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ABSTRACT9

The vast majority of pathogen phylogenetic studies do not consider the possibility of multiple merger10

events being present, where a single node of the tree leads to more than two descendent branches.11

These events are however likely to occur when studying a relatively small population or if there is12

high variability in the reproductive chances. Here we consider the problem of detecting the presence of13

multiple mergers in the context of dating a phylogeny, that is determining the date of each of the nodes.14

We use the Lambda-coalescent theory as a modelling framework and show how Bayesian inference can15

be efficiently performed using a Billera-Holmes-Vogtmann space embedding and a customised Markov16

Chain Monte Carlo sampling scheme. We applied this new analysis methodology to a large number17

of simulated datasets to show that it is possible to infer if and when multiple merger events occurred,18

and that the phylogenetic dating is improved as a result of taking this information into account. We19

also analysed real datasets of Vibrio cholerae and Mycobacterium tuberculosis to demonstrate the20

relevance of our approach to real pathogen evolutionary epidemiology. We have implemented our new21

methodology in a R package which is freely available at https://github.com/dhelekal/MMCTime.22
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INTRODUCTION23

Dated phylogenies have risen to prominence in many research areas of the life sciences, from the study24

of evolutionary histories of higher organisms, genomic epidemiology of infectious disease, through25

to understanding diversity of microbial organisms. Most existing approaches to reconstructing and26

analysing dated phylogenies are restricted to binary trees, where each internal node has exactly two27

descendent branches. Indeed, Kingman’s coalescent (Kingman 1982) on a continuous real time scale28

(Drummond et al. 2002) is the most popular framework for modelling dated phylogenies of measurably29

evolving populations (Drummond et al. 2003; Biek et al. 2015), and in this model only two lineages30

may merge into the same ancestor at once. However, this model is only applicable if both the sample31

size and typical family sizes are small in comparison to the effective population size, which can be32

orders of magnitude smaller than the census population size for example due to heterogeneity of the33

reproduction success (Charlesworth 2009).34

In contrast with the standard Kingman’s coalescent, Lambda-coalescent models, also known as35

multiple merger coalescents, can be used to describe dated phylogenies where more than two36

lineages may coalesce into the same ancestor at once (Pitman 1999; Sagitov 1999; Donnelly and37

Kurtz 1999). Multiple merger events can be the result of various biological phenomena of interest,38

such as populations undergoing rapid adaptation (Neher and Hallatschek 2013; Desai et al. 2013),39

superspreading (Hoscheit and Pybus 2019; Lemieux et al. 2020; Gómez-Carballa et al. 2021) or some40

other form of sweepstakes reproduction (Menardo et al. 2021; Árnason et al. 2023). In particular,41

the Beta-coalescent (Schweinsberg 2003) is a specific type of Lambda-coalescent that has been used to42

explain the shallow genealogies observed in cod (Birkner et al. 2013), to study pathogen superspreading43

(Hoscheit and Pybus 2019) and to characterise Mycobacterium tuberculosis outbreak genealogies44

(Menardo et al. 2021).45

Let us take as our starting point an unrooted, undated tree produced by a maximum likelihood tree46

reconstruction software such as RAxML (Stamatakis 2014), IQ-TREE (Minh et al. 2020) or PhyML47

(Guindon et al. 2010). Such a tree may contain polytomies, where a node leads to more than two48

branches. This can be either because of a multiple merger event, or because of at least one branch49

covering a short interval of time, so that no substitution occurred as expected under any molecular50

clock model (Bromham and Penny 2003). Multiple heuristic approaches have been developed for either51
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breaking up or collapsing polytomies in undated phylogenies (Kuhn et al. 2011; Lin et al. 2011; Lewis52

et al. 2005). Here instead we use a Lambda-coalescent framework to infer which polytomies are caused53

by multiple merger events and which are caused by a lack of phylogenetic signal. We do so in the54

context of dating the tree, which means to use it as well as the dates of the leaves in order to produce55

a dated phylogeny (To et al. 2016; Volz and Frost 2017; Didelot et al. 2018). The dated phylogeny56

can then be used for a broad range of epidemiological investigations (Didelot and Parkhill 2022). To57

