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Abstract: 19 

We analyze more than 700,000 single-nucleus RNA-seq profiles from 106 donors during prenatal 20 
and postnatal developmental stages and identify lineage-specific programs that underlie the 21 
development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types and 22 
brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineate 23 
enhancer-gene regulatory networks and transcription factors that control commitment of 24 
specific cortical lineages. By intersecting our results with genetic risk factors for human brain 25 
diseases, we identify the cortical cell types and lineages most vulnerable to genetic insults of 26 
different brain disorders, especially autism. We find that lineage-specific gene expression 27 
programs upregulated in female cells are especially enriched for the genetic risk factors of 28 
autism. Our study captures the molecular progression of cortical lineages across human 29 
development.  30 

 31 

 32 

Main text 33 

Development of the human cerebral cortex spans months during prenatal stages and years after 34 
birth, generating tens to hundreds of cell types across multiple cortical areas. This complex 35 
process is orchestrated by lineage-specific gene expression programs that guide the production, 36 
migration, differentiation and maturation of neuronal and glial cell types, as well as the formation 37 
of projections and neuronal circuits. Alterations in these regulatory gene programs during 38 
development lead to the pathogenesis of neurodevelopmental and psychiatric disorders, 39 
including autism spectrum disorder (ASD) and schizophrenia (SCZ). Most previous studies have 40 
focused on investigating the molecular processes that underly human cortical development 41 
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during the second trimester of gestation (1-5), the peak of cortical neurogenesis and neuronal 42 
migration. These studies have revealed molecular signatures of progenitor cells and neuronal and 43 
glial cell types, as well as the early specification of neurons into broad subtypes and their 44 
arealization across the cortex. However, later stages of human cortical development, including 45 
the third trimester of gestation, birth, and neonatal and early postnatal development, have been 46 
largely studied using bulk genomic approaches. 47 

Single-nucleus RNA sequencing analysis of prenatal and postnatal human cortical development 48 

To gain a comprehensive view of human cortical development across prenatal and postnatal 49 
stages, we utilized single-nucleus RNA sequencing (snRNA-seq) (6) to profile 413,682 nuclei from 50 
108 tissue samples derived from 60 neurotypical individuals. We sampled nuclei from ages 51 
spanning from the second trimester of gestation to adulthood, including samples from the third 52 
trimester and early postnatal stages that are often excluded or underrepresented in genomic 53 
studies of the human brain. We acquired data from the ganglionic eminences, the major source 54 
of cortical interneurons (7, 8), as well as from the cortex. We used Seurat (9) to perform unbiased 55 
clustering and UMAP embedding. After removing a cluster of cell debris (Fig S1A), we retained 56 
358,663 nuclei. To extend our analyses to more brain samples and nuclei, we integrated our data 57 
with published datasets of prenatal and postnatal human cortical development (10-12). After 58 
data integration (Fig S1B), our final dataset included 709,372 nuclei and 169 brain tissue samples 59 
from 106 individuals (Fig 1A, Table S1). We identified clusters corresponding to neural 60 
progenitors, as well as the major subtypes of excitatory and inhibitory neurons, glia, and vascular 61 
cells (Fig 1B-C), indicating that we were able to capture transcriptomic changes underlying 62 
differentiation and maturation of cortical cell types across development. We detected similar 63 
numbers of genes, transcripts, and mitochondrial RNA ratios across different samples (Fig S1C) 64 
with a median of 1106 genes and 1609 transcripts per nucleus and some variability sample-to-65 
sample. These relative numbers are comparable with published single-cell genomics data 66 
collected from the human brain (13), with mature neuron cell types expressing higher numbers 67 
of genes and transcripts than other cell types (Fig S1D). We did not observe batch effects, with 68 
nuclei from different samples well intermixed, and no clusters composed of nuclei from a single 69 
sample (Fig S1E). Nuclei were captured from the prefrontal, cingulate, temporal, insular and 70 
motor cortices (Fig S1F). For prenatal samples that were not sex-identified, we determined their 71 
sex using sex-specific gene expression (Fig S1G). Our dataset included 45 female and 61 male 72 
subjects. We observed that nuclei clustered according to developmental age (Fig 1D), suggesting 73 
that transcriptomic changes associated with development are a major driver of cell identity. 74 

Analysis of specific excitatory neuron and interneuron lineages 75 

We next examined the developmental trajectories of excitatory and inhibitory neurons. First, we 76 
selected clusters corresponding to dorsal forebrain progenitors (including radial glia and 77 
intermediate precursor cells) as well as clusters containing excitatory neurons. By re-clustering 78 
this data and referencing molecularly defined cell types annotated in the Allen Brain Atlas (14), 79 
we identified clusters corresponding to known subtypes of excitatory neurons, including upper 80 
(L2-3) and deep-layer intertelencephalic (L5-6-IT) projection neurons, layer 4 neurons (L4), layer 81 
5 (L5) and layer 6 (L6) corticofugal projection neurons, as well as subplate neurons (SP) that were 82 
present transiently during the second trimester (Fig 2A, Fig S2A). We next used monocle 3 (15), 83 
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as well as custom scripts (see Methods) to construct cellular trajectories based on snRNA-seq 84 
data (Fig 2A; Fig S2B), select trajectory branches corresponding to specific lineages, and calculate 85 
pseudotime for each nucleus. Pseudotime corresponded well to the developmental age of nuclei 86 
in each lineage (Fig 2A). We identified several branching points in the trajectory: between two 87 
major groups of excitatory neurons: L2-3, L4 and L5-6-IT (Ex1) and L5 and L6 (Ex2), as well as 88 
between L4 and L2-3/L5-6-IT (Ex3). Next, we aimed to investigate developmental gene expression 89 
changes during differentiation and maturation of GABAergic interneuron (IN) lineages. We 90 
selected nuclei from ventral forebrain progenitors, as well as cortical interneurons, re-clustered 91 
the data and identified known classes of cortical interneurons (Fig 2B, Fig S2C), including 92 
interneurons expressing VIP, calretinin (CALB2), reelin (RELN), and nitric acid synthase (NOS), and 93 
chandelier (PV-CH) and basket (PV-BSK) interneurons expressing parvalbumin, MME and TAC1, 94 
as well as interneurons expressing somatostatin (SST) and co-expressing SST and reelin (SST-95 
RELN). We then reconstructed lineage trajectories corresponding to each interneuron subtype 96 
(Fig 2B, Fig S2D), as well as point of trajectory divergence, such as trajectory branches including 97 
MGE- (IN1) and CGE-derived (IN2) interneurons. We calculated pseudotime for each nucleus, 98 
which correlated well with the developmental age of the interneurons. Next, we asked whether 99 
different neuronal lineages in the human cortex mature at different rates. We correlated 100 
pseudotime with the developmental age in each neuronal lineage and observed that neuronal 101 
types fell into two main groups: those that mostly matured by the end of the second trimester, 102 
and those whose transcriptome profiles continued to change through the third trimester and 103 
after birth (Fig 2C). The first group included L5, L5-6-IT and all interneuron subtypes, whereas the 104 
second group contained L2-3, L4 and L6 excitatory neurons. This result suggests that certain types 105 
of human cortical neurons have a protracted maturation timeline.  106 

Once we isolated trajectory branches corresponding to each neuronal lineage, we sought to 107 
identify lineage-specific gene expression programs. We employed an approach that allows 108 
identification of lineage-specific programs by comparing dynamic expression profiles of each 109 
gene in a lineage of interest to all other neuronal, glial and non-neural lineages ( see Methods). 110 
In addition, we applied this approach to identify genes specific to related lineages in the 111 
excitatory neuron and interneuron trajectory branches. In total, we identified 1062 lineage-112 
specific genes and 405 branch-specific genes (Table S2). We classified these genes based on the 113 
age of onset of gene enrichment (50% of the maximum expression) and performed gene ontology 114 
analysis for the genes upregulated at each developmental timepoint (Fig. 2D). During the second 115 
trimester of gestation, we saw enrichment in pathways related to neurogenesis, differentiation, 116 
and process growth. Upregulation of synaptogenesis and ion transport pathways could be 117 
observed during the third trimester but was most profound between birth and one year of age. 118 
Enrichment in synaptic pathways could be observed until adulthood.  119 

In addition to classifying genes based on their age of appearance, we also characterized dynamic 120 
expression patterns of lineage-specific genes. The two most common patterns we observed were 121 
transient expression and burst expression where upregulation would start at a certain age and 122 
continue into adulthood (Fig 2E). Our analysis identified several putative regulators of neuronal 123 
lineage commitment, such as transcriptional regulator MN1 specific to L2-3, L5-6-IT and L4 124 
neurons, noncoding RNAs CYP1B1-AS1 and LINC00507 enriched in L2-3 neurons, and HS3ST4 125 
specific to L5 neurons. We saw that genes enriched in more broad lineage branches tended to be 126 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2022.10.24.513555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513555
http://creativecommons.org/licenses/by/4.0/


transiently expressed genes, whereas genes specific to mature neuronal cell types mostly 127 
followed burst expression patterns (Fig 2F). This suggests gradual commitment and specification 128 
of neuronal cell types through a series of transient and burst transcriptional events. We also 129 
classified additional less common expression patterns, such as biphasic expression (Fig S2e) and 130 
identified different biological processes enriched for genes with burst and transient expression 131 
patterns (Fig S2F). Finally, we identified genes dynamically expressed during the specification of 132 
subplate neurons by comparing lineages during the second and third trimester of gestation when 133 
these cells are present (Fig S2G). Using spatial transcriptomic analysis of 140 genes across three 134 
developmental timepoints, we were able to identify and visualize the spatial location of cell-135 
specific clusters overlaid on the tissue cytoarchitecture. Focusing on early-emerging lineage-136 
specific genes, we validated the spatiotemporal expression of excitatory layer-specific markers 137 
(Fig 2G-H, Fig S3). We observed that broad classes of excitatory neurons in the Ex1, Ex2 and Ex3 138 
trajectory branches are restricted to specific cortical layers during the second trimester of 139 
gestation. Moreover, several markers of L4 neurons, such as HPCA and GREM2, are expressed in 140 
a layer-restricted manner during the second trimester of gestation suggesting that L4 neuronal 141 
identity starts to be specified early in development. The layer identity of most excitatory neurons 142 
emerges by birth (Fig S3) based on the lineage-specific signatures that we find specify human 143 
cortical neurons and their segregation to cortical layers. 144 

Dissection of glial and non-neural lineages 145 

We further focused on the analysis of glial lineages, including astrocytes and oligodendrocytes. 146 
We re-clustered glial progenitors, oligodendrocyte precursor cells (OPCs), oligodendrocytes, and 147 
astrocytes and performed trajectory analysis (Fig 3A). We identified two types of astrocytes: 148 
fibrous astrocytes with high expression of GFAP, and protoplasmic astrocytes with low expression 149 
of GFAP and high expression of glutamate transporter GLAST (SLA1A3) (Fig S4A). Next, we 150 
performed identification of lineage-specific genes in the manner described for neuronal lineages 151 
(Table S2). We first focused on genes that were expressed at the divergence of astrocyte and 152 
oligo trajectory branches (Fig 3B). We observed well-known transcription factors guiding 153 
commitment to the oligo and astrocyte lineages, including OLIG1, OLIG2, ID4 and SOX9, as well 154 
as other putative regulators, such as the zinc finger protein ZCCHC24 specific to the oligo lineage 155 
and a DNA binding protein STOX1 enriched in astrocytes. When comparing fibrous and 156 
protoplasmic astrocytes, we identified gene programs specific to these cell types (Fig 3C). Genes 157 
upregulated in protoplasmic astrocytes after birth and during the first year of life were mostly 158 
associated with the transport of glutamate and its metabolites, suggesting a maturation program 159 
to support neuronal firing during the early postnatal period. For oligodendrocytes we observed 160 
that genes upregulated during the second and third trimesters were associated with glial cell 161 
differentiation, whereas myelination genes were upregulated after birth and continued to be 162 
expressed into adulthood (Fig 3E). Analysis of microglia development (Fig 3F) identified three cell 163 
trajectories (MG-1-3), one of which (MG-3) was associated with highly activated microglia and 164 
was present in a small number of samples. These trajectories were confirmed by an alternative 165 
analysis using Slingshot (Fig S4B) (16). We focused on the non-activated microglia trajectories 166 
(MG-1 and MG-2) which were differentiated from each other by expression of a pro-167 
inflammatory microglia marker, IKZF1, expressed in MG-2. IKZF1 was the only gene 168 
differentiating MG-1 and MG-2, suggesting that these trajectories may represent two different 169 
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states of the same microglia cell type rather than different subtypes; therefore, we focused on 170 
genes developmentally expressed in both of these microglia cell clusters. By performing Gene 171 
Ontology (GO) analysis of microglia-specific genes upregulated at different developmental 172 
stages, we observed complement genes associated with synaptic pruning upregulated in 173 
microglia after birth and during the first year of life (Fig S4C, Fig 3G). These findings suggest that 174 
the developmental period between birth and one year of life is a critical period of synaptic 175 
formation and plasticity that involves not only neuronal lineages, but also protoplasmic 176 
astrocytes and microglia. Finally, we identified gene programs associated with the maturation of 177 
brain endothelial cells and pericytes (Fig S4D-F). Our data suggests a coordinated maturation of 178 
neuronal and glial cell functions that insures proper formation and maintenance of neuronal 179 
circuits. 180 

Integration of with single-cell open chromatin data and identification of lineage-specific gene 181 
regulatory networks 182 

Epigenetic regulation plays a crucial role in cortical neuron lineage commitment and 183 
specification. In order to identify lineage-specific transcriptional and epigenetic regulators of the 184 
cortical lineages identified in the snRNA-seq data, we leveraged recently published single-nucleus 185 
ATAC-seq (snATAC-seq) data from the developing human cortex during prenatal and postnatal 186 
stages (10, 11, 17, 18). First, we combined snATAC-seq data from four datasets, obtaining 187 
290,239 snATAC-seq profiles from 57 tissue sample and 42 individuals across the second 188 
trimester, early postnatal stages of development, as well as adult life. We then utilized Seurat to 189 
integrate the resulting snATAC-seq data with our snRNA-seq data and mapped the integrated 190 
snATAC-seq data to the snRNA-seq clusters, UMAP space, and cell types (Fig 4A, see Methods). 191 
We observed that the developmental ages for the snATAC-seq and snRNA-seq profiles are well 192 
aligned (Fig 4A, Fig 1D). Gene activity (open chromatin in the promoter and gene body) of cell 193 
type marker genes suggested that snATAC-seq profiles mapped to corresponding 194 
transcriptionally defined neuronal and glial cell types (Fig S5A). Next, we repeated the integration 195 
and mapping procedure for three major lineage classes: excitatory neurons, interneurons, and 196 
glia (astrocytes and oligodendrocytes) (Fig 4B-D, Fig S5B-D). We omitted microglia and vascular 197 
cells due to a low number of snATAC-seq profiles in these lineages. After mapping snATAC-seq 198 
data to the transcriptionally defined lineages, we selected snATAC-seq cells along each lineage 199 
branch (Fig S5B-D). Not all lineages could be reliably recovered due to the smaller size of the 200 
snATAC-seq dataset and the lack of key developmental stages, such as the third trimester. We 201 
therefore focused on lineages that had ATAC cells along the entire span of the trajectory, 202 
including four excitatory neuron lineages, five interneuron lineages, and both types of astrocytes 203 
and oligodendrocytes as indicated in Fig 4B-D. Plots of lineage-specific gene activity over 204 
pseudotime demonstrated that we accurately mapped and selected lineage-specific snATAC-seq 205 
profiles (Fig 4B-D). Finally, we leveraged SCENIC+ (19), a recently developed algorithm that uses 206 
paired single-cell transcriptomic and open chromatin data to identify enhancer gene regulatory 207 
networks (eGRN) and candidate transcription factors that regulate expression of target genes in 208 
these networks. We applied SCENIC+ to the snRNA-seq and snATAC-seq profiles in each lineage 209 
to identify open chromatin regions correlated with pseudotime, putative enhancers, candidate 210 
transcription factors (TF) that bind them, and their association with lineage-specific dynamically 211 
expressed genes (Table S3). In total, we identified 42 transcription factors regulating 1373 212 
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lineage-specific genes through predicted binding of 4846 regulatory chromatin regions. We 213 
observed networks regulated by previously known lineage-specific transcriptional regulators, 214 
such as SOX5 in deep-layer projection neurons (Fig 4B), LHX6 in MGE-derived PV and SST 215 
interneurons (Fig 4C, Table S3), OLIG2 in oligodendrocytes and SOX9 in astrocytes (Fig 4D). 216 
Additionally, we identified previously unrecognized (at the best of our knowledge) putative 217 
lineage-specific transcriptional regulators, such as BACH2, predicted to regulate several key 218 
deep-layer transcription factors in L5 neurons, including FOXP2 and FEZF2, as well as NFIX and 219 
ZNF184 specific to L2-3 neurons and regulating expression of the upper-layer master 220 
transcription factor, CUX2 (Fig 4B). Our results also suggest the role of the transcription factor 221 
MAFB in parvalbumin interneuron specification (Fig 4C), as well as of FOXN2 and RFX4 in 222 
determining the fate of oligodendrocytes and protoplasmic astrocytes, respectively (Fig 4D). Our 223 
data sheds new light on epigenetic control of neural lineage commitment and identifies putative 224 
transcription factors and regulatory networks that define the fate of specific human cortical 225 
neuronal and glial cell types. 226 

Identification of region and sex-enriched lineage-specific gene programs 227 

Since we sampled our transcriptomic data from different cortical regions, we asked whether 228 
lineage-specific developmental gene expression profiles might be spatially defined, and vary 229 
depending on cortical area. We focused on the frontal/prefrontal cortex (PFC) since we had the 230 
most complete sampling of this cortical area across developmental stages (Fig S6A). We 231 
compared each neuronal and glial lineage trajectory in the PFC to the trajectories in all other 232 
cortical areas and identified PFC-enriched developmentally regulated genes in each lineage 233 
(Table S4). We observed more PFC-specific genes in excitatory neuron lineages, especially in 234 
intertelencephalic upper (L2-3) and deep-layer (L5-6-IT) neurons, as well as in astrocytes and 235 
oligodendrocytes, whereas most interneuron lineages and microglia expressed fewer PFC-236 
specific genes (Fig S6B). After performing GO analysis for PFC genes specific to neuronal lineages, 237 
we observed enrichment in cell adhesion and synaptic transmission pathways (Fig S6C). Analysis 238 
of glia-specific PFC genes demonstrated enrichment in different categories of biological pathways 239 
associated with cell division and cell migration (Fig S6D). Examples of neuronal PFC genes 240 
included synaptojanin 2 binding protein SYNJ2BP regulating receptor localization and signal 241 
transduction at the synapse and the cation channel TRPC7 (Fig S6E). PFC fibrous astrocytes 242 
upregulated R-spondin 2 (RSPO2) and Frizzled Class Receptor 8 (FZD8), which both participate in 243 
Wnt signaling and cell migration. Our results suggest cortical areal differences in lineage-specific 244 
transcriptomic programs, with synaptic genes upregulated in neuronal cell types and cell division 245 
and cell migration programs activated in glial cells in the developing PFC. PFC-specific expression 246 
of synaptic genes in neuronal cell types suggests regional specification of neuronal circuits during 247 
development. 248 

We next asked whether the development of specific cellular lineages is modulated in a sex-249 
dependent manner. For each lineage analyzed, we isolated female and male nuclei (Fig 5A, Fig 250 
S7A) and identified dynamically expressed genes enriched during either female or male 251 
development. In total, we identified 740 female-enriched genes and 312 male-enriched genes 252 
(Table S5). Only a small fraction of male genes showed female/male enrichment in a lineage-253 
specific manner (20/312, 6.4%), whereas more than half of female genes showed lineage 254 
specificity of sex enrichment (510/740, 69%). Despite several top female-enriched genes located 255 
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on X and Y chromosomes (including XIST and PCDH11Y), sex-enriched genes were evenly 256 
distributed across all chromosomes (Fig S7B), suggesting that sex-dependent developmental 257 
modulation of gene expression is not directly dependent on transcription from the sex 258 
chromosomes. We next performed GO analysis of female and male-enriched genes, focusing on 259 
the neuronal, astrocyte and oligodendrocyte lineages where we had large number of samples 260 
and nuclei from both sexes. We observed substantial difference between the biological processes 261 
associated with female and male-enriched genes: female genes were involved in developmental 262 
processes, including cell adhesion, CNS development, synaptic transmission and membrane 263 
potential regulation (Fig. 5B), whereas male genes were associated with RNA metabolism and 264 
translation (Fig. 5C). Only a small number of male-specific genes such as YBX1 and LINGO1 were 265 
associated with developmental processes; however, these genes were enriched across multiple 266 
male lineages (Fig S7C). We classified sex-enriched genes according to their dynamic expression 267 
pattern and saw that the majority were expressed transiently (Fig. 5D), with over 90% having 268 
peak expression during the second trimester (Table S5). This suggest early and transient sex-269 
dependent developmental modulation of cortical lineages. Sex-enriched genes were more 270 
abundant in excitatory neuron lineages compared to interneurons (Fig 5E) and were also 271 
abundant in female fibrous astrocytes. Several top lineage-specific female-enriched genes were 272 
associated with neuronal, glial and endothelial development (Fig 5F, Fig S7D). These included 273 
nuclear hormone receptor/transcription factor RORA in L2-3 neurons, synaptic protein 274 
neurexophilin 3 (NXPH3) in L6 neurons, transcription factor HES4 in fibrous astrocytes, and an 275 
actin filament depolymerization enzyme, MICAL3, in oligodendrocytes. Overall, our results point 276 
to modulation of neuronal and glial developmental programs during second trimester female 277 
brain development. 278 

Enrichment of lineage-specific developmental gene programs for risk factors of brain disorders 279 

Once we defined lineage and sex-specific developmental gene programs in human cortical cell 280 
types, we sought to investigate how these transcriptional programs may be affected in 281 
neurodevelopmental, psychiatric, and neurodegenerative disorders. We compiled all lineage-282 
specific gene signatures for excitatory neurons, astrocytes, oligodendrocytes, interneurons, 283 
microglia, endothelial cells and pericytes, in total obtaining 2796 unique genes, and divided them 284 
into 5 groups based on their age of expression onset (50% of max expression). We then 285 
overlapped this gene list with lists of rare gene variants associated with the risk of ASD from the 286 
Simons Foundation Autism Research Initiative (SFARI) Gene database (20), as well as GWAS genes 287 
for the risk of SCZ (21), bipolar disorder (BPD) (22) and Alzheimer’s disease (AD) (23) (Fig 6A, 288 
Table S6). We observed a large enrichment for genes associated with risk for ASD, SCZ and BPD 289 
in the second trimester, with expression of ASD and BPD risk genes extending to the third 290 
trimester. The risk of neurodevelopmental disorders dropped during later stages of 291 
development. Expression of ASD risk genes remained mostly flat and only slightly above the 292 
significance level, demonstrating a pattern different from neurodevelopmental and psychiatric 293 
disorders. We next analyzed enrichment of disease risk genes across cortical lineages (Fig 6B). 294 
We were able to detect significant enrichment for ASD risk genes in L5-6-IT and L5 neurons, 295 
whereas AD risk genes were enriched in microglia. We focused on ASD since we observed the 296 
strongest enrichment for the risk of this disorder among developmentally regulated genes, and 297 
because a large amount of genetic risk data is available for this disorder. We observed 298 
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developmental enrichment of ASD risk genes with SFARI score 2 and 3 but not score 1 and did 299 
not find enrichment in syndromic ASD genes (Fig 6C). We observed a significant enrichment 300 
among high-confidence ASD risk genes (ASD-HC) based on the TADA analysis (24). We conclude 301 
that the genetic burden of ASD has the potential to affect the development of specific neuronal 302 
cell types, especially deep-layer intertelencephalic projection neurons and L5 neurons. We next 303 
explored enrichment of ASD risk genes in sex-specific developmental programs. We observed 304 
strong enrichment of female-specific developmental genes in both SFARI and HC-ASD gene lists 305 
(Fig 6D). Male-specific genes were less frequently found among SFARI genes, and we did not find 306 
a meaningful overlap between male-enriched and high-confidence ASD genes. This finding points 307 
to a strong enrichment of the genetic risk of ASD among developmental genes that are more 308 
highly expressed in female cells. SFARI genes were enriched in female cells across multiple 309 
neuronal cell types, especially the subplate and L6 excitatory neurons, as well as 310 
oligodendrocytes and fibrous astrocytes, but not in microglia or vascular cell types (Fig 6E). This 311 
suggests a role of the subplate in the pathogenesis of ASD. Examples of female-specific high-312 
confidence ASD risks genes included the subplate-specific transcription factor NR4A2 and the 313 
neuronal transcription factor MEF2C that were upregulated in female subplate cells, as well as a 314 
regulator of axon guidance and synaptogenesis, neurexin 2 (NRXN2), and PCDH15 encoding a cell 315 
adhesion molecule in female L6 neurons (Fig 6G). Our findings provide strong evidence 316 
supporting the ASD female protective effect hypothesis (25), and suggest that fine-tuning of 317 
cortical cell lineages by sex-specific developmental programs can contribute to the male bias in 318 
the pathogenesis of ASD. 319 

Discussion 320 

By generating single-nucleus RNA-seq data from the developing human cortex and integrating 321 
the findings with previously published datasets, we performed a large-scale unbiased 322 
transcriptomic analysis of human cortical development throughout the lifespan. By 323 
reconstructing single-cell trajectories and identifying genes that are expressed in a lineage-324 
specific manner we created a compendium of developmental programs for all the major cortical 325 
cell types. By integrating our data with published single-cell chromatin accessibility datasets, we 326 
identified enhancer-gene regulatory networks and transcription factors that are predicted to 327 
control the commitment and differentiation of specific cortical neural lineages. In addition, we 328 
characterized sex and brain region-specific gene programs that are used by specific lineages of 329 
cortical cell types. We find that female-enriched genes are associated with neurodevelopmental 330 
processes, whereas male-enriched genes are involved in protein translation control, suggesting 331 
sex-specific variation of developmental trajectories. We also find that developmental gene 332 
programs utilized by cortical excitatory neurons, astrocytes and oligodendrocytes are the most 333 
region-specific. Interneurons, in contrast, express few region-specific genes during development, 334 
consistent with data on regional signatures of cortical cell types in the mature human brain (26).  335 

We investigated the enrichment of genetic risk factors for brain disorders, focusing on ASD, and 336 
found that the developmental programs of both deep-layer intratelencephalic and corticofugal 337 
projection neurons are enriched for ASD risk genes. These data are in agreement with previous 338 
reports of enrichment of ASD genes in deep-layer cortical neurons during mid-gestation (27, 28) 339 
but also suggest that both deep-layer neurons projecting to other cortical areas and to subcortical 340 
locations could be affected. We previously reported that upper-layer cortical excitatory neurons 341 
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are most dysregulated in the cortex of idiopathic ASD patients (29). It would be an important 342 
future direction to elucidate how changes in pan-excitatory neuron programs during 343 
development can culminate in dysfunction of specific cortical neuronal populations, such as L2-3 344 
neurons. It would also be valuable to explore whether the molecular pathology of upper-layer 345 
neurons is specific to idiopathic ASD, and whether it is driven by common gene variants, rather 346 
than rare variants with strong effect sizes (30). In addition, we observed a strong enrichment of 347 
ASD genetic risk factors among female-specific developmental genes. Since these female-348 
enriched ASD risk genes have higher expression in females during cortical development, is 349 
possible that this higher baseline expression renders female brain more resistant to genetic 350 
insults causing autism, especially to haploinsufficiency that can reduce transcript or protein 351 
expression by affecting one of the two alleles. This finding might explain the 4:1 male to female 352 
ratio of individuals affected by ASD and suggests the importance of sexual dimorphism in human 353 
brain development. However, the role of sex hormones in the increased male to female ratio in 354 
ASD is not to be discounted, and additional studies are needed to reconcile the role of early 355 
development and later sex-specific processes in the pathogenesis of autism. Our preliminary 356 
findings indicate the cell type-specific risk of BPD and SCZ, but more detailed genetic studies are 357 
needed to further dissect cell type and developmental stage vulnerability. The data generated 358 
here may help enable fine-grained understanding of human brain development and provide 359 
insight into mechanisms of neurodevelopmental disorders. 360 

Our study, however, is limited by the technical difficulty of integrating snRNA-seq and scATAC-361 
seq data as well as by the lack of inclusion of earlier developmental stages, such as the first 362 
trimester, due to challenges of integrating scRNA-seq and snRNA-seq datasets. Overcoming these 363 
obstacles will allow for even more comprehensive future understanding of how specific human 364 
cortical lineages develop. Moreover, single-cell epigenetic analyses of human brain development 365 
would be necessary to determine whether imprinting plays a role in regulating sex enrichment 366 
of developmentally expressed genes. 367 

Materials and methods summary 368 

Brain tissue samples were sectioned using a cryostat to collect coronal cortical sections, lysed 369 
and ultracentrifuged to isolate nuclei. Nuclei were captured using 10x Genomics Single Cell 3’ v.2 370 
kits. 371 
Raw sequencing data were processed using 10x Genomics CellRanger and aligning reads to 372 
unsliced human transcriptome to capture reads from premRNAs. Dataset integration was 373 
performed using Harmony based on 10x chemistry, and clustering and UMAP embedding was 374 
carried out with Seurat. Monocle 3 was used to reconstruct lineage trajectories, and custom 375 
scripts were used to identify lineage-specific dynamically expressed genes (Supplementary 376 
Materials). 377 
scATAC-seq data were integrated with snRNA-seq data using canonical correlation analysis in 378 
Seurat, after which different scATAC-seq chemistries were integrated using Harmony. Enhancer 379 
gene regulatory networks were identified using SCENIC+. 380 
  381 
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 382 

Figure 1. Brain tissue samples used for data collection and initial clustering of snRNA-seq data. 383 
A) Overview of the tissue samples used in the current study, including the number of individuals, 384 
as well as ages and brain regions captured in the snRNA-seq dataset. MGE-medial ganglionic 385 
eminence, LGE-lateral ganglionic eminence, CGE-caudal ganglionic eminence, GE- ganglionic 386 
eminence. B) Clustering of the entire dataset, with the major lineages labeled. C) Expression of 387 
cell type-specific markers used to determine cardinal lineages. D) Nuclei labeled by their 388 
developmental age. 389 

 390 

 391 

 392 

 393 

 394 

Figure 2. Analysis of excitatory and inhibitory neuron lineages. A) Cell types, reconstructed 395 
single-cell trajectories, and age distribution for subtypes of excitatory neurons. L2-3 – upper-layer 396 
cortico-cortical projection neurons, L4 – layer 4 neurons, L5-6-IT – deep-layer intratelencephalic 397 
projection neurons, L6 – layer 6 neurons, L5 – layer 5 neurons, SP – subplate neurons. 398 
bBIdentification of interneuron trajectories. C) Rates of maturation of subtypes of excitatory 399 
neurons and interneurons. D) Gene ontology analysis of genes with different age of onset of 400 
expression. E) Examples of top lineage and branch-specific genes with transient and burst 401 
expression patterns. F) Number of transient and burst genes in specific lineages and branches. 402 
G) Spatial transcriptomic analysis of 140 lineage-specific genes, showing the spatial map of 403 
annotated cell-types across development (GW22 = 22 weeks of gestation; 2wk = 2 weeks 404 
postnatal; 25yo = 25-year-old; PFC = prefrontal cortex). H) Examples of deep-layer neuronal 405 
markers with early patterned layer-specific expression (putative layer location is in brackets). 406 

 407 

 408 

 409 

 410 

Figure 3. Analysis of inhibitory cortical interneuron lineages. A) Clusters and trajectories of glial 411 
progenitors, astrocytes and oligodendrocytes. B) Sample genes specific to oligodendrocyte and 412 
astrocyte lineage branches. C) Examples of top dynamically expressed genes specific to fibrous 413 
and protoplasmic astrocytes. D) Gene ontology analysis of protoplasmic astrocyte-specific genes 414 
expressed during the first year of life. E) Pathways enriched for oligo lineage-specific genes 415 
expressed at different developmental stages. F) Analysis of microglia lineages. G) Temporal 416 
patterns of developmental microglia genes. 417 

 418 

 419 
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Figure 4. Identification of lineage-specific epigenetic and transcriptional regulators. A) 420 
Integration of snRNA-seq and scATAC-seq data. scATAC-seq data was mapped on the scRNA-seq 421 
coordinates, clusters and cell types. B-D) Analysis of enhancer gene regulatory networks (eGRNs) 422 
in excitatory neuron lineages (B), as well as interneurons (C) and glial lineages (D). Network plots 423 
(eGNRs) display transcription factors predicted to bind enhancer regions to regulate lineage-424 
specific transcriptional programs. Edge colors indicate regulation by different transcription 425 
factors. Top 20 genes based on the predicted confidence of interaction are shown for each 426 
transcription factors network. 427 

 428 

 429 

Figure 5. Analysis of sex-specific developmental programs in human cortex. A) Female and male 430 
developmental trajectories of excitatory neurons, interneurons, astrocytes and 431 
oligodendrocytes. B-C) Gene ontology analysis of female and male-enriched genes. D) Dynamic 432 
expression patterns of sex-enriched genes. E) Sex enrichment of developmental gene expression 433 
across neuronal and glial lineages. F) Examples of top female-enriched genes in specific lineages. 434 

 435 

 436 

Fig 6. Lineage enrichment of ASD risk genes. A) Enrichment of disease risk genes across 437 
developmental stages. B) Disease risk gene enrichment across lineages and lineage branches of 438 
neuronal, glial, and vascular cell types. Red squares indicate statistical significance. C) Enrichment 439 
of lineage-specific developmentally regulated ASD risk genes of different categories and evidence 440 
scores. D) Overlap between ASD risk genes and female and male-enriched developmental gene 441 
programs. E) Enrichment of sex-specific genes across specific lineages. F) Temporal patterns of 442 
female-enriched genes that are known risk factors for ASD.  443 
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Supplementary Materials 606 

Materials and Methods 607 

Sample acquisition and selection 608 

Samples were acquired from three different sources. 1) De-identified second-trimester tissue 609 
samples were collected at the Zuckerberg San Francisco General Hospital with previous patient 610 
consent in strict observance of the legal and institutional ethical regulations. Protocols were 611 
approved by the Human Gamete, Embryo, and Stem Cell Research Committee (institutional 612 
review board) at the University of California, San Francisco. These fresh tissue samples were 613 
dissected and snap-frozen in isopentane on dry ice. 2) De-identified second-trimester, third 614 
trimester and early postnatal tissue samples were obtained at the UCSF Pediatric 615 
Neuropathology Research Laboratory led by Dr. Eric Huang. These samples were acquired with 616 
patient consent in strict observance of the legal and institutional ethical regulations and in 617 
accordance to research protocols approved by the UCSF IRB committee. These samples were 618 
dissected and snap-frozen either on a cold plate placed on a slab of dry ice or in isopentane on 619 
dry ice. 3) Banked de-identified second-trimester, third trimester, early postnatal and adult tissue 620 
samples were obtained from the University of Maryland Brain and Tissue Bank through the NIH 621 
NeuroBioBank. 622 

For postnatal ages, samples from individuals with known history of brain disorders or brain 623 
trauma were excluded from downstream analyses. For prenatal samples, samples with unusual 624 
neuropathology following pathological examination, as well as samples positive for commonly 625 
tested chromosomal aberrations, were excluded. Prior to performing nuclei isolation and single-626 
nucleus RNA sequencing, samples were screened for RNA quality by collecting 100um-thick 627 
cryosections, isolating total RNA and measuring RNA Integrity Number (RIN) using the Agilent 628 
2100 Bioanalyzer instrument. Only samples with RIN >= 6.5 were included in the study. 629 

Nuclei isolation and generation of single-nucleus RNA-seq data using 10x Genomics platform 630 

40 mg of sectioned brain tissue was homogenized in 5 mL of RNAase-free lysis buffer (0.32M 631 
sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10 mM Tris-HCl, 1 mM DTT, 0.1% Triton X-100 632 
in DEPC-treated water) using glass dounce homogenizer (Thomas Scientific, Cat # 3431D76) on 633 
ice. The homogenate was loaded into a 30 mL thick polycarbonate ultracentrifuge tube (Beckman 634 
Coulter, Cat # 355631). 9 mL of sucrose solution (1.8 M sucrose, 3 mM MgAc2, 1 mM DTT, 10 mM 635 
Tris-HCl in DEPC-treated water) was added to the bottom of the tube with the homogenate and 636 
centrifuged at 107,000 g for 2.5 hours at 4°C. Supernatant was aspirated, and the nuclei 637 
containing pellet was incubated in 250 uL of DEPC-treated water-based PBS for 20 min on ice 638 
before resuspending the pellet. The nuclear suspension was filtered twice through a 30 um cell 639 
strainer. Nuclei were counted using a hemocytometer and diluted to 2,000 nuclei/uL before 640 
performing single-nuclei capture on the 10X Genomics Single-Cell 3’ system. Usually, the target 641 
capture of 3,000 nuclei per sample was used; the 10x capture and library preparation protocol 642 
was used without modification. Single-nucleus libraries from individual samples were pooled and 643 
sequenced on the NovaSeq 6000 machine (average depth 60,000 reads/nucleus). 644 

snRNA-seq data processing with 10X Genomics CellRanger software and data filtering 645 
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For library demultiplexing, fastq file generation and read alignment and UMI quantification, 646 
CellRanger software v 1.3.1 was used. CellRanger was used with default parameters, except for 647 
using pre-mRNA reference file (ENSEMBL GRCh38) to insure capturing intronic reads originating 648 
from pre-mRNA transcripts abundant in the nuclear fraction.  649 

Individual expression matrices containing numbers of Unique molecular identifiers (UMIs) per 650 
nucleus per gene were filtered to retain nuclei with at least 400 genes expressed and less than 651 
10% of total UMIs originating from mitochondrial and ribosomal RNAs. Individual matrices were 652 
combined prior to pre-processing and clustering with Seurat. 653 

snRNA-seq dataset integration, dimensionality reduction, UMAP embedding, clustering and 654 
cell type identification 655 

All of the following bioinformatics analysis steps are documented in an R script available at 656 
https://doi.org/10.5281/zenodo.7245297. 657 

In order to integrate snRNA-seq datasets, we utilized Harmony (31) integration using the 10x 658 
Genomics chemistry version as the grouping variable. Downstream data preprocessing, 659 
normalization, variable feature selection and PCA was performed using the standard Seurat 660 
pipeline (32). Selection of significant principal components was done using the elbow method. 661 
The selected components were used to perform UMAP embedding and clustering using the 662 
Louvain method. The identity of specific lineages and cell types was determined based on 663 
expression of known marker genes, as is shown in Figure 1 and Figure S1. 664 

Sex determination 665 

To determine the sex of individuals for which sex information was not available, we aggregated 666 
gene expression of all nuclei by individual and plotted individual-wise expression of the following 667 
genes: XIST, DDX3Y, KDM5D, USP9Y, ZFY, EIF1AY, UTY. 668 

Trajectory reconstruction and isolation of individual lineages 669 

Seurat UMAP coordinates were imported into monocle3 (33) for trajectory reconstruction. 670 
learn_graph function with custom graph_control options was used to construct the trajectory 671 
graph. We noticed that while the original trajectory graph generated by monocle3 corresponded 672 
to the major cell lineages, it failed to connect some nodes that passed through populations of 673 
cells expressing shared lineage markers. Moreover, some trajectory branches did not correspond 674 
to biologically interpretable lineage progression, specifically the branches connecting two mature 675 
neuronal cell types containing only adult cells. We corrected these issues by modifying the 676 
trajectory according to the following principles: 1) if two terminal nodes failed to be connected 677 
but were passing through populations of cells expressing known lineage-specific markers (such 678 
as RORB for layer 4, TLE4/SEMA4A for layer 6b, CUX2 for layer 2-3 and CUX1 for layer 5-6-IT), we 679 
connected these nodes 2) if a branch connected nodes located in two mature cell types, we 680 
omitted this branch and 3) based on the first two principles, we isolated the shortest path 681 
between the node in the neural progenitor/radial glia cluster and the node in the mature cell 682 
type cluster.  683 

Identification of lineage-specific dynamically expressed genes 684 
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First, we selected trajectory branches corresponding to specific lineages, as well as the cells along 685 
the branches. For the interneuron trajectory analysis, we only selected MGE or CGE cells from 686 
the GE progenitors cluster to analyze MGE and CGE-derived INs, respectively. Then, monocle3’s 687 
Moran's test (graph_test function) was used to identify genes that are dynamically expressed in 688 
each lineage. We modified graph_test function to utilize Moran’s test with covariates to ensure 689 
that our results are not affected by uneven contribution of cells from male and female subjects, 690 
different brain regions, as well as cells postmortem interval and 10x chemistry. We selected 691 
genes with adjusted p value < 0.05 as statistically significant dynamically expressed genes. To 692 
identify lineage-specific genes, we first compressed the single-cell expression data along each 693 
lineage by using a sliding window along pseudotime and averaging expression of neighboring 694 
cells for each gene. We generated 500 meta-cells in each lineage using this approach. Then, we 695 
fit the expression of each gene using a generalized linear model and the following formula: 696 
expression ~ splines::ns(pseudotime, df=3). Then, we calculated the area under the curve for the 697 
smoothed expression/pseudotime plot for each gene in each lineage across intervals of the 698 
sliding window. The difference of under the curve between the lineage of interest and all other 699 
lineages was used to rank genes according to their lineage specificity. Moran’s p value < 0.05 and 700 
an expression difference of at least 20% in one section of the sliding window was used to define 701 
lineage-specific genes. 702 

Analysis of single-cell ATAC-seq data and snRNA-seq/scATAC-seq integration 703 

Four scATAC-seq datasets were first remapped to the same hg38 genome reference. Then, a 704 
minimal non-overlapping consensus peak set was created based on the peaks from all datasets, 705 
and ATAC-seq counts were mapped on this set of peaks using Signac (34), and the datasets were 706 
combined. Then, gene activity matrix for the combined dataset was generated by counting ATAC 707 
peaks in the promoter region and the gene body, using the same parameters as used by the 708 
Signac package. For mapping scATAC-seq data on the snRNA-seq dataset, we first integrated the 709 
two modalities using Seurat’s FindTransferAnchors and the canonical correlation analysis (cca). 710 
We used the expression and gene activity of genes variable in the snRNA-seq datasets to perform 711 
cca and then used the TransferData function to map the scATAC-seq data on the snRNA-seq space 712 
followed by Harmony processing to regress the effect of different scATAC-seq and snRNA-seq 713 
chemistries. To map scATAC-seq profiles to the UMAP space and clusters we generated using 714 
snRNA-seq data, we identified 100 nearest neighbors for each scATAC-seq cell in the combined 715 
snRNA-seq/scATAC-seq space and then calculated the UMAP coordinates and cluster 716 
membership in the snRNA-seq space. To validate the accuracy of this procedure, we checked for 717 
the specificity of gene activity of cell type markers, as well as for age distribution. This integration 718 
and mapping procedure was repeated for the three major lineage classes (excitatory neurons, 719 
interneurons and macroglial cells). 720 

SCENIC+ analysis 721 

SCENIC+ requires single-cell transcriptomic and scATAC-seq data mapped to the same category 722 
(e.g. cluster) and also recommends generating pseudobulk scATAC-seq profiles prior to the 723 
analysis. In order to prepare our data for SCENIC+ analysis, we first selected ATAC-seq cells along 724 
the lineage trajectories using a sliding window approach and keeping the cells in cell type-specific 725 
clusters. Then, we generated 2500 meta-cell pseudobulk ATAC-seq profiles using the sliding 726 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2022.10.24.513555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513555
http://creativecommons.org/licenses/by/4.0/


window along each trajectory and summing all ATAC counts. We also generated 2500 meta-cells 727 
for the corresponding lineage-specific snRNA-seq profiles and restricted the analysis to lineage 728 
and branch-specific genes relevant to each lineage. In order to generate pseudo-multiome 729 
profiles from separate snRNA-seq and scATAC-seq datasets, we sorted cells into 10 bins based 730 
on the pseudotime progression. These pseudotime bins were also used to identify differentially 731 
accessible regions of chromatin and cis-regulatory topics using cisTopic (35), which was used with 732 
default settings, except for setting the differential features threshold to 25%. After generating 733 
pseudo-multiome profiles, we performed SCENIC+ analysis as described in the tutorial. 734 
Significant enhancer-transcription factor-gene relationships in each lineage were exported as the 735 
final result. 736 

Identification of sex and region-enriched dynamically expressed genes 737 

To identify male and female-enriched genes in each lineage, we selected cells from only males or 738 
females within each lineage and first performed Moran’s I test separately for male and female 739 
data. Then, we compressed the data and calculated area under the curve for male and female 740 
gene expression. Genes with Moran’s I statistic >= 0.1, adjusted Moran’s p value<0.05 and the 741 
area under curve difference between male and female expression >= 50 were considered sex-742 
specific in each given lineage. 743 

Gene ontology analysis 744 

We used ShinyGO (36) to perform gene ontology analysis using genes expressed in each lineage 745 
as the background gene list. In order to reduce redundancy of the identified GO terms, all 746 
significant (adjusted p value < 0.05) terms were used as input to Revigo (37) in case more than 747 
10 pathways were identified. The value of the resulting gene list of 0.4 was used. The -log10(p 748 
value) and fold enrichment for the resulting non-redundant GO processes were reported. 749 

Analysis of enrichment of disease risk genes 750 

We intersected disease risk gene lists with our list of lineage-specific genes, as well as genes 751 
enriched in male and female developmental lineages. We calculated hypergeometric p values for 752 
each overlap, using genes expressed in each lineage as the background. 753 

Data visualization 754 

Cell type, gene expression and lineage trajectories for each lineage can be visualized at 755 
https://pre-postnatal-cortex.cells.ucsc.edu. 756 

MERSCOPE spatial transcriptomics  757 

Sample preparation was performed according to manufacturer’s instructions (MERSCOPE Fresh 758 
and Fixed Frozen Tissue Sample Preparation User Guide, Doc. number 91600002). Briefly, fresh 759 
snap frozen tissue with a high RNA integrity number (RIN>8) were sectioned (10um thick) using 760 
a cryostat and mounted on MERSCOPE functional slides. Sections where then fixed and stored at 761 
70% ethanol for up to two weeks. Sections went through autofluorescence quenching under UV 762 
light for 3 hours using the MERSCOPE Photo-bleacher instrument. A Pre-designed panel mix (140 763 
genes) focused on early emerging excitatory lineage-specific genes based on the single-nuclei 764 
analysis were used for probe hybridization. Hybridizations were performed at 37°C for up to 48 765 
hours in a humid environment. Post prob hybridization, sections were fixed using formamide and 766 
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embedded in gel. After gel embedding, tissue samples were cleared using a clearing mix solution 767 
supplemented with proteinase K for 24-48 hours at 37°C until no visible tissue was evident in the 768 
gel. After clearing was completed, sections were stained for DAPI and PolyT and fixed with 769 
formamide prior to imaging. No additional cell boundary stainings were used. The MERSOPE 770 
imaging process was done according to the MERSCOPE Instrument Site Preparation Guide (Doc. 771 
Number 91500001). Briefly, an imaging kit was thawed at 37°C for 45 minutes, activated and 772 
loaded into the MERSCOPE instrument. The flow chamber was then assembled, fluidics were 773 
primed, flow chamber filled with liquid and a low-resolution image was taken. Based on DAPI 774 
staining, an ROI was chosen for the full imaging experiment. After imaging was complete, data 775 
was processed using MERSCOPE proprietary software. Further analysis, visualization, and 776 
integration of spatial data, was done using Seurat v5 (Source: vignettes/spatial_vignette_2.Rmd). 777 
Putative neuronal layer localization was predicted from co-localization with referenced markers 778 
at relevant developmental stages. 779 

 780 

 781 

 782 

  783 
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Table S1.  Sample and nuclei metadata. 784 

Table S2.  Lineage and branch-specific genes. 785 

Table S3.  Results of eGRN analysis using SCENIC+. 786 

Table S4.  Results of region-specific gene expression analysis. 787 

Table S5.  Sex-enriched developmentally regulated genes. 788 

Table S6.  Lineage- and sex-specific disease risk genes. 789 

 790 

 791 
Figure S1. Technical and biological characteristics of the combined snRNA-seq dataset. A) 792 
Identification of the clusters containing neuronal debris. B) Integration of the current dataset 793 
with previously published datasets. C) Gene and UMI counts per nucleus, as well as mitochondrial 794 
reads ratio across all samples. D) Gene and UMI counts per nucleus across all cell types. E-F) 795 
Distribution of nuclei from different samples and regions. FC-frontal/prefrontal cortex, CC-796 
cingulate cortex, TC-temporal cortex, IC-insular cortex, MC-motor cortex, CTX-cortex. G) 797 
Expression of sex-specific genes used to determine sex of samples with unknown status. 798 
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 799 
Figure S2. Excitatory neuron and interneuron lineage analysis. A) Expression of cortical 800 
excitatory neuron marker genes used to determine excitatory neuron lineages. B) Isolated 801 
lineages trajectories for excitatory neuron subtypes. C) Markers of interneuron subtypes. D) 802 
Isolated interneuron trajectories. E) Examples of biphasic, plateau, steady and drop expression 803 
of lineage and branch-specific genes. F) GO pathways enriched for burst and transient neuronal 804 
genes. G) Top subplate-specific dynamically expressed genes. 805 
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 806 
Figure S3. Spatial transcriptomic analysis of lineage-specific genes across development. A) 807 
UMAP embedding of annotated clusters. B) Spatial localization patterns of individual clusters 808 
(cluster colors and spatial location correspond with Fig. 2g). C) Spatiotemporal expression of 809 
layer-specific markers. 810 

 811 
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 812 
Figure S4. Analysis of glial and vascular lineages. A) Markers of OPCs, oligodendrocytes, fibrous 813 
and protoplasmic astrocytes B) Slingshot analysis of microglial lineage trajectories. C) Gene 814 
ontology analysis developmental microglia genes. D) Analysis of vascular cell types. E-F) 815 
Trajectory analysis of endothelial cells and pericytes. 816 

 817 

 818 
Figure S5. Mapping developmental scATAC-seq to specific lineage trajectories. A) Gene 819 
activities of cell type-specific marker genes. B-D) Age distribution and selection of ATAC-seq cells 820 
for specific lineages of excitatory neurons (B), interneurons (C) and macroglial cells (D). 821 

 822 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2023. ; https://doi.org/10.1101/2022.10.24.513555doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513555
http://creativecommons.org/licenses/by/4.0/


 823 
Figure S6. Frontal cortex-specific developmental programs. A) Cells from the frontal/prefrontal 824 
cortex and other cortical regions in the excitatory neuron, interneuron, macroglial and microglial 825 
lineages. B) Number of PFC-specific genes in neuronal and glial lineages relative to the total 826 
number of genes expressed in each lineage. C-D) Gene ontology analysis of PFC-specific genes in 827 
neuronal and glial lineages. E) Examples of top genes enriched in the PFC in specific lineages. 828 

 829 

 830 
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 831 
Figure S7. Analysis of sex and region-enriched genes during microglia and endothelial cell 832 
development. A) Female and male microglia and endothelial cell trajectories. B) relative number 833 
of sex-specific genes per chromosome. C) Examples of top male-enriched genes. D) Female and 834 
male trajectories in microglia and endothelial cells. E) Top female-enriched genes expressed in 835 
microglia and endothelial cells. 836 

 837 
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