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Abstract

Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from
hardware,  to  software,  to  more  sophisticated  experimental  protocols,  and  personalized
approaches.  However,  despite  these  abundant  efforts,  there  is  still  room  for  significant
improvement.  We argue that  a rather overlooked direction lies in  linking BCI protocols with
recent advances in fundamental neuroscience. In light of these advances, and particularly the
characterization of the burst-like nature of beta frequency band activity and the diversity of beta
bursts, we revisit the role of beta activity in “left vs. right hand” motor imagery tasks. Current
decoding approaches for such tasks take advantage of the fact that motor imagery generates
time-locked  changes  in  induced  power  in  the  sensorimotor  cortex,  and  rely  on  band-pass
filtered power changes or covariance matrices which also describe co-varying power changes in
signals recorded from different channels. Although little is known about the dynamics of beta
burst activity during motor imagery, we hypothesized that beta bursts should be modulated in a
way analogous to their activity during performance of real upper limb movements. We show that
classification features based on patterns of beta burst modulations yield decoding results that
are  equivalent  to  or  better  than  typically  used  beta  power  across  multiple  open
electroencephalography  datasets,  thus  providing  insights  into  the  specificity  of  these  bio-
markers.
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Introduction

Neural  interfaces,  and  in  particular  brain-computer  interfaces  (BCI),  have  long  been
conceptualized as effective means of surmounting disabilities for patients suffering from various
diseases and traumas, while transhumanist philosophy sees BCI [1] as a way to enhance the
capabilities of our bodies and brains. To achieve such goals, a multidisciplinary approach is
crucial.  Over the past  few decades,  an increasing number of  research groups from diverse
fields have been striving towards several objectives, from laying the foundations of BCI [2–6] to
improving their reliability [7,8] and applicability under more naturalistic settings [8–10].

Although we are still far from achieving goals like those portrayed in science fiction, a few real-
world  BCI  applications  are  currently  deployed.  Most  applications  revolve  around  selected
groups  of  patients  [12–20], improving  their  ability  to  interact  with  their  environment.  Such
applications usually form part of studies that employ invasive recording techniques in an attempt
to acquire high-quality brain signals [21,22]. Invasive techniques provide higher signal-to-noise
ratio, spatial specificity and frequency resolution compared to non-invasive techniques, trading
off the availability of the subjects, and the necessity of medical interventions. However, the latter
attract a significant portion of BCI research due to their safety, the lower equipment cost, and
the ability to collect large amount of data from patients and healthy participants. Specifically in
the case of electroencephalography (EEG), the added advantage of portability allows for the
inclusion  of  more  subjects  under  more  diverse  and  ecologically  valid  scenarios,  therefore
making it currently one of the most attractive platforms.

Non-invasive  BCI  emerged  in  the  early  90’s  [23–25],  along  with  the  first  spatial  filtering
algorithms.  The Laplacian  filter  [26,27] allowed for  improved signal-to-noise  ratio,  while  the
common spatial pattern algorithm (CSP)  [28–30] provided a way to weight the contribution of
each channel in order to optimize classification. Around the same time, a reliable, reproducible
signature of brain activity was demonstrated for the first time, at least on a trial-averaged level.
Studies  in  motor  neuroscience  involving  healthy  subjects  revealed  time-locked  changes  in
induced power within specific frequency bands [31–40]. Brain recordings were shown to exhibit
a gradual reduction in signal power, relative to baseline, in the mu (~ 8-12 Hz) and beta (~ 13-
30 Hz) frequency bands during an action or during motor imagery (MI): the so-called event-
related desynchronization (ERD). This phenomenon is considered to reflect processes related
to movement  preparation  and execution,  and is  particularly  pronounced in  the  contralateral
sensorimotor cortex. Moreover, shortly following the completion of the task, a relative increase
in power, the event-related synchronization (ERS), could be observed in the beta band (also
referred to as the beta rebound). ERS is thought to reflect the re-establishment of inhibition in
the same area.

In the following years, the field witnessed the introduction of more advanced signal processing
methods [41], alternative non-invasive recording techniques [42,43] and hybrid BCI paradigms
[44–48]. During the past decade, attempts have been made to place more emphasis on the
user by studying individual traits that correlate with performance [49], or adapting BCI protocols
to the user [50–52] in an effort to better understand and mitigate the problem of BCI illiteracy [8]:
the inability of approximately 1/3 of the users to control a motor-imagery based BCI system.
Directly linked to this problem, there are significant efforts being made towards creating more
informative neurofeedback paradigms by studying the influence of feedback modality  [53] and
factors not directly linked to the experimental task  [54]. This multifaceted endeavor holds the
potential of considerably improving existing rehabilitation protocols [55].
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Meanwhile, a great body of work has developed an arsenal of advanced pre-processing, feature
extraction,  and  classification  algorithms  dedicated  specifically  or  adapted  to  the  particular
characteristics and limitations of EEG signals  [11,56]. As a first step, a standard BCI pipeline
includes dimensionality reduction techniques for channel selection and noise removal [57–59].
Subsequently, a common practice for signals recorded during MI or attempted movements is to
use a time-frequency (TF) transformation such as the short-time Fourier,  Hilbert,  or wavelet
transform [60–62] and extract the power of the signal in specific time windows and frequency
bands  of  interest.  Finally,  any  of  a  large  range  of  machine  learning  algorithms  like  linear
discriminant analysis (LDA)  [63–65], support vector machines  [66], random forests  [67,68] or
neural networks [69] can be trained in order to establish a mapping between the features and
labels, and assess the performance of the whole pipeline.

This archetypical analysis is, to a significant extent, based on the idea that signal power is the
most informative signature of non-invasively  recorded neural activity for motor-related tasks.
Ever since the characterization of the ERD and ERS phenomena, there has been little to no
discussion in the non-invasive BCI field as to whether these features accurately capture the
task-related modulations of brain activity. Recent studies in neurophysiology have challenged
this view and have demonstrated that the ERD and ERS patterns only emerge as a result of
averaging signal power over multiple trials  [70,71]. On a single trial level,  beta band activity
occurs in short, transient events, termed bursts, rather than as sustained oscillations  [70–75].
This indicates that the ERD and ERS patterns reflect accumulated, time-varying changes in the
burst  probability  during  each  trial.  Thus,  beta  bursts  may  carry  more  behaviorally  relevant
information  than  averaged  beta  band  power.  Indeed,  studies  in  humans  involving  arm
movements  have  established  a  link  between  the  timing  of  sensorimotor  beta  bursts  and
response times prior to movement, as well as behavioral errors post-movement [71]. Beta burst
activity in frontal areas has also been shown to correlate with movement cancellation [73,76,77]
and recent studies show that activity at the motor unit level also occurs in a transient manner,
which is time-locked to sensorimotor beta bursts [78,79].

Although beta burst rate has been shown to carry significant information, it  still  comprises a
rather simplistic representation of the underlying activity. Every burst can be characterized by a
set of TF-based features: the burst peak time and peak frequency, as well as its duration and its
span in the frequency axis  [80]. In turn, all these descriptors are extracted using a particular
time-frequency transformation and constitute simpler representations of the more complex burst
waveform that is embedded in the raw signals, and which is characterized by a stereotypical
average shape with large variability  around it  [81].  The waveform features are neglected in
standard  BCI  approaches,  because  conventional  signal  processing  methods  generally
presuppose sustained, oscillatory and stationary signals, and are thus inherently unsuitable for
analyzing transient activity [82].

In  line  with  the  classically  described  ERD  and  ERS  phenomena,  the  non-invasive  BCI
community still heavily relies on signal power as the target feature for classification, although,
notably, state of the art Riemannian classifiers  [83–85] and some deep learning approaches
[86,87] have independently moved on from explicitly using frequency-specific power features. In
this article we propose a shift in perspective, by demonstrating how beta band activity during MI
tasks is modulated in terms of patterns of distinctly shaped bursts that are better descriptors of
transient activity changes.

We have previously argued that analyzing beta burst activity should enable us to gain access to
classification features that are at least as sensitive as beta band power [88]. If this hypothesis is
valid, then we should be able to test it and verify it using publicly available datasets. Here, we
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show that this approach allows us to achieve better classification results than those obtained
when assessing signal power in binary MI classification tasks, when comparing burst features to
signal power from EEG channels C3 and C4. We validate our approach against six open EEG
BCI  datasets,  and provide  links  between  the decoding  performance and  the modulation  of
different  features  considered  for  classification  across  datasets  and  subjects.  Although  our
results  obtained  by  using  beta  burst  features  are  in  most  cases inferior  to  state-of-the-art,
namely  because  our  analysis  only  included  two  channels  and  focused  solely  on  the  beta
frequency band, they are, conversely, superior to those obtained using only beta band power in
these channels. This analysis demonstrates the utility of beta burst analysis for BCI and paves
the way to improve classification performance in the near future.

Materials and Methods

Datasets

We used six open EEG MI datasets: BNCI 214-001 [89], BNCI 2014-004 [90], Cho 2017 [91],
MunichMI [92], Weibo 2014 [93] and Zhou 2016 [94], all available through the MOABB project
[95]. Briefly, all datasets contain recordings of subjects who were required to perform sustained
motor imagery following the appearance of a visual cue on a screen. For our analysis we only
considered trials corresponding to the “left hand” or “right hand” classes even if other classes
were available in some of the datasets.

Data pre-processing

For  each  dataset,  recordings  were  loaded  per  subject  using  the  MOABB python  package
(v0.4.6) MotorImagery class, and were filtered with a low pass cutoff of 120 Hz. The low pass
cutoff  was  set  to  95 Hz for  the  Weibo 2014 dataset,  because  the corresponding  sampling
frequency of  the recordings is  200 Hz. For most  of  these datasets numerous channels are
available, so we defined a subset of channels over the sensorimotor cortex that we deemed
relevant for the task and applied pre-processing (Table 1). Then, in this work, we only analyzed
data from channels C3 and C4. Each trial was aligned to the cue onset, and the task period was
defined as the time between cue onset and the end of the MI task. We used the time window
within one second prior to the cue onset as the baseline period (Table 1). In the case of the Cho
2017 and MunichMI datasets we noted the presence of noise at approximately 25 to 30 Hz that
interferes with the burst  detection step.  We therefore included an extra pre-processing step
involving a custom implementation of the meegkit python package (v0.1.3, dss_line function)
[96] to remove these artifacts. Considering only this subset of sensorimotor channels and all
recording periods, we rejected trials using the autoreject python package (0.4.0) [97] (Table 1).

Identification of channel-specific beta band and burst detection

Each subject’s data were first transformed in the time-frequency domain from 1 to 43 Hz using
the superlets algorithm  [98] with a frequency resolution of 0.5 Hz. We selected the superlets
algorithm over other more commonly used methods as it allows us to obtain a more optimal
tradeoff  between temporal and spectral  resolution,  and because it  has been shown to yield
better  classification  results compared to other approaches  [99].  Before proceeding with any
further analysis we trimmed 200 to 250 ms from the beginning and end of the epoched data in
order to exclude any edge effects introduced by the time-frequency transform.

The power spectral density (PSD) of the baseline period was then computed by averaging the
resulting TF matrices over the temporal dimension for each trial and channel of a given subject.
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Based on the distributions  of the PSD peaks we attributed the peaks of the power spectra to
either the mu (peaks below 15 Hz) or beta (peaks between 15 and 30 Hz) frequency band and
proceeded by analyzing activity in the beta band. 

Dataset # Subjects
(# total channels)

Channels used for pre-
processing

# Total trials

(# after trial
rejection)

Baseline

period (s)

Task

period (s)

Post-task

period (s)

BNCI 2014-001 9
(22)

"FC3", "FCz", "FC4", "C3", "Cz",
"C4", "CP3", "CPz", "CP4"

288

(207 - 287)
-1.0 – 0.0 0.0 – 4.0 4.0 – 5.5

BNCI 2014-004 9
(3)

"C3", "Cz", "C4"

680 – 760

(269 - 621)
-1.0 – 0.0 0.0 – 4.5 4.5 – 6.5

Cho 2017 49
(64)

"FC3", "FCz", "FC4", "C3", "Cz",
"C4", "CP3", "CPz", "CP4"

200 – 240

(77 - 240)
-1.0 – 0.0 0.0 – 3.0 3.0 – 5.0

Munich MI 10

(13)

“111”, “112”, “113”, “114”, “43”,
“21”, “63”, “22”, “44”, “119”,

“120”, “121”, “122”

300

(167 - 299)
-1.0 – 0.0 0.0 – 7.0 7.0 – 9.0

Weibo 2014 10
(60)

"FC3", "FCz", "FC4", "C3", "Cz",
"C4", "CP3", "CPz", "CP4"

140 – 160

(32 - 160)
-1.0 – 0.0 0.0 – 4.0 3.0 – 5.0

Zhou 2016 4
(64)

"FC3", "FCz", "FC4", "C3", "Cz",
"C4", "CP3", "CPz", "CP4"

290 – 319

(167 - 289)
-1.0 – 0.0 0.0 – 5.0 5.0 – 7.0

Table 1. Attributes of the datasets used in the study.

Using a previously published iterative, adaptive procedure, we identified bursts within the beta
frequency range from the TF matrix, and then extracted their waveforms from the “raw” time
series (after low pass filtering as pre-processing) within a fixed time window of 260 ms, centered
on the burst peak [100]. Due to inability to parameterize spectra from all datasets we subtracted
twice the standard deviation of the TF before fitting each peak as a 2D Gaussian, instead of
subtracting  the  aperiodic  activity  from  the  TF  matrices  [81,101,102],  before  detecting  beta
bursts.

Feature extraction based on patterns of burst rate modulation

Beta  burst  waveform analysis  was  performed  for  each  dataset  by  creating  a  dictionary  of
detected bursts across subjects and experimental conditions (“left hand” or “right hand”) (figure
1). This allowed us to create a matrix of burst waveforms by combining all detected bursts per
subject,  after robust scaling (scikit-learn package  [103], v1.0.2).  This representation of burst
waveforms  is  suitable  for  applying  a  dimensionality  reduction  technique  in  order  to  better
understand the variability in the recorded beta burst shapes. For the remaining of the analysis,
we only considered channels C3 and C4, or channels 43 and 44 for the MunichMI dataset.

Previous work from our group has demonstrated that principal component analysis (PCA) [104]
(scikit-learn package, v1.0.2) can be used to understand how the rates of bursts with different
waveforms are modulated during reaching  movements  [100].  In  order  to  construct  features
suitable for classification, we projected the burst dictionary along each principal component. As
such,  each  burst  was  associated  with  a  specific  score  along  each  dimension  of  the  C-
dimensional  space,  representing  the  distance  of  the  burst’s  waveform  from  the  average
waveform of all bursts, along this dimension. Because of the scarcity of bursts with extreme
scores, we winsorized scores outside of the 2nd and 98th percentile of their distribution. For each
component, we then discretized the bursts into groups of bursts within equally spaced score
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ranges, thus grouping bursts with similar waveforms along that dimension. Since each burst
occurs in a specific  point  in  time,  following this  procedure all  bursts were represented in  a
subspace spanned by the dimensions of scores and time. In other words, for each principal
component we generated a representation of burst rate as a function of waveform shape.

Figure 1. Burst dictionary corresponding to the Zhou 2016 dataset.  (a) The dictionary contains raw, aligned signal
waveforms of 260 ms duration. The black trace represents the average waveform over the whole dictionary. Colored
traces correspond to a randomly drawn subset of waveforms (0.2% of all bursts). (b) Distribution of the TF amplitude
of bursts as computed by the superlets transform, grouped according to burst duration in terms of cycles. The burst
detection algorithm identifies a wide range of bursts with amplitudes spanning more than one order of magnitude.
The majority  of  detected beta bursts  are low-power,  short  lasting events.  (c) Distribution of  the peak frequency
grouped by the frequency span of each burst. Most of the beta bursts have a narrow frequency span.

Classification

In order to obtain classification results with our beta burst waveform-based features, we used a
stratified, repeated cross-validation approach. For each dataset, we first randomized the trials’
order and stratified the total number of trials of each subject in M=5 strata. Then, we used half
of the trials of one stratum for creating an across-subjects burst dictionary, ran PCA on the
resulting waveform matrix and kept track of the rest of the stratum’s trials for cross validating the
decoding results. For each subject separately, we then projected the bursts of the remaining
four strata (the trials not used during the burst dictionary creation step or for cross validation)
along each component and, after averaging the burst rate of each group during the task period,
we  employed  a  repeated  cross  validation  with  K=5  folds.  For  each  fold  we  repeated  this
procedure for 100 repetitions by shuffling the order of the features. In order to obtain the results
for  this analysis,  we iterated over a number  of  possible  groups  (from 2 to 9) and principal
components (from 1 to 8). We report the maximum classification score in this hyper-parameter
space after cross validating each stratum and averaging across all  M strata. All steps of the
analysis are summarized in a flowchart (figure 2).
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Figure 2. Flowchart illustrating the steps of the proposed analysis. For each dataset, we iteratively pre-processed the
data of each subject, rejecting trials and keeping only channels C3 and C4. The burst detection algorithm was run on
the raw signals of these two channels. We, then split the remaining trials of each subject in 3 sets. The first set was
used only to create the burst dictionary and the corresponding PCA model combining data from all subjects of any
given dataset. The second set was used as the training and testing set of trials, in order to select the best model of
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waveform-resolved features,  in terms of decoding score,  through a nested, repeated cross validation procedure.
Finally, the third set of trials served the role of the validation trials, for the previously selected model.

We  compared  these  results  against  decoding  results  obtained  by  using  other  related
approaches.  First,  classification  results  based  on  beta  burst  rate  were  computed  for  each
subject by sampling all detected bursts of channels C3 and C4, and then identifying the rate of
bursts within the time course of a trial in non-overlapping time windows of 100 ms. For these
results, we only considered bursts with an amplitude equal to or higher than the 75th percentile
of the dictionary’s TF amplitude distribution, a threshold commonly used when detecting beta
bursts with alternative methods [75,105–108].

We  also  estimated  the  decoding  accuracy  based  on  TF-based  features  of  the  bursts  as
determined by the burst detection algorithm. We used an approach similar to that described for
constructing  features  and  estimating  classification  results  based  on  burst  waveforms.
Specifically, for each subject we identified all bursts of channels C3 and C4 and computed the
binned  burst  rate  based  on  the  burst  volume,  burst  amplitude,  or  the  combination  of  TF
features, namely burst amplitude, peak frequency, FWHM duration, and FWHM frequency span.
We again explored from 2 to 9 possible number of burst groups for each of these features in a
repeated, 5-fold cross validation (sup. figure 1).

Band power results for  the beta band were based on the power of the Hilbert  transform of
channels  C3  and  C4  only.  Recordings  were  first  band-pass  filtered  using  the  same  beta
frequency range per channel  (15 to 30 Hz).  These results are based on a repeated cross-
validation approach, and only take into account activity during the task period. The classification
features were repeatedly shuffled 100 times, then, for each repetition the trials were split in K=5
folds.

All classification results were obtained by using LDA as a classifier (scikit-learn, v1.0.2). We
estimated the classification score based on the area under the curve (AUC) of the receiver
operating  characteristic  (scikit-learn,  v1.0.2).  All  numeric  computations  were  based  on  the
numpy python package (v1.21.6; [109]), an environment running python (v3.10). We compared
trial-level classification results of the waveform-resolved burst features to the beta band power
features  using  a  generalized  linear  mixed  model  with  a  binomial  distribution  and  logit  link
function  with  correct  classification  of  each  trial  as  the  dependent  variable,  the  type  of
classification feature as a fixed effect, and the subject nested within the dataset as random
intercepts. We also compared classification results of the waveform-resolved burst features to
the rest of the burst features using a similar model. Statistical analyses were conducted using R
(v4.1.2) and lme4 (v1.1-31;  [110]). Fixed effects were assessed using type II  Wald X2 tests
using  car  (v3.1-1;  [111]).  Pairwise  Tukey-corrected  follow-up  tests  were  carried  out  using
estimated marginal means from the emmeans package(v.1,8,7 [112]).

Results

We used six open MI EEG datasets for the purpose of examining the explanatory value of beta
burst activity as a feature for BCI classification. For each dataset, we detected beta bursts in a
subset of channels over the sensorimotor cortex under two conditions, “left hand” and “right
hand”  MI.  Based on the bursts  detected in  channels  C3 and C4 of  each subject,  we built
dataset-specific burst dictionaries which capture the variability of the burst waveforms (figure 1)
(see Materials and Methods).

Beta bursts with distinct waveforms are characterized by different modulation patterns
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We used principal component analysis (PCA) to explain the variability of the burst waveforms
within  each  dictionary  (number  of  components  explaining  99%  of  variance).  This  method
allowed  us  to  reduce  the  dimensionality  of  the  burst  waveform space,  with  each  resulting
dimension being a linear combination of the burst waveforms, that emphasizes specific time
points that best describe the waveform variability (figure 3 a). Every component defines a motif,
along which the waveforms vary. The projection of a burst waveform along each component,
associates  this  waveform with  a  score,  a  value  that  indicates  its  similarity  to  the  average
waveform of bursts within the dictionary along that dimension.

We simulated how each motif alters the waveform with respect to the average by varying the
score along each dimension, adding the weighted eigenvector to the mean waveform (figure 3
b)  in  order  to  understand  how the  burst  waveform is  modulated  by  the  first  8  motifs.  For
example, the first motif represents a trend that describes how the waveforms are temporally
skewed.  Motifs  5,  6 and 7 mainly  capture the variability  along the flanks  of  the  waveform,
whereas motifs 2, 3 and 4 seem to describe changes of the central negative deflection.

For each condition, channel and component we computed the average score of all bursts within
the burst dictionary from the baseline to the post-task period, and applied a smoothing kernel of
size 2. Burst scores in specific motifs were modulated to different extents within the three trial
periods: baseline, task and post-task period (figure 3 c). This means that, on average, bursts
with different waveforms occurred more or less frequently within specific trial periods (e.g. motif
4).  However, a change in mean waveform shape is ambiguous with respect to the underlying
mechanism: e.g. over contralateral motor cortex there was a pronounced decrease in score
along component 4 during the task, but this could be due to a reduction in the rate of bursts with
high scores, an increase in the rate of bursts with negative scores, or a combination of the two.
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Figure 3. PCA applied on the burst dictionary of the Zhou 2016 dataset. Principal components describe the variability
of burst waveforms. (a) Ratio of explained variance and cumulative explained variance for the first 20 components.
(b) The  first  8  components  define  orthogonal  axes  of  waveform shape  alteration  with  respect  to  the  average
waveform (black trace). Each subplot depicts one motif (color code as in a), the mean waveform (black trace), and
simulated waveform alterations along each component, spanning a continuous space from negative (cyan traces) to
positive (magenta traces) scores.  (c)  Average score and standard error of all  waveforms along each component
during the three trial periods for the first 8 components (color code as in a) for each condition and channel. During the
baseline and post-task periods (signified by the vertical dashed lines), waveforms deviate from the average waveform
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(score equal to 0) mainly along the third and fourth dimension ipsilaterally, while contralaterally the deviation is more
pronounced during the task period.

To  better  understand  the  rate  modulation  of  bursts  with  distinct  waveforms  along  each
component over all experimental periods, we visualized the trial-averaged, baseline-corrected
burst  rate  as  a  function  of  time  and  component  score,  for  the  first  five  components  of  a
representative subject  (figure 4;  Zhou 2016 dataset,  S1).  In this  particular  case there were
differences in burst rate modulation between channels C3 and C4, as well as between the two
experimental conditions. During the task period there was a decrease in the rate of bursts with
large positive or  negative scores along component 4 on the contralateral  channel  for either
condition. These patterns correspond to bursts whose waveforms resemble the corresponding
magenta and cyan traces. The lateralization of beta burst rate modulation is further exemplified
when visualizing the difference between the two channels. The comparison of these differences
across the two conditions, reveals that all components and especially components 3, 4 and 5
encode disparities  between the “left  hand”  and “right  hand”  conditions,  and could therefore
constitute informative features for a classifier. Interestingly, some components seem to describe
a modulation of waveforms during the post-task period, which is particularly evident for either
condition in components 1 and 2.

Figure 4. Trial-averaged, baseline-corrected burst rate along different components for a representative subject (Zhou
2016, S1). The first column depicts how burst waveforms vary independently along each component (components as
depicted in  figure  3).  Negative scores  correspond to  the cyan traces,  and positive  to  the magenta  traces.  The
average waveform is represented by the black trace. During “left hand” trials, burst rate varies per component for
channels C3 and C4 and the difference of the two channels. During the task period, both channels exhibit various
degrees of burst rate increase for bursts whose waveforms resemble the average along any principal component.
Waveforms lying  further  from the  average along component  3  and more  prominently  4  are  characterized  by  a
reduction of burst rate contralaterally, in channel C4. Similar patterns arise for the “right hand” trials. Component 5 is
characterized by an ipsilateral increase and a contralateral decrease of “positive outlier” waveforms. During the post-
task period a burst rate increase for specific waveforms is observed, mainly seen along components 1 and 2.

Beta band burst features outperform beta band power in binary classification tasks
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After establishing the lower dimensional space for projecting the burst waveforms, we binned
the scores axis into several groups per component (figure 5) using a cross-validation procedure,
and analyzed the average burst rate per group (see Materials and Methods). The average burst
rate for each group during the task period within each of the two channels was then used as a
feature for an LDA classifier, resulting in G×C×2 features per experimental condition, where G is
the number of groups, and C is the number of components, e.g. in the two bottom lines of figure
5 we visualize what would correspond to G=3 and C=2. In order to validate our hypothesis, we
compared  classification  results  based  on  this  method  against  results  based  on  alternative
features: the overall  beta burst rate for bursts detected in channels C3 and C4 and whose
amplitude  is  greater  than  a  threshold  (the  75th percentile  of  the  dictionary’s  TF  amplitude
distribution); time-frequency descriptions of bursts, and band power in the beta frequency (see
Materials and Methods).

Figure 5. Trial-averaged, baseline-corrected overall burst rate, beta band power and burst rate modulation of three
burst groups along components 3 and 4 for a representative subject (Zhou 2016 dataset, S1). For both conditions
and channels, beta band power changes (purple trace) roughly track the overall burst rate modulation (red trace).
Burst  rate  modulation  for  different  burst  groups  varies  per  condition,  channel  and  component.  The  differential
modulation of burst rate is particularly pronounced contralaterally, in channel C4 during “left hand” trials and channel
C3 during “right hand” trials along the fourth component. A clear distinction between conditions is evident when
comparing the difference of rate modulation of the two channels for each waveform group.

For each dataset we present the across-subject average results estimated with each method,
as well  as the results  for  each participant  (figures 6,  7).  For  the Cho 2017 dataset,  which
contains a large number of participants, we only show the best ten subjects according to the
results based on burst waveform features. The results of all subjects are provided separately
(sup. figure 2). At the dataset level, the waveform-resolved burst rate features yield decoding
results that are equivalent or better than the results obtained by analyzing beta band power, or
alternative beta band representations. These representations appear to bear analogous results
in each dataset. We emphasize, though, that the results are highly variable across subjects. For
example, for subject S1 of the Zhou 2016 dataset beta power does not hold much explanatory
value, unlike beta burst rate, beta burst amplitude or the waveform-resolved burst rate. This is

336
337
338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.11.557139doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557139
http://creativecommons.org/licenses/by-nd/4.0/


not true for S4 of the BNCI 2014-004 dataset. All representations yield similarly good results,
except for the waveform-resolved burst rate that outperforms the rest.

Figure 6. Population average and individual results for binary “left hand” vs “right hand” classification for the BNCI
2014-001, BNCI 2014-004 and Zhou 2016 and datasets. Classification features based on burst waveform-specific
rate  yield,  on  average,  better  results  that  those  obtained  using  TF-derived  burst  features,  or  beta  power  from
channels C3 and C4 across all datasets

After  obtaining  these  results  we  proceeded  to  quantify  the  statistical  significance  of  the
observed differences for each classification feature set. In order to test the explanatory value of
the waveform-resolved burst rate against beta band power we analyzed the decoding results
using a generalized linear mixed model (see Materials and Methods). The waveform-resolved
burst rate features are significantly better than beta band power features (X2(1)  = 21.384,  p <
0.001). We also compared the waveform-resolved burst rate against the rest of the examined
beta band representations and verified that it yields the highest classification accuracy (X2(4) =
242.95, all  pairwise  p < 0.001).  In conclusion,  we confirmed our hypothesis that  waveform-
resolved beta burst  activity  holds promise to improve BCI  performance,  especially  if  further
optimized so that it can be analyzed online and take into account multiple recording channels.
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Figure 7. Population average and individual results for binary “left hand” vs “right hand” classification for the Cho
2017, Munich MI (Grosse-Wentrup) and Weibo 2014 datasets. Only the 10 best subjects according to burst waveform
features are shown for the Cho 2017 dataset. All features yield equivalent results for the Cho 2017 dataset. Burst
waveforms and band power features are equivalent and superior to other beta band activity representations for the
Munich Mi dataset. All beta band features except for the combination of multiple features, yield similar results for the
Weibo 2014 dataset. Color code as in figure 6.

Discussion

In  this  study,  we  showed  for  the  first  time  that  waveform-specific  beta  burst  rate  is  a
representation comparable to beta power within a framework of binary classification MI tasks. In
an attempt to understand why, we compared multiple representations of beta activity modulation
during  the  MI  task.  We  showed  that  bursts  of  different  shapes  are  selectively  modulated
following task onset, with distinct waveforms occurring with different probability during different
points in time  [100] (figures 4 and 5). This modulation can be encoded either by TF-derived
features, or alternatively, burst waveforms. All of the TF-derived features were as informative as
the overall  burst rate when used as classification features, but less reliable than waveform-
based features, across all datasets.
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The results presented in this article are based on features of beta bursts detected from only two
channels, and are therefore not directly comparable to results of previous studies that have
implemented standard designs within the BCI literature  [95,113] and incorporate all available
recording  channels,  do  not  perform  trial  rejection,  and  utilize  spatial  filtering.  However,
waveform-based burst rate features are more informative about imagined movements than beta
power in channels C3 and C4. In this regard, our analysis is a first  step in the direction of
establishing a neurophysiologically informed alternative to currently existing methodologies of
feature extraction.

Our results rely on burst dictionaries that combine data from all subjects across a dataset. We
have introduced this “transfer learning-like” approach because we have observed that it makes
the  dimensionality  reduction  step  less  susceptible  to  noise  and  it  results  in  the  same
components  for  all  subjects  within  a dataset,  thus  rendering  the classification  features  and
decoding results easier to interpret. Additionally, it is worth mentioning that due to the enforced
orthogonality between the PCA dimensions, the resulting principal components are similar to a
Fourier  decomposition  of  the  time  series,  which  may  be  suboptimal  by  failing  to  capture
components  that  optimally  separate  bursts  that  are  differently  modulated  by  the  task.
Conversely, this property of PCA imposes restrictions on the resulting components that make
them similar across datasets (sup.  figure 4). This property could be taken advantage of and
used in future work for cross-dataset transfer learning.

An  important  question  is  whether  this  procedure  would  be  suitable  for  online,  real-time
decoding.  The superlets algorithm, and to a lesser extent the burst detection algorithm, are
computationally expensive and increasing the number of recording channels, task duration, and
frequency resolution would make it difficult to employ this analysis online. However, our results
show that beta bursts with particular waveforms are more informative of MI than others. These
waveforms could be used as kernels and convolved with online recordings to efficiently detect
bursts directly in the time domain. If burst waveforms are maintained across recording sessions,
the superlets-based burst analysis could be performed during an offline session and its results
used for online burst detection during follow-up, online sessions.

Although we observe distinct patterns of beta burst rate modulations during trials, we do not
know how these patterns evolve over sessions and whether or not they are affected by learning.
Likewise, how these patterns are influenced by various brain disorders and diseases remains to
be  studied.  There  is  evidence  that  beta  burst  activity  is  profoundly  altered  in  Parkinson’s
disease  [75,105,106,114,115], and it could be hypothesized that the alterations in beta band
activity following stroke [116–118] may be linked to changes in beta burst waveforms as well.
To answer these questions, a longitudinal comparison between a healthy population and clinical
patients is needed to establish a link between behavioral or clinical changes and the recorded
waveform-specific  burst  rate  patterns  or  other  beta  activity  representations.  Beta  burst
waveforms could thus serve as an alternative bio-marker for neurofeedback paradigms, and
particularly neurorehabilitation protocols.

Tremendous efforts to improve the reliability of non-invasive BCI have been so far unable to
provide  solutions  that  would  be  acceptable  for  widely-adopted  applications.  Ever  since  the
characterization of the event-related synchronization and desynchronization phenomena of mu
and beta activity, little effort has been put into revisiting the features that are considered to best
capture the underlying brain activity in these BCI paradigms. Growing evidence suggests that
beta activity modulations are best described in terms of bursts. The analysis presented in this
study  serves as  a  proof  of  concept  for  the  proposed  methodology,  but  there  is  significant
potential  for  improvement  in  the  burst  detection  and  feature  creation  procedures.  Future
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directions of interest lie in incorporating more advanced spatial filtering with the burst detection
technique,  and  possibly  the  use  of  state-of-the-art  Riemannian  methods,  so  that  we  can
leverage the activity of more channels within this framework. Finally, another future direction lies
in  the incorporation  of  novel  neurophysiological  markers for  the  mu frequency band  in  our
framework. A growing number of studies have shown that the activity in this band can occur as
longer-lasting bursts [119], or non-sinusoidal oscillations [120]. We believe that by adapting our
approach to the characteristics of this frequency band, or by adopting alternative frameworks
such as cycle-by-cycle analysis [121] we can uncover features that will further help us attain the
goal  of  improving BCI  robustness.  We believe  all  these  goals  to  be particularly  interesting
because  they  hold  the  promise  of  further  improving  current  results  and  rendering  them
comparable to state-of-the-art approaches. 

Conclusion

Waveform-resolved patterns of burst rate constitute a new way of analyzing beta band activity
during  motor  imagery  tasks.  The  assessment of  this  method  against  multiple  open  EEG
datasets shows that this representation is analogous to conventional power features in terms of
classification. This work serves as a first step and opens up numerous directions for further
improvements  that  can  potentially  ameliorate  the  reliability  of  existing,  non-invasive  brain-
computer interface technology.
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Sup. Figure 1. Trial-averaged, baseline-corrected burst rate along different TF-derived features for a representative
subject (Zhou 2016 dataset, S1).
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Sup. Figure 2. Results for binary “left hand” vs “right hand” classification for all subjects of the Cho 2017 dataset.
Color code as in figure 6.
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