reconstruct this dated phylogeny, we must infer the root position, ancestral node times, as well as58

parameters associated with the clock and genealogical models. We must distinguish which polytomies59

are consistent with multiple mergers, and which are better explained by quick binary branching and60

therefore should be resolved. In the latter case we must also estimate the branching order within61

the polytomies returned by the maximum likelihood estimation software. This is important as the62

branching order within the polytomies is random and likely inconsistent with the temporal structure63

of the tree, as previously noted (Sagulenko et al. 2018).64

To achieve these aims several issues must be addressed. We need to choose a set of prior models for65

the latent genealogies which take into account biological realism and statistical tractability. We focus66

on the Beta-coalescent (Schweinsberg 2003) and an extension of it described by Eldon and Stephan67

(2023) in which the Beta-coalescent and Kingman’s coalescent are mixed together, combining low-68

variance family size reproduction with occasional high-variance sweepstakes. We also need to specify69

a molecular clock model to establish the relationship between dated and undated phylogenies, and for70

this we use the Additive Relaxed Clock (ARC) model (Didelot et al. 2021). Next, we need to specify a71

computational scheme for representing multiple merger trees where a single node may have an arbitrary72

number of descendants. This representation needs to enable efficient computation of likelihoods and to73

be statistically efficient. To this end we use the Billera-Holmes-Vogtmann (BHV) space (Billera et al.74

2001) augmented with a spike-and-slab construction (George and McCulloch 1993). Finally we design75

a Markov Chain Monte-Carlo (MCMC) sampling scheme targeting the posterior in order to perform76

Bayesian inference.77
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METHODS78

Lambda-coalescent79

Lambda-coalescents are a class of stochastic genealogical processes (Pitman 1999; Sagitov 1999;80

Donnelly and Kurtz 1999) that generalise the popular Kingman’s coalescent (Kingman 1982) to a81

setting where more than two lineages may merge into the same parent, i.e. they permit multiple82

mergers. These processes commonly describe genealogies arising from various forwards in time models83

in population genetics, typically in scenarios where there is a high variability in the number of surviving84

offspring, or when selection and recombination are taken into account (Berestycki 2009; Tellier and85

Lemaire 2014). Examples of such scenarios include heavy-tailed offspring distributions (Schweinsberg86

2003; Matuszewski et al. 2018), recurrent selective sweeps in presence of recombination (Durrett and87

Schweinsberg 2005), rapidly adapting populations (Neher and Hallatschek 2013; Desai et al. 2013), as88

well as strong purifying selection (Cvijović et al. 2018).89

Lambda-coalescents are uniquely specified by a finite measure Λ on [0, 1] that governs the merger90

sizes of the process. Intuitively, one can think of this relationship as sampling a probability p ∼ Λ91

proportional to the density of Λ, selecting with probability p each of the lineages currently in the92

process, and merging all selected lineages. The instantaneous block merger rates λb,k, that is the rate93

at which every k ≥ 2 lineages merges into one parent when there are b lineages in total, are then given94

by95

λb,k =

∫ 1

0

pk−2(1− p)b−k Λ(dp). (1)

The factor of p−2 arises from the fact that at least two lineages must participate in order for a merger96

to happen. When Λ = δ0, that is a point mass at zero, we can see that97

λb,k =


1, if k = 2

0, otherwise

(2)

In other words the resulting Lambda-coalescent is Kingman’s coalescent in which only two lineages98

may merge.99
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Beta-coalescent100

The approach presented will mostly focus on the Beta-coalescent and an extension of it. The rationale101

for this is two-fold. First, the Beta-coalescent is relatively well studied, admits the frequently used102

Kingman’s coalescent as a special case, and the instantaneous block merger rates are available in103

closed form. Second, it arises from models in which the variance of the offspring distribution can be104

very high, and has been considered in the context of pathogen populations before, see for example105

(Hoscheit and Pybus 2019). As the name suggests, in the case of the Beta-coalescent the measure Λ106

is simply the Beta distribution. Usually in the context of Lambda-coalescents, the Beta distribution107

is parameterised as (Schweinsberg 2003)108

Λ = Beta(2− α, α) α ∈ [1, 2] (3)

