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18 Abstract

19 Current efforts to build reliable brain-computer interfaces (BCI) span multiple axes from
20 hardware, to software, to more sophisticated experimental protocols, and personalized
21 approaches. However, despite these abundant efforts, there is still room for significant
22 improvement. We argue that a rather overlooked direction lies in linking BCI protocols with
23 recent advances in fundamental neuroscience. In light of these advances, and particularly the
24  characterization of the burst-like nature of beta frequency band activity and the diversity of beta
25 bursts, we revisit the role of beta activity in “left vs. right hand” motor imagery tasks. Current
26 decoding approaches for such tasks take advantage of the fact that motor imagery generates
27 time-locked changes in induced power in the sensorimotor cortex, and rely on band-pass
28 filtered power changes or covariance matrices which also describe co-varying power changes in
29 signals recorded from different channels. Although little is known about the dynamics of beta
30 burst activity during motor imagery, we hypothesized that beta bursts should be modulated in a
31 way analogous to their activity during performance of real upper limb movements. We show that
32 classification features based on patterns of beta burst modulations yield decoding results that
33 are equivalent to or better than typically used beta power across multiple open
34 electroencephalography datasets, thus providing insights into the specificity of these bio-

35 markers.
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37 Introduction

38 Neural interfaces, and in particular brain-computer interfaces (BCIl), have long been
39 conceptualized as effective means of surmounting disabilities for patients suffering from various
40 diseases and traumas, while transhumanist philosophy sees BCI [1] as a way to enhance the
41 capabilities of our bodies and brains. To achieve such goals, a multidisciplinary approach is
42 crucial. Over the past few decades, an increasing number of research groups from diverse
43 fields have been striving towards several objectives, from laying the foundations of BCI [2—6] to

44  improving their reliability [7,8] and applicability under more naturalistic settings [8—10].

45  Although we are still far from achieving goals like those portrayed in science fiction, a few real-
46 world BCI applications are currently deployed. Most applications revolve around selected
47 groups of patients [12-20], improving their ability to interact with their environment. Such
48 applications usually form part of studies that employ invasive recording techniques in an attempt
49 to acquire high-quality brain signals [21,22]. Invasive techniques provide higher signal-to-noise
50 ratio, spatial specificity and frequency resolution compared to non-invasive techniques, trading
51 off the availability of the subjects, and the necessity of medical interventions. However, the latter
52 attract a significant portion of BCI research due to their safety, the lower equipment cost, and
53 the ability to collect large amount of data from patients and healthy participants. Specifically in
54 the case of electroencephalography (EEG), the added advantage of portability allows for the
55 inclusion of more subjects under more diverse and ecologically valid scenarios, therefore

56 making it currently one of the most attractive platforms.

57 Non-invasive BCI emerged in the early 90’s [23-25], along with the first spatial filtering
58 algorithms. The Laplacian filter [26,27] allowed for improved signal-to-noise ratio, while the
59 common spatial pattern algorithm (CSP) [28-30] provided a way to weight the contribution of
60 each channel in order to optimize classification. Around the same time, a reliable, reproducible
61 signature of brain activity was demonstrated for the first time, at least on a trial-averaged level.
62 Studies in motor neuroscience involving healthy subjects revealed time-locked changes in
63 induced power within specific frequency bands [31-40]. Brain recordings were shown to exhibit
64 a gradual reduction in signal power, relative to baseline, in the mu (~ 8-12 Hz) and beta (~ 13-
65 30 Hz) frequency bands during an action or during motor imagery (Ml): the so-called event-
66 related desynchronization (ERD). This phenomenon is considered to reflect processes related
67 to movement preparation and execution, and is particularly pronounced in the contralateral
68 sensorimotor cortex. Moreover, shortly following the completion of the task, a relative increase
69 in power, the event-related synchronization (ERS), could be observed in the beta band (also
70 referred to as the beta rebound). ERS is thought to reflect the re-establishment of inhibition in

71 the same area.

