

1 **Title.**

2 **Targeted Transcriptional Activation using a CRISPR-Associated Transposon
3 System**

4

5 **Author List.**

6 Andrea M. Garza Elizondo¹ and James Chappell^{1,2*}

7 ¹Department of Biosciences, Rice University, Houston, TX 77005, USA

8 ²Department of Bioengineering, Rice University, Houston, TX 77005, USA

9 *Corresponding author, email: jc125@rice.edu

10

11 **Abstract.**

12 Synthetic perturbation of gene expression is central to our ability to reliably uncover
13 genotype-phenotype relationships in microbes. Here, we present a novel gene
14 transcription activation strategy that uses the *Vibrio cholerae* CRISPR-Associated
15 Transposon (CAST) system to selectively insert promoter elements upstream of genes of
16 interest. Through this strategy, we show robust activation of both recombinant and
17 endogenous genes across the *E. coli* chromosome. We then demonstrate precise tuning
18 of expression levels by exchanging the promoter elements being inserted. Finally, we
19 demonstrate that CAST activation can be used to synthetically induce ampicillin-resistant
20 phenotypes in *E. coli*.

21

22

23

24

25

26

27

28

29 **Keywords.**

30 CRISPR-Associated Transposon (CAST), transcriptional regulation, gene activation,
31 CRISPR, transposons

32

33 **Introduction.**

34 Understanding the relationships between genotype and phenotype is one of the grand
35 challenges of biology that has driven the development of molecular strategies for
36 manipulating and deciphering gene function and connectivity. A mainstay approach to
37 studying gene function is the perturbation of endogenous gene expression followed by
38 the observation of resulting phenotypic changes. Perturbations meant to activate
39 transcription or overexpress a gene of interest are known as knock-up studies and their
40 inactivation counterparts as knock-out or knock-down studies. Knock-up studies have
41 been conducted through a variety of methods, including transposon mutagenesis,
42 plasmid-based overexpression, and insertion of promoters through recombination.
43 Through these studies, genes have been identified that confer resistance or tolerance to
44 antibiotics,^{1–5} oxidizing agents,⁶ metals,⁷ and other toxins.^{2,8} Likewise, alternate
45 enzymatic activities⁹ and the effects of overexpression on growth¹⁰ have been identified
46 through knock-up experiments. In eukaryotic cells, knock-up studies have also been used
47 to uncover the organization and connectivity in regulatory networks.¹¹ Overall, the
48 activation and overexpression of genes has proven to be a fruitful mechanism by which
49 to study genes.

50 Recently, CRISPR-based strategies for gene activation have been developed,
51 expanding our ability to achieve targeted overexpression of genes of interest. There are
52 two main strategies for activating transcription in prokaryotes using CRISPR-based
53 editors and regulators. One strategy uses CRISPR-Cas9 DNA editing for the insertion of
54 promoter elements upstream of target genes, also known as promoter knock-in.^{12–14}
55 CRISPR-Cas9 knock-in allows for precise, scar-less insertion of promoters. The other
56 strategy, CRISPR activation (CRISPRa), uses a catalytically dead Cas9 (dCas9) to
57 localize activation domains upstream of a target gene's promoter, thereby prompting that
58 gene's expression.^{15–19} The same dCas9 used for activation can be repurposed for

59 CRISPR interference (CRISPRi), which makes this strategy attractive for large-scale
60 screens due to the ability to create libraries of single guide RNAs (sgRNAs) for both
61 CRISPRi and CRISPRa in a single experiment.^{16,17,19–21} While both strategies confer
62 advantages unique to their systems, challenges remain for applying them at a scale (e.g.
63 for genome-wide studies). For instance, promoter knock-in by CRISPR-Cas requires a
64 customized DNA donor with large homologous arms specific to each edit site (e.g., ~400
65 bp).²² This can increase the complexity of library design as both the sgRNA and the DNA
66 donor must be varied simultaneously. On the other hand, CRISPRa benefits from
67 simplified library design, requiring only a sgRNA for each targeted gene. However,
68 different sets of challenges remain (as reviewed in ²³) that include periodical activation
69 patterns which make it difficult to activate diverse promoters,^{16,18,24,25} and the use of
70 activation domains that can require customization for different promoter types^{24,26} and
71 hosts.^{18,24}

72 Here, we contribute a novel transcription activation strategy that complements
73 existing CRISPR-based systems, using a recently discovered CRISPR-Associated
74 Transposon (CAST). The *Vibrio cholerae* CAST system is a naturally occurring hybrid of
75 type I-F CRISPR-Cas systems and *E. coli* Tn7-like transposons that has retained the
76 guide RNA-processing and RNA-guided binding properties of CRISPR-Cas systems
77 alongside the transposition mechanism of Tn7.^{27,28} The result is the targeted insertion of
78 DNA transposons downstream of sites complementary to the encoded CRISPR RNA
79 (crRNA). This unique mechanism of RNA-guided transposition provides the CAST system
80 with several attractive attributes from a gene perturbation standpoint. For one, the CAST
81 system has already shown great versatility for genome knock-downs²⁸ and knock-outs in
82 multiple species for creation of auxotrophic strains,²⁹ for metabolic pathway
83 engineering,³⁰ and for microbiome programming.³¹ Furthermore, the CAST system can
84 leverage universal transposons, analogous to the DNA donor used in CRISPR-Cas9
85 editing, that are interchangeable between different target sites. This makes the system
86 amenable for library strategies wherein one transposon cargo can be used with different
87 crRNAs and target sites.^{29,30,32,33} While CAST has only been used for repression, we
88 reasoned that by encoding outward-facing promoter elements within the transposon

89 cargo and inserting these cargos upstream of silent or weakly-expressed genes, we could
90 adapt the CAST system to also function for activation.

91 In this paper, we explore the activation potential of the CAST systems. To
92 demonstrate this novel function, we first use the CAST system to insert a strong
93 constitutive promoter as a transposon cargo upstream of fluorescent reporter genes,
94 leading to robust transcription of the fluorescent gene of interest. We then demonstrate
95 the fine-tuning of transcriptional activation using variable strength and inducible promoter
96 systems as transposon cargos. Furthermore, we demonstrate the utility of this approach
97 in non-synthetic contexts by activating the transcription of endogenous *E. coli* genes.
98 Finally, we demonstrate that CAST can be used to identify endogenous genes that confer
99 antibiotic resistance when overexpressed in *E. coli*.