The reason for this is a connection to a model of populations with skewed offspring distributions in109

which α governs the tail behaviour of the offspring distribution. The forwards-in-time model in the110

derivation of (Schweinsberg 2003) follows dynamics of a supercritical Galton–Watson process where in111

successive non-overlapping generations each of the N individuals produces νi offspring i.i.d. according112

to a distribution with the tail index k−α. This implies that the offspring distribution has infinite113

variance if 1 < α < 2 and infinite mean if α = 1. Offspring are then randomly killed in order to114

keep the population size constant and equal to N . Schweinsberg (2003) showed that the genealogies115

arising for this process converge to Kingman’s coalescent for values of α ≥ 2 and to the Beta-coalescent116

parameterised as in Equation 3 for values of α ∈ (2, 1], under suitable time-rescalings and as N →∞.117

In plain words if the distribution of the number of offspring produced by any of the individuals is118

sufficiently skewed, and this situation arises frequently enough, every once a while an individual may119

get lucky and produce enough offspring to replace a non-negligible fraction of the population. Therefore120

the probability that multiple individuals find the same ancestor at once does not vanish in the large121

population size limit. The parameter α relates to how skewed the offspring distribution is. The limiting122

case of α = 1 corresponds to the Bolthausen-Sznitman coalescent (Bertoin and Le Gall 2000), which123

has been shown to arise in scenarios corresponding to rapid adaptation and clonal interference (Desai124

et al. 2013; Neher and Hallatschek 2013; Schweinsberg 2017). On the other hand, in the limiting case125

of α = 2, the Beta distribution collapses into an atom at 0 and thus the resulting coalescent is the126

Kingman’s coalescent (Schweinsberg 2003).127

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.12.557403doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.12.557403
http://creativecommons.org/licenses/by/4.0/


There are several limitations of the Beta-coalescent. First amongst these is the assumption that every128

individual may produce a large number of offspring in every generation. Often it is easier to imagine129

that such large reproductive events may only occur if correct circumstances are met. Related to this is130

the second limitation. The Beta-coalescent has a time scale of N1−α if α ∈ (1, 2] and log (N)
−1

if α = 1.131

For many populations, this implies mutation rates or population sizes orders of magnitude higher than132

what would be biologically realistic. This is especially the case if α is close to 1 as previously noted133

(Eldon and Stephan 2023). This may however not be an issue for moderately large values of α in the134

case of within-host evolution where the population sizes are going to be very large.135

Extended Beta-coalescent136

We now introduce an extension of the Beta-coalescent which we will refer to as the extended Beta-137

coalescent. This modification is a mixture of the Beta-coalescent and Kingman’s coalescent. This is138

achieved by defining the measure Λ characterising this process as139

Λ = δ0 + cBeta(2− α, α) c ∈ [0,∞), α ∈ [1, 2] (4)

The reasons for introducing this are two-fold. For one it will provide us with a convenient example of140

a Lambda-coalescent of a form shared by for example the Durrett–Schweinsberg coalescent (Durrett141

and Schweinsberg 2005) arising from selective sweeps. The second reason is based on the modifications142

to random sweep-stakes reproduction presented in (Eldon and Stephan 2023). They considered a143

modification to the construction in (Schweinsberg 2003) to address the problematic assumption of144

very frequent large family sizes. In this modification, in each generation a coin with probability ε is145

flipped. On success with probability ε each individual produces offspring according to an offspring146

distribution with a “small” α ∈ [1, 2) and with probability 1− ε according to an offspring distribution147

α ≥ 2. For a suitable choice of ε = εN → 0 as N →∞, the resulting coalescent process is exactly the148

Lambda-coalescent specified by Equation 4.149
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Selection of priors150

For the Beta-coalescent we parametrise the measure characterising the genealogical prior as:151

Λ = νBeta(1− α∗, 1 + α∗) (5)

ν and α∗ are unknown parameters we wish to infer. ν ∈ R+ is the time scale of the process and152

α∗ ∈ [0, 1] controls the Beta distribution governing the merger sizes. α∗ relates to the original153

parameter α from Equation 3 (Schweinsberg 2003) as α = α∗ + 1. We equip these parameters with154

the following prior distributions:155

log ν ∼ Normal(0, 4)