72 In the following years, the field withessed the introduction of more advanced signal processing
73 methods [41], alternative non-invasive recording techniques [42,43] and hybrid BCI paradigms
74  [44-48]. During the past decade, attempts have been made to place more emphasis on the
75 user by studying individual traits that correlate with performance [49], or adapting BCI protocols
76 to the user [50-52] in an effort to better understand and mitigate the problem of BCl illiteracy [8]:
77 the inability of approximately 1/3 of the users to control a motor-imagery based BCI system.
78 Directly linked to this problem, there are significant efforts being made towards creating more
79 informative neurofeedback paradigms by studying the influence of feedback modality [53] and
80 factors not directly linked to the experimental task [54]. This multifaceted endeavor holds the

81 potential of considerably improving existing rehabilitation protocols [55].
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Meanwhile, a great body of work has developed an arsenal of advanced pre-processing, feature
extraction, and classification algorithms dedicated specifically or adapted to the particular
characteristics and limitations of EEG signals [11,56]. As a first step, a standard BCI pipeline
includes dimensionality reduction techniques for channel selection and noise removal [57-59].
Subsequently, a common practice for signals recorded during Ml or attempted movements is to
use a time-frequency (TF) transformation such as the short-time Fourier, Hilbert, or wavelet
transform [60—62] and extract the power of the signal in specific time windows and frequency
bands of interest. Finally, any of a large range of machine learning algorithms like linear
discriminant analysis (LDA) [63-65], support vector machines [66], random forests [67,68] or
neural networks [69] can be trained in order to establish a mapping between the features and
labels, and assess the performance of the whole pipeline.

This archetypical analysis is, to a significant extent, based on the idea that signal power is the
most informative signature of non-invasively recorded neural activity for motor-related tasks.
Ever since the characterization of the ERD and ERS phenomena, there has been little to no
discussion in the non-invasive BCI field as to whether these features accurately capture the
task-related modulations of brain activity. Recent studies in neurophysiology have challenged
this view and have demonstrated that the ERD and ERS patterns only emerge as a result of
averaging signal power over multiple trials [70,71]. On a single trial level, beta band activity
occurs in short, transient events, termed bursts, rather than as sustained oscillations [70-75].
This indicates that the ERD and ERS patterns reflect accumulated, time-varying changes in the
burst probability during each trial. Thus, beta bursts may carry more behaviorally relevant
information than averaged beta band power. Indeed, studies in humans involving arm
movements have established a link between the timing of sensorimotor beta bursts and
response times prior to movement, as well as behavioral errors post-movement [71]. Beta burst
activity in frontal areas has also been shown to correlate with movement cancellation [73,76,77]
and recent studies show that activity at the motor unit level also occurs in a transient manner,
which is time-locked to sensorimotor beta bursts [78,79].

Although beta burst rate has been shown to carry significant information, it still comprises a
rather simplistic representation of the underlying activity. Every burst can be characterized by a
set of TF-based features: the burst peak time and peak frequency, as well as its duration and its
span in the frequency axis [80]. In turn, all these descriptors are extracted using a particular
time-frequency transformation and constitute simpler representations of the more complex burst
waveform that is embedded in the raw signals, and which is characterized by a stereotypical
average shape with large variability around it [81]. The waveform features are neglected in
standard BCI approaches, because conventional signal processing methods generally
presuppose sustained, oscillatory and stationary signals, and are thus inherently unsuitable for
analyzing transient activity [82].

In line with the classically described ERD and ERS phenomena, the non-invasive BCI
community still heavily relies on signal power as the target feature for classification, although,
notably, state of the art Riemannian classifiers [83—-85] and some deep learning approaches
[86,87] have independently moved on from explicitly using frequency-specific power features. In
this article we propose a shift in perspective, by demonstrating how beta band activity during Ml
tasks is modulated in terms of patterns of distinctly shaped bursts that are better descriptors of
transient activity changes.

We have previously argued that analyzing beta burst activity should enable us to gain access to
classification features that are at least as sensitive as beta band power [88]. If this hypothesis is
valid, then we should be able to test it and verify it using publicly available datasets. Here, we
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show that this approach allows us to achieve better classification results than those obtained
when assessing signal power in binary Ml classification tasks, when comparing burst features to
signal power from EEG channels C3 and C4. We validate our approach against six open EEG
BCI datasets, and provide links between the decoding performance and the modulation of
different features considered for classification across datasets and subjects. Although our
results obtained by using beta burst features are in most cases inferior to state-of-the-art,
namely because our analysis only included two channels and focused solely on the beta
frequency band, they are, conversely, superior to those obtained using only beta band power in
these channels. This analysis demonstrates the utility of beta burst analysis for BCI and paves
the way to improve classification performance in the near future.