100

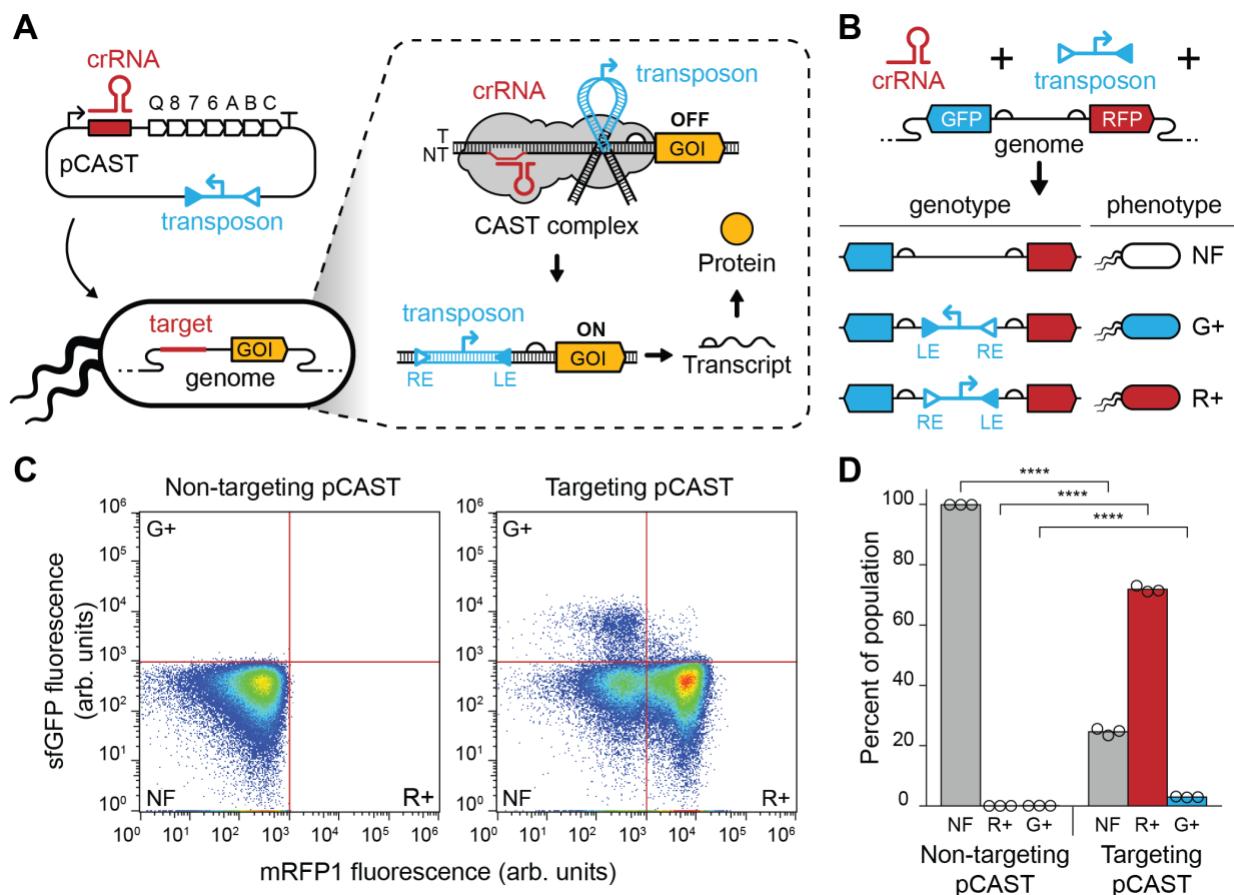
101

102 **Results.**

103 **Engineering the CAST system for efficient transcriptional activation.**

104 As a starting point, our first goal was to ascertain if CAST can be used to activate
105 the expression of genome-encoded genes through the transposition of outward-facing
106 promoter elements upstream of a targeted gene of interest (GOI) (**Figure 1A**). To test
107 this, we focused on adapting the CAST system derived from the *Vibrio cholerae* Tn6677
108 transposon, which is composed of a crRNA-encoding CRISPR array, seven proteins, and
109 a transposon containing a DNA cargo flanked by transposon left end (LE) and right end
110 (RE) elements.³³ Prior work has shown that this CAST system can be targeted via the
111 crRNA, resulting in high-efficiency insertion of the transposon ~49 bp downstream of the
112 crRNA binding site.^{27,33,34} Interestingly, while the transposon can be inserted in either
113 direction (i.e., RE-LE or LE-RE orientation) it shows a significant bias for RE-LE
114 insertions.^{27,33,34} Given these features, we hypothesized that the transposition of promoter
115 elements as the transposon cargo could serve as a reliable strategy for activating gene
116 expression (**Figure 1A**).

117 To test this, we first created a reporter *E. coli* strain in which fluorescent sfGFP and
118 mRFP1 lacking transcriptional promoters were encoded within the genome in divergent

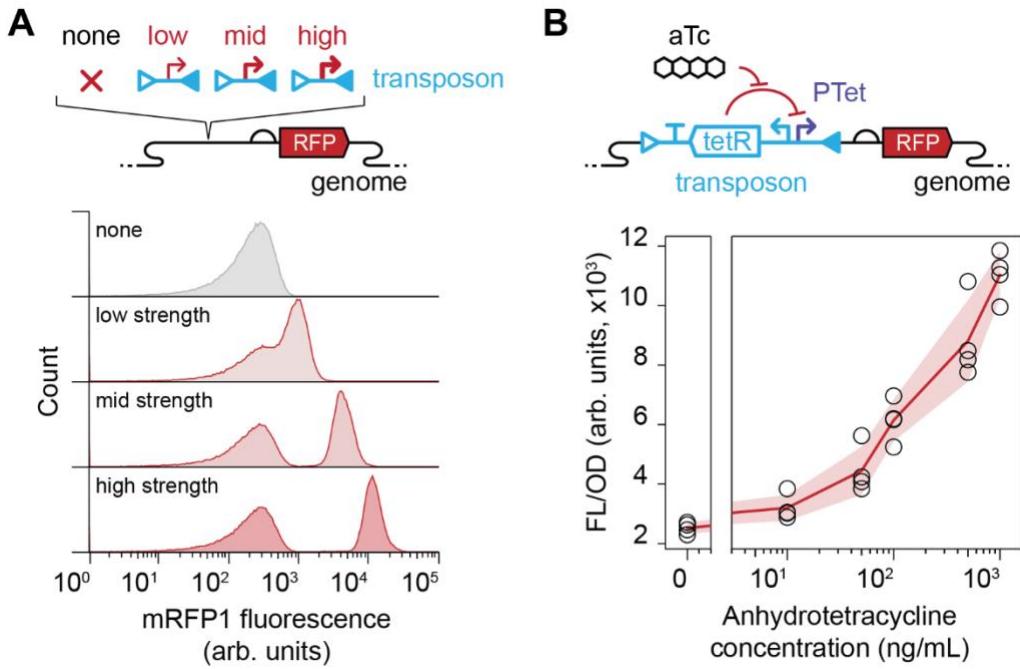

119 directions (**Figure 1B**). We reasoned we could use this strain to measure the overall
120 efficiency of editing and directionality of insertion by designing a plasmid construct (called
121 pCAST) containing a CAST system, a transposon cargo containing a strong constitutive
122 promoter facing the LE, and a crRNA to target the intergenic region between the two
123 reporter genes. The crRNA was designed to target the template strand upstream of
124 mRFP1, which we presumed would result in predominantly RE-LE insertions and
125 transcription activation of mRFP1. Although transposon insertion directionality is biased
126 toward the RE-LE direction, we also expected low frequency of insertion in the LE-RE
127 direction, resulting in sfGFP fluorescence, and low frequency of no insertion, resulting in
128 no fluorescence (**Figure 1B**). The pCAST plasmid was transformed into the sfGFP-
129 mRFP1 reporter strain followed by an incubation period of 24 hr at 30°C in liquid culture,
130 a method previously shown to result in high transposition efficiencies.³³ Fluorescence was
131 then quantified using single-cell flow cytometry analysis. The fluorescence of the post-
132 incubation bacterial population showed both high transposition and transcription
133 activation of mRFP1 (**Figure 1C, Supplementary Figure 1**). Specifically, the fraction of
134 the population with observed fluorescence was 74.8%, 96.1% of which were from mRFP1
135 positive cells for a final mRFP1 activation efficiency of 71.9% (**Figure 1D**). We observed
136 a relatively low frequency of no insertion events (24.6%) and a significantly lower rate of
137 LE-RE insertions (2.95%) in agreement with the prior studies.³³

138 Next, we sought to determine the distance between the crRNA binding site and the
139 transposon insertion in transcriptionally activated mRFP1 cells. To do this, we isolated
140 mRFP1 positive cells using fluorescence-activated cell sorting (FACS) and performed
141 next-generation sequencing of the sfGFP-mRFP1 genomic locus (**Supplementary**
142 **Figure 2**). This analysis revealed that the majority (68.4%) of insertions were located 48
143 bp downstream of the 3' end of the crRNA binding site, in agreement with insertion
144 distances observed in prior literature.^{33,34} Additionally, 26.6% of the remaining insertions
145 occurred at low frequency within a 5 bp window centered on 48 bp.

146 Having confirmed that our CAST activation strategy yielded high levels of
147 transcriptional activation, we were interested in determining possible effects on long-term
148 activation that resulted from the binding of the CAST proteins. Specifically, prior work has
149 shown that binding by the CAST complex can have repressive effects on nearby genes,²⁸

150 possibly affecting the activation achieved through our strategy if the CAST complex
151 remains in the cell. Likewise, we reasoned that the binding of the TnsA and TnsB proteins
152 to the transposon ends²⁸ could be blocking polymerase read-through into the gene of
153 interest, reducing activation levels. To investigate this, we transformed an empty vector
154 with no CAST complex, an mRFP1 targeting pCAST plasmid, and a non-targeting pCAST
155 plasmid into sfGFP-mRFP1 reporter strains already containing a RE-LE-oriented
156 transposon (**Supplementary Figure 3**). Fluorescence measurement showed modest
157 reductions in mRFP1 expression levels only in the presence of a non-targeting pCAST,
158 suggesting that the presence of the CAST complex or TnsB was not dramatically reducing
159 transcription readthrough.

160


161

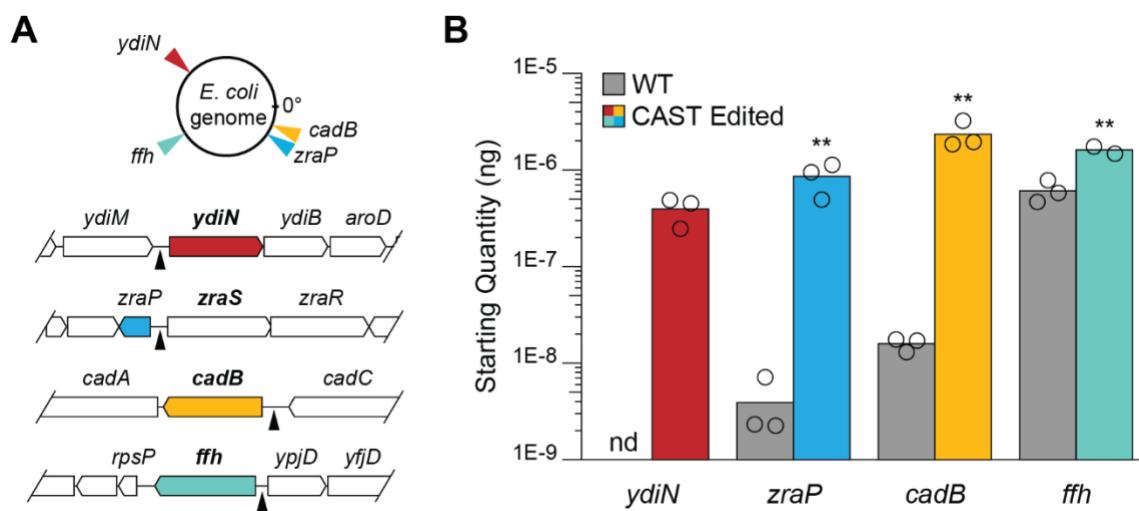
162 **Figure 1. CAST can activate transcription through the insertion of transcriptional promoters. (A)**
163 Schematic of the mechanism of transcriptional activation by CAST editing through promoter insertion. The
164 pCAST plasmid encodes an operon with the crRNA, the CAST complex, and the transposon with a promoter
165 cargo and the left end (LE) and right end (RE) elements. The crRNA is designed to target the CAST complex

166 upstream of a gene of interest (GOI). Insertion of the transposon in the right-to-left end (RE-LE) direction
167 results in transcriptional activation of the GOI. **(B)** Schematic of the engineered reporter strain and
168 outcomes of CAST editing. An *E. coli* strain was engineered to contain sfGFP (GFP) and mRFP1 (RFP)
169 reporters lacking promoter elements. CAST editing with a transposon containing a promoter cargo results
170 in cells with mRFP1 fluorescence (R+) if the transposon is inserted in the right-to-left orientation, sfGFP
171 fluorescence (G+) if the transposon is inserted in the left-to-right orientation, and no fluorescence (NF) if
172 editing does not occur. **(C)** Single-cell fluorescence analysis of *E. coli* cells edited with CAST. Flow
173 cytometry data showing the single-cell sfGFP and mRFP1 fluorescence of *E. coli* cells transformed with a
174 non-targeting (left panel) and targeting (right panel) pCAST plasmid. Red lines indicate thresholds used to
175 determine NF, G+, and R+ cell populations. Data are representatives of $n = 3$, with replicates shown in
176 **Supplementary Fig. 1**. **(D)** CAST editing outcomes of *E. coli* cells transformed with a non-targeting and
177 targeting pCAST plasmid. Populations are labeled as in (B), bars represent averages of $n = 3$ replicates.
178 Statistical significance between populations is indicated by asterisks (Student's T-Test, $p < 0.0005$).
179

180 **Using the CAST system to achieve tunable transcription activation.**

181 After demonstrating that CAST can be used to achieve transcription activation, we
182 next sought to tune the level of activation. To do so, we exchanged the promoter encoded
183 in the transposon cargo for different strength constitutive promoter elements and
184 performed CAST editing to activate mRFP1 expression. As expected, the fluorescence
185 intensity of the mRFP1 positive cells decreased as the strength of the promoter
186 decreased (**Figure 2A, Supplementary Figure 4**). An alternative strategy to achieve
187 tunable control of gene activation is with inducible promoters. To test this, we exchanged
188 the promoter within the transposon for the anhydrotetracycline (aTc)-inducible promoter
189 (PTet) and its cognate repressor, *tetR*. This plasmid was then transformed into the dual
190 reporter strain, and a population containing the transposon inserted in the RE-LE
191 orientation was isolated. Induction of the promoter with increasing concentrations of aTc
192 showed increasing mRFP1 fluorescence intensity, showcasing the ability to tune the level
193 of activation achieved by the promoter (**Figure 2B, Supplementary Figure 5**). Taken
194 together, these results show the potential use of the CAST system as a targeted and
195 tunable transcription activator via the insertion of promoter elements.

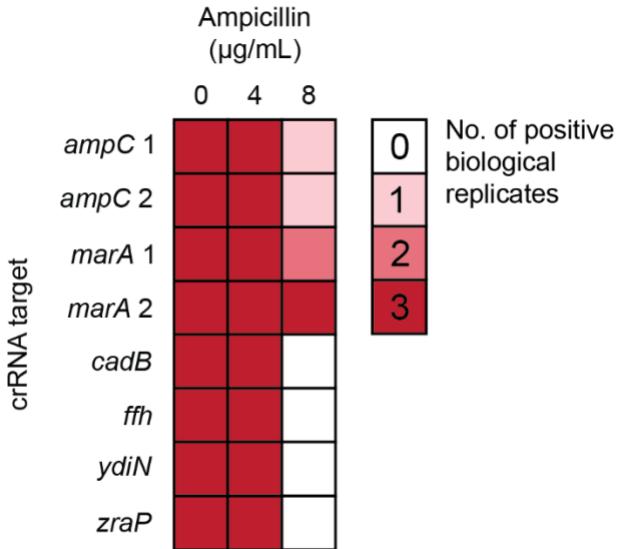
196


197 **Figure 2. Transcription activation can be tuned by exchanging transposon cargo.** (A) Schematic of
198 different strength constitutive promoters transposed upstream of mRFP1 using pCAST (top). Flow
199 cytometry data showing single-cell mRFP1 fluorescence of *E. coli* edited with cargos containing high,
200 medium, or low strength constitutive promoters (bottom). Data are representatives of $n = 3$, with the other
201 replicates shown in **Supplementary Fig. 4**. (B) Schematic of the PTet inducible promoter system inserted
202 via CAST (top). Bulk fluorescence analysis of *E. coli* cells edited with a transposon containing an inducible
203 promoter cargo (bottom). Data shows fluorescence characterization (measured in units of fluorescence
204 [FL]/optical density [OD] at 600 nm) of mRFP1 observed at varying anhydrotetracycline (aTc)
205 concentrations (bottom). Red line is the average and shading indicates the standard deviation of $n = 4$
206 biological replicates.

207

208 Activating transcription of endogenous genes via CAST.

209 Having shown transcriptional activation in our reporter strain, our next aim was to
210 test the system within a wild-type (WT) strain for activation of endogenous genes. To do
211 so, we selected four genes dispersed across the *E. coli* MG1655 genome with varying
212 genomic contexts and basal expression levels; *ydiN*, a putative transporter, *zraP*, a
213 signaling pathway modulator, *cadB*, a lysine:cadaverine antiporter, and *ffh*, the protein
214 component of a signal recognition particle (**Figure 3A**).³⁵ A library of pCAST plasmids
215 containing a strong constitutive promoter facing the LE direction as a transposon cargo


216 and a crRNA targeting the template strand upstream of each gene was designed and
217 transformed into *E. coli* cells. Then, a PCR screen was conducted to isolate edited strains
218 with transposons in the RE-LE direction. To quantify the expression levels of the targeted
219 genes across these strains, reverse transcription quantitative PCR (RT-qPCR) was
220 performed. This analysis showed that, for all four targeted genes, a significant increase
221 in the expression levels between the WT and the CAST-edited strains was observed,
222 suggesting robust activation of endogenous genes can be achieved with our CAST
223 activation strategy (**Figure 3B**). Interestingly, the activated transcription level achieved in
224 the CAST-edited strains was relatively comparable across the different genes, compared
225 to the greater variance seen in their basal expression levels in the WT strain. This leads
226 to lower fold activations in the case of genes with higher basal expression, such as *ffh*,
227 and suggests that the level of expression in CAST-edited strains is primarily determined
228 by the strength of the promoter cargo inserted. Overall, the results demonstrate the ability
229 to robustly activate the transcription of endogenous genes through our CAST-based
230 promoter insertion strategy.

231
232 **Figure 3. Transcriptional activation of endogenous genes in *E. coli*.** (A) Location of targeted genes in
233 the *E. coli* K-12 substr. MG1655 genome (top). Genetic context of targeted genes (bottom). Black triangles
234 indicate sites targeted for transposition. (B) Starting mRNA quantity of targeted genes with (CAST Edited)
235 and without (WT) insertion of a strong constitutive promoter cargo by the pCAST system, as measured via
236 RT-qPCR. Starting quantities were determined using a relative standard curve. Bars represent averages of
237 $n = 3$ replicates, except for the *ffh* CAST Edited condition that is from $n = 2$ replicates. Statistical significance
238 between conditions is indicated by asterisks (Student's T-Test, $p < 0.05$). nd = none detected.

239 **Demonstrating that CAST can selectively activate an ampicillin resistant**
240 **phenotype.**

241 Having demonstrated activation of endogenous genes, we next sought to
242 investigate if we could selectively induce specific phenotypes using CAST activation. To
243 test this, we sought to activate the *ampC* and *marA* genes that have previously been
244 shown to confer increased resistance to the antibiotic ampicillin when overexpressed.^{1,3}
245 As a negative control, we also activated four endogenous genes (*ydiN*, *zraP*, *cadB*, and
246 *ffh*) that have no reported effect on ampicillin resistance. pCAST plasmids were designed
247 with the PTet inducible promoter as a transposon cargo, transformed into WT *E. coli*, and
248 incubated at 30°C in liquid culture for 24 hours to allow for transposition. For the *ampC*
249 and *marA* genes, two different crRNA were designed that targeted distinct positions
250 upstream of each gene. Individual colonies were then grown overnight in liquid culture
251 and sub-cultured the next day, followed by PCR analysis to confirm the presence of the
252 intended RE-LE edits in the population (**Supplementary Figure 6**). We note that some
253 of these populations were also detected to contain LE-RE edits and no edits by PCR
254 analysis, which we reasoned would be a small fraction of the population based on our
255 earlier results (**Figure 1C-D**). Finally, the cells were spotted on plates containing or
256 lacking anhydrotetracycline (aTc) to induce expression of the targeted genes as well as
257 varying concentrations of ampicillin to test for growth. From this analysis, we observed
258 that cells where *ampC* and *marA* were targeted by CAST had an enhanced ability to grow
259 at higher concentrations of ampicillin (8 µg/mL) under the induced condition compared to
260 the negative control genes or the uninduced conditions (**Figure 4, Supplementary**
261 **Figure 7**). This was true for both crRNAs used for *ampC* and *marA*, suggesting that
262 precise targeting upstream of a gene of interest was not necessary for its activation.
263 Overall, the results show that CAST can induce novel phenotypes through activation of
264 endogenous genes.

265

266 **Figure 4. Gain of function via CAST transcriptional activation.** The number of positive biological
267 replicates in which growth was observed for different *crRNA* designs under variable ampicillin
268 concentrations. Full data is shown in **Supplementary Fig. 7**. For each biological replicate, three technical
269 replicates were performed. For a biological replicate to be considered positive, growth had to be observed
270 in >2 technical replicates; otherwise, they were scored as having no growth.

271

272 **Discussion.**

273 In this work, we demonstrated the use of the *V. cholerae* CAST system for
274 transcriptional activation. We first showed activation of an mRFP1 target gene within a
275 population and then tuned the level of expression using variable strength and inducible
276 promoter elements. We reported high level of editing and activation efficiency, which we
277 believe could be further increased through further optimizing of experimental conditions.³³
278 Our work also showed robust activation of endogenous *E. coli* genes through the insertion
279 of strong constitutive promoters; Because the inserted promoter was stronger than the
280 native promoters, the genes chosen all showed a significant increase in expression.
281 Finally, we activated the *ampC* and *marA* genes in a WT *E. coli* to induce an ampicillin-
282 resistant phenotype, showcasing the potential for CAST activation to be used as a method
283 for studying genotype-phenotype interactions. Overall, we present a novel CRISPR-
284 based strategy for targeted gene activation.

285 Within the field of microbiology and synthetic biology, the perturbation of
286 endogenous gene expression is a broadly useful capability. We anticipate that the CAST
287 system will be particularly well-suited for genome-wide expression perturbation studies,
288 as now both knock-outs,^{29–31} and knock-ups of gene expression through the CAST
289 system are shown to be possible. Genome-wide, bidirectional studies have been highly
290 successful in eukaryotes for uncovering gene function through both the repression and
291 overexpression of individual genes.¹¹ The CAST system is well-suited to perform similar
292 screens in bacteria due to several features. For one, the ability to use the same
293 transposon for different insertion sites means only the crRNA needs to be varied, making
294 it more suitable for library generation through pooled DNA synthesis. Furthermore, the *V.*
295 *cholerae* CAST has a highly promiscuous protospacer-adjacent motif (PAM) preference,
296 with a general bias for a 5’–CN–3’ PAM but high flexibility to other sequences, expanding
297 the possible targetable sites across a genome.³⁶ These characteristics distinguish the
298 CAST system from other CRISPR-based technologies, making it an attractive activation
299 strategy for high-throughput gene editing.

300 While this work has focused on studies in *E. coli*, we anticipate it is possible to
301 expand this method to other microbes. For example, the VchCAST system has been
302 adapted for use in both gram-negative and -positive species, including biotechnologically
303 relevant species such as *Lactococcus lactis*³⁷, *Corynebacterium glutamicum*, and *Bacillus*
304 *subtilis*.³⁸ This CAST system has also been used for genome editing of non-model species
305 within soil and gut microbial communities.³¹ Additionally, bioinformatic analysis of
306 genomes has uncovered a diversity of CAST systems that could be adapted for our
307 approach. This includes the commonly used *Scytomema hofmanni* type V-K CAST,³⁹ a
308 large variety of type I-F CAST systems,^{34,40,41} as well as some type I-B and I-D CAST
309 systems.^{42–44} These and other systems can provide alternatives with different PAM
310 preferences, transposition mechanisms, and insertion behaviors, expanding the
311 possibilities for applying CAST systems as transcriptional perturbators.

312 In summary, we present a novel approach for gene activation that leverages the
313 unique RNA-guided transposition of CAST systems. We anticipate that our newly
314 described tool is likely to assist efforts to both fundamentally understand and engineer
315 microbes in the coming years.

316 **Materials and Methods.**

317 **Plasmid assembly and strain engineering**

318 All plasmids and strains used in this study can be found in **Supplementary Tables 1** and
319 **2**, respectively, and example annotated plasmids and strains can be found in
320 **Supplementary Table 3**. Plasmids containing the CAST system were derived from
321 pSL1142 (Addgene plasmid #160730).³³ All experiments were performed in wild-type
322 (WT) *E. coli* str. K-12 substr. MG1655 or engineered derivatives. The sfGFP-mRFP1
323 reporter strain (sJEC042), and the versions of it with a promoter insert facing sfGFP
324 (sJEC050) or mRFP1 (sJEC043), were created using CRISPR-Cas9 genome editing.²²

325

326 **Genome editing using CAST transposition**

327 All crRNAs used in this study can be found in **Supplementary Table 4**. Plasmids were
328 transformed into chemically competent *E. coli* cells, plated on LB-Agar with appropriate
329 antibiotics (LB-agar-Ab), and incubated at 37°C for 24 hours. The plates were then
330 resuspended in 3 mL LB media with antibiotics (LB-Ab) and 100 µL of the suspension
331 was used to inoculate 10 mL of fresh LB-Ab. These cultures were then incubated at 30°C
332 shaking at 200-255 rpm for 24 hours. For experiments using variable strength promoters,
333 the plate suspension was used to inoculate 10 mL of fresh LB-Ab to an optical density at
334 600 nm (OD) of ~0.05 and incubated at 37°C shaking at 200-255 rpm for 24 hours. A
335 similar protocol was followed for creating the sfGFP-mRFP1 reporter strains with the PTet
336 inducible promoter transposon (sJEC057), and the WT strains with the PTet inducible
337 promoter transposon for ampicillin experiments (pJEC1258-65) or the strong constitutive
338 promoter transposon for RT-qPCR analysis (sJEC051-4). The post-incubation
339 populations were plated on LB-agar-Ab and incubated overnight at 37°C to obtain single
340 colonies. For experiments using sJEC051-4 and sJEC057, a clonal strain containing the
341 desired insert in the genome was identified by PCR and confirmed by sequencing, and
342 then used for fluorescence experiments or RT-qPCR analysis. For experiments using
343 pJEC1258-65, colonies were randomly selected and used for the ampicillin resistance
344 experiments.

345

346 **Flow cytometry measurement and analysis**

347 Flow cytometry was performed on the Sony Biotechnology SH800 Cell Sorter. A total of
348 100,000 events were measured for each biological replicate. FCS files were analyzed
349 using the FlowJo software. Each condition was gated to contain >90% of the measured
350 events, and this sub-population was used for analysis. Fluorescence compensation was
351 performed using samples containing the sfGFP-mRFP1 reporter strain (sJEC042) with a
352 non-targeting plasmid as a negative control and the sfGFP-mRFP1 reporter strain edited
353 to contain the cargo with the constitutive promoter driving either mRFP1 (sJEC043) or
354 sfGFP (sJEC050) expression as positive controls. The quadrant gates used for Fig. 1C-
355 D were manually set at 1,000 arb. units on FlowJo.

356

357 **Characterization of insertion distance by amplicon sequencing**

358 Fluorescence Assisted Cell Sorting was performed on a Sony Biotechnology SH800 Cell
359 Sorter. A total of 500,000 events per biological replicate were sorted using the gates
360 shown in **Supplementary Figure 2** into 5 mL LB. The cultures were incubated at 37°C
361 shaking at 200-255 rpm for 1 hour, followed by the addition of 15 mL LB-Ab and further
362 incubation at 37°C shaking at 200-255 rpm overnight. The Wizard Genomic DNA
363 Purification Kit (Promega) was used for genome extraction. PCR amplification of the
364 region between the left transposon end and the 5' end of mRFP1 was performed for each
365 of the replicates, column purified, and amplicon sequencing performed (Amplicon-EZ,
366 Genewiz). Primers used can be found in **Supplementary Table 5**. From this data, the
367 distance between the 3' end of the crRNA binding site and the 5' end of the transposon
368 was determined, accounting for the 5 bp duplication that results after insertion.

369

370 **Bulk fluorescence measurement and analysis**

371 Chemically competent *E. coli* were transformed with plasmids or streaked out from
372 glycerol stocks onto LB-Agar-Ab, and then incubated overnight at 37°C. For each
373 replicate, individual colonies were used to inoculate 300 µL of LB-Ab in a deep 96-well
374 plate and incubated overnight at 37°C shaking at 1,000 rpm. Subsequently, 5 µL of
375 overnight culture was used to inoculate 295 µL of fresh, pre-warmed LB-Ab which was

376 then incubated at 37°C shaking at 1,000 rpm for 4 hours. For experiments using inducible
377 promoter donors, 5 μ L of overnight culture was used to inoculate 290 μ L of fresh, pre-
378 warmed LB-Ab which was then incubated at 37°C shaking at 1,000 rpm for 4 hours. The
379 cultures were then induced by adding 5 μ L of anhydrotetracycline (Cayman Chem) to final
380 concentrations of 10, 50, 100, 500, and 1,000 ng/mL, and incubated a further 4 hours at
381 37°C shaking at 1,000 rpm.

382 For bulk fluorescence measurements, a 96 well plate with 25 μ L of culture in 75 μ L
383 of phosphate buffer saline (PBS) was used. A media-only control of 25 μ L LB and 75 μ L
384 PBS was also included. Optical density at 600 nm (OD) was measured, as was
385 fluorescence (FL) for sfGFP (485 excitation, 535 emission) and mRFP1 (560 nm
386 excitation, 590 nm emission). For analysis, the mean OD and FL of the media control was
387 subtracted from each well. The ratio of FL to OD was then measured for each well.

388

389 **Total RNA extraction**

390 *E. coli* cells were streaked out from glycerol stocks on LB-agar-Ab and incubated
391 overnight at 37°C. Colonies were used to inoculate LB-Ab and incubated overnight at
392 37°C shaking at 200-255 rpm. 10 mL of fresh, pre-warmed LB-Ab was inoculated with
393 100 μ L of overnight culture and grown at 37°C shaking at 200-255 rpm to an OD of 0.4-
394 0.6. Total RNA was extracted using the Quick RNA Miniprep Plus Kit (Zymo Research)
395 following the manufacturer's instructions for isolating large RNA species and without in-
396 column DNase treatment. Total RNA was then measured on a Qubit fluorometer
397 (Invitrogen). DNase treatment was performed using Turbo DNase (Invitrogen), treating
398 ~300 ng of total RNA with 4 U of enzyme, and incubating at 37°C for 1 hour. Reaction
399 clean-up was then performed using the Quick RNA Miniprep Plus Kit, again following the
400 manufacturer's instructions and without DNase treatment.

401

402 **Reverse transcription quantitative PCR (RT-qPCR)**

403 Total RNA samples were measured on a Qubit fluorometer and normalized to a
404 concentration of 0.5 ng/ μ L. Reverse transcription was performed by mixing 3.5 μ L of
405 water, 0.5 μ L of 2 μ M RT primer, 0.5 μ L of 10 mM dNTPs, and 2 μ L of 0.5 ng/ μ L total RNA.

406 This mixture was incubated at 65°C for 5 min followed by incubation on ice for a further 5
407 mins. A mixture of 0.5 µL 100 mM Dithiothreitol (DDT), 2 µL 5X First-Strand Buffer
408 (Invitrogen), 0.5 µL 40 U/µL RNase OUT (Invitrogen), 0.5 µL 200 U/µL SuperScript III
409 Reverse Transcriptase (Invitrogen), and the pre-mixture were combined. The reaction
410 was then incubated at 55°C for 1 hour, followed by 70°C for 15 min, and finally stored at
411 -80°C. A CFX Connect Real-Time PCR system (Bio-Rad) was used for qPCR analysis.
412 Reactions were performed using a 96 well plate with an optically clear microseal 'B' film
413 (Bio-Rad). Three technical replicate reactions were performed for each biological
414 replicate. Each reaction contained 0.5 µL of each 2 µM qPCR primer stock, 5 µL of 2X
415 Maxima SYBR Green/ROX qPCR Master Mix (Thermo Scientific), 3 µL of water, and 1 µL
416 of the RT product. To confirm digestion of DNA during the DNase treatment, qPCR
417 analysis was performed directly on the total RNA (i.e., a no-RT control). Additionally, no-
418 template control reaction was also performed using 1 µL of water in place of the RT
419 product. For each qPCR primer set, a standard curve was created using serial dilution of
420 PCR-amplified products. Reaction protocol was as follows: 50°C for 2 min, 95°C for 10
421 min, and 35 cycles of 95°C for 15 sec, 60°C for 11 min, and measurement of fluorescence.
422 Melting curve analysis was performed after amplification to confirm the absence of primer
423 dimers. RT and qPCR primers used are listed in **Supplementary Table 4**.
424 For data analysis, CFX Manager Software (Bio-Rad) was used to determine Cq values.
425 To determine the starting quantities (SQ) of each gene of interest, a standard curve was
426 used. In brief, the mean Cq of the technical replicates was determined for each dilution
427 of the gene standard. This mean was fitted to $y = mx + b$, with y being the mean Cq values
428 and x the log SQ. The formula was then used to calculate the SQ of each technical
429 replicate for the test samples, and the technical replicate SQ values were then averaged
430 to obtain a biological replicate SQ.

431

432 **Ampicillin resistance experiments**

433 For each biological replicate, individual colonies were used to inoculate 300 µL of LB-Ab
434 in a deep 96-well plate and incubated overnight at 37°C shaking at 1,000 rpm. The next
435 day, 5 µL of overnight culture was used to inoculate 295 µL of fresh, pre-warmed LB-Ab

436 and incubated at 37°C shaking at 1,000 rpm for 4 hours. The OD of each sub-culture was
437 measured as outlined in “bulk fluorescence measurement and analysis,” and found to be
438 ~0.6-0.8. A one-way ANOVA was performed on the OD values to confirm equal growth
439 across the conditions. Samples were also taken from each sub-culture for the PCR
440 analysis in **Supplementary Figure 6**. Each biological replicate was then spotted 3 times,
441 for technical replicates, on LB-agar-Ab plates with 0 µg/mL, 4 µg/mL, or 8 µg/mL ampicillin
442 (A9518, Sigma-Aldrich) and with or without 1000 ng/mL anhydrotetracycline, and then
443 incubated for 48 hr at 37°C. For each biological replicate, growth on at least two out of
444 the three technical replicates was counted as a positive hit.

445

446 **Supporting Information**

447 Additional experimental details and measurements; and plasmids, strains, and primers
448 used in this study (DOCX)

449

450 **Author Contribution**

451 A.G. and J.C designed the study and experiments, and prepared the manuscript. A.G.
452 collected all experimental data.

453

454 **Conflict of Interest**

455 The authors declare no competing interests.

456

457 **Acknowledgements.**

458 The authors acknowledge the Chappell Lab members for helpful discussion. The authors
459 also wish to acknowledge Daniel J. Haller for his assistance in the design and cloning of
460 sJEC057, as well as Biki B. Kundu for his expertise in CRISPR-Cas9 editing that aided
461 the creation of the reporter strains used in this study. This material is based on work
462 supported by the National Science Foundation (grant no. # 2237512).

463

464

465 **References.**

466 (1) Palmer, A. C.; Chait, R.; Kishony, R. Nonoptimal Gene Expression Creates Latent Potential for
467 Antibiotic Resistance. *Molecular Biology and Evolution* **2018**.
468 <https://doi.org/10.1093/molbev/msy163>.

469 (2) Soo, V. W. C.; Hanson-Manful, P.; Patrick, W. M. Artificial Gene Amplification Reveals an Abundance
470 of Promiscuous Resistance Determinants in *Escherichia Coli*. *Proceedings of the National Academy
471 of Sciences* **2011**, *108* (4), 1484–1489. <https://doi.org/10.1073/pnas.1012108108>.

472 (3) Suarez, S. A.; Martiny, A. C. Gene Amplification Uncovers Large Previously Unrecognized Cryptic
473 Antibiotic Resistance Potential in *E. Coli*. *Microbiology Spectrum* **2021**.
474 <https://doi.org/10.1128/Spectrum.00289-21>.

475 (4) Coward, C.; Dharmalingham, G.; Abdulle, O.; Avis, T.; Beisken, S.; Breidenstein, E.; Carli, N.;
476 Figueiredo, L.; Jones, D.; Khan, N.; Malara, S.; Martins, J.; Nagalingam, N.; Turner, K.; Wain, J.;
477 Williams, D.; Powell, D.; Mason, C. High-Density Transposon Libraries Utilising Outward-Oriented
478 Promoters Identify Mechanisms of Action and Resistance to Antimicrobials. *FEMS Microbiology
479 Letters* **2020**, *367* (22), fnaa185. <https://doi.org/10.1093/femsle/fnna185>.

480 (5) Santiago, M.; Lee, W.; Fayad, A. A.; Coe, K. A.; Rajagopal, M.; Do, T.; Hennessen, F.; Srisuknimit,
481 V.; Müller, R.; Meredith, T. C.; Walker, S. Genome-Wide Mutant Profiling Predicts the Mechanism of
482 a Lipid II Binding Antibiotic. *Nat Chem Biol* **2018**, *14* (6), 601–608. <https://doi.org/10.1038/s41589-018-0041-4>.

483 (6) Chen, H.; Wilson, J.; Ercanbrack, C.; Smith, H.; Gan, Q.; Fan, C. Genome-Wide Screening of
484 Oxidizing Agent Resistance Genes in *Escherichia Coli*. *Antioxidants* **2021**, *10* (6), 861.
485 <https://doi.org/10.3390/antiox10060861>.

486 (7) Hoegler, K. J.; Hecht, M. H. Artificial Gene Amplification in *Escherichia Coli* Reveals Numerous
487 Determinants for Resistance to Metal Toxicity. *J Mol Evol* **2018**, *86* (2), 103–110.
488 <https://doi.org/10.1007/s00239-018-9830-3>.

489 (8) Mutualik, V. K.; Novichkov, P. S.; Price, M. N.; Owens, T. K.; Callaghan, M.; Carim, S.; Deutschbauer,
490 A. M.; Arkin, A. P. Dual-Barcoded Shotgun Expression Library Sequencing for High-Throughput
491 Characterization of Functional Traits in Bacteria. *Nat Commun* **2019**, *10* (1), 308.
492 <https://doi.org/10.1038/s41467-018-08177-8>.

493 (9) Patrick, W. M.; Quandt, E. M.; Swartzlander, D. B.; Matsumura, I. Multicopy Suppression Underpins
494 Metabolic Evolvability. *Molecular Biology and Evolution* **2007**, *24* (12), 2716–2722.
495 <https://doi.org/10.1093/molbev/msm204>.

496 (10) Chen, H.; Venkat, S.; Wilson, J.; McGuire, P.; Chang, A. L.; Gan, Q.; Fan, C. Genome-Wide
497 Quantification of the Effect of Gene Overexpression on *Escherichia Coli* Growth. *Genes* **2018**, *9* (8),
498 414. <https://doi.org/10.3390/genes9080414>.

499 (11) Kampmann, M. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and
500 Medicine. *ACS Chem. Biol.* **2018**, *13* (2), 406–416. <https://doi.org/10.1021/acschembio.7b00657>.

501 (12) Li, Y.; Lin, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Tang, Y.; Chen, T.; Zhao, X. Metabolic Engineering of
502 *Escherichia Coli* Using Crispr–Cas9 Mediated Genome Editing. *Metabolic Engineering* **2015**, *31*,
503 13–21. <https://doi.org/10.1016/j.ymben.2015.06.006>.

504 (13) Zhang, M. M.; Wong, F. T.; Wang, Y.; Luo, S.; Lim, Y. H.; Heng, E.; Yeo, W. L.; Cobb, R. E.; Enghiad,
505 B.; Ang, E. L.; Zhao, H. CRISPR–Cas9 Strategy for Activation of Silent *Streptomyces* Biosynthetic
506 Gene Clusters. *Nat. Chem. Biol.* **2017**, *13* (6), 607–609. <https://doi.org/10.1038/nchembio.2341>.

507 (14) Liu, Y.; Ren, C.-Y.; Wei, W.-P.; You, D.; Yin, B.-C.; Ye, B.-C. A CRISPR–Cas9 Strategy for Activating
508 the *Saccharopolyspora Erythraea* Erythromycin Biosynthetic Gene Cluster with Knock-in
509 Bidirectional Promoters. *ACS Synth. Biol.* **2019**, *8* (5), 1134–1143.
510 <https://doi.org/10.1021/acssynbio.9b00024>.

511 (15) Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L. A. Programmable
512 Repression and Activation of Bacterial Gene Expression Using an Engineered CRISPR-Cas
513 System. *Nucleic Acids Research* **2013**, *41* (15), 7429–7437. <https://doi.org/10.1093/nar/gkt520>.

514 (16) Dong, C.; Fontana, J.; Patel, A.; Carothers, J. M.; Zalatan, J. G. Synthetic CRISPR-Cas Gene
515 Activators for Transcriptional Reprogramming in Bacteria. *Nat Commun* **2018**, *9* (1), 2489.
516 <https://doi.org/10.1038/s41467-018-04901-6>.

517

518 (17) Ho, H.-I.; Fang, J. R.; Cheung, J.; Wang, H. H. Programmable CRISPR-Cas Transcriptional
519 Activation in Bacteria. *Mol Syst Biol* **2020**, *16* (7), e9427. <https://doi.org/10.15252/msb.20199427>.

520 (18) Villegas Kcam, M. C.; Tsong, A. J.; Chappell, J. Rational Engineering of a Modular Bacterial
521 CRISPR–Cas Activation Platform with Expanded Target Range. *Nucleic Acids Research* **2021**,
522 gkab211. <https://doi.org/10.1093/nar/gkab211>.

523 (19) Kiattisewee, C.; Karanjia, A. V.; Legut, M.; Daniloski, Z.; Koplik, S. E.; Nelson, J.; Kleinstiver, B. P.;
524 Sanjana, N. E.; Carothers, J. M.; Zalatan, J. G. Expanding the Scope of Bacterial CRISPR
525 Activation with PAM-Flexible dCas9 Variants. *ACS Synthetic Biology* **2022**.
526 <https://doi.org/10.1021/acssynbio.2c00405>.

527 (20) Lu, Z.; Yang, S.; Yuan, X.; Shi, Y.; Ouyang, L.; Jiang, S.; Yi, L.; Zhang, G. CRISPR-Assisted Multi-
528 Dimensional Regulation for Fine-Tuning Gene Expression in *Bacillus Subtilis*. *Nucleic Acids Res*
529 **2019**, *47* (7), e40. <https://doi.org/10.1093/nar/gkz072>.

530 (21) Otopal, P. B.; Erickson, K. E.; Escalas-Bordoy, A.; Chatterjee, A. CRISPR Perturbation of Gene
531 Expression Alters Bacterial Fitness under Stress and Reveals Underlying Epistatic Constraints. *ACS
532 Synth. Biol.* **2017**, *6* (1), 94–107. <https://doi.org/10.1021/acssynbio.6b00050>.

533 (22) Jiang, Y.; Chen, B.; Duan, C.; Sun, B.; Yang, J.; Yang, S. Multigene Editing in the *Escherichia Coli*
534 Genome via the CRISPR-Cas9 System. *Appl. Environ. Microbiol.* **2015**, *81* (7), 2506–2514.
535 <https://doi.org/10.1128/AEM.04023-14>.

536 (23) Call, S. N.; Andrews, L. B. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria.
537 *Front. Genome Ed.* **2022**, *4*, 892304. <https://doi.org/10.3389/fgeed.2022.892304>.

538 (24) Fontana, J.; Dong, C.; Kiattisewee, C.; Chavali, V. P.; Tickman, B. I.; Carothers, J. M.; Zalatan, J. G.
539 Effective CRISPRa-Mediated Control of Gene Expression in Bacteria Must Overcome Strict Target
540 Site Requirements. *Nat Commun* **2020**, *11* (1), 1618. <https://doi.org/10.1038/s41467-020-15454-y>.

541 (25) Kiattisewee, C.; Dong, C.; Fontana, J.; Sugianto, W.; Peralta-Yahya, P.; Carothers, J. M.; Zalatan, J.
542 G. Portable Bacterial Crispr Transcriptional Activation Enables Metabolic Engineering in
543 *Pseudomonas Putida*. *Metabolic Engineering* **2021**, *66*, 283–295.
544 <https://doi.org/10.1016/j.ymben.2021.04.002>.

545 (26) Liu, Y.; Wan, X.; Wang, B. Engineered Crispra Enables Programmable Eukaryote-Like Gene
546 Activation in Bacteria. *Nat Commun* **2019**, *10* (1), 3693. <https://doi.org/10.1038/s41467-019-11479-0>.

548 (27) Klonpe, S. E.; Vo, P. L. H.; Halpin-Healy, T. S.; Sternberg, S. H. Transposon-Encoded CRISPR–Cas
549 Systems Direct RNA-Guided DNA Integration. *Nature* **2019**, *571* (7764), 219–225.
550 <https://doi.org/10.1038/s41586-019-1323-z>.

551 (28) Hoffmann, F. T.; Kim, M.; Beh, L. Y.; Wang, J.; Vo, P. L. H.; Gelsinger, D. R.; George, J. T.; Acree, C.;
552 Mohabir, J. T.; Fernández, I. S.; Sternberg, S. H. Selective TnsC Recruitment Enhances the Fidelity
553 of RNA-Guided Transposition. *Nature* **2022**, *609* (7926), 384–393. <https://doi.org/10.1038/s41586-022-05059-4>.

555 (29) Aliu, E.; Lee, K.; Wang, K. CRISPR RNA-Guided Integrase Enables High-Efficiency Targeted
556 Genome Engineering in *< i>Agrobacterium tumefaciens</i>*. *Plant Biotechnology Journal* **2022**, *20*
557 (10), 1916–1927. <https://doi.org/10.1111/pbi.13872>.

558 (30) Zhang, Y.; Yang, J.; Yang, S.; Zhang, J.; Chen, J.; Tao, R.; Jiang, Y.; Yang, J.; Yang, S.
559 Programming Cells by Multicopy Chromosomal Integration Using CRISPR-Associated
560 Transposases. *The CRISPR Journal* **2021**, *4* (3), 350–359. <https://doi.org/10.1089/crispr.2021.0018>.

561 (31) Rubin, B. E.; Diamond, S.; Cress, B. F.; Crits-Christoph, A.; Lou, Y. C.; Borges, A. L.; Shivram, H.;
562 He, C.; Xu, M.; Zhou, Z.; Smith, S. J.; Rovinsky, R.; Smock, D. C. J.; Tang, K.; Owens, T. K.;
563 Krishnappa, N.; Sachdeva, R.; Barrangou, R.; Deutschbauer, A. M.; Banfield, J. F.; Doudna, J. A.
564 Species- and Site-Specific Genome Editing in Complex Bacterial Communities. *Nat Microbiol* **2021**,
565 *7* (1), 34–47. <https://doi.org/10.1038/s41564-021-01014-7>.

566 (32) Zhang, Y.; Sun, X.; Wang, Q.; Xu, J.; Dong, F.; Yang, S.; Yang, J.; Zhang, Z.; Qian, Y.; Chen, J.;
567 Zhang, J.; Liu, Y.; Tao, R.; Jiang, Y.; Yang, J.; Yang, S. Multicopy Chromosomal Integration Using
568 CRISPR-Associated Transposases. *ACS Synth. Biol.* **2020**, *9* (8), 1998–2008.
569 <https://doi.org/10.1021/acssynbio.0c00073>.

570 (33) Vo, P. L. H.; Ronda, C.; Klonpe, S. E.; Chen, E. E.; Acree, C.; Wang, H. H.; Sternberg, S. H.
571 CRISPR RNA-Guided Integrases for High-Efficiency, Multiplexed Bacterial Genome Engineering.
572 *Nat Biotechnol* **2020**. <https://doi.org/10.1038/s41587-020-00745-y>.

573 (34) Klompe, S. E.; Jaber, N.; Beh, L. Y.; Mohabir, J. T.; Bernheim, A.; Sternberg, S. H. Evolutionary and
574 Mechanistic Diversity of Type I-F Crispr-Associated Transposons. *Molecular Cell* **2022**, 82 (3), 616-
575 628.e5. <https://doi.org/10.1016/j.molcel.2021.12.021>.

576 (35) Keseler, I. M.; Gama-Castro, S.; Mackie, A.; Billington, R.; Bonavides-Martínez, C.; Caspi, R.;
577 Kothari, A.; Krummenacker, M.; Midford, P. E.; Muñiz-Rascado, L.; Ong, W. K.; Paley, S.; Santos-
578 Zavaleta, A.; Subhraveti, P.; Tierrafría, V. H.; Wolfe, A. J.; Collado-Vides, J.; Paulsen, I. T.; Karp, P.
579 D. The EcoCyc Database in 2021. *Front Microbiol* **2021**, 12, 711077.
580 <https://doi.org/10.3389/fmicb.2021.711077>.

581 (36) Wimmer, F.; Mougiakos, I.; Englert, F.; Beisel, C. L. Rapid Cell-Free Characterization of Multi-
582 Subunit Crispr Effectors and Transposons. *Molecular Cell* **2022**, 82 (6), 1210-1224.e6.
583 <https://doi.org/10.1016/j.molcel.2022.01.026>.

584 (37) Pechenov, P. Y.; Garagulya, D. A.; Stanovov, D. S.; Letarov, A. V. New Effective Method of
585 Lactococcus Genome Editing Using Guide RNA-Directed Transposition. *IJMS* **2022**, 23 (22), 13978.
586 <https://doi.org/10.3390/ijms232213978>.

587 (38) Cleto, S.; Jensen, J. V.; Wendisch, V. F.; Lu, T. K. *Corynebacterium Glutamicum* Metabolic
588 Engineering with CRISPR Interference (CRISPRi). *ACS Synth. Biol.* **2016**, 5 (5), 375-385.
589 <https://doi.org/10.1021/acssynbio.5b00216>.

590 (39) Strecker, J.; Ladha, A.; Gardner, Z.; Schmid-Burgk, J. L.; Makarova, K. S.; Koonin, E. V.; Zhang, F.
591 RNA-Guided DNA Insertion with CRISPR-Associated Transposases. *Science* **2019**, 365 (6448), 48-
592 53. <https://doi.org/10.1126/science.aax9181>.

593 (40) Roberts, A.; Nethery, M. A.; Barrangou, R. Functional Characterization of Diverse Type I-F Crispr-
594 Associated Transposons. *Nucleic Acids Research* **2022**, 50 (20), 11670-11681.
595 <https://doi.org/10.1093/nar/gkac985>.

596 (41) Yang, S.; Zhang, Y.; Xu, J.; Zhang, J.; Zhang, J.; Yang, J.; Jiang, Y.; Yang, S. Orthogonal CRISPR-
597 Associated Transposases for Parallel and Multiplexed Chromosomal Integration. *Nucleic Acids
598 Research* **2021**, No. gkab752. <https://doi.org/10.1093/nar/gkab752>.

599 (42) Wang, S.; Gabel, C.; Siddique, R.; Klose, T.; Chang, L. Molecular Mechanism for Tn7-Like
600 Transposon Recruitment by a Type I-B Crispr Effector. *Cell* **2023**.
601 <https://doi.org/10.1016/j.cell.2023.07.010>.

602 (43) Hsieh, S.-C.; Peters, J. E. Discovery and Characterization of Novel Type I-D CRISPR-Guided
603 Transposons Identified Among Diverse Tn7-Like Elements in Cyanobacteria. *Nucleic Acids
604 Research* **2023**, 51 (2), 765-782. <https://doi.org/10.1093/nar/gkac1216>.

605 (44) Faure, G.; Saito, M.; Benler, S.; Peng, I.; Wolf, Y. I.; Strecker, J.; Altae-Tran, H.; Neumann, E.; Li, D.;
606 Makarova, K. S.; Macrae, R. K.; Koonin, E. V.; Zhang, F. Modularity and Diversity of Target
607 Selectors in Tn7 Transposons. *Molecular Cell* **2023**, 83 (12), 2122-2136.e10.
608 <https://doi.org/10.1016/j.molcel.2023.05.013>.

609