α∗ ∼ Beta(3, 1)

(6)

We caution that it is not straightforward to interpret ν as the timescale of the Beta-coalescent is156

1/N1−α and therefore ν only corresponds to the usual effective population size if α = 2.157

For the extended Beta-coalescent we parameterise the genealogical prior as:158

Λ = ν((1− φ)δ0 + φBeta(1− α∗, 1 + α∗)) (7)

ν ∈ R+ corresponds to the process rate, φ ∈ [0, 1] is the mixing proportion between the Kingman159

component and the Beta component, and α∗ ∈ [0, 1] once again controls the Beta distribution and160

therefore the size of multiple mergers. We equip these parameters with the following prior distribution:161

log ν ∼ Normal(0, 4)

φ ∼ Beta(1, 3)

α∗ ∼ Beta(1, 2)

(8)

Finally, for the molecular clock model we use the Additive Relaxed Clock (ARC) (Didelot et al. 2021)162

in which a branch of length l carries a number of substitutions x distributed as:163

x ∼ NegBin

(
µl

ω
,

ω

1 + ω

)
(9)
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where µ represents the mean clock rate and ω controls the amount of relaxation relative to a strict164

clock model. We use the following prior distribution:165

µ ∼ Gamma(2, 8)

ω ∼ Normal(0, 2)1[0,∞)

(10)

Billera-Holmes-Vogtmann space embedding166

In order to efficiently sample genealogies that admit multiple mergers we leverage two concepts. First167

we embed binary trees in a space of phylogenetic trees where coordinates correspond to branch lengths,168

specifically the Billera-Holmes-Vogtmann (BHV) space. Second we use a spike-and-slab construction169

to put positive mass on the set of trees where at least one branch length is shrunk to exactly zero and170

identify these trees with multiple merger trees obtained by collapsing all branches with lengths equal171

to exactly zero.172

BHV space is a metric space introduced in the study of phylogenetic tree geometry (Billera et al.173

2001). For a fixed number of tips n the BHV space is constructed from a set of (2n − 3)!! orthants174

in (0,∞)n−2 each corresponding to a particular topology of a rooted binary tip labeled n-tree. Each175

coordinate within the n − 2 dimensional orthant corresponds to the length of an interior branch in176

the given tree topology. At any of the zero boundaries, the binary topology degenerates into a tree177

that has branching greater than two. The orthants are “glued” together at boundaries corresponding178

to the same topology. For example if only one coordinate approaches zero there is a junction of three179

different n− 2 dimensional orthants corresponding to an n− 3 dimensional orthant face. For existence180

of centroids, proof of constant negative curvature and properties of geodesics refer to (Billera et al.181

2001). We will base our sampling scheme construction around the BHV space. The BHV space has182

been used previously in phylogenetic reconstruction for example to construct an embedding amenable183

to sampling binary trees using discrete Hamiltonian Monte Carlo (Dinh et al. 2017). Typically such184

approaches simply select the base measure to be Lebesgue within each of the n−2 dimensional orthants185

corresponding to binary topologies, and each n− 2 dimensional orthant is assigned equal probability.186

The lower dimensional orthants are then null sets within this measure space. However such an approach187

is not appropriate for inference with multiple merger trees as any set consisting purely of these would188
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be given a zero probability. One option would be to put mass on lower dimensional orthants, and set189

up a trans-dimensional sampling scheme using reversible jump MCMC (Green 1995). However this190

would be unlikely to work efficiently as designing moves that remove or add more than one branch at191

a time and don’t suffer from a rapidly diminishing acceptance ratio would be challenging, and would192

not take advantage of the natural geometry of the space.193

We will therefore augment the BHV space using a spike-and-slab construction (George and McCulloch194

1993). Denote by T the set of all rooted, labeled, metric n-trees. An n-tree is said to be metric if all195

of its branch lengths are strictly greater than 0. Let T denote the set of all labeled, rooted, binary196

n-tree topologies. Denote the closed n− 2 dimensional orthant of the BHV space corresponding to a197

particular binary n-tree topology as V τ for τ ∈ T. We identify points in the closed n− 2 dimensional198

orthants of BHV space by the tuple (X,Q, τ) where X ∈ [0,∞)n−2 denotes the location within an199

orthant, Q ∈ {0, 1}n−2 is a vector of indicators where qi = 1 if and only if xi = 0 and τ ∈ T denotes200

the orthant index, i.e. the corresponding binary topology. We next identify all points on the boundary201

∂V τ , that is all points with at least one coordinate equal to zero with the corresponding k-ary metric202

n-tree by collapsing each and every branch for which qi = 1, i.e. that is of length exactly zero. We203

now define the base measure to be204

ν(dx× dτ) = δτ (dτ)⊗ µ(dx) (11)

That is we assign uniform mass to each of the n− 2 dimensional orthants and within each orthant we205

have206

µ = (δ0 + µ0)n−2 (12)

Where δ0 is an atom at zero and µ0 is the Lebesgue measure on [0,∞). This construction assigns207

positive probability to sets of binary trees with one or more branches with length exactly zero. By208

identifying such trees with a (metric) multiple merger tree we can see that it therefore puts a positive209

probability on trees with multiple mergers.210
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Parametrisation of the genealogy211

Having outlined the construction above we now give an explicit parametrisation of the genealogy that

will allow us to construct an MCMC scheme as well as enable the computation of necessary quantities.

As an input we assume we are given a rooted binary phylogeny with n tips, with branch lengths

corresponding to the estimated number of substitutions along a branch. This phylogeny is assumed

to be a point estimate obtained by ML phylogenetic software. The root position may be assumed

to be known a-priori, or to be estimated, in which case the initial rooting is assumed to be chosen

arbitrarily. In practice the estimated number of substitutions along a branch may not be an integer

even though it is likely to be very close to one when the number of substitutions per site is low. The

clock models used require an integer number of mutations. Therefore all branch lengths are coerced to

integer values by rounding. Based on the undated input phylogeny we can construct a rooted binary

genealogy denoted as τττ as follows. We define the following notations:

{1, 2, ..., 2n− 1} Set of all nodes

SSS := {1, 2, ..., n} Set of tips

III := {n+ 1, n+ 2, ..., 2n− 1} Set of internal nodes

{2n− 1} Root node

paτττ (i), i ∈ {1, ..., 2n− 2} Parent of node i

mτττ (i), i ∈ {1, ..., 2n− 2} Number of mutations on edge above node i

sτττ (i), i ∈ SSS Sampling date of tip i

j ≺τττ i Node j is a descendant of node i

descτττ (i) := {j ∈ SSS : j ≺τττ i} Set of leaves descendant of node i

CCCτττ := {cl, cr} Children of the root node

Having defined necessary notation for characterising the rooted tree topology we aim to define the212

parametrise the internal node heights in the rooted genealogy. This corresponds to the within orthant213

parametrisation. We now proceed to define the collection of node times ttt := {ti}1≤i≤2n−1. A subset214

of these variables corresponds to the internal node times, that is the free parameters of the model. We215

denote these as tItItI := {ti ∈ ttt : i ∈ III}. The remaining first n variables correspond to sampling times216
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and these are considered as an input. Denote these set of sampling times by tStStS := {ti ∈ ttt : i ∈ SSS}. In217

practice, the vector ttt needs to satisfy a complex set of constraints, that is218

i ≺τττ j =⇒


ti ≤ tj i > n

ti < tj i ≤ n
(13)

Where i ≺τττ j denotes the partial order induced by the tree topology, that is i ≺τττ j iff i is a descendant219

of j.220

The complex set of constraints that the node times have to satisfy would make defining a Metropolis-221

Hastings move capable of targeting the boundaries complicated. Hence we define the vector of positive222

height variables χχχ ∈ Rn−2
+ as well as the tree height variable H ∈ R. Once again for convenience we223

will abuse notation and denote by χ(i) the component of χχχ associated with node i. This is in contrast224

to χi which denotes the i-th component of the vector χχχ. To define the transformation for χχχ to ttt we225

first need to introduce the set of lower bounds bτττ226

bτττ (i) = max
j:descτττ (i)

sτττ (j), i ∈ [2n− 1] (14)

We now map χχχ,H to ttt via the mapping g : (H,χχχ) 7→ ttt. The first part of the mapping parametrises227

the height of the root node by transforming H228

t2n−1 = eH + bτττ (2n− 1) (15)

The second part of mapping parametrises the height of internal non-root nodes by transforming χχχ229

ti = (tpaτττ (i) − bτττ (i))e−χ(i) + bτττ (i) (16)

Note that χ(i) = 0 implies that the length of the branch above node i scaled in time units is also 0.230

An illustration of how such parametrisation looks in practice can be found in Figure 1.231
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Figure 1: Example of tree parametrisation. In this case the bounds are b(6) = s1, b(7) = s2, b(8) =

s3, b(9) = s3. The components χχχ are mapped as χ(6) = χ1, χ(7) = χ2, χ(8) = χ3.

This parametrisation is reminiscent of the ratio transform of (Ji et al. 2021), with the key difference232

that we express non-root internal node heights in terms of a transform of the distance from the parent233

constrained so that the age of the child is strictly less than the oldest descendant tip as opposed to234

a transform of the ratio of the remaining height. This is because it is necessary in the construction235

presented here for the boundary corresponding to 0 branch length to be accessible. Finally we introduce236

the vector of indicators that determine whether a coordinate is allocated to the boundary:237

qqq ∈ {0, 1}n−1

q(i) = 1⇔ χ(i) = 0

(17)
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We can now parametrise a genealogy by the tuple YYY := (H,χχχ,qqq, τ ;sss) where τ specifies the binary238

topology and hence a full dimensional orthant of the BHV space, and H,χχχ,qqq characterise the position239

within the orthant conditional on the tip date constraints sss.240

Lambda-coalescent likelihood241

In order to compute the coalescent likelihood of a genealogy, we first need to convert the (possibly242

non-metric) binary tree embedding to the respective metric multiple merger tree. To achieve this first243

denote the set of all internal nodes descending from node i as244

r(i) := {j ∈ [2n− 1] : j ≺τττ i} (18)

Next defining the set of internal descendants of i coincident with i as245

z(i) := {j ∈ r(i) : t(i) = t(j)} (19)

We can see that for any internal node i such that q(i) = 0, |z(i)| corresponds to the merger size246

minus 2. Using these to definitions we can compute the likelihood of the binary tree embedding247

YYY := (H,χχχ,qqq, τ ;sss) under the Lambda-coalescent Λθ with block merger rates λθb,k as:248

fΛ
θ (YYY ) =

∏
i∈III:
qi=0

λθA(ti),|z(i)|+2

×
∏

1<i≤2n−1:
qi=0

e−R(A(ti))(ti−max{tj :tj<ti})

× Jg
∣∣∣∣
YYY

× 1

Z(YYY )

(20)

Where R : N 7→ R+ denotes the total coalescent rate of the process249

R(b) :=
b∑

k=1

(
b

k

)
λθb,k (21)
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and A : R+ 7→ Z+ denotes the lineages through time function at time t, defined as250

A(t) :=
∑
i∈SSS

1t>ti(ti)−
∑
i∈III

10(qi)1t>ti(ti)(|z(i)|+ 1) (22)

This is also known as the block counting process (Kukla and Möhle 2018). As the genealogical prior251

is expressed in terms of node heights ttt, we must account for the transformation from χχχ to ttt in the252

density. To do so we require the Jacobian for the mapping g : (H,χχχ) 7→ ttt. This is straightforward to253

compute as the matrix of first order partials has a diagonal structure and hence is equal to254

Jg

∣∣∣∣
YYY

= eH
∏
i∈III

[
10(q(i))(tpaτττ (i) − sτττ (i))e−χ(i) + 11(q(i)))

]
(23)

Note that as the density of all χi = 0 is with respect to an atomic measure these do not play a role within255

the relevant Jacobian adjustment. Finally we note that the embedding of a given multimerger tree as256

a binary tree is not unique. Therefore, in order for the density of a given tree to be proportional to the257

density given by the Lambda-coalescent density, we need to re-weight the density of the embedding to258

account for the overcounting. In general given a multiple merger of size m there are (2m − 3)!! ways259

to resolve this as a sequence of binary mergers. This is the number of rooted labeled binary trees with260

m tips (Billera et al. 2001). Therefore the adjustