated reference, 

guiding the reassignment of vertices to their most suitable networks. (4) Iterative convergence: 

the procedures in steps (2) and (3) were iteratively executed until reaching a predefined stopping 

criterion (the overlap between the current and previous atlases exceeded 98%, or the total 

number of iterations surpassed 50). More information on this iterative functional parcellation 

approach can be found in the study by Wang and colleagues 3. VIS, visual; SM, somatomotor; 

DA, dorsal attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. 
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Supplementary Figure 4. The life-cycle set of population-level cortical functional atlases 

from 32 postmenstrual weeks to 80 years. VIS, visual; SM, somatomotor; DA, dorsal 

attention; VA, ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. wk, week; 

mon, month; yr, year. 
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Supplementary Figure 5. The reference atlas used for comparison. a, Hierarchical clustering 

on the 26×26 atlas similarity matrix. The atlas similarity was defined as the degree of vertex 

label overlap between two atlases. For instance, if there were 4,000 vertices with the same label, 

the similarity of these two atlases was 4,000/4,661 = 0.86. b, The reference atlas. We selected the 

relatively congruent group of atlases, including the 18-, 20-, 30-, 40-, 50-, 60-, and 70-year 

atlases. For each vertex, we assigned the label as the system that exhibited the highest occurrence 

probability across these seven atlases, generating the final 7-network reference atlas. w, week; m, 

month; y, year. 
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Supplementary Figure 6. The lifespan trajectories of within-system and between-system 

functional connectivity. a, Normative trajectory of within-system functional connectivity (FC) 

as estimated by GAMLSS. The median (50% centile) is represented by a solid line, while the 

5%, 25%, 75%, and 95% centiles are indicated by dotted lines. b, Normative trajectory of 

between-system FC. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, ventral attention; 

LIM, limbic; FP, frontoparietal; DM, default mode. wk, week; mon, month; yr, year. 
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Supplementary Figure 7. Sex-stratified normative trajectories of the functional connectome. 

a, Sex-stratified normative trajectories for whole-brain metrics. The solid line represents the 50% 

centile, with the two surrounding dotted lines denoting the 95% CI. The subplots from left to 

right represent whole-brain mean functional connectivity (FC), variance FC, individualized atlas 

similarity, and system segregation, respectively. b, Sex-specific trajectories for system 

segregation across each network. VIS, visual; SM, somatomotor; DA, dorsal attention; VA, 

ventral attention; LIM, limbic; FP, frontoparietal; DM, default mode. 
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Supplementary Figure 8. Distribution of the number of metrics per patient with extremely 

deviations. The Bar plots show the percentage of subjects of the number of metrics with 

extremely positive (red) and negative (blue) deviations (top panel for MDD, bottom panel for 

ASD). 
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Supplementary Figure 9. Bayesian information criterion for each family of distributions of 

whole-brain global metrics. For each representative functional phenotype, the top ten 

distributions with the lowest Bayesian information criterion (BIC) values were visualized. 

Among the evaluated distributions, Johnson's Su (JSU) consistently outperformed others across 

all phenotypes. The JSU distribution has four parameters: median (𝜇), coefficient of variation 

(𝜎), skewness (𝜈), and kurtosis (𝜏). Distribution acronyms are in accordance with the GAMLSS 

package notation. FC, functional connectome. 
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Supplementary Figure 10. Bayesian information criterion for model selection of whole-

brain global metrics. Optimal df = 4 of location (𝜇) parameter and df = 3 of scale (𝜎) parameter 

for whole-brain mean functional connectivity; optimal df = 5 of location (𝜇) parameter and df = 5 

of scale (𝜎) parameter for whole-brain variance functional connectivity; optimal df = 5 of 

location (𝜇) parameter and df = 3 of scale (𝜎) parameter for whole-brain atlas similarity; optimal 

df = 5 of location (𝜇) parameter and df = 3 of scale (𝜎) parameter for whole-brain system 

segregation. 
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Supplementary Figure 11. Residual distribution plots from the GAMLSS model of four 

whole-brain functional metrics. The plots showed that the model residuals of whole-brain 

mean functional connectivity (a), variance functional connectivity (b), atlas similarity (c), and 

system segregation (d) were normally distributed. 
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Supplementary Figure 12. Detrended transformed Owen’s plots from the GAMLSS model 

of whole-brain functional metrics. The zero horizontal line is within the confidence intervals, 

suggesting that the residuals of whole-brain mean functional connectivity (a), variance functional 

connectivity (b), atlas similarity (c), and system segregation (d) follow a normal distribution. 
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Supplementary Figure 13. The GAMLSS trajectories excluding the ABCD study or the UK 

Biobank study. a, Trajectories of whole-brain mean functional connectivity, variance functional 

connectivity, atlas similarity, and system segregation, excluding the ABCD study. b, Trajectories 

of whole-brain mean functional connectivity, variance functional connectivity, atlas similarity, 

and system segregation, excluding the UK Biobank study. The median (50% centile) is 

represented by a solid line, while the 5%, 25%, 75%, and 95% centiles are indicated by dotted 

lines. 
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Supplementary Figure 14. Bootstrap-derived 95% CI for normative trajectories of whole-

brain functional metrics. The bootstrap analysis included running 1000 bootstrap iterations 

with replacement sampling and conducting 1000 fitted GAMLSS models. From left to right, the 

plots depict the 95% CI (red dashed lines) for the median (50th percentile) trajectories (black 

solid line) of whole-brain mean functional connectivity, variance functional connectivity, atlas 

similarity, and system segregation, highlighting the robustness of the lifespan modeling 

framework. 
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