Materials and Methods
Datasets

We used six open EEG MI datasets: BNCI 214-001 [89], BNCI 2014-004 [90], Cho 2017 [91],
MunichMI [92], Weibo 2014 [93] and Zhou 2016 [94], all available through the MOABB project
[95]. Briefly, all datasets contain recordings of subjects who were required to perform sustained
motor imagery following the appearance of a visual cue on a screen. For our analysis we only
considered trials corresponding to the “left hand” or “right hand” classes even if other classes
were available in some of the datasets.

Data pre-processing

For each dataset, recordings were loaded per subject using the MOABB python package
(v0.4.6) Motorimagery class, and were filtered with a low pass cutoff of 120 Hz. The low pass
cutoff was set to 95 Hz for the Weibo 2014 dataset, because the corresponding sampling
frequency of the recordings is 200 Hz. For most of these datasets numerous channels are
available, so we defined a subset of channels over the sensorimotor cortex that we deemed
relevant for the task and applied pre-processing (Table 1). Then, in this work, we only analyzed
data from channels C3 and C4. Each trial was aligned to the cue onset, and the task period was
defined as the time between cue onset and the end of the MI task. We used the time window
within one second prior to the cue onset as the baseline period (Table 1). In the case of the Cho
2017 and MunichMI datasets we noted the presence of noise at approximately 25 to 30 Hz that
interferes with the burst detection step. We therefore included an extra pre-processing step
involving a custom implementation of the meegkit python package (v0.1.3, dss_line function)
[96] to remove these artifacts. Considering only this subset of sensorimotor channels and all
recording periods, we rejected trials using the autoreject python package (0.4.0) [97] (Table 1).

Identification of channel-specific beta band and burst detection

Each subject’s data were first transformed in the time-frequency domain from 1 to 43 Hz using
the superlets algorithm [98] with a frequency resolution of 0.5 Hz. We selected the superlets
algorithm over other more commonly used methods as it allows us to obtain a more optimal
tradeoff between temporal and spectral resolution, and because it has been shown to yield
better classification results compared to other approaches [99]. Before proceeding with any
further analysis we trimmed 200 to 250 ms from the beginning and end of the epoched data in
order to exclude any edge effects introduced by the time-frequency transform.

The power spectral density (PSD) of the baseline period was then computed by averaging the
resulting TF matrices over the temporal dimension for each trial and channel of a given subject.
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Based on the distributions of the PSD peaks we attributed the peaks of the power spectra to
either the mu (peaks below 15 Hz) or beta (peaks between 15 and 30 Hz) frequency band and
proceeded by analyzing activity in the beta band.

(# total channels) # Total trials

) Baseline Task Post-task
Dataset ~ # Subjects Channels used for pre- (# after trial . . .
period (s) period (s) period (s)
processing rejection)
(22) 288
BNCI 2014-001 9 'FC3', "FCZ', "FC4,'C3" CZ', ) o -1.0-0.0 0.0-4.0 40-55
"C4" "CP3", "CPz". "CP4"
) 680 — 760
BNCI 2014-004 9 -1.0-0.0 0.0-45 45-6.5
"C3", "Cz", "C4" (269 - 621)
64) 200 — 240
Cho 2017 49 “pC3" "FCz" "FCA", "C3"."CZ", 77 - 240) -1.0-0.0 0.0-3.0 3.0-50
"C4", "CP3", "CPz", "CP4"
(13
_ 117 112" 113" *114" “43" 300
Munich Ml 10 ' ’ ' ' ' -1.0-0.0 0.0-7.0 7.0-9.0
“917 637 422" 447 “119", (167 - 299)
“1207, “1217, “122”
(60) 140 - 160
Weibo 2014 10 "FC3" "FCz", "FC4" "C3", "Cz", (32 - 160) -1.0-0.0 0.0-4.0 3.0-5.0
"C4", "CP3", "CPz", "CP4"
hou 2016 o 290 =319 0-0.0 0.0-5.0 0-7.0
Zhou 201 4 "EC3" "ECz" "EC4" "C3" "Cz" -1.0-0. 0-5. 50-7.
C3", "FCz", "FC4", "C3", "Cz", (167 - 289)

"C4", "CP3", "CPz", "CP4"
Table 1. Attributes of the datasets used in the study.

Using a previously published iterative, adaptive procedure, we identified bursts within the beta
frequency range from the TF matrix, and then extracted their waveforms from the “raw” time
series (after low pass filtering as pre-processing) within a fixed time window of 260 ms, centered
on the burst peak [100]. Due to inability to parameterize spectra from all datasets we subtracted
twice the standard deviation of the TF before fitting each peak as a 2D Gaussian, instead of
subtracting the aperiodic activity from the TF matrices [81,101,102], before detecting beta
bursts.

Feature extraction based on patterns of burst rate modulation

Beta burst waveform analysis was performed for each dataset by creating a dictionary of
detected bursts across subjects and experimental conditions (“left hand” or “right hand”) (figure
1). This allowed us to create a matrix of burst waveforms by combining all detected bursts per
subject, after robust scaling (scikit-learn package [103], v1.0.2). This representation of burst
waveforms is suitable for applying a dimensionality reduction technique in order to better
understand the variability in the recorded beta burst shapes. For the remaining of the analysis,
we only considered channels C3 and C4, or channels 43 and 44 for the MunichMI dataset.

Previous work from our group has demonstrated that principal component analysis (PCA) [104]
(scikit-learn package, v1.0.2) can be used to understand how the rates of bursts with different
waveforms are modulated during reaching movements [100]. In order to construct features
suitable for classification, we projected the burst dictionary along each principal component. As
such, each burst was associated with a specific score along each dimension of the C-
dimensional space, representing the distance of the burst's waveform from the average
waveform of all bursts, along this dimension. Because of the scarcity of bursts with extreme
scores, we winsorized scores outside of the 2™ and 98™ percentile of their distribution. For each
component, we then discretized the bursts into groups of bursts within equally spaced score
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201 ranges, thus grouping bursts with similar waveforms along that dimension. Since each burst
202 occurs in a specific point in time, following this procedure all bursts were represented in a
203 subspace spanned by the dimensions of scores and time. In other words, for each principal
204 component we generated a representation of burst rate as a function of waveform shape.

a b C
Number of cycles Frequency span (Hz)
<5 <=1
400 \ N >=5 - -1

25000
20000 -

20000

15000 -
15000 o
10000 -

=409 10000 -

Amplitude (uv)

—200
5000 5000 -

.. : : . . ' o-—*— o | et —

-0.10  -0.05  0.00 0.05 0.10 -6.5 -6.0 -5.5 15 20 25 30
Time (s) log(Amplitude) (a.u) Peak frequency (Hz)

—300

=400

205  Figure 1. Burst dictionary corresponding to the Zhou 2016 dataset. (a) The dictionary contains raw, aligned signal
206  waveforms of 260 ms duration. The black trace represents the average waveform over the whole dictionary. Colored
207 traces correspond to a randomly drawn subset of waveforms (0.2% of all bursts). (b) Distribution of the TF amplitude
208  of bursts as computed by the superlets transform, grouped according to burst duration in terms of cycles. The burst
209 detection algorithm identifies a wide range of bursts with amplitudes spanning more than one order of magnitude.
210 The majority of detected beta bursts are low-power, short lasting events. (c) Distribution of the peak frequency
211 grouped by the frequency span of each burst. Most of the beta bursts have a narrow frequency span.

212 Classification

213 In order to obtain classification results with our beta burst waveform-based features, we used a
214 stratified, repeated cross-validation approach. For each dataset, we first randomized the trials’
215 order and stratified the total number of trials of each subject in M=5 strata. Then, we used half
216 of the trials of one stratum for creating an across-subjects burst dictionary, ran PCA on the
217 resulting waveform matrix and kept track of the rest of the stratum’s trials for cross validating the
218 decoding results. For each subject separately, we then projected the bursts of the remaining
219 four strata (the trials not used during the burst dictionary creation step or for cross validation)
220 along each component and, after averaging the burst rate of each group during the task period,
221 we employed a repeated cross validation with K=5 folds. For each fold we repeated this
222 procedure for 100 repetitions by shuffling the order of the features. In order to obtain the results
223 for this analysis, we iterated over a number of possible groups (from 2 to 9) and principal
224 components (from 1 to 8). We report the maximum classification score in this hyper-parameter
225 space after cross validating each stratum and averaging across all M strata. All steps of the
226 analysis are summarized in a flowchart (figure 2).
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Figure 2. Flowchart illustrating the steps of the proposed analysis. For each dataset, we iteratively pre-processed the
data of each subject, rejecting trials and keeping only channels C3 and C4. The burst detection algorithm was run on
the raw signals of these two channels. We, then split the remaining trials of each subject in 3 sets. The first set was
used only to create the burst dictionary and the corresponding PCA model combining data from all subjects of any
given dataset. The second set was used as the training and testing set of trials, in order to select the best model of
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waveform-resolved features, in terms of decoding score, through a nested, repeated cross validation procedure.
Finally, the third set of trials served the role of the validation trials, for the previously selected model.

We compared these results against decoding results obtained by using other related
approaches. First, classification results based on beta burst rate were computed for each
subject by sampling all detected bursts of channels C3 and C4, and then identifying the rate of
bursts within the time course of a trial in non-overlapping time windows of 100 ms. For these
results, we only considered bursts with an amplitude equal to or higher than the 75™ percentile
of the dictionary’s TF amplitude distribution, a threshold commonly used when detecting beta
bursts with alternative methods [75,105-108].

We also estimated the decoding accuracy based on TF-based features of the bursts as
determined by the burst detection algorithm. We used an approach similar to that described for
constructing features and estimating classification results based on burst waveforms.
Specifically, for each subject we identified all bursts of channels C3 and C4 and computed the
binned burst rate based on the burst volume, burst amplitude, or the combination of TF
features, namely burst amplitude, peak frequency, FWHM duration, and FWHM frequency span.
We again explored from 2 to 9 possible number of burst groups for each of these features in a
repeated, 5-fold cross validation (sup. figure 1).

Band power results for the beta band were based on the power of the Hilbert transform of
channels C3 and C4 only. Recordings were first band-pass filtered using the same beta
frequency range per channel (15 to 30 Hz). These results are based on a repeated cross-
validation approach, and only take into account activity during the task period. The classification
features were repeatedly shuffled 100 times, then, for each repetition the trials were split in K=5
folds.

All classification results were obtained by using LDA as a classifier (scikit-learn, v1.0.2). We
estimated the classification score based on the area under the curve (AUC) of the receiver
operating characteristic (scikit-learn, v1.0.2). All numeric computations were based on the
numpy python package (v1.21.6; [109]), an environment running python (v3.10). We compared
trial-level classification results of the waveform-resolved burst features to the beta band power
features using a generalized linear mixed model with a binomial distribution and logit link
function with correct classification of each trial as the dependent variable, the type of
classification feature as a fixed effect, and the subject nested within the dataset as random
intercepts. We also compared classification results of the waveform-resolved burst features to
the rest of the burst features using a similar model. Statistical analyses were conducted using R
(v4.1.2) and Ime4 (v1.1-31; [110]). Fixed effects were assessed using type Il Wald X? tests
using car (v3.1-1; [111]). Pairwise Tukey-corrected follow-up tests were carried out using
estimated marginal means from the emmeans package(v.1,8,7 [112]).

Results

We used six open Ml EEG datasets for the purpose of examining the explanatory value of beta
burst activity as a feature for BCI classification. For each dataset, we detected beta bursts in a
subset of channels over the sensorimotor cortex under two conditions, “left hand” and “right
hand” MI. Based on the bursts detected in channels C3 and C4 of each subject, we built
dataset-specific burst dictionaries which capture the variability of the burst waveforms (figure 1)
(see Materials and Methods).

Beta bursts with distinct waveforms are characterized by different modulation patterns
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We used principal component analysis (PCA) to explain the variability of the burst waveforms
within each dictionary (number of components explaining 99% of variance). This method
allowed us to reduce the dimensionality of the burst waveform space, with each resulting
dimension being a linear combination of the burst waveforms, that emphasizes specific time
points that best describe the waveform variability (figure 3 a). Every component defines a motif,
along which the waveforms vary. The projection of a burst waveform along each component,
associates this waveform with a score, a value that indicates its similarity to the average
waveform of bursts within the dictionary along that dimension.

We simulated how each motif alters the waveform with respect to the average by varying the
score along each dimension, adding the weighted eigenvector to the mean waveform (figure 3
b) in order to understand how the burst waveform is modulated by the first 8 motifs. For
example, the first motif represents a trend that describes how the waveforms are temporally
skewed. Motifs 5, 6 and 7 mainly capture the variability along the flanks of the waveform,
whereas motifs 2, 3 and 4 seem to describe changes of the central negative deflection.

For each condition, channel and component we computed the average score of all bursts within
the burst dictionary from the baseline to the post-task period, and applied a smoothing kernel of
size 2. Burst scores in specific motifs were modulated to different extents within the three trial
periods: baseline, task and post-task period (figure 3 c¢). This means that, on average, bursts
with different waveforms occurred more or less frequently within specific trial periods (e.g. motif
4). However, a change in mean waveform shape is ambiguous with respect to the underlying
mechanism: e.g. over contralateral motor cortex there was a pronounced decrease in score
along component 4 during the task, but this could be due to a reduction in the rate of bursts with
high scores, an increase in the rate of bursts with negative scores, or a combination of the two.
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Figure 3. PCA applied on the burst dictionary of the Zhou 2016 dataset. Principal components describe the variability
of burst waveforms. (a) Ratio of explained variance and cumulative explained variance for the first 20 components.
(b) The first 8 components define orthogonal axes of waveform shape alteration with respect to the average
waveform (black trace). Each subplot depicts one motif (color code as in a), the mean waveform (black trace), and
simulated waveform alterations along each component, spanning a continuous space from negative (cyan traces) to
positive (magenta traces) scores. (c) Average score and standard error of all waveforms along each component
during the three trial periods for the first 8 components (color code as in a) for each condition and channel. During the
baseline and post-task periods (signified by the vertical dashed lines), waveforms deviate from the average waveform
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(score equal to 0) mainly along the third and fourth dimension ipsilaterally, while contralaterally the deviation is more
pronounced during the task period.

To better understand the rate modulation of bursts with distinct waveforms along each
component over all experimental periods, we visualized the trial-averaged, baseline-corrected
burst rate as a function of time and component score, for the first five components of a
representative subject (figure 4; Zhou 2016 dataset, S1). In this particular case there were
differences in burst rate modulation between channels C3 and C4, as well as between the two
experimental conditions. During the task period there was a decrease in the rate of bursts with
large positive or negative scores along component 4 on the contralateral channel for either
condition. These patterns correspond to bursts whose waveforms resemble the corresponding
magenta and cyan traces. The lateralization of beta burst rate modulation is further exemplified
when visualizing the difference between the two channels. The comparison of these differences
across the two conditions, reveals that all components and especially components 3, 4 and 5
encode disparities between the “left hand” and “right hand” conditions, and could therefore
constitute informative features for a classifier. Interestingly, some components seem to describe
a modulation of waveforms during the post-task period, which is particularly evident for either
condition in components 1 and 2.
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Figure 4. Trial-averaged, baseline-corrected burst rate along different components for a representative subject (Zhou
2016, S1). The first column depicts how burst waveforms vary independently along each component (components as
depicted in figure 3). Negative scores correspond to the cyan traces, and positive to the magenta traces. The
average waveform is represented by the black trace. During “left hand” trials, burst rate varies per component for
channels C3 and C4 and the difference of the two channels. During the task period, both channels exhibit various
degrees of burst rate increase for bursts whose waveforms resemble the average along any principal component.
Waveforms lying further from the average along component 3 and more prominently 4 are characterized by a
reduction of burst rate contralaterally, in channel C4. Similar patterns arise for the “right hand” trials. Component 5 is
characterized by an ipsilateral increase and a contralateral decrease of “positive outlier” waveforms. During the post-
task period a burst rate increase for specific waveforms is observed, mainly seen along components 1 and 2.

Beta band burst features outperform beta band power in binary classification tasks
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After establishing the lower dimensional space for projecting the burst waveforms, we binned
the scores axis into several groups per component (figure 5) using a cross-validation procedure,
and analyzed the average burst rate per group (see Materials and Methods). The average burst
rate for each group during the task period within each of the two channels was then used as a
feature for an LDA classifier, resulting in G xC x2 features per experimental condition, where G is
the number of groups, and C is the number of components, e.g. in the two bottom lines of figure
5 we visualize what would correspond to G=3 and C=2. In order to validate our hypothesis, we
compared classification results based on this method against results based on alternative
features: the overall beta burst rate for bursts detected in channels C3 and C4 and whose
amplitude is greater than a threshold (the 75" percentile of the dictionary’s TF amplitude
distribution); time-frequency descriptions of bursts, and band power in the beta frequency (see
Materials and Methods).

Left Hand Right Hand

=
&7

C3-C4

O O @

© @’

36 -
@ o~
S
bl B
g :
23 .
{=N .
B ey E : E
Ll I 1 1 T T
0.0 5.0 0.0 5.0 0.0 5.0
F 36 : a 1 z i :
AT g f
s . . . .
= : F : : -
= . . B . B . Bl - . o - .
<1 =4 T T I 1 T T Ll 1 T T
0.0 5.0 0.0 5.0 0.0 5.0 00 50 0.0 5.0 0.0 5.0
¥ 36 4: I I - = R I -
—~~ g . . . H - . .
@ - : 1 : C ; : -
2] - A1 - i - I - 1: .
<= T T I I Ll 1 1 1 T T
0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0 0.0 5.0
Time (s) Time (s) Time (s) Time [5) Time (s) Time (s)

Figure 5. Trial-averaged, baseline-corrected overall burst rate, beta band power and burst rate modulation of three
burst groups along components 3 and 4 for a representative subject (Zhou 2016 dataset, S1). For both conditions
and channels, beta band power changes (purple trace) roughly track the overall burst rate modulation (red trace).
Burst rate modulation for different burst groups varies per condition, channel and component. The differential
modulation of burst rate is particularly pronounced contralaterally, in channel C4 during “left hand” trials and channel
C3 during “right hand” trials along the fourth component. A clear distinction between conditions is evident when
comparing the difference of rate modulation of the two channels for each waveform group.

For each dataset we present the across-subject average results estimated with each method,
as well as the results for each participant (figures 6, 7). For the Cho 2017 dataset, which
contains a large number of participants, we only show the best ten subjects according to the
results based on burst waveform features. The results of all subjects are provided separately
(sup. figure 2). At the dataset level, the waveform-resolved burst rate features yield decoding
results that are equivalent or better than the results obtained by analyzing beta band power, or
alternative beta band representations. These representations appear to bear analogous results
in each dataset. We emphasize, though, that the results are highly variable across subjects. For
example, for subject S1 of the Zhou 2016 dataset beta power does not hold much explanatory
value, unlike beta burst rate, beta burst amplitude or the waveform-resolved burst rate. This is
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365 not true for S4 of the BNCI 2014-004 dataset. All representations yield similarly good results,
366 except for the waveform-resolved burst rate that outperforms the rest.
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367 Figure 6. Population average and individual results for binary “left hand” vs “right hand” classification for the BNCI
368 2014-001, BNCI 2014-004 and Zhou 2016 and datasets. Classification features based on burst waveform-specific
369 rate yield, on average, better results that those obtained using TF-derived burst features, or beta power from
370 channels C3 and C4 across all datasets

371 After obtaining these results we proceeded to quantify the statistical significance of the
372 observed differences for each classification feature set. In order to test the explanatory value of
373 the waveform-resolved burst rate against beta band power we analyzed the decoding results
374 using a generalized linear mixed model (see Materials and Methods). The waveform-resolved
375 burst rate features are significantly better than beta band power features (X*(1) = 21.384, p <
376 0.001). We also compared the waveform-resolved burst rate against the rest of the examined
377 beta band representations and verified that it yields the highest classification accuracy (X*(4) =
378 242.95, all pairwise p < 0.001). In conclusion, we confirmed our hypothesis that waveform-
379 resolved beta burst activity holds promise to improve BCI performance, especially if further
380 optimized so that it can be analyzed online and take into account multiple recording channels.
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Figure 7. Population average and individual results for binary “left hand” vs “right hand” classification for the Cho
2017, Munich MI (Grosse-Wentrup) and Weibo 2014 datasets. Only the 10 best subjects according to burst waveform
features are shown for the Cho 2017 dataset. All features yield equivalent results for the Cho 2017 dataset. Burst
waveforms and band power features are equivalent and superior to other beta band activity representations for the
Munich Mi dataset. All beta band features except for the combination of multiple features, yield similar results for the
Weibo 2014 dataset. Color code as in figure 6.

Discussion

In this study, we showed for the first time that waveform-specific beta burst rate is a
representation comparable to beta power within a framework of binary classification Ml tasks. In
an attempt to understand why, we compared multiple representations of beta activity modulation
during the MI task. We showed that bursts of different shapes are selectively modulated
following task onset, with distinct waveforms occurring with different probability during different
points in time [100] (figures 4 and 5). This modulation can be encoded either by TF-derived
features, or alternatively, burst waveforms. All of the TF-derived features were as informative as
the overall burst rate when used as classification features, but less reliable than waveform-
based features, across all datasets.
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The results presented in this article are based on features of beta bursts detected from only two
channels, and are therefore not directly comparable to results of previous studies that have
implemented standard designs within the BCI literature [95,113] and incorporate all available
recording channels, do not perform trial rejection, and utilize spatial filtering. However,
waveform-based burst rate features are more informative about imagined movements than beta
power in channels C3 and C4. In this regard, our analysis is a first step in the direction of
establishing a neurophysiologically informed alternative to currently existing methodologies of
feature extraction.

Our results rely on burst dictionaries that combine data from all subjects across a dataset. We
have introduced this “transfer learning-like” approach because we have observed that it makes
the dimensionality reduction step less susceptible to noise and it results in the same
components for all subjects within a dataset, thus rendering the classification features and
decoding results easier to interpret. Additionally, it is worth mentioning that due to the enforced
orthogonality between the PCA dimensions, the resulting principal components are similar to a
Fourier decomposition of the time series, which may be suboptimal by failing to capture
components that optimally separate bursts that are differently modulated by the task.
Conversely, this property of PCA imposes restrictions on the resulting components that make
them similar across datasets (sup. figure 4). This property could be taken advantage of and
used in future work for cross-dataset transfer learning.

An important question is whether this procedure would be suitable for online, real-time
decoding. The superlets algorithm, and to a lesser extent the burst detection algorithm, are
computationally expensive and increasing the number of recording channels, task duration, and
frequency resolution would make it difficult to employ this analysis online. However, our results
show that beta bursts with particular waveforms are more informative of Ml than others. These
waveforms could be used as kernels and convolved with online recordings to efficiently detect
bursts directly in the time domain. If burst waveforms are maintained across recording sessions,
the superlets-based burst analysis could be performed during an offline session and its results
used for online burst detection during follow-up, online sessions.

Although we observe distinct patterns of beta burst rate modulations during trials, we do not
know how these patterns evolve over sessions and whether or not they are affected by learning.
Likewise, how these patterns are influenced by various brain disorders and diseases remains to
be studied. There is evidence that beta burst activity is profoundly altered in Parkinson’'s
disease [75,105,106,114,115], and it could be hypothesized that the alterations in beta band
activity following stroke [116-118] may be linked to changes in beta burst waveforms as well.
To answer these questions, a longitudinal comparison between a healthy population and clinical
patients is needed to establish a link between behavioral or clinical changes and the recorded
waveform-specific burst rate patterns or other beta activity representations. Beta burst
waveforms could thus serve as an alternative bio-marker for neurofeedback paradigms, and
particularly neurorehabilitation protocols.

Tremendous efforts to improve the reliability of non-invasive BCI have been so far unable to
provide solutions that would be acceptable for widely-adopted applications. Ever since the
characterization of the event-related synchronization and desynchronization phenomena of mu
and beta activity, little effort has been put into revisiting the features that are considered to best
capture the underlying brain activity in these BCI paradigms. Growing evidence suggests that
beta activity modulations are best described in terms of bursts. The analysis presented in this
study serves as a proof of concept for the proposed methodology, but there is significant
potential for improvement in the burst detection and feature creation procedures. Future
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directions of interest lie in incorporating more advanced spatial filtering with the burst detection
technigue, and possibly the use of state-of-the-art Riemannian methods, so that we can
leverage the activity of more channels within this framework. Finally, another future direction lies
in the incorporation of novel neurophysiological markers for the mu frequency band in our
framework. A growing number of studies have shown that the activity in this band can occur as
longer-lasting bursts [119], or non-sinusoidal oscillations [120]. We believe that by adapting our
approach to the characteristics of this frequency band, or by adopting alternative frameworks
such as cycle-by-cycle analysis [121] we can uncover features that will further help us attain the
goal of improving BCI robustness. We believe all these goals to be particularly interesting
because they hold the promise of further improving current results and rendering them
comparable to state-of-the-art approaches.

Conclusion

Waveform-resolved patterns of burst rate constitute a new way of analyzing beta band activity
during motor imagery tasks. The assessment of this method against multiple open EEG
datasets shows that this representation is analogous to conventional power features in terms of
classification. This work serves as a first step and opens up numerous directions for further
improvements that can potentially ameliorate the reliability of existing, non-invasive brain-
computer interface technology.
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781  Sup. Figure 1. Trial-averaged, baseline-corrected burst rate along different TF-derived features for a representative
782  subject (Zhou 2016 dataset, S1).
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783  Sup. Figure 2. Results for binary “left hand” vs “right hand” classification for all subjects of the Cho 2017 dataset.
784  Color code as in figure 6.
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