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ABSTRACT

We introduce the Brain Language Model (BrainL.M), a foundation model for brain activity dynamics
trained on 6,700 hours of fMRI recordings. Utilizing self-supervised masked-prediction training,
BrainLM demonstrates proficiency in both fine-tuning and zero-shot inference tasks. Fine-tuning
allows for the prediction of clinical variables and future brain states. In zero-shot inference, the
model identifies functional networks and generates interpretable latent representations of neural
activity. Furthermore, we introduce a novel prompting technique, allowing BrainLM to function
as an in silico simulator of brain activity responses to perturbations. BrainL.M offers a novel
framework for the analysis and understanding of large-scale brain activity data, serving as a "lens"
through which new data can be more effectively interpreted.

1 Introduction

Understanding how cognition and behavior arise from brain activity stands as one of the fundamental challenges
in neuroscience research today. Functional magnetic resonance imaging (fMRI) has emerged as a critical tool for
pursuing this goal by providing a noninvasive window into the working brain. fMRI measures blood oxygen level
fluctuations that reflect regional neural activity. However, analyzing the massive, high-dimensional recordings
produced by fMRI poses major challenges. The blood-oxygen-level dependent (BOLD) signals represent an indirect
measure of brain function and can be difficult to interpret. Furthermore, fMRI data exhibits complex spatiotemporal
dynamics, with critical dependencies across both space and time. Most existing analysis approaches fail to fully
model these complex nonlinear interactions within and across recordings [1].

Prior fMRI analysis techniques have relied heavily on machine learning models designed for specific narrow tasks
(2,3} 4], hindering their generalizability. Traditional models also struggle to integrate information across the wealth
of unlabeled fMRI data available. Hence, there is an ongoing need for flexible modeling frameworks that can truly
capitalize on the scale and complexity of fMRI repositories.
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Figure 1: Overview of the BrainLM framework. The model was pretrained on 6,700 hours of fMRI recordings
from 77,298 subjects via spatiotemporal masking and reconstruction. After pretraining, BrainLM supports diverse
capabilities through fine-tuning and zero-shot inference. Fine-tuning tasks demonstrate prediction of future brain
states and clinical variables from recordings. Zero-shot applications include inferring functional brain networks
from attention weights and using a novel prompting technique to simulate perturbation responses in silico. This
highlights BrainLM’s versatility as a foundation model for fMRI analysis.

Foundation models represent a new paradigm in artificial intelligence, shifting from narrow, task-specific training to
more general and adaptable models [5]. Inspired by breakthroughs in natural language processing, the foundation
model approach trains versatile models on broad data at scale, enabling a wide range of downstream capabilities
via transfer learning. Unlike previous Al systems designed for singular functions, foundation models exhibit general
computational abilities that make them suitable for myriad real-world applications. Large language models like
GPT have demonstrated the potential of this framework across diverse domains including healthcare, education,
robotics, and more [6}[7,[8,9]. Foundation models offer new opportunities to rethink challenges in neuroscience
and medical imaging analysis.

Here, we introduce BrainLM, the first foundation model for fMRI recordings. BrainL. M leverages a Transformer-
based architecture to capture the spatiotemporal dynamics inherent in large-scale brain activity data. Pretraining
on a massive corpus of raw fMRI recordings enables unsupervised representation learning without task-specific
constraints ( see Figure[T).

After pretraining, BrainLM supports diverse downstream applications via fine-tuning and zero-shot inference. We
demonstrate BrainLM’s capabilities on key tasks including prediction of future brain states, decoding cognitive
variables, discovery of functional networks, and in silico perturbation analysis. Together, these results highlight
BrainLM’s proficiency in both zero-shot and fine-tuning tasks. This work highlights the potential of applying large
language models to advance neuroscience research. BrainLM is a foundation model for the community to build
upon, providing more powerful computational tools to elucidate the intricate workings of the human brain.

2 Related Work

Prior work has explored various machine-learning techniques for analyzing fMRI recordings. Earlier approaches
focused on decoding cognitive states from activity patterns. Methods like SVM and neural networks were trained in
a supervised fashion to classify fMRI data into stimulus categories or regress against variables of interest [10} 11} [12].
However, these models learn representations tailored to specific tasks and struggle to generalize.

Recent work has aimed to obtain more transferable fMRI encodings without task-specific constraints. Techniques
include training autoencoders to reconstruct recordings, learning to map recordings to a lower-dimensional space
[2,13}4]. However, most methods operate on small datasets, limiting their ability to learn robust generalizable
representations.
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Our work is most closely related to recent efforts to apply masked autoencoders for unsupervised pretraining
on fMRI data [13} [14] or other neural recording modalities [15} [16, [I7]. However, these prior MAE models are
trained on 1-2 orders of magnitude less data compared to BrainLM. The scale of our dataset combined with a
Transformer-based architecture enables BrainLM to learn substantially more powerful encodings of spatiotemporal
fMRI patterns.

With relation to the in silico experiments, our approach follows in similarity to other methods applied to stimulus
optimization [18,[19} 20} 21], but in our case, it is for optimizing neural dynamics.

Critically, BrainLM is the first model of its scale designed following the foundation model paradigm - pretrained on
diverse unlabeled data and adaptable to various downstream applications via transfer learning. This distinguishes
BrainLM from prior work and demonstrates the potential of large foundation models for fMRI analysis. In summary,
our innovations include training a masked autoencoder at an unprecedented scale, employing a Transformer
architecture suited for spatiotemporal data, and demonstrating versatile fine-tuning and interpretation applications
enabled by the foundation model approach.

3 Methods

3.1 Datasets and Preprocessing

We leveraged two large-scale publicly available datasets - the UK Biobank (UKB) [22] and the Human Connectome
Project (HCP) [23]. The UKB provides task-based and resting-state functional MRI (fMRI) recordings plus medical
records from over 40,000 subjects aged 40-69 years old. recordings were acquired on a Siemens 3T scanner at 0.735s
temporal resolution. The HCP contains 1,002 high-quality fMRI recordings from healthy adults scanned at 0.72s
resolution.

Our model was trained on 80% of the UKB dataset (61,000 recordings) and evaluated on the held-out 20% and the
full HCP dataset. All recordings underwent standard preprocessing including motion correction, normalization,
temporal filtering, and ICA denoising to prepare the data [24} [25].

To extract parcel-wise time series, we parcellated the brain into 424 regions using the AAL-424 atlas [26]. This yielded
424-dimensional scan sequences sampled at 1 Hz. Robust scaling was applied by subtracting the median and
dividing by the interquartile range computed across subjects for each parcel.

In total, our training dataset comprised 6,700 hours of preprocessed fMRI activity patterns from 77,298 recordings
across the two repositories. This large-scale corpus enabled unsupervised pretraining of BrainL.M to learn robust
functional representations.

3.2 Model Architecture

Our model consists of a Transformer-based [27] masked autoencoder architecture adapted from natural language
processing models like BERT [28] and Vision Transformer [29]. The encoder comprises a stack of multi-headed
self-attention layers that operate on visible (unmasked) input patches. The decoder reconstructs the original
patches, including masked ones, by attending to the encoder activations.

During training, segments of parcel time series are embedded and then partially masked to represent missing
data. The unmasked segments are encoded and decoded to reconstruct the full input. By training to minimize
the reconstruction error of masked segments, the model learns dependencies within and across brain activity
sequences ( see Figure[2).

Implementation details can be found in the supplement. The code, model weights and training hyperparameters
will be made publicly available.

3.3 Training Procedure

For each fMRI recording, we sampled random 200-timestep subsequences. The parcel time series were divided into
segments of 20 timesteps, yielding 10 segments per subsequence. These were embedded into a 512-dimensional
space and masked with a ratio of 20%, 50%, or 75%.

The unmasked segments were encoded via a Transformer encoder with 4 self-attention layers and 4 heads. This
was decoded by a 2-layer Transformer to reconstruct all segments. We trained with batch size 512 and the Adam
optimizer for 100 epochs, minimizing the mean squared error between original and predicted embeddings ( see
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Figure[2). After pretraining on all sequences, the encoder can extract informative features capturing spatiotemporal
brain activity patterns. We leverage the pre-trained encoder for downstream prediction and interpretation tasks.

3.4 Clinical Variable Prediction

As one downstream application, we fine-tuned BrainLM to predict clinical variables from fMRI recordings. The
pretrained encoder was appended with a 3-layer MLP head and trained to regress targets including age, neuroticism,
PTSD, and anxiety disorder scores. For age, we normalize by simply Z-scoring the Age values for all patients to a
mean of 0 and unit variance. For Neuroticism scores, we do min-max scaling to bring the distribution of scores
into the range [0, 1]. For Post Traumatic Stress Disorder (PCL) and General Anxiety Disorder (GAD7) scores, we first
perform a log transformation to make the values less exponentially distributed, and then perform mix-max scaling
to range.

We perform clinical variable regression on data unseen by BrainLM during fine-tuning. We use a split of held-out
samples from the UK Biobank test set as the dataset for fine-tuning BrainLM and training SVM regressors, and
we evaluate the performance against baseline models using raw input data and extracted pretrained embeddings.
During fine-tuning, we apply a 40% dropout on the activations of both the BrainLM encoder and MLP head to
prevent overfitting.

3.5 In SilicoPerturbation Simulation

A key element of current foundation models is prompting. We introduce a novel in silico perturbation prompting
approach to elucidate the model’s representation of brain dynamics. This technique simulates the effect of pertur-
bations on neural activity patterns in a completely computational and "zero-shot" manner, i.e. the model was never
trained on perturbations.

We define a perturbation function G(X;pu:,0) with parameters 6 that modifies the input fMRI sequence (X). The
perturbed sequence is fed into the pre-trained BrainL.M and 6 optimized to minimize the distance between the
predicted state (X) and a target (X7) corresponding to a cognitive condition of interest ( see Figure@and Algorithm
l . By analyzing the optimized perturbations (X — X; nput), we can identify which fMRI features are most influential
in altering the model’s predicted brain state. This reveals insights into relationships learned by BrainLM.

We applied this in silico simulation to probe differences between resting and task states. The optimized perturbations
highlighted BrainL.M’s sensitivity to task-driven changes in visual cortical areas.

4 Results

4.1 Model Generalization

To evaluate BrainLM’s ability to generalize to new fMRI data, we tested its performance on held-out recordings from
both the UKB test set as well as the independent HCP dataset.

On the UKB test data, BrainLM achieved an average R? score of 0.402, indicating strong generalization on unseen
recordings from the same distribution. We also found that key training hyperparameters impacted generalization -
larger training data and 75% masking ratio yielded the best performance on the test set ( see Table [1).

Critically, BrainLM also generalized well to the HCP dataset, achieving a similar R? score of 0.316. Despite differences
in cohort and acquisition details, BrainLM could effectively model brain dynamics in this entirely new distribution.
Figure 3| shows sample reconstructions on both UKB and HCP recordings. Overall, these results demonstrate
BrainLM’s ability to learn robust representations of fMRI recordings that generalize across datasets. This highlights
the advantages of large-scale pretraining for learning widely applicable models of brain activity.

4.2 Prediction of Clinical Variables

A key advantage of foundation models is their ability to fine-tune on downstream tasks using the pretrained
representations. We evaluated BrainL.M’s clinical prediction capabilities by fine-tuning to regress metadata variables
obtained from the UKBioBank dataset.

The pretrained encoder was appended with an MLP head and fine-tuned to predict age, neuroticism, PTSD,
and anxiety disorder scores. fine-tuning used a held-out subset of UKB subjects. BrainLM’s performance was
compared against: 1) SVMs trained on raw fMRI data, and 2) SVMs trained on BrainLM’s pretrained embeddings.
Across all variables, the fine-tuned BrainLM model achieved significantly lower mean squared error compared
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Figure 2: BrainLM architecture and training procedure. A) The fMRI recordings are compressed into 424 dimensions
(parcels) (See Methods|[3.1). The recordings are randomly trimmed to 200 time points. For each parcel, the temporal
signal is split into patches of 20 time points each (blue dashed boxes). The resulting 4240 patches are converted into
tokens via a learnable linear projection. B) From the total number of tokens (blue), a subset is masked (red), either
randomly or at future timepoints. We then add the learnable spatial and temporal embeddings to each token. These
visible tokens (blue) are then processed by a series of Transformer blocks (Encoder). The input to the Decoder is the
full set of tokens, consisting of encoded visible tokens (green) and masked tokens (red). The Decoder also consists
of Transformer blocks and ultimately projects the tokens back to data space. Finally, we compute the reconstruction
loss between the prediction (purple) and the original input data (blue).

Table 1: Performance comparison of latent space learned through self-supervised pretraining. Shown is the
coefficient of determination (R?) between predicted and ground truth data for masked patches across various
configurations of masking ratio (MR) and training data size. Columns indicate models trained on 1% or 100% of the
data and with 75% or 90% masking. Rows show different inference metrics, validated by masking 20%, 50%, or 75%
on UK Biobank data (UKB) or Human Connectome Project (HCP) data. The top performing model was trained on
100% of the data with 75% making.

MR=0.75 MR=0.90
Data size 1% 100% 1% 100%

UKB (MR=0.2) 0.361 0.402 0.158 0.221
UKB (MR=0.5) 0.349 0.389 0.182 0.245
UKB (MR=0.75) 0.309 0.343 0.186 0.234

HCP (MR=0.2) 0.300 0.316 0.126 0.176

to the baselines (see Table[2). Notably, even the pretrained model outperformed the raw data SVM, indicating
BrainLM’s representations better capture informative clinical biomarkers. Additional gains from fine-tuning further
demonstrate the benefits of initializing with meaningful pretrained features before tuning to a specific prediction
task.

Overall, these results validate BrainLM’s ability to uncover predictive signals within complex fMRI recordings. By
leveraging large-scale pretraining and transfer learning, BrainLM offers a powerful framework for fMRI-based
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Figure 3: BrainLM reconstruction performance on held-out data. The model predictions (red) closely fit the ground
truth recordings (black) of unseen data sampled from the cohort that the model was trained on (A, UKB) as well as
data sampled from an external never-before-seen cohort (B, HCP). This demonstrates BrainLM’s ability to generalize
across subjects and datasets.

Table 2: Results for the regression of the clinical features. The values show the MSE (mean =+ std)

POST TRAUMATIC GENERAL ANXIETY
AGE STRESS DISORDER (PCL)  DISORDER (GAD7) NEUROTICISM
RAW DATA 2.0+0.2219 0.034 +0.0027 0.172 +0.0066 0.160 +0.0137
BRAINLM PRETRAINED  0.857 +0.1135 0.022 +0.0019 0.094 + 0.0079 0.086 + 0.0047
BRAINLM FINE-TUNED  0.485 + 0.0252 0.018 + 0.0008 0.074 + 0.0053 0.072 + 0.0049

assessment of cognitive health and neural disorders. Ongoing work is exploring clinical prediction across a broader
range of psychiatric, neurological, and neurodegenerative conditions.

4.3 Prediction of Future Brain States

To evaluate whether BrainL.M can capture spatiotemporal dynamics, we assessed its performance in extrapolating
to future brain states. A subset of UKB data was used to fine-tune the model to predict parcel activities at future
timepoints.

During fine-tuning, BrainLM was given 180 timestep sequences and trained to forecast the subsequent 20 timesteps.
We compared against baseline models including LSTMs, ODEnets, and a non-pretrained version of BrainL.M.

As shown in Figure[d] the fine-tuned BrainLM model significantly outperformed other approaches in next timestep
prediction on both UKB and HCP test sets. The non-pretrained BrainLM also struggled, confirming the benefits
of pretraining for this task. Quantitatively, fine-tuned BrainLM achieved the lowest error across nearly all fore-
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Figure 4: BrainLM outperforms other models in extrapolating future brain states. Models were trained to predict
parcel activity 20 timesteps beyond observed context data. The plot shows the mean squared error per timestep on
held-out UKB and HCP recordings. BrainLM demonstrates significantly lower error in forecasting near-future brain
states. This highlights how pretraining enables BrainLM to effectively learn spatiotemporal fMRI dynamics. The
time points for which BrainLM has significantly (p < 0.05) lower error than the other methods are identified with

nxn

casted timesteps on UKB data, and significantly so for the first 8 timesteps on HCP recordings (see Table[3). This
demonstrates BrainL.M’s strong ability to implicitly learn fMRI dynamics during pretraining.

Table 3: Quantitative evaluation of extrapolation performance. Models were tasked with forecasting parcel activity
40 timesteps beyond observed data from the UKB dataset. BrainLM shows the best performance across all metrics:
higher (R?) and Pearson correlation coefficients (R), and lower mean squared error (MSE) between predicted and
true future states.

UKB HCP
R? R MSE  R? R MSE
BrainLM (fine-tuned) 0.086 0.280 0.648 0.028 0.185 0.568
BrainLM (w/o pre-training) 0.012 0.112  0.695 0.007 0.090 0.583
LSTM -0.001  0.151 0.704 -0.020 0.049 0.598
Neural ODE -0.577 0.001 1.083 -0.469 2.010e-4 0.857
Latent ODE 0.001 0.023 0.703 -0.003 -2.026e-4 0.588

4.4 Interpretability via Attention Analysis

A key advantage of BrainLM is interpretability. By visualizing the self-attention weights, we can extract insights
about the model’s representations. We averaged the attention that BrainL.M’s CLS token assigned to each parcel
when encoding fMRI recordings. As shown in Figure[9} task recordings exhibited greater visual cortex attention
compared to resting state, aligning with the visual stimuli presented during tasks. We also found differences
in attention patterns between mild and severe depression (given by the PHQ9 scores), with more weighting
on frontal and limbic areas for severe versus mild depression. These attention distributions agree with known
functional alterations in depression [30}31},32]. Overall, the learned attention maps confirm that BrainLM captures
clinically relevant variations in functional networks. By revealing which regions are prioritized during encoding,
attention analysis provides useful interpretability for neuroscientific insights. For all other clinical variables, see

supplementary Figure[9]
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Figure 5: BrainLM attention maps reveal functional contrasts. A) Differences in parcel attention weights between
task (left) and rest (right), and low and high depression scores (PHQ9). Task vs. resting state differences highlight
changes in the visual cortex. Comparing the severity of depression, the difference highlights subcortical areas. B)
Attention can localize parcels to 7 functional networks without supervision. This demonstrates BrainLM’s ability to
learn meaningful representations in an unsupervised manner.

Algorithm 1 In Silico Perturbation and Optimization with BrainL.M

Require: Initial brain recording Xinpy, initial perturbation parameters 6, loss function (Mean Squared Error)
Ensure: Optimized perturbation parameters 6*

I: X < G(Xmput,0) > Apply G to perturb Xiput
2: X — BrainLM(X) > Encode-decode with BrainLM
3: % —argming Loss(Xtarget, BrainLM(G (Xmnput, 0))) > Optimize 0 via gradient descent
4: return 0*

4.5 Insilico Perturbation Analysis Reveals Functional Connectivity

We leveraged BrainLM’s pre-trained representations to perform perturbation analysis and uncover functional brain
networks. This was done by optimizing perturbations to make one fMRI recording mimic another, revealing key
regional differences. Specifically, we optimized the perturbations to a resting-state recording that would alter
its encoded representation (CLS token) to match that of a task-based recording. In Figure[7} we can observe the
mean optimal perturbations for 1000 optimizations between resting state and task-based recordings. Here the
perturbation focused on the visual cortex. This highlights the regions most impacted by the change from resting
to task context, which involves visual processing. By analyzing recordings before and after optimization, we can
elucidate which features are most influential in altering BrainL.M’s predicted state. This reveals the model’s intrinsic
knowledge of functional connections. Overall, this demonstrates how BrainLM can be prodded in silico to uncover
meaningful functional relationships from its pre-trained representations, without additional tuning. We also
performed the same procedure for recordings of different age groups (See Supplementary Figure [8).

4.6 Functional Network Prediction

We evaluated BrainLM’s ability to segment parcels into intrinsic functional brain networks directly from fMRI
activity patterns, without any network-based supervision. Parcels were categorized into 7 functional groups as
defined in prior cortical parcellation work [cite]. The groups corresponded to visual, somatomotor, dorsal attention,
ventral attention, limbic, frontoparietal, and default mode networks. On a held-out set of 1,000 UKB recordings, we
compared different methods for classifying parcels into these 7 networks:

* k-NN classifier on raw parcel time series data
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Figure 6: Overview of in silico perturbation approach. The goal of this procedure is to use the pre-trained BrainLM
foundation model to simulate the effect of perturbations and find the modifications that result in a desired brain
state. To achieve this, A) we learn a perturbation function G, which given an input state X5, and parameters ¢
produces a perturbed state X. To find the optimal 6, we encode and decode the output of G and minimize the loss
between the decoded perturbed state X with the target state X7. B) Schematic of the in silico brain perturbation
algorithm in the model manifold space.

Table 4: Comparing methods for functional region identification. Parcels from 1000 UKB recordings were categorized
into 7 regions without supervision. A kNN classifier on BrainL.M’s self-attention maps achieved the highest accuracy,
outperforming alternatives using raw data and other representation learning techniques.

Accuracy (%)
BrainLM (attention weights) 58.8
Raw Data 39.2
Variational Autoencoder 49.4
Graph Convolutional Network 25.9

* k-NN on parcel embeddings from a VAE. The VAE contained 3 encoding and 3 decoding layers and was
trained to reconstruct time series with the same masking ratio and loss as BrainLM.

* k-NN on parcel embeddings from a 4-layer Graph Convolutional Network (GCN). The GCN was trained
with the same masking-based objective to learn parcel representations.

¢ k-NN on BrainLM’s self-attention weights between each parcel token and all other parcel tokens.

The classifiers were trained on 80% of the parcels from each recording and evaluated on the remaining 20%.
BrainLM’s attention-based approach significantly outperformed the other methods, achieving 58.8% parcel classifi-
cation accuracy ( see Table [4). The k-NN on GCN performed worst at 25.9%. These results demonstrate BrainLM’s
unsupervised learning of functional brain topography from pretraining alone. The self-attention maps contain
meaningful information about network identity without ever being exposed to explicit labels during training.
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Figure 7: In silico perturbation of resting state to match task-based recordings reveals functional changes. The
average magnitude of optimized perturbations to make resting state CLS tokens match target task CLS tokens. We
find that the region with the largest predicted perturbation is the visual cortex, in line with expected functional
changes between resting state and task-based recordings. This in silico perturbation approach demonstrates
BrainLM’s ability to simulate responses in a biologically meaningful manner.

5 Discussion

This work presents BrainLM, the first foundation model for functional MRI analysis. By leveraging self-supervised
pretraining on 6,700 hours of brain activity recordings, BrainLM demonstrates versatile capabilities for modeling,
predicting, and interpreting human brain dynamics.

A key innovation lies in BrainLM’s generalizable representations of fMRI recordings. The model achieves high
accuracy in reconstructing masked brain activity sequences, even generalizing to held-out distributions. This
highlights the benefits of large-scale pretraining for learning robust encodings of spatiotemporal neural patterns.
BrainLM also provides a powerful framework for biomarker discovery. By fine-tuning, brain dynamics can be
decoded to predict clinical variables and psychiatric disorders better than baseline models. This could enable
non-invasive assessment of cognitive health using resting-state fMRI alone.

Additionally, BrainLM offers new opportunities for computational modeling of brain function. We introduce a
perturbation analysis technique that simulates fMRI responses by optimizing input changes that elicit a target model
response. This demonstrates the utility of the approach for interpretability and causal discovery in a completely in
silico manner without any intervention in live brain dynamics.

Finally, without any network-based supervision, BrainL.M identifies intrinsic functional connectivity maps directly
from pretraining, clustering parcels into known systems. This demonstrates how self-supervised objectives can
extract organizational principles fundamental to the brain.

There remain exciting areas for future work. Multi-modal training could integrate fMRI with additional recording
modalities, such as EEG and MEG, or different brain-wise information such as structural, functional, and genomic
data. Probing a wider range of cognitive states and combined regularization may yield more generalizable repre-
sentations. In future work, we could assess zero-shot classification on expanded functional atlases beyond the 7
networks used here.

Overall, BrainLM provides a springboard for accelerated research at the intersection of neuroscience and Al. We
hope that this work spurs further development of foundation models that can help elucidate the intricate workings
of the human brain.
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Figure 8: Average perturbation to match the CLS token of a below 65-year-old patient recording to a target CLS
token from above 65-year-old patient recording. The average was computed over 1000 patients of the validation

set. We found large changes in the visual cortex and somatosensory cortex. We also observe these differences are
asymmetric across hemispheres between the two CLS tokens.
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Figure 9: Attention visualization across 424 parcels. Each parcel is localized by its X and Y position and it is colored
by the attention intensity with respect to the CLS token.
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