

1 Beta bursts question the ruling power for brain-computer 2 interfaces

3

4 Sotirios Papadopoulos^{1,2,3,*}, Maciej J Szul^{1,3}, Marco Congedo⁴, James J Bonaiuto^{1,3,†}, Jérémie
5 Mattout^{1,2,†}

6 ¹ University Lyon 1, Lyon, France

7 ² Lyon Neuroscience Research Center, CRNL, INSERM U1028, CNRS, UMR5292, Lyon,
8 France

9 ³ Institut de Sciences Cognitives Marc Jeannerod, CNRS, UMR5229, Lyon, France

10 ⁴ GIPSA-lab, University Grenoble Alpes, CNRS, Grenoble-INP, Grenoble, France

11

12 *correspondence: Sotirios Papadopoulos

13 Email: sotirios.papadopoulos@univ-lyon1.fr

14 †these two authors contributed equally

15 **Keywords:** beta bursts, brain-computer interface (BCI), decoding, electroencephalography
16 (EEG), motor imagery (MI)

17

18 Abstract

19 Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from
20 hardware, to software, to more sophisticated experimental protocols, and personalized
21 approaches. However, despite these abundant efforts, there is still room for significant
22 improvement. We argue that a rather overlooked direction lies in linking BCI protocols with
23 recent advances in fundamental neuroscience. In light of these advances, and particularly the
24 characterization of the burst-like nature of beta frequency band activity and the diversity of beta
25 bursts, we revisit the role of beta activity in “left vs. right hand” motor imagery tasks. Current
26 decoding approaches for such tasks take advantage of the fact that motor imagery generates
27 time-locked changes in induced power in the sensorimotor cortex, and rely on band-pass
28 filtered power changes or covariance matrices which also describe co-varying power changes in
29 signals recorded from different channels. Although little is known about the dynamics of beta
30 burst activity during motor imagery, we hypothesized that beta bursts should be modulated in a
31 way analogous to their activity during performance of real upper limb movements. We show that
32 classification features based on patterns of beta burst modulations yield decoding results that
33 are equivalent to or better than typically used beta power across multiple open
34 electroencephalography datasets, thus providing insights into the specificity of these bio-
35 markers.

36

37 Introduction

38 Neural interfaces, and in particular brain-computer interfaces (BCI), have long been
39 conceptualized as effective means of surmounting disabilities for patients suffering from various
40 diseases and traumas, while transhumanist philosophy sees BCI [1] as a way to enhance the
41 capabilities of our bodies and brains. To achieve such goals, a multidisciplinary approach is
42 crucial. Over the past few decades, an increasing number of research groups from diverse
43 fields have been striving towards several objectives, from laying the foundations of BCI [2–6] to
44 improving their reliability [7,8] and applicability under more naturalistic settings [8–10].

45 Although we are still far from achieving goals like those portrayed in science fiction, a few real-
46 world BCI applications are currently deployed. Most applications revolve around selected
47 groups of patients [12–20], improving their ability to interact with their environment. Such
48 applications usually form part of studies that employ invasive recording techniques in an attempt
49 to acquire high-quality brain signals [21,22]. Invasive techniques provide higher signal-to-noise
50 ratio, spatial specificity and frequency resolution compared to non-invasive techniques, trading
51 off the availability of the subjects, and the necessity of medical interventions. However, the latter
52 attract a significant portion of BCI research due to their safety, the lower equipment cost, and
53 the ability to collect large amount of data from patients and healthy participants. Specifically in
54 the case of electroencephalography (EEG), the added advantage of portability allows for the
55 inclusion of more subjects under more diverse and ecologically valid scenarios, therefore
56 making it currently one of the most attractive platforms.

57 Non-invasive BCI emerged in the early 90's [23–25], along with the first spatial filtering
58 algorithms. The Laplacian filter [26,27] allowed for improved signal-to-noise ratio, while the
59 common spatial pattern algorithm (CSP) [28–30] provided a way to weight the contribution of
60 each channel in order to optimize classification. Around the same time, a reliable, reproducible
61 signature of brain activity was demonstrated for the first time, at least on a trial-averaged level.
62 Studies in motor neuroscience involving healthy subjects revealed time-locked changes in
63 induced power within specific frequency bands [31–40]. Brain recordings were shown to exhibit
64 a gradual reduction in signal power, relative to baseline, in the mu (~ 8–12 Hz) and beta (~ 13–
65 30 Hz) frequency bands during an action or during motor imagery (MI): the so-called event-
66 related desynchronization (ERD). This phenomenon is considered to reflect processes related
67 to movement preparation and execution, and is particularly pronounced in the contralateral
68 sensorimotor cortex. Moreover, shortly following the completion of the task, a relative increase
69 in power, the event-related synchronization (ERS), could be observed in the beta band (also
70 referred to as the beta rebound). ERS is thought to reflect the re-establishment of inhibition in
71 the same area.

72 In the following years, the field witnessed the introduction of more advanced signal processing
73 methods [41], alternative non-invasive recording techniques [42,43] and hybrid BCI paradigms
74 [44–48]. During the past decade, attempts have been made to place more emphasis on the
75 user by studying individual traits that correlate with performance [49], or adapting BCI protocols
76 to the user [50–52] in an effort to better understand and mitigate the problem of BCI illiteracy [8]:
77 the inability of approximately 1/3 of the users to control a motor-imagery based BCI system.
78 Directly linked to this problem, there are significant efforts being made towards creating more
79 informative neurofeedback paradigms by studying the influence of feedback modality [53] and
80 factors not directly linked to the experimental task [54]. This multifaceted endeavor holds the
81 potential of considerably improving existing rehabilitation protocols [55].

82 Meanwhile, a great body of work has developed an arsenal of advanced pre-processing, feature
83 extraction, and classification algorithms dedicated specifically or adapted to the particular
84 characteristics and limitations of EEG signals [11,56]. As a first step, a standard BCI pipeline
85 includes dimensionality reduction techniques for channel selection and noise removal [57–59].
86 Subsequently, a common practice for signals recorded during MI or attempted movements is to
87 use a time-frequency (TF) transformation such as the short-time Fourier, Hilbert, or wavelet
88 transform [60–62] and extract the power of the signal in specific time windows and frequency
89 bands of interest. Finally, any of a large range of machine learning algorithms like linear
90 discriminant analysis (LDA) [63–65], support vector machines [66], random forests [67,68] or
91 neural networks [69] can be trained in order to establish a mapping between the features and
92 labels, and assess the performance of the whole pipeline.

93 This archetypical analysis is, to a significant extent, based on the idea that signal power is the
94 most informative signature of non-invasively recorded neural activity for motor-related tasks.
95 Ever since the characterization of the ERD and ERS phenomena, there has been little to no
96 discussion in the non-invasive BCI field as to whether these features accurately capture the
97 task-related modulations of brain activity. Recent studies in neurophysiology have challenged
98 this view and have demonstrated that the ERD and ERS patterns only emerge as a result of
99 averaging signal power over multiple trials [70,71]. On a single trial level, beta band activity
100 occurs in short, transient events, termed bursts, rather than as sustained oscillations [70–75].
101 This indicates that the ERD and ERS patterns reflect accumulated, time-varying changes in the
102 burst probability during each trial. Thus, beta bursts may carry more behaviorally relevant
103 information than averaged beta band power. Indeed, studies in humans involving arm
104 movements have established a link between the timing of sensorimotor beta bursts and
105 response times prior to movement, as well as behavioral errors post-movement [71]. Beta burst
106 activity in frontal areas has also been shown to correlate with movement cancellation [73,76,77]
107 and recent studies show that activity at the motor unit level also occurs in a transient manner,
108 which is time-locked to sensorimotor beta bursts [78,79].

109 Although beta burst rate has been shown to carry significant information, it still comprises a
110 rather simplistic representation of the underlying activity. Every burst can be characterized by a
111 set of TF-based features: the burst peak time and peak frequency, as well as its duration and its
112 span in the frequency axis [80]. In turn, all these descriptors are extracted using a particular
113 time-frequency transformation and constitute simpler representations of the more complex burst
114 waveform that is embedded in the raw signals, and which is characterized by a stereotypical
115 average shape with large variability around it [81]. The waveform features are neglected in
116 standard BCI approaches, because conventional signal processing methods generally
117 presuppose sustained, oscillatory and stationary signals, and are thus inherently unsuitable for
118 analyzing transient activity [82].

119 In line with the classically described ERD and ERS phenomena, the non-invasive BCI
120 community still heavily relies on signal power as the target feature for classification, although,
121 notably, state of the art Riemannian classifiers [83–85] and some deep learning approaches
122 [86,87] have independently moved on from explicitly using frequency-specific power features. In
123 this article we propose a shift in perspective, by demonstrating how beta band activity during MI
124 tasks is modulated in terms of patterns of distinctly shaped bursts that are better descriptors of
125 transient activity changes.

126 We have previously argued that analyzing beta burst activity should enable us to gain access to
127 classification features that are at least as sensitive as beta band power [88]. If this hypothesis is
128 valid, then we should be able to test it and verify it using publicly available datasets. Here, we

129 show that this approach allows us to achieve better classification results than those obtained
130 when assessing signal power in binary MI classification tasks, when comparing burst features to
131 signal power from EEG channels C3 and C4. We validate our approach against six open EEG
132 BCI datasets, and provide links between the decoding performance and the modulation of
133 different features considered for classification across datasets and subjects. Although our
134 results obtained by using beta burst features are in most cases inferior to state-of-the-art,
135 namely because our analysis only included two channels and focused solely on the beta
136 frequency band, they are, conversely, superior to those obtained using only beta band power in
137 these channels. This analysis demonstrates the utility of beta burst analysis for BCI and paves
138 the way to improve classification performance in the near future.

139

140 Materials and Methods

141 Datasets

142 We used six open EEG MI datasets: BNCI 214-001 [89], BNCI 2014-004 [90], Cho 2017 [91],
143 MunichMI [92], Weibo 2014 [93] and Zhou 2016 [94], all available through the MOABB project
144 [95]. Briefly, all datasets contain recordings of subjects who were required to perform sustained
145 motor imagery following the appearance of a visual cue on a screen. For our analysis we only
146 considered trials corresponding to the “left hand” or “right hand” classes even if other classes
147 were available in some of the datasets.

148 Data pre-processing

149 For each dataset, recordings were loaded per subject using the MOABB python package
150 (v0.4.6) MotorImagery class, and were filtered with a low pass cutoff of 120 Hz. The low pass
151 cutoff was set to 95 Hz for the Weibo 2014 dataset, because the corresponding sampling
152 frequency of the recordings is 200 Hz. For most of these datasets numerous channels are
153 available, so we defined a subset of channels over the sensorimotor cortex that we deemed
154 relevant for the task and applied pre-processing (Table 1). Then, in this work, we only analyzed
155 data from channels C3 and C4. Each trial was aligned to the cue onset, and the task period was
156 defined as the time between cue onset and the end of the MI task. We used the time window
157 within one second prior to the cue onset as the baseline period (Table 1). In the case of the Cho
158 2017 and MunichMI datasets we noted the presence of noise at approximately 25 to 30 Hz that
159 interferes with the burst detection step. We therefore included an extra pre-processing step
160 involving a custom implementation of the meegkit python package (v0.1.3, dss_line function)
161 [96] to remove these artifacts. Considering only this subset of sensorimotor channels and all
162 recording periods, we rejected trials using the autoreject python package (0.4.0) [97] (Table 1).

163 Identification of channel-specific beta band and burst detection

164 Each subject’s data were first transformed in the time-frequency domain from 1 to 43 Hz using
165 the superlets algorithm [98] with a frequency resolution of 0.5 Hz. We selected the superlets
166 algorithm over other more commonly used methods as it allows us to obtain a more optimal
167 tradeoff between temporal and spectral resolution, and because it has been shown to yield
168 better classification results compared to other approaches [99]. Before proceeding with any
169 further analysis we trimmed 200 to 250 ms from the beginning and end of the epoched data in
170 order to exclude any edge effects introduced by the time-frequency transform.

171 The power spectral density (PSD) of the baseline period was then computed by averaging the
172 resulting TF matrices over the temporal dimension for each trial and channel of a given subject.

173 Based on the distributions of the PSD peaks we attributed the peaks of the power spectra to
174 either the mu (peaks below 15 Hz) or beta (peaks between 15 and 30 Hz) frequency band and
175 proceeded by analyzing activity in the beta band.

Dataset	# Subjects	(# total channels) Channels used for pre-processing	# Total trials (# after trial rejection)	Baseline period (s)	Task period (s)	Post-task period (s)
BNCI 2014-001	9	"FC3", "FCz", "FC4", "C3", "Cz", "C4", "CP3", "CPz", "CP4"	(22) 288 (207 - 287)	-1.0 – 0.0	0.0 – 4.0	4.0 – 5.5
BNCI 2014-004	9	"C3", "Cz", "C4"	(3) 680 – 760 (269 - 621)	-1.0 – 0.0	0.0 – 4.5	4.5 – 6.5
Cho 2017	49	"FC3", "FCz", "FC4", "C3", "Cz", "C4", "CP3", "CPz", "CP4"	(64) 200 – 240 (77 - 240)	-1.0 – 0.0	0.0 – 3.0	3.0 – 5.0
Munich MI	10	"111", "112", "113", "114", "43", "21", "63", "22", "44", "119", "120", "121", "122"	(13) 300 (167 - 299)	-1.0 – 0.0	0.0 – 7.0	7.0 – 9.0
Weibo 2014	10	"FC3", "FCz", "FC4", "C3", "Cz", "C4", "CP3", "CPz", "CP4"	(60) 140 – 160 (32 - 160)	-1.0 – 0.0	0.0 – 4.0	3.0 – 5.0
Zhou 2016	4	"FC3", "FCz", "FC4", "C3", "Cz", "C4", "CP3", "CPz", "CP4"	(64) 290 – 319 (167 - 289)	-1.0 – 0.0	0.0 – 5.0	5.0 – 7.0

176 **Table 1.** Attributes of the datasets used in the study.

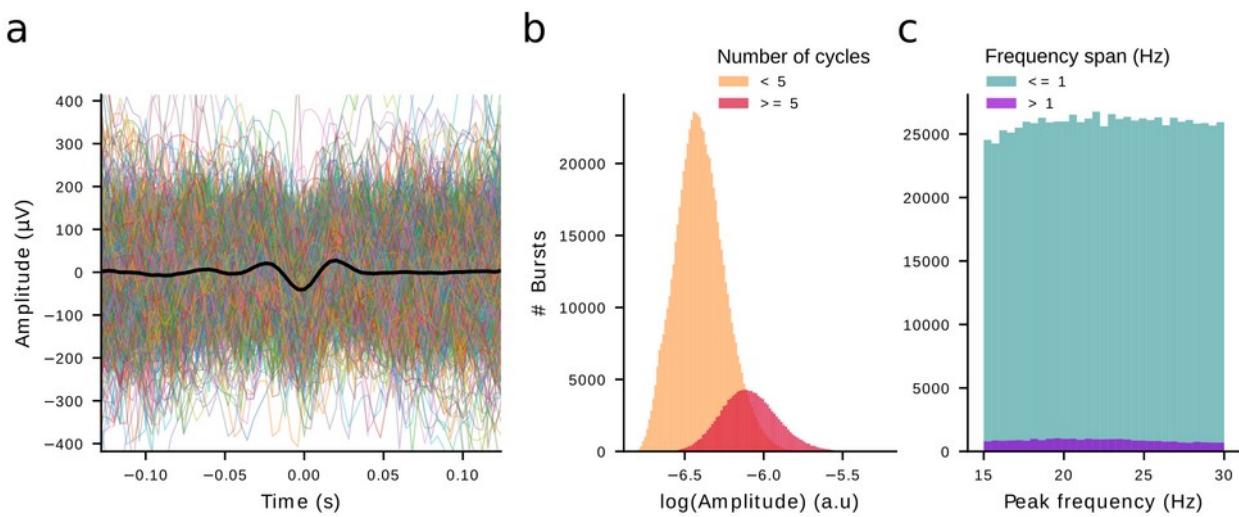
177 Using a previously published iterative, adaptive procedure, we identified bursts within the beta
178 frequency range from the TF matrix, and then extracted their waveforms from the “raw” time
179 series (after low pass filtering as pre-processing) within a fixed time window of 260 ms, centered
180 on the burst peak [100]. Due to inability to parameterize spectra from all datasets we subtracted
181 twice the standard deviation of the TF before fitting each peak as a 2D Gaussian, instead of
182 subtracting the aperiodic activity from the TF matrices [81,101,102], before detecting beta
183 bursts.

184 **Feature extraction based on patterns of burst rate modulation**

185 Beta burst waveform analysis was performed for each dataset by creating a dictionary of
186 detected bursts across subjects and experimental conditions (“left hand” or “right hand”) (figure
187 1). This allowed us to create a matrix of burst waveforms by combining all detected bursts per
188 subject, after robust scaling (scikit-learn package [103], v1.0.2). This representation of burst
189 waveforms is suitable for applying a dimensionality reduction technique in order to better
190 understand the variability in the recorded beta burst shapes. For the remaining of the analysis,
191 we only considered channels C3 and C4, or channels 43 and 44 for the MunichMI dataset.

192 Previous work from our group has demonstrated that principal component analysis (PCA) [104]
193 (scikit-learn package, v1.0.2) can be used to understand how the rates of bursts with different
194 waveforms are modulated during reaching movements [100]. In order to construct features
195 suitable for classification, we projected the burst dictionary along each principal component. As
196 such, each burst was associated with a specific score along each dimension of the C-
197 dimensional space, representing the distance of the burst’s waveform from the average
198 waveform of all bursts, along this dimension. Because of the scarcity of bursts with extreme
199 scores, we winsorized scores outside of the 2nd and 98th percentile of their distribution. For each
200 component, we then discretized the bursts into groups of bursts within equally spaced score

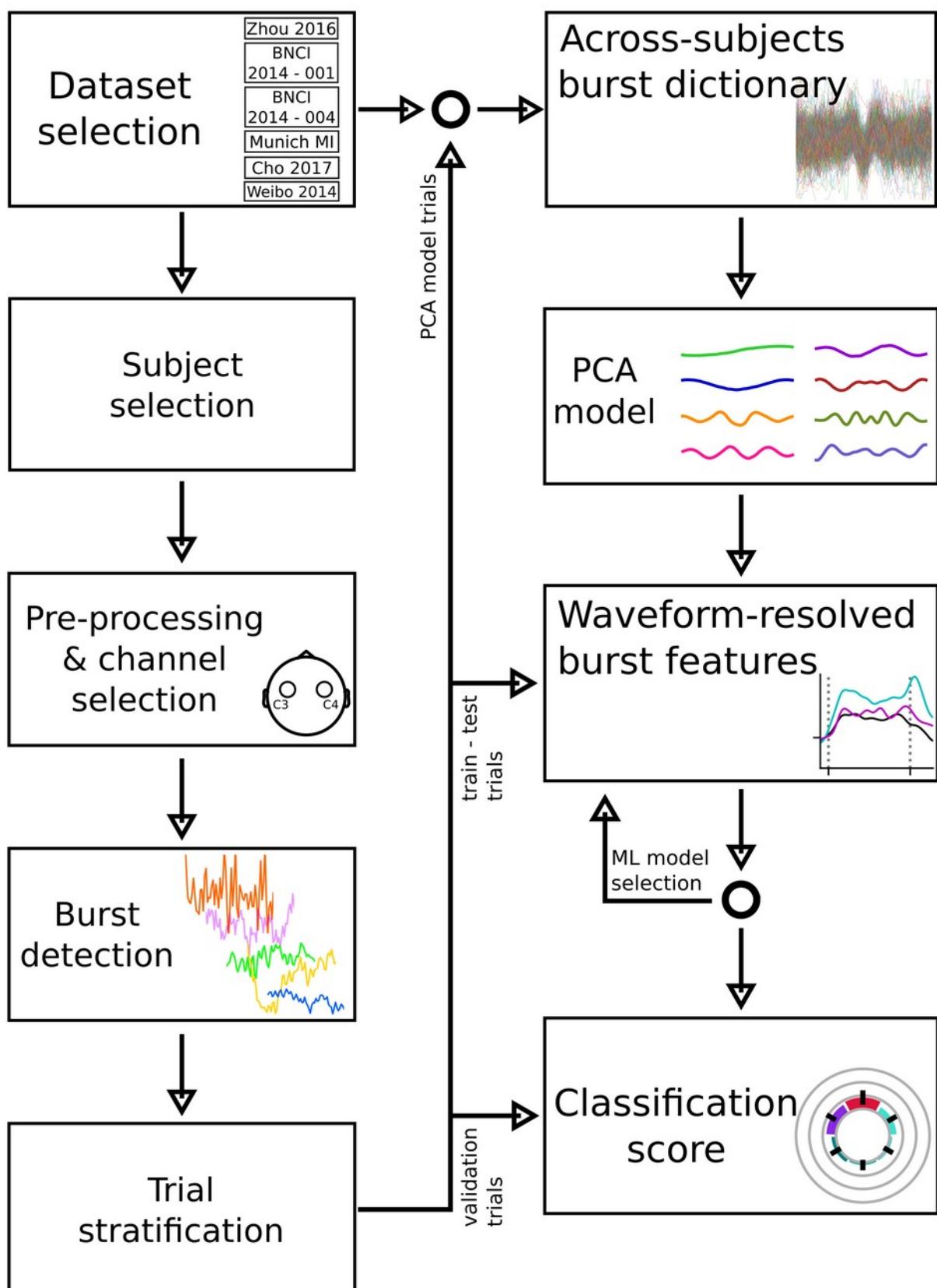
201 ranges, thus grouping bursts with similar waveforms along that dimension. Since each burst
202 occurs in a specific point in time, following this procedure all bursts were represented in a
203 subspace spanned by the dimensions of scores and time. In other words, for each principal
204 component we generated a representation of burst rate as a function of waveform shape.



205 **Figure 1.** Burst dictionary corresponding to the Zhou 2016 dataset. **(a)** The dictionary contains raw, aligned signal
206 waveforms of 260 ms duration. The black trace represents the average waveform over the whole dictionary. Colored
207 traces correspond to a randomly drawn subset of waveforms (0.2% of all bursts). **(b)** Distribution of the TF amplitude
208 of bursts as computed by the superlets transform, grouped according to burst duration in terms of cycles. The burst
209 detection algorithm identifies a wide range of bursts with amplitudes spanning more than one order of magnitude.
210 The majority of detected beta bursts are low-power, short lasting events. **(c)** Distribution of the peak frequency
211 grouped by the frequency span of each burst. Most of the beta bursts have a narrow frequency span.

212 Classification

213 In order to obtain classification results with our beta burst waveform-based features, we used a
214 stratified, repeated cross-validation approach. For each dataset, we first randomized the trials'
215 order and stratified the total number of trials of each subject in $M=5$ strata. Then, we used half
216 of the trials of one stratum for creating an across-subjects burst dictionary, ran PCA on the
217 resulting waveform matrix and kept track of the rest of the stratum's trials for cross validating the
218 decoding results. For each subject separately, we then projected the bursts of the remaining
219 four strata (the trials not used during the burst dictionary creation step or for cross validation)
220 along each component and, after averaging the burst rate of each group during the task period,
221 we employed a repeated cross validation with $K=5$ folds. For each fold we repeated this
222 procedure for 100 repetitions by shuffling the order of the features. In order to obtain the results
223 for this analysis, we iterated over a number of possible groups (*from 2 to 9*) and principal
224 components (*from 1 to 8*). We report the maximum classification score in this hyper-parameter
225 space after cross validating each stratum and averaging across all M strata. All steps of the
226 analysis are summarized in a flowchart (figure 2).



227 **Figure 2.** Flowchart illustrating the steps of the proposed analysis. For each dataset, we iteratively pre-processed the
228 data of each subject, rejecting trials and keeping only channels C3 and C4. The burst detection algorithm was run on
229 the raw signals of these two channels. We, then split the remaining trials of each subject in 3 sets. The first set was
230 used only to create the burst dictionary and the corresponding PCA model combining data from all subjects of any
231 given dataset. The second set was used as the training and testing set of trials, in order to select the best model of

232 waveform-resolved features, in terms of decoding score, through a nested, repeated cross validation procedure.
233 Finally, the third set of trials served the role of the validation trials, for the previously selected model.

234 We compared these results against decoding results obtained by using other related
235 approaches. First, classification results based on beta burst rate were computed for each
236 subject by sampling all detected bursts of channels C3 and C4, and then identifying the rate of
237 bursts within the time course of a trial in non-overlapping time windows of 100 ms. For these
238 results, we only considered bursts with an amplitude equal to or higher than the 75th percentile
239 of the dictionary's TF amplitude distribution, a threshold commonly used when detecting beta
240 bursts with alternative methods [75,105–108].

241 We also estimated the decoding accuracy based on TF-based features of the bursts as
242 determined by the burst detection algorithm. We used an approach similar to that described for
243 constructing features and estimating classification results based on burst waveforms.
244 Specifically, for each subject we identified all bursts of channels C3 and C4 and computed the
245 binned burst rate based on the burst volume, burst amplitude, or the combination of TF
246 features, namely burst amplitude, peak frequency, FWHM duration, and FWHM frequency span.
247 We again explored from 2 to 9 possible number of burst groups for each of these features in a
248 repeated, 5-fold cross validation (sup. figure 1).

249 Band power results for the beta band were based on the power of the Hilbert transform of
250 channels C3 and C4 only. Recordings were first band-pass filtered using the same beta
251 frequency range per channel (15 to 30 Hz). These results are based on a repeated cross-
252 validation approach, and only take into account activity during the task period. The classification
253 features were repeatedly shuffled 100 times, then, for each repetition the trials were split in $K=5$
254 folds.

255 All classification results were obtained by using LDA as a classifier (scikit-learn, v1.0.2). We
256 estimated the classification score based on the area under the curve (AUC) of the receiver
257 operating characteristic (scikit-learn, v1.0.2). All numeric computations were based on the
258 numpy python package (v1.21.6; [109]), an environment running python (v3.10). We compared
259 trial-level classification results of the waveform-resolved burst features to the beta band power
260 features using a generalized linear mixed model with a binomial distribution and logit link
261 function with correct classification of each trial as the dependent variable, the type of
262 classification feature as a fixed effect, and the subject nested within the dataset as random
263 intercepts. We also compared classification results of the waveform-resolved burst features to
264 the rest of the burst features using a similar model. Statistical analyses were conducted using R
265 (v4.1.2) and lme4 (v1.1-31; [110]). Fixed effects were assessed using type II Wald χ^2 tests
266 using car (v3.1-1; [111]). Pairwise Tukey-corrected follow-up tests were carried out using
267 estimated marginal means from the emmeans package(v.1,8,7 [112]).

268

269 **Results**

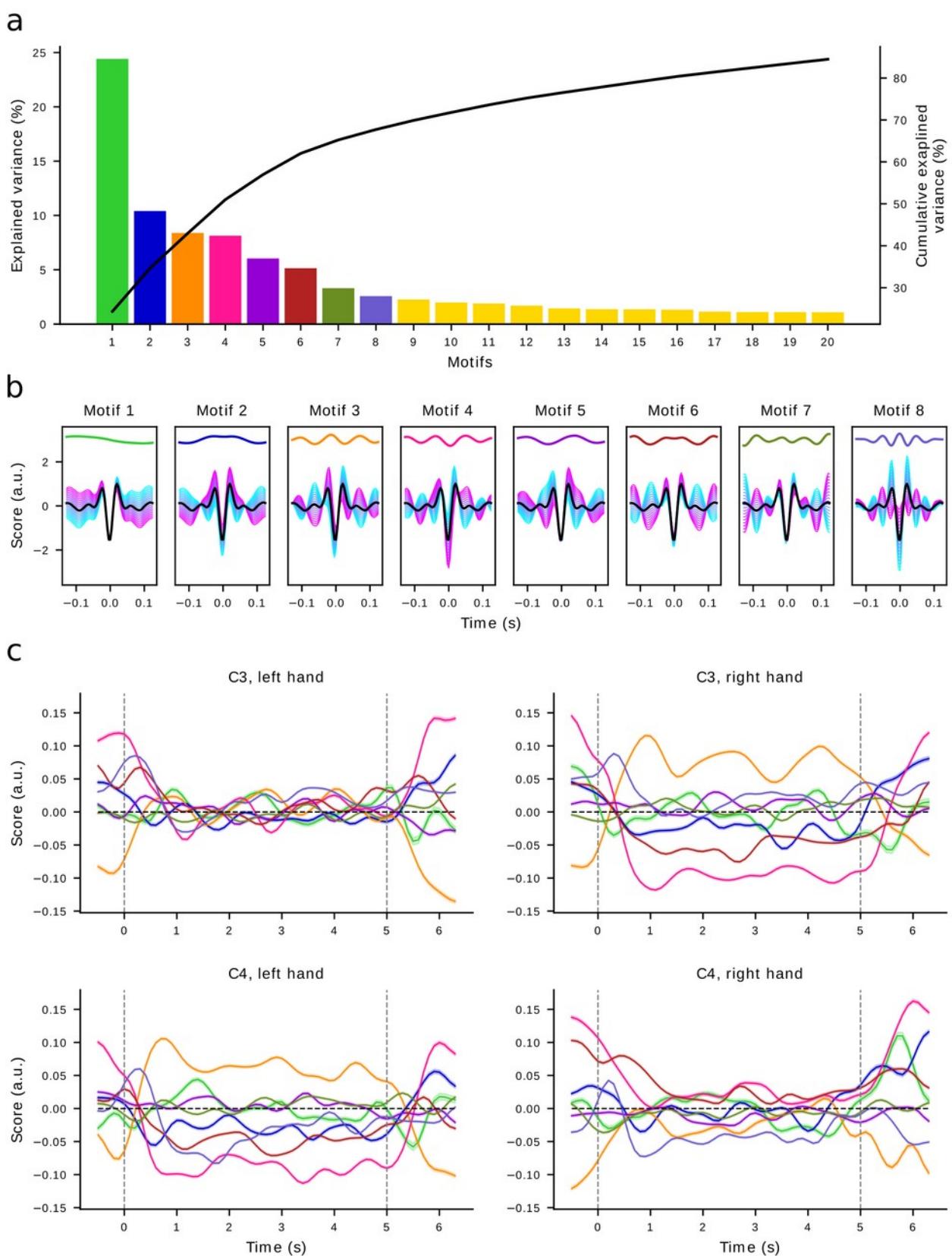
270 We used six open MI EEG datasets for the purpose of examining the explanatory value of beta
271 burst activity as a feature for BCI classification. For each dataset, we detected beta bursts in a
272 subset of channels over the sensorimotor cortex under two conditions, “left hand” and “right
273 hand” MI. Based on the bursts detected in channels C3 and C4 of each subject, we built
274 dataset-specific burst dictionaries which capture the variability of the burst waveforms (figure 1)
275 (see Materials and Methods).

276 **Beta bursts with distinct waveforms are characterized by different modulation patterns**

277 We used principal component analysis (PCA) to explain the variability of the burst waveforms
278 within each dictionary (number of components explaining 99% of variance). This method
279 allowed us to reduce the dimensionality of the burst waveform space, with each resulting
280 dimension being a linear combination of the burst waveforms, that emphasizes specific time
281 points that best describe the waveform variability (figure 3 a). Every component defines a motif,
282 along which the waveforms vary. The projection of a burst waveform along each component,
283 associates this waveform with a score, a value that indicates its similarity to the average
284 waveform of bursts within the dictionary along that dimension.

285 We simulated how each motif alters the waveform with respect to the average by varying the
286 score along each dimension, adding the weighted eigenvector to the mean waveform (figure 3
287 b) in order to understand how the burst waveform is modulated by the first 8 motifs. For
288 example, the first motif represents a trend that describes how the waveforms are temporally
289 skewed. Motifs 5, 6 and 7 mainly capture the variability along the flanks of the waveform,
290 whereas motifs 2, 3 and 4 seem to describe changes of the central negative deflection.

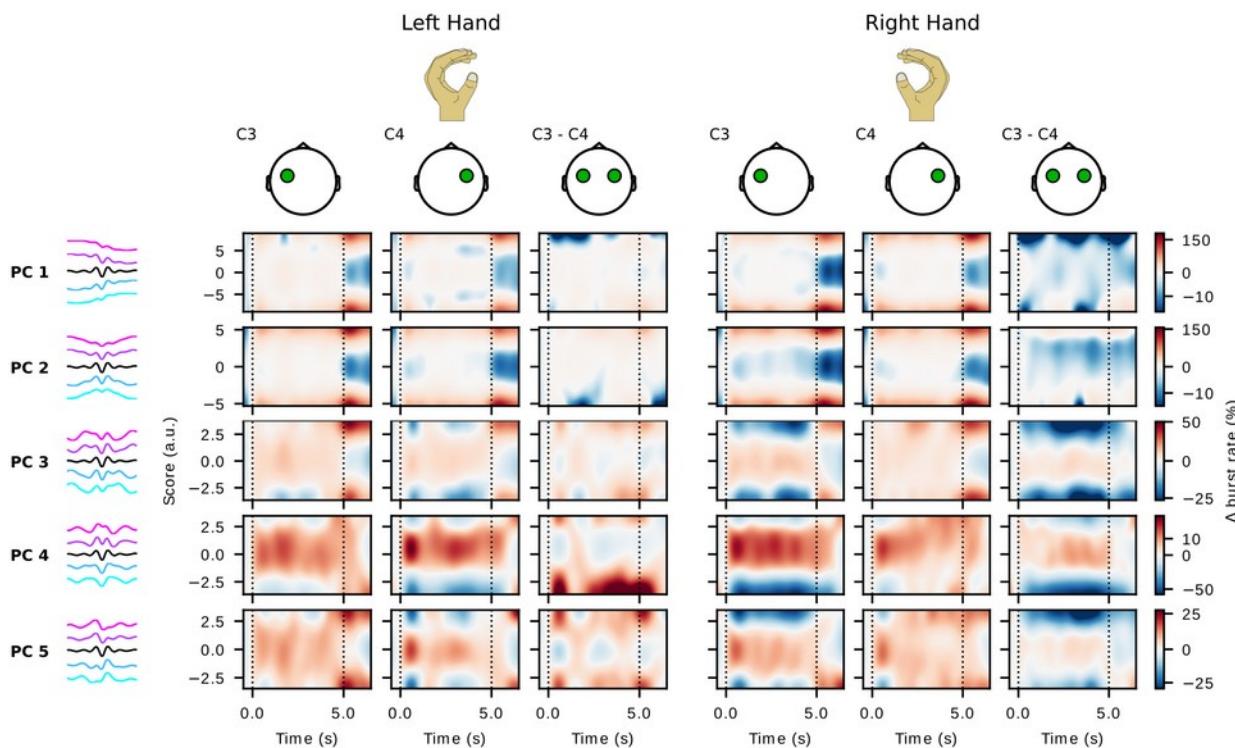
291 For each condition, channel and component we computed the average score of all bursts within
292 the burst dictionary from the baseline to the post-task period, and applied a smoothing kernel of
293 size 2. Burst scores in specific motifs were modulated to different extents within the three trial
294 periods: baseline, task and post-task period (figure 3 c). This means that, on average, bursts
295 with different waveforms occurred more or less frequently within specific trial periods (e.g. motif
296 4). However, a change in mean waveform shape is ambiguous with respect to the underlying
297 mechanism: e.g. over contralateral motor cortex there was a pronounced decrease in score
298 along component 4 during the task, but this could be due to a reduction in the rate of bursts with
299 high scores, an increase in the rate of bursts with negative scores, or a combination of the two.



300 **Figure 3.** PCA applied on the burst dictionary of the Zhou 2016 dataset. Principal components describe the variability
301 of burst waveforms. **(a)** Ratio of explained variance and cumulative explained variance for the first 20 components.
302 **(b)** The first 8 components define orthogonal axes of waveform shape alteration with respect to the average
303 waveform (black trace). Each subplot depicts one motif (color code as in **a**), the mean waveform (black trace), and
304 simulated waveform alterations along each component, spanning a continuous space from negative (cyan traces) to
305 positive (magenta traces) scores. **(c)** Average score and standard error of all waveforms along each component
306 during the three trial periods for the first 8 components (color code as in **a**) for each condition and channel. During the
307 baseline and post-task periods (signified by the vertical dashed lines), waveforms deviate from the average waveform

308 (score equal to 0) mainly along the third and fourth dimension ipsilaterally, while contralaterally the deviation is more
309 pronounced during the task period.

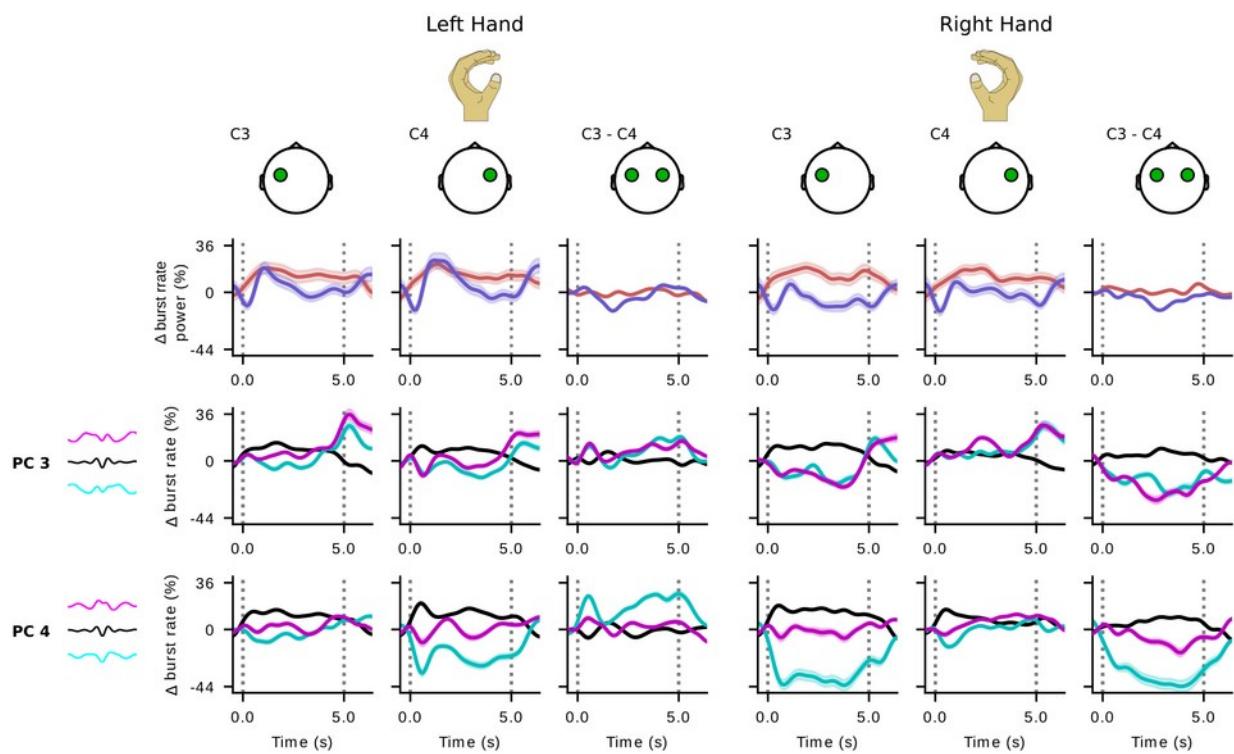
310 To better understand the rate modulation of bursts with distinct waveforms along each
311 component over all experimental periods, we visualized the trial-averaged, baseline-corrected
312 burst rate as a function of time and component score, for the first five components of a
313 representative subject (figure 4; Zhou 2016 dataset, S1). In this particular case there were
314 differences in burst rate modulation between channels C3 and C4, as well as between the two
315 experimental conditions. During the task period there was a decrease in the rate of bursts with
316 large positive or negative scores along component 4 on the contralateral channel for either
317 condition. These patterns correspond to bursts whose waveforms resemble the corresponding
318 magenta and cyan traces. The lateralization of beta burst rate modulation is further exemplified
319 when visualizing the difference between the two channels. The comparison of these differences
320 across the two conditions, reveals that all components and especially components 3, 4 and 5
321 encode disparities between the “left hand” and “right hand” conditions, and could therefore
322 constitute informative features for a classifier. Interestingly, some components seem to describe
323 a modulation of waveforms during the post-task period, which is particularly evident for either
324 condition in components 1 and 2.



325 **Figure 4.** Trial-averaged, baseline-corrected burst rate along different components for a representative subject (Zhou
326 2016, S1). The first column depicts how burst waveforms vary independently along each component (components as
327 depicted in figure 3). Negative scores correspond to the cyan traces, and positive to the magenta traces. The
328 average waveform is represented by the black trace. During “left hand” trials, burst rate varies per component for
329 channels C3 and C4 and the difference of the two channels. During the task period, both channels exhibit various
330 degrees of burst rate increase for bursts whose waveforms resemble the average along any principal component.
331 Waveforms lying further from the average along component 3 and more prominently 4 are characterized by a
332 reduction of burst rate contralaterally, in channel C4. Similar patterns arise for the “right hand” trials. Component 5 is
333 characterized by an ipsilateral increase and a contralateral decrease of “positive outlier” waveforms. During the post-
334 task period a burst rate increase for specific waveforms is observed, mainly seen along components 1 and 2.

335 **Beta band burst features outperform beta band power in binary classification tasks**

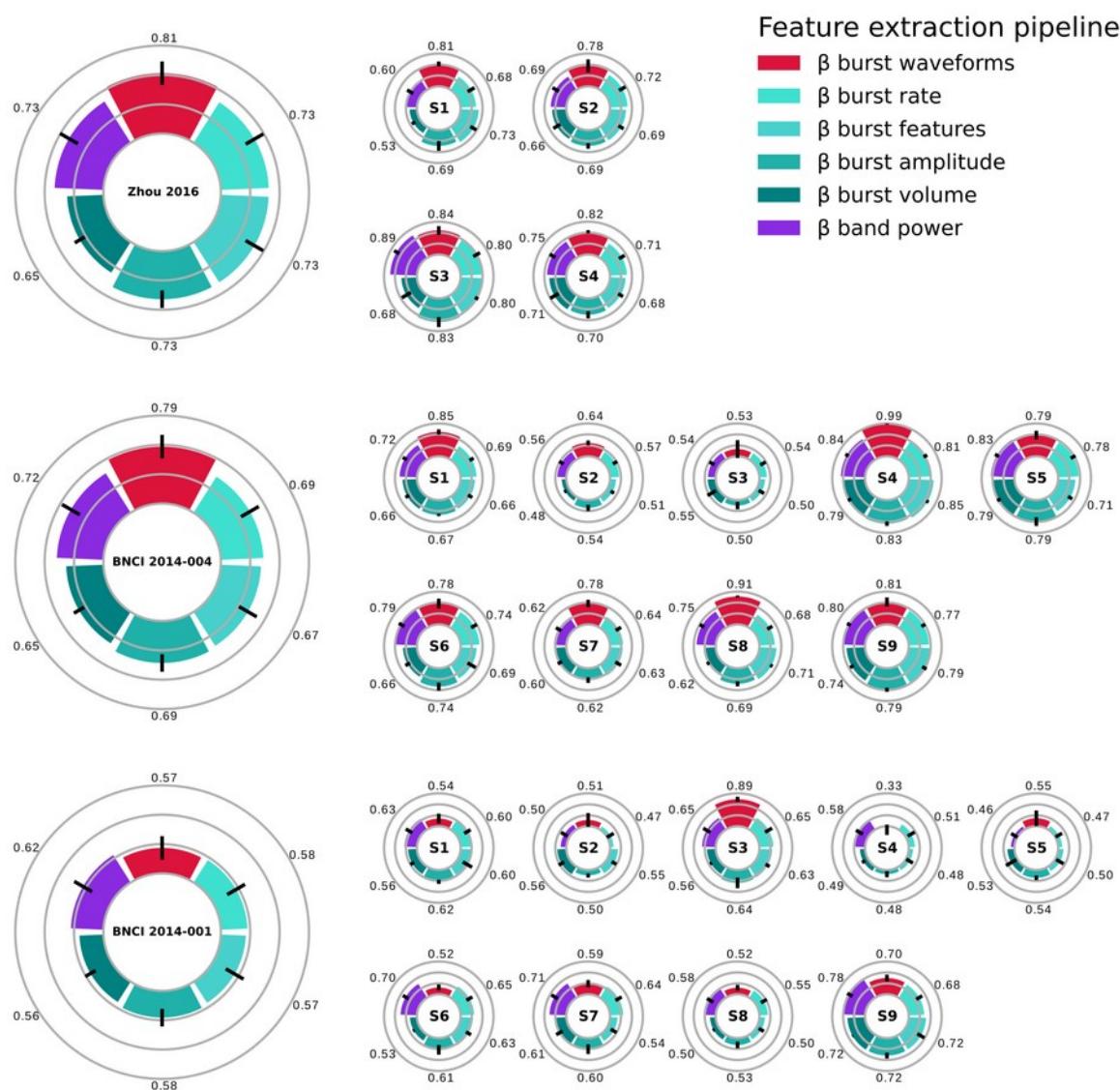
336 After establishing the lower dimensional space for projecting the burst waveforms, we binned
337 the scores axis into several groups per component (figure 5) using a cross-validation procedure,
338 and analyzed the average burst rate per group (see Materials and Methods). The average burst
339 rate for each group during the task period within each of the two channels was then used as a
340 feature for an LDA classifier, resulting in $G \times C \times 2$ features per experimental condition, where G is
341 the number of groups, and C is the number of components, e.g. in the two bottom lines of figure
342 5 we visualize what would correspond to $G=3$ and $C=2$. In order to validate our hypothesis, we
343 compared classification results based on this method against results based on alternative
344 features: the overall beta burst rate for bursts detected in channels C3 and C4 and whose
345 amplitude is greater than a threshold (the 75th percentile of the dictionary's TF amplitude
346 distribution); time-frequency descriptions of bursts, and band power in the beta frequency (see
347 Materials and Methods).



348 **Figure 5.** Trial-averaged, baseline-corrected overall burst rate, beta band power and burst rate modulation of three
349 burst groups along components 3 and 4 for a representative subject (Zhou 2016 dataset, S1). For both conditions
350 and channels, beta band power changes (purple trace) roughly track the overall burst rate modulation (red trace).
351 Burst rate modulation for different burst groups varies per condition, channel and component. The differential
352 modulation of burst rate is particularly pronounced contralaterally, in channel C4 during "left hand" trials and channel
353 C3 during "right hand" trials along the fourth component. A clear distinction between conditions is evident when
354 comparing the difference of rate modulation of the two channels for each waveform group.

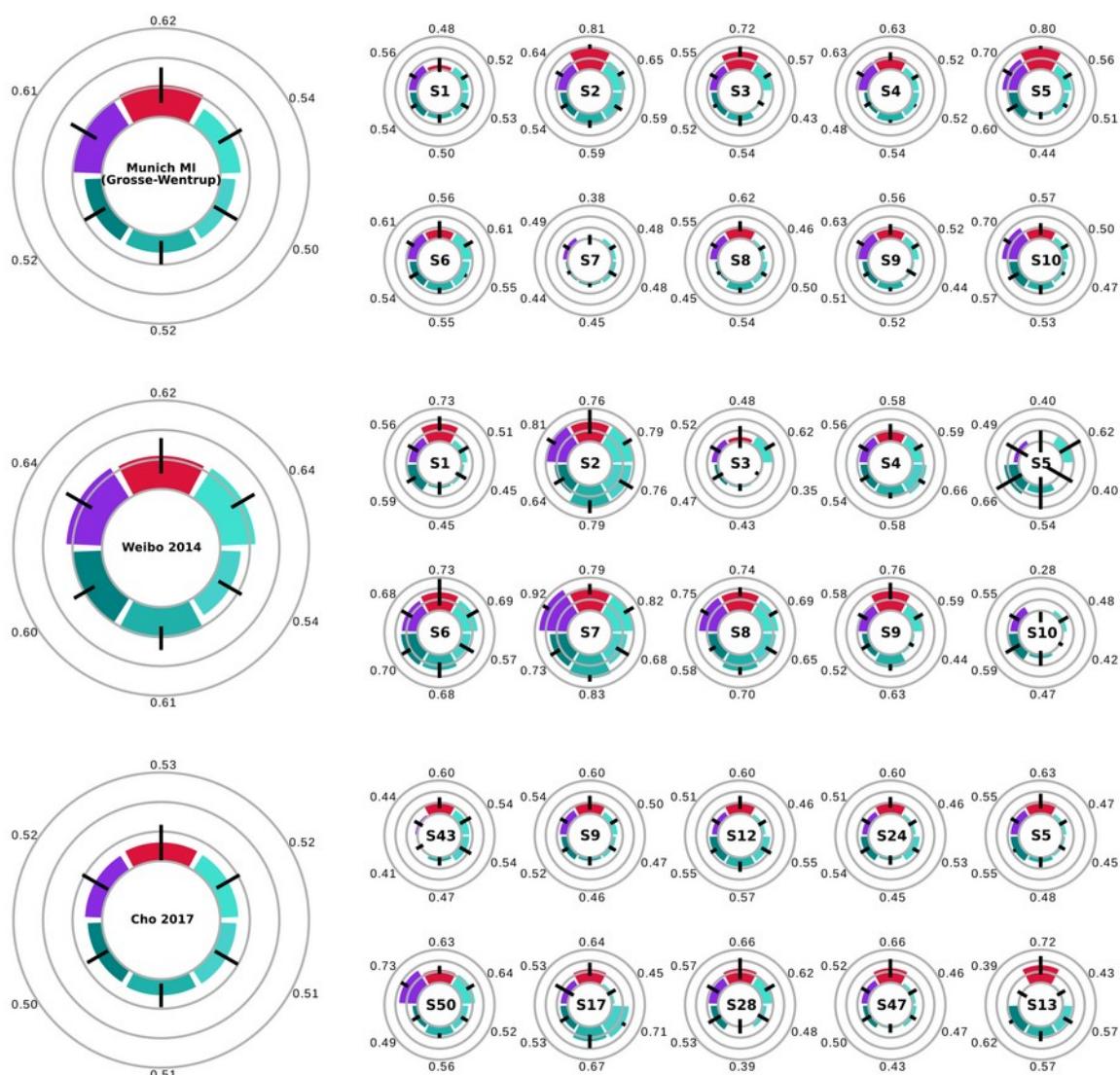
355 For each dataset we present the across-subject average results estimated with each method,
356 as well as the results for each participant (figures 6, 7). For the Cho 2017 dataset, which
357 contains a large number of participants, we only show the best ten subjects according to the
358 results based on burst waveform features. The results of all subjects are provided separately
359 (sup. figure 2). At the dataset level, the waveform-resolved burst rate features yield decoding
360 results that are equivalent or better than the results obtained by analyzing beta band power, or
361 alternative beta band representations. These representations appear to bear analogous results
362 in each dataset. We emphasize, though, that the results are highly variable across subjects. For
363 example, for subject S1 of the Zhou 2016 dataset beta power does not hold much explanatory
364 value, unlike beta burst rate, beta burst amplitude or the waveform-resolved burst rate. This is

365 not true for S4 of the BNCI 2014-004 dataset. All representations yield similarly good results,
366 except for the waveform-resolved burst rate that outperforms the rest.



367 **Figure 6.** Population average and individual results for binary "left hand" vs "right hand" classification for the BNCI
368 2014-001, BNCI 2014-004 and Zhou 2016 and datasets. Classification features based on burst waveform-specific
369 rate yield, on average, better results than those obtained using TF-derived burst features, or beta power from
370 channels C3 and C4 across all datasets

371 After obtaining these results we proceeded to quantify the statistical significance of the
372 observed differences for each classification feature set. In order to test the explanatory value of
373 the waveform-resolved burst rate against beta band power we analyzed the decoding results
374 using a generalized linear mixed model (see Materials and Methods). The waveform-resolved
375 burst rate features are significantly better than beta band power features ($\chi^2(1) = 21.384$, $p <$
376 0.001). We also compared the waveform-resolved burst rate against the rest of the examined
377 beta band representations and verified that it yields the highest classification accuracy ($\chi^2(4) =$
378 242.95, all pairwise $p < 0.001$). In conclusion, we confirmed our hypothesis that waveform-
379 resolved beta burst activity holds promise to improve BCI performance, especially if further
380 optimized so that it can be analyzed online and take into account multiple recording channels.



381 **Figure 7.** Population average and individual results for binary "left hand" vs "right hand" classification for the Cho
382 2017, Munich MI (Grosse-Wentrup) and Weibo 2014 datasets. Only the 10 best subjects according to burst waveform
383 features are shown for the Cho 2017 dataset. All features yield equivalent results for the Cho 2017 dataset. Burst
384 waveform and band power features are equivalent and superior to other beta band activity representations for the
385 Munich Mi dataset. All beta band features except for the combination of multiple features, yield similar results for the
386 Weibo 2014 dataset. Color code as in figure 6.

387

388 **Discussion**

389 In this study, we showed for the first time that waveform-specific beta burst rate is a
390 representation comparable to beta power within a framework of binary classification MI tasks. In
391 an attempt to understand why, we compared multiple representations of beta activity modulation
392 during the MI task. We showed that bursts of different shapes are selectively modulated
393 following task onset, with distinct waveforms occurring with different probability during different
394 points in time [100] (figures 4 and 5). This modulation can be encoded either by TF-derived
395 features, or alternatively, burst waveforms. All of the TF-derived features were as informative as
396 the overall burst rate when used as classification features, but less reliable than waveform-
397 based features, across all datasets.

398 The results presented in this article are based on features of beta bursts detected from only two
399 channels, and are therefore not directly comparable to results of previous studies that have
400 implemented standard designs within the BCI literature [95,113] and incorporate all available
401 recording channels, do not perform trial rejection, and utilize spatial filtering. However,
402 waveform-based burst rate features are more informative about imagined movements than beta
403 power in channels C3 and C4. In this regard, our analysis is a first step in the direction of
404 establishing a neurophysiologically informed alternative to currently existing methodologies of
405 feature extraction.

406 Our results rely on burst dictionaries that combine data from all subjects across a dataset. We
407 have introduced this “transfer learning-like” approach because we have observed that it makes
408 the dimensionality reduction step less susceptible to noise and it results in the same
409 components for all subjects within a dataset, thus rendering the classification features and
410 decoding results easier to interpret. Additionally, it is worth mentioning that due to the enforced
411 orthogonality between the PCA dimensions, the resulting principal components are similar to a
412 Fourier decomposition of the time series, which may be suboptimal by failing to capture
413 components that optimally separate bursts that are differently modulated by the task.
414 Conversely, this property of PCA imposes restrictions on the resulting components that make
415 them similar across datasets (sup. figure 4). This property could be taken advantage of and
416 used in future work for cross-dataset transfer learning.

417 An important question is whether this procedure would be suitable for online, real-time
418 decoding. The superlets algorithm, and to a lesser extent the burst detection algorithm, are
419 computationally expensive and increasing the number of recording channels, task duration, and
420 frequency resolution would make it difficult to employ this analysis online. However, our results
421 show that beta bursts with particular waveforms are more informative of MI than others. These
422 waveforms could be used as kernels and convolved with online recordings to efficiently detect
423 bursts directly in the time domain. If burst waveforms are maintained across recording sessions,
424 the superlets-based burst analysis could be performed during an offline session and its results
425 used for online burst detection during follow-up, online sessions.

426 Although we observe distinct patterns of beta burst rate modulations during trials, we do not
427 know how these patterns evolve over sessions and whether or not they are affected by learning.
428 Likewise, how these patterns are influenced by various brain disorders and diseases remains to
429 be studied. There is evidence that beta burst activity is profoundly altered in Parkinson’s
430 disease [75,105,106,114,115], and it could be hypothesized that the alterations in beta band
431 activity following stroke [116–118] may be linked to changes in beta burst waveforms as well.
432 To answer these questions, a longitudinal comparison between a healthy population and clinical
433 patients is needed to establish a link between behavioral or clinical changes and the recorded
434 waveform-specific burst rate patterns or other beta activity representations. Beta burst
435 waveforms could thus serve as an alternative bio-marker for neurofeedback paradigms, and
436 particularly neurorehabilitation protocols.

437 Tremendous efforts to improve the reliability of non-invasive BCI have been so far unable to
438 provide solutions that would be acceptable for widely-adopted applications. Ever since the
439 characterization of the event-related synchronization and desynchronization phenomena of mu
440 and beta activity, little effort has been put into revisiting the features that are considered to best
441 capture the underlying brain activity in these BCI paradigms. Growing evidence suggests that
442 beta activity modulations are best described in terms of bursts. The analysis presented in this
443 study serves as a proof of concept for the proposed methodology, but there is significant
444 potential for improvement in the burst detection and feature creation procedures. Future

445 directions of interest lie in incorporating more advanced spatial filtering with the burst detection
446 technique, and possibly the use of state-of-the-art Riemannian methods, so that we can
447 leverage the activity of more channels within this framework. Finally, another future direction lies
448 in the incorporation of novel neurophysiological markers for the mu frequency band in our
449 framework. A growing number of studies have shown that the activity in this band can occur as
450 longer-lasting bursts [119], or non-sinusoidal oscillations [120]. We believe that by adapting our
451 approach to the characteristics of this frequency band, or by adopting alternative frameworks
452 such as cycle-by-cycle analysis [121] we can uncover features that will further help us attain the
453 goal of improving BCI robustness. We believe all these goals to be particularly interesting
454 because they hold the promise of further improving current results and rendering them
455 comparable to state-of-the-art approaches.

456

457 Conclusion

458 Waveform-resolved patterns of burst rate constitute a new way of analyzing beta band activity
459 during motor imagery tasks. The assessment of this method against multiple open EEG
460 datasets shows that this representation is analogous to conventional power features in terms of
461 classification. This work serves as a first step and opens up numerous directions for further
462 improvements that can potentially ameliorate the reliability of existing, non-invasive brain-
463 computer interface technology.

464

465 Acknowledgments

466 This work was performed within the framework of the LABEX CORTEX (ANR-11LABX-0042) of
467 Université de Lyon, within the program “Investissements d’Avenir” (decision n° 2019-ANR-
468 LABX-02) operated by the French National Research Agency (ANR). SP, MC, JB, and JM are
469 supported by the French National Research Agency (ANR) project HiFi (2020–2024). MS and
470 JB are supported by the European Research Council (ERC) under the European Union’s
471 Horizon 2020 Research and Innovation Programme (ERC consolidator grant 864550 to JB).

472

473 Data availability Statement

474 All data are available via the [MOABB project](#). All scripts necessary for reproducing the results of
475 this article are available at the following public repository: <https://gitlab.com/sotpapad/bebopbci>.

476

477 Author Contributions

478 SP, JB and JM conceptualized the manuscript. SP drafted the manuscript and performed the
479 analysis. All authors contributed to manuscript revision, read, and approved the submitted
480 version.

481

482 Competing Interest Statement

483 All authors declare no competing interests.

484

485 **References**

486

- 487 [1] Kurzweil R 2014 The Singularity is Near *Ethics and Emerging Technologies* ed R L
488 Sandler (London: Palgrave Macmillan UK) pp 393–406
- 489 [2] Wolpaw J R 2002 Brain Computer Interfaces for communication and control *Front.*
490 *Neurosci.* **4** 767–91
- 491 [3] Wolpaw J R, Millán J del R and Ramsey N F 2020 Brain-computer interfaces: Definitions
492 and principles *Handb. Clin. Neurol.* **168** 15–23
- 493 [4] Ramadan R A and Vasilakos A V. 2017 Brain computer interface: control signals review
494 *Neurocomputing* **223** 26–44
- 495 [5] Lotte F, Nam C S and Nijholt A 2018 Introduction : Evolution of Brain-Computer
496 Interfaces *Technol. Theor. Adv. Taylor Fr. (CRC Press.* **9781498773** 1–11
- 497 [6] Hatsopoulos N G and Donoghue J P 2009 The Science of Neural Interface Systems
498 *Annu. Rev. Neurosci.* **32** 249–66
- 499 [7] Mueller-Putz G, Scherer R, Brunner C, Leeb R and Pfurtscheller G 2008 Better than
500 random: A closer look on BCI results *Int. J. Bioelectromagn.* **10** 52–5
- 501 [8] Vidaurre C and Blankertz B 2010 Towards a cure for BCI illiteracy *Brain Topogr.* **23** 194–
502 8
- 503 [9] Chavarriaga R, Fried-Oken M, Kleih S, Lotte F and Scherer R 2016 Heading for new
504 shores! Overcoming pitfalls in BCI design *Brain-Computer Interfaces* **4** 60–73
- 505 [10] Hughes C, Herrera A, Gaunt R and Collinger J 2020 *Bidirectional brain-computer*
506 *interfaces* vol 168 (Elsevier B.V.)
- 507 [11] Iturrate I, Chavarriaga R and Millán J del R 2020 General principles of machine learning
508 for brain-computer interfacing *Handb. Clin. Neurol.* **168** 311–28
- 509 [12] Blokland Y, Spyrou L, Thijssen D, Eijsvogels T, Colier W, Floor-Westerdijk M, Vlek R,
510 Bruhn J and Farquhar J 2014 Combined EEG-fNIRS decoding of motor attempt and
511 imagery for brain switch control: An offline study in patients with tetraplegia *IEEE Trans.*
512 *Neural Syst. Rehabil. Eng.* **22** 222–9
- 513 [13] Saeedi S, Chavarriaga R and Millan J D R 2017 Long-Term Stable Control of Motor-
514 Imagery BCI by a Locked-In User Through Adaptive Assistance *IEEE Trans. Neural Syst.*
515 *Rehabil. Eng.* **25** 380–91
- 516 [14] Benaroch C, Sadatnejad K, Roc A, Appriou A, Monseigne T, Pramij S, Mladenovic J,
517 Pillette L, Jeunet C and Lotte F 2021 Long-Term BCI Training of a Tetraplegic User:
518 Adaptive Riemannian Classifiers and User Training *Front. Hum. Neurosci.* **15** 1–22
- 519 [15] Banique P D E, Stanyer E C, Awais M, Alazmani A, Jackson A E, Mon-Williams M A,
520 Mushtaq F and Holt R J 2021 Brain–computer interface robotics for hand rehabilitation
521 after stroke: a systematic review *J. Neuroeng. Rehabil.* **18** 1–25

- 522 [16] Luauté J, Morlet D and Mattout J 2015 BCI in patients with disorders of consciousness:
523 Clinical perspectives *Ann. Phys. Rehabil. Med.* **58** 29–34
- 524 [17] Mane R, Wu Z and Wang D 2022 Poststroke motor, cognitive and speech rehabilitation
525 with brain-computer interface: A perspective review *Stroke Vasc. Neurol.* **7** 541–9
- 526 [18] Chaudhary U, Birbaumer N and Ramos-Murguiialday A 2016 *Brain–computer interfaces*
527 *in the completely locked-in state and chronic stroke* vol 228 (Elsevier B.V.)
- 528 [19] Mcfarland D J 2021 Brain-computer interfaces for amyotrophic lateral sclerosis Dennis
529 *Muscle Nerve* **61** 702–7
- 530 [20] Bai Z, Fong K N K, Zhang J J, Chan J and Ting K H 2020 Immediate and long-term
531 effects of BCI-based rehabilitation of the upper extremity after stroke: A systematic
532 review and meta-analysis *J. Neuroeng. Rehabil.* **17** 1–20
- 533 [21] Tam W, Wu T, Zhao Q, Keefer E and Yang Z 2019 Human motor decoding from neural
534 signals: a review *BMC Biomed. Eng.* **1** 1–22
- 535 [22] Willett F R, Avansino D T, Hochberg L R, Henderson J M and Shenoy K V. 2021 High-
536 performance brain-to-text communication via handwriting *Nature* **593** 249–54
- 537 [23] Farwell L A and Donchin E 1988 Talking off the top of your head: toward a mental
538 prosthesis utilizing event-related brain potentials *Electroencephalogr. Clin. Neurophysiol.*
539 510–23
- 540 [24] Wolpaw J R, McFarland D J, Neat G W and Forneris C A 1991 An EEG-based brain-
541 computer interface for cursor control *Electroencephalogr. Clin. Neurophysiol.* **78** 252–9
- 542 [25] Pfurtscheller G, Flotzinger D and Kalcher J 1993 Brain-Computer Interface-a new
543 communication device for handicapped persons *J. Microcomput. Appl.* **16** 293–9
- 544 [26] Lu J, McFarland D J and Wolpaw J R 2013 Adaptive laplacian filtering for sensorimotor
545 rhythm-based brain-computer interfaces *J. Neural Eng.* **10**
- 546 [27] McFarland D J, McCane L M, David S V. and Wolpaw J R 1997 Spatial filter selection for
547 EEG-based communication *Electroencephalogr. Clin. Neurophysiol.* **103** 386–94
- 548 [28] Koles Z J 1991 The quantitative extraction and topographic mapping of the abnormal
549 components in the clinical EEG *Electroencephalogr. Clin. Neurophysiol.* **79** 440–7
- 550 [29] Blankertz B, Kawanabe M, Tomioka R, Hohlefeld F U, Nikulin V and Müller K R 2008
551 Invariant common spatial patterns: Alleviating nonstationarities in Brain-Computer
552 Interfacing *Adv. Neural Inf. Process. Syst. 20 - Proc. 2007 Conf.* 1–8
- 553 [30] Müller-Gerking J, Pfurtscheller G and Flyvbjerg H 1999 Designing optimal spatial filters
554 for single-trial EEG classification in a movement task *Clin. Neurophysiol.* **110** 787–98
- 555 [31] Pfurtscheller G and Lopes da Silva F H 1999 Event-relared EEG/MEG synchronization
556 and desynchronization: basic principles *Clin. Neurophysiol.* **110** 1842–57
- 557 [32] Pfurtscheller G and Neuper C 1997 Motor imagery activates primary sensorimotor area
558 in humans *Neurosci. Lett.* **239** 65–8
- 559 [33] Pfurtscheller G and Berghold A 1989 Patterns of cortical activation during planning of
560 voluntary movement *Electroencephalogr. Clin. Neurophysiol.* **72** 250–8

- 561 [34] Pfurtscheller G, Stancák A and Neuper C 1996 Post-movement beta synchronization. A
562 correlate of an idling motor area? *Electroencephalogr. Clin. Neurophysiol.* **98** 281–93
- 563 [35] Pfurtscheller G, Brunner C, Schlägl A and Lopes da Silva F H 2006 Mu rhythm
564 (de)synchronization and EEG single-trial classification of different motor imagery tasks
565 *Neuroimage* **31** 153–9
- 566 [36] Neuper C, Wörz M and Pfurtscheller G 2006 Chapter 14 ERD/ERS patterns reflecting
567 sensorimotor activation and deactivation *Prog. Brain Res.* **159** 211–22
- 568 [37] Pfurtscheller G, Neuper C, Flotzinger D and Pregenzer M 1997 EEG-based
569 discrimination between imagination of right and left hand movement *Electroencephalogr.*
570 *Clin. Neurophysiol.* **103** 642–51
- 571 [38] Alayrangues J, Torrecillas F, Jahani A and Malfait N 2019 Error-related modulations of
572 the sensorimotor post-movement and foreperiod beta-band activities arise from distinct
573 neural substrates and do not reflect efferent signal processing *Neuroimage* **184** 10–24
- 574 [39] Cheyne D and Ferrari P 2013 MEG studies of motor cortex gamma oscillations:
575 Evidence for a gamma “fingerprint” in the brain? *Front. Hum. Neurosci.* **7** 1–7
- 576 [40] Kilavik B E, Zaepffel M, Brovelli A, MacKay W A and Riehle A 2013 The ups and downs
577 of beta oscillations in sensorimotor cortex *Exp. Neurol.* **245** 15–26
- 578 [41] Makeig S, Enghoff S, Jung T P and Sejnowski T J 2000 A natural basis for efficient
579 brain-actuated control *IEEE Trans. Rehabil. Eng.* **8** 208–11
- 580 [42] Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A and Mehring C 2008
581 Hand movement direction decoded from MEG and EEG *J. Neurosci.* **28** 1000–8
- 582 [43] Naseer N and Hong K S 2015 fNIRS-based brain-computer interfaces: A review *Front.*
583 *Hum. Neurosci.* **9** 1–15
- 584 [44] Allison B Z, Brunner C, Kaiser V, Müller-Putz G R, Neuper C and Pfurtscheller G 2010
585 Toward a hybrid brain-computer interface based on imagined movement and visual
586 attention *J. Neural Eng.* **7**
- 587 [45] Sadeghi S and Maleki A 2018 Recent advances in hybrid brain-computer interface
588 systems: A technological and quantitative review *Basic Clin. Neurosci.* **9** 373–88
- 589 [46] Buccino A P, Keles H O and Omurtag A 2016 Hybrid EEG-fNIRS asynchronous brain-
590 computer interface for multiple motor tasks *PLoS One* **11** 1–16
- 591 [47] Choi I, Rhiu I, Lee Y, Yun M H and Nam C S 2017 A systematic review of hybrid brain-
592 computer interfaces: Taxonomy and usability perspectives *PLoS One* **12**
- 593 [48] Corsi M C, Chavez M, Schwartz D, Hugueville L, Khambhati A N, Bassett D S and De
594 Vico Fallani F 2019 Integrating EEG and MEG Signals to Improve Motor Imagery
595 Classification in Brain-Computer Interface *Int. J. Neural Syst.* **29** 1–12
- 596 [49] Lotte F and Rimbert S 2022 How ERD modulations during motor imageries relate to
597 users' traits and BCI performances *44th International Engineering in Medicine and*
598 *Biology Conference* (Glasgow, United Kingdom)

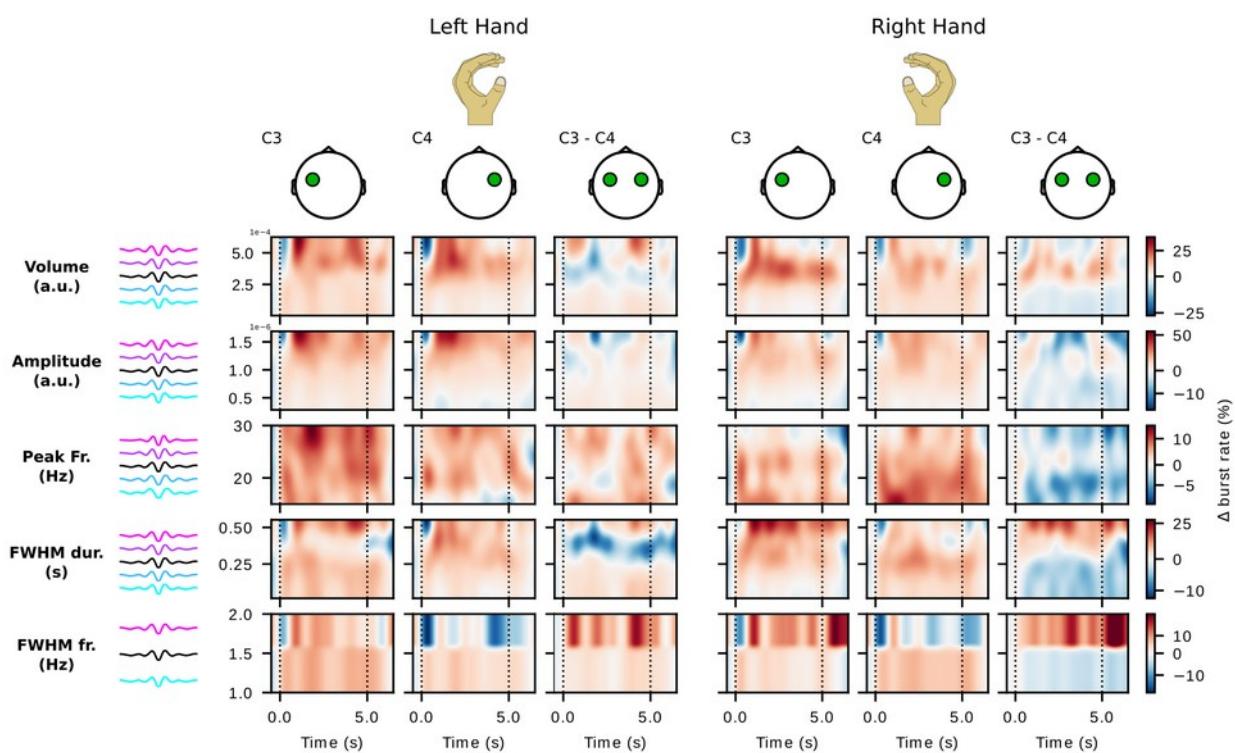
- 599 [50] Lotte F, Jeunet C, Mladenovic J, Kaoua B N and A L P 2018 A BCI challenge for the
600 signal processing community : considering the user in the loop *Signal Processing and*
601 *Machine Learning for Brain-Machine Interfaces* pp 1–33
- 602 [51] Mladenović J, Frey J, Pramij S, Mattout J and Lotte F 2022 Towards Identifying Optimal
603 Biased Feedback for Various User States and Traits in Motor Imagery BCI *IEEE Trans.*
604 *Biomed. Eng.* **69** 1101–10
- 605 [52] Mladenović J 2021 Standardization of protocol design for user training in EEG-based
606 brain-computer interface *J. Neural Eng.* **18**
- 607 [53] Pillette L, N'kaoua B, Sabau R, Glize B and Lotte F 2021 Multi-Session Influence of Two
608 Modalities of Feedback and Their Order of Presentation on MI-BCI User Training
609 *Multimodal Technol. Interact. MDPI* **5** 12
- 610 [54] Jeunet C, Lotte F, Batail J M, Philip P and Micoulaud Franchi J A 2018 Using Recent
611 BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review
612 *Neuroscience* **378** 225–33
- 613 [55] Jeunet C, Glize B, McGonigal A, Batail J M and Micoulaud-Franchi J A 2019 Using EEG-
614 based brain computer interface and neurofeedback targeting sensorimotor rhythms to
615 improve motor skills: Theoretical background, applications and prospects *Neurophysiol.*
616 *Clin.* **49** 125–36
- 617 [56] Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A and Yger F
618 2018 A review of classification algorithms for EEG-based brain-computer interfaces: A 10
619 year update *J. Neural Eng.* **15**
- 620 [57] Zarei R, He J, Siuly S and Zhang Y 2017 A PCA aided cross-covariance scheme for
621 discriminative feature extraction from EEG signals *Comput. Methods Programs Biomed.*
622 **146** 47–57
- 623 [58] Kachenoura A, Albera L, Senhadji L and Comon P 2008 ICA: A potential tool for BCI
624 systems *IEEE Signal Process. Mag.* **25** 57–68
- 625 [59] Medeiros de Freitas A, Sanchez G, Lecaignard F, Maby E, Barbosa Soares A and
626 Mattout J 2020 EEG artifact correction strategies for online trial-by-trial analysis *J. Neural*
627 *Eng.* **17**
- 628 [60] Bruns A 2004 Fourier-, Hilbert- and wavelet-based signal analysis: Are they really
629 different approaches? *J. Neurosci. Methods* **137** 321–32
- 630 [61] Herman P, Prasad G, McGinnity T M and Coyle D 2008 Comparative analysis of spectral
631 approaches to feature extraction for EEG-based motor imagery classification *IEEE Trans.*
632 *Neural Syst. Rehabil. Eng.* **16** 317–26
- 633 [62] Brodu N, Lotte F and Lécuyer A 2011 Comparative study of band-power extraction
634 techniques for Motor Imagery classification *IEEE SSCI 2011 - Symp. Ser. Comput. Intell.*
635 *- CCMB 2011 2011 IEEE Symp. Comput. Intell. Cogn. Algorithms, Mind, Brain* 95–100
- 636 [63] Pfurtscheller G and Neuper C 2001 Motor imagery direct communication *Proc. IEEE* **89**
637 1123–34

- 638 [64] Vidaurre C, Kawanabe M, Von Bünau P, Blankertz B and Müller K R 2011 Toward
639 unsupervised adaptation of LDA for brain-computer interfaces *IEEE Trans. Biomed. Eng.*
640 **58** 587–97
- 641 [65] Llera A, Gomez V and Kappen H J 2014 Adaptive Multiclass Classification for Brain
642 Computer Interfaces *Neural Comput.* **26** 1108–27
- 643 [66] Song X, Yoon S C and Perera V 2013 Adaptive Common Spatial Pattern for single-trial
644 EEG classification in multisubject BCI *Int. IEEE/EMBS Conf. Neural Eng. NER* **19013**
645 411–4
- 646 [67] Steyrl D, Scherer R, Oswin F and Gernot R M 2014 Motor Imagery Brain-Computer
647 Interfaces : Random Forests vs Regularized LDA - Non-linear Beats Linear *Proc. 6th Int.*
648 *Brain-Computer Interface Conf.* 8–11
- 649 [68] Steyrl D, Scherer R, Faller J and Müller-Putz G R 2016 Random forests in non-invasive
650 sensorimotor rhythm brain-computer interfaces: A practical and convenient non-linear
651 classifier *Biomed. Tech.* **61** 77–86
- 652 [69] Hazrati M K and Erfanian A 2010 An online EEG-based brain-computer interface for
653 controlling hand grasp using an adaptive probabilistic neural network *Med. Eng. Phys.* **32**
654 730–9
- 655 [70] Jones S R 2016 When brain rhythms aren't 'rhythmic': implication for their mechanisms
656 and meaning *Curr. Opin. Neurobiol.* **40** 72–80
- 657 [71] Little S, Bonaiuto J, Barnes G and Bestmann S 2019 Human motor cortical beta bursts
658 relate to movement planning and response errors *PLoS Biol.* **17** 1–30
- 659 [72] Lundqvist M, Rose J, Herman P, Brincat S, Buschman T and Miller E 2016 Gamma and
660 beta bursts underlie working memory *Neuron* **90** 152–64
- 661 [73] Wessel J R 2020 B-Bursts Reveal the Trial-To-Trial Dynamics of Movement Initiation
662 and Cancellation *J. Neurosci.* **40** 411–23
- 663 [74] Shin H, Law R, Tsutsui S, Moore C I and Jones S R 2017 The rate of transient beta
664 frequency events predicts impaired function across tasks and species *Elife*
- 665 [75] Torrecillos F, Tinkhauser G, Fischer P, Green A L, Aziz T Z, Foltynie T, Limousin P,
666 Zrinzo L, Ashkan K, Brown P and Tan H 2018 Modulation of beta bursts in the
667 subthalamic nucleus predicts motor performance *J. Neurosci.* **38** 8905–17
- 668 [76] Hannah R, Muralidharan V, Sundby K K and Aron A R 2020 Temporally-precise
669 disruption of prefrontal cortex informed by the timing of beta bursts impairs human action-
670 stopping *Neuroimage* **222**
- 671 [77] Enz N, Ruddy K L, Rueda-Delgado L M and Whelan R 2021 Volume of β -bursts, but not
672 their rate, predicts successful response inhibition *J. Neurosci.* **41** 5069–79
- 673 [78] Bräcklein M, Barsakcioglu D Y, Vecchio A Del and Ibáñez J 2022 Reading and
674 Modulating Cortical b Bursts from Motor Unit Spiking Activity **42** 3611–21
- 675 [79] Echeverria-altuna I, Quinn A J, Woolrich M W, Nobre A C and Ede V 2022 Transient
676 beta activity and cortico-muscular connectivity during sustained motor behaviour *Prog.*
677 *Neurobiol.* 102281

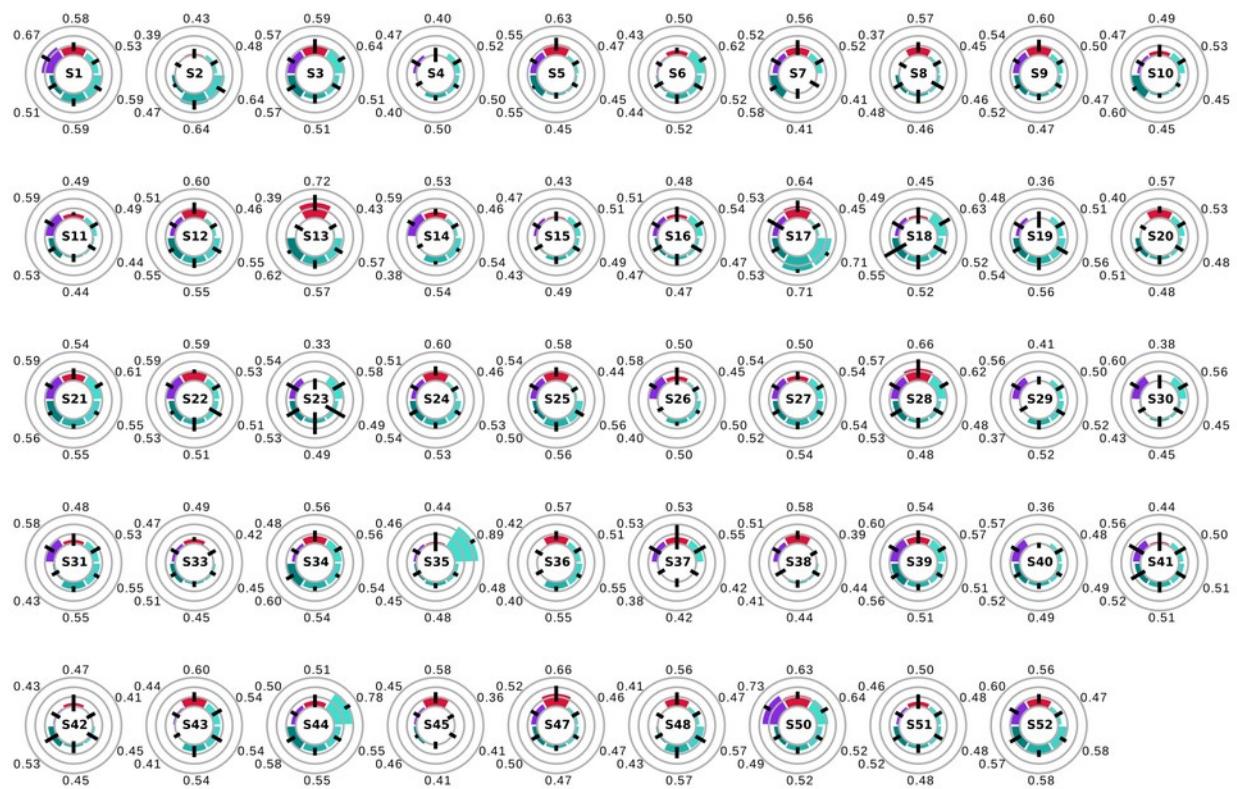
- 678 [80] Zich C, Quinn A J, Bonaiuto J J, O'Neill G, Mardell L C, Ward N S and Bestmann S 2023
679 Spatiotemporal organization of human sensorimotor beta burst activity *Elife* **12**:e80160
- 680 [81] Szul M J, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J and
681 Bonaiuto J J 2023 Diverse beta burst waveform motifs characterize movement-related
682 cortical dynamics *Prog. Neurobiol.* **165** 187
- 683 [82] Donoghue T, Schawronkow N and Voytek B 2021 Methodological considerations for
684 studying neural oscillations *Eur. J. Neurosci.* **1**–26
- 685 [83] Barachant A, Bonnet S, Congedo M and Jutten C 2012 Multiclass Brain-Computer
686 Interface Classification by Riemannian Geometry *IEEE Trans. Biomed. Eng.* **59** 920–8
- 687 [84] Barachant A, Bonnet S, Congedo M and Jutten C 2013 Classification of covariance
688 matrices using a Riemannian-based kernel for BCI applications *Neurocomputing* **112**
689 172–8
- 690 [85] Congedo M, Barachant A and Bhatia R 2017 Riemannian geometry for EEG-based
691 brain-computer interfaces; a primer and a review *Brain-Computer Interfaces* **4** 155–74
- 692 [86] Roy Y, Banville H, Albuquerque I, Gramfort A, Falk T H and Faubert J 2019 Deep
693 learning-based electroencephalography analysis: A systematic review *J. Neural Eng.* **16**
- 694 [87] Kwon O Y, Lee M H, Guan C and Lee S W 2020 Subject-Independent Brain-Computer
695 Interfaces Based on Deep Convolutional Neural Networks *IEEE Trans. Neural Networks*
696 *Learn. Syst.* **31** 3839–52
- 697 [88] Papadopoulos S, Bonaiuto J and Mattout J 2022 An Impending Paradigm Shift in Motor
698 Imagery Based Brain-Computer Interfaces *Front. Neurosci.* **15**
- 699 [89] Tangermann M, Müller K R, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R,
700 Mehring C, Miller K J, Müller-Putz G R, Nolte G, Pfurtscheller G, Preissl H, Schalk G,
701 Schlögl A, Vidaurre C, Waldert S and Blankertz B 2012 Review of the BCI competition IV
702 *Front. Neurosci.* **6** 1–31
- 703 [90] Leeb R, Lee F, Keinrath C, Scherer R, Bischof H and Pfurtscheller G 2007 Brain-
704 computer communication: motivation, aim, and impact of exploring a virtual apartment.
705 *IEEE Trans. neural Syst. Rehabil. Eng. a Publ. IEEE Eng. Med. Biol. Soc.* **15** 473–82
- 706 [91] Cho H, Ahn M, Ahn S, Kwon M and Jun S C 2017 EEG datasets for motor imagery
707 brain-computer interface *Gigascience* **6** 1–8
- 708 [92] Grosse-Wentrup M, Liefhold C, Gramann K and Buss M 2009 Beamforming in
709 Noninvasive Brain-Computer Interfaces *IEEE Trans. Biomed. Eng.* **56** 1209–19
- 710 [93] Yi W, Qiu S, Wang K, Qi H, Zhang L, Zhou P, He F and Ming D 2014 Evaluation of EEG
711 oscillatory patterns and cognitive process during simple and compound limb motor
712 imagery *PLoS One* **9** 1–19
- 713 [94] Zhou B, Wu X, Lv Z, Zhang L and Guo X 2016 A fully automated trial selection method
714 for optimization of motor imagery based Brain-Computer interface *PLoS One* **11** 1–20
- 715 [95] Jayaram V and Barachant A 2018 MOABB: Trustworthy algorithm benchmarking for
716 BCIs *J. Neural Eng.* **15**

- 717 [96] de Cheveigné A 2020 ZapLine: A simple and effective method to remove power line
718 artifacts *Neuroimage* **207**
- 719 [97] Jas M, Engemann D A, Bekhti Y, Raimondo F, Gramfort A, Gramfort A, Automated A
720 and Engemann D A 2017 Autoreject : Automated artifact rejection for MEG and EEG data
721 *Neuroimage* **159** 417–129
- 722 [98] Moca V V., Bârzan H, Nagy-Dăbâcan A and Mureşan R C 2021 Time-frequency super-
723 resolution with superlets *Nat. Commun.* **12** 1–18
- 724 [99] Bârzan H, Ichim A M, Moca V V and Mureşan R C 2022 Time-Frequency
725 Representations of Brain Oscillations: Which One Is Better? *Front. Neuroinform.* **16** 1–14
- 726 [100] Szul M J, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J and
727 Bonaiuto J J 2022 Diverse beta burst waveform motifs characterize movement-related
728 cortical dynamics *bioRxiv*
- 729 [101] Brady B and Bardouille T 2022 Periodic/Aperiodic parameterization of transient
730 oscillations (PAPTO)–Implications for healthy ageing *Neuroimage* **251** 118974
- 731 [102] Rodriguez-Larios J and Haegens S 2023 Genuine beta bursts in human working
732 memory: controlling for the influence of lower-frequency rhythms *bioRxiv*
733 2023.05.26.542448
- 734 [103] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
735 Prettenhofer P, Weiss R, Bubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher
736 M, Perrot M and Duchesnay E 2011 Scikit-learn: Machine Learning in Python Fabian J.
737 *Mach. Learn. Res.* **12** 2825–30
- 738 [104] Shlens J 2014 A Tutorial on Principal Component Analysis *arXiv*
- 739 [105] Tinkhauser G, Pogosyan A, Little S, Beudel M, Herz D M, Tan H and Brown P 2017 The
740 modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's
741 disease *Brain* **140** 1053–67
- 742 [106] Tinkhauser G, Pogosyan A, Tan H, Herz D M, Kühn A A and Brown P 2017 Beta burst
743 dynamics in Parkinson's disease off and on dopaminergic medication *Brain* **140** 2968–81
- 744 [107] Khawaldeh S, Tinkhauser G, Shah S A, Peterman K, Debove I, Khoa Nguyen T A,
745 Nowacki A, Lenard Lachenmayer M, Schuepbach M, Pollo C, Krack P, Woolrich M and
746 Brown P 2020 Subthalamic nucleus activity dynamics and limb movement prediction in
747 Parkinson's disease *Brain* **143** 582–6
- 748 [108] Lofredi R, Neumann W J, Bock A, Horn A, Huebl J, Siegert S, Schneider G H, Krauss J
749 K and Kuühn A A 2018 Dopamine-dependent scaling of subthalamic gamma bursts with
750 movement velocity in patients with Parkinson's disease *Elife* **7** 1–22
- 751 [109] Harris C R, Millman K J, van der Walt S J, Gommers R, Virtanen P, Cournapeau D,
752 Wieser E, Taylor J, Berg S, Smith N J, Kern R, Picus M, Hoyer S, van Kerkwijk M H, Brett
753 M, Haldane A, del Río J F, Wiebe M, Peterson P, Gérard-Marchant P, Sheppard K,
754 Reddy T, Weckesser W, Abbasi H, Gohlke C and Oliphant T E 2020 Array programming
755 with NumPy *Nature* **585** 357–62
- 756 [110] Bates D, Mächler M, Bolker B M and Walker S C 2015 Fitting linear mixed-effects
757 models using lme4 *J. Stat. Softw.* **67**

- 758 [111] Fox J and Weisberg S 2019 *An R Companion to Applied Regression* (Sage)
- 759 [112] Lenth R V 2023 emmeans: Estimated Marginal Means, aka Least-Squares Means
- 760 [113] Luiz P, Rodrigues C, Jutten C and Congedo M 2019 Riemannian Procrustes Analysis :
761 Transfer Learning for Brain-Computer Interfaces *IEEE Trans. Biomed. Eng.* **66** 2390–401
- 762 [114] Yeh C H, Al-Fatly B, Kühn A A, Meidahl A C, Tinkhauser G, Tan H and Brown P 2020
763 Waveform changes with the evolution of beta bursts in the human subthalamic nucleus
764 *Clin. Neurophysiol.* **131** 2086–99
- 765 [115] Jackson N, Cole S R, Voytek B and Swann N C 2019 Characteristics of waveform shape
766 in Parkinson's disease detected with scalp electroencephalography *eNeuro* **6** 1–11
- 767 [116] Rossiter H E, Boudrias M H and Ward N S 2014 Do movement-related beta oscillations
768 change after stroke? *J. Neurophysiol.* **112** 2053–8
- 769 [117] Shiner C T, Tang H, Johnson B W and McNulty P A 2015 Cortical beta oscillations and
770 motor thresholds differ across the spectrum of post-stroke motor impairment, a
771 preliminary MEG and TMS study *Brain Res.* **1629** 26–37
- 772 [118] Kulasingham J P, Brodbeck C, Khan S, Marsh E B and Simon J Z 2022 Bilaterally
773 Reduced Rolandic Beta Band Activity in Minor Stroke Patients *Front. Neurol.* **13** 1–10
- 774 [119] Vigué-Guix I and Soto-Faraco S 2022 Using occipital α -bursts to modulate behaviour in
775 real-time *bioRxiv*
- 776 [120] Chen Y Y, Lambert K J M, Madan C R and Singhal A 2021 Mu oscillations and motor
777 imagery performance: A reflection of intra-individual success, not inter-individual ability
778 *Hum. Mov. Sci.* **78** 1–12
- 779 [121] Cole S and Voytek B 2019 Cycle-by-cycle analysis of neural oscillations *J.*
780 *Neurophysiol.* **122** 849–61



781 **Sup. Figure 1.** Trial-averaged, baseline-corrected burst rate along different TF-derived features for a representative
782 subject (Zhou 2016 dataset, S1).



783 **Sup. Figure 2.** Results for binary "left hand" vs "right hand" classification for all subjects of the Cho 2017 dataset.
784 Color code as in figure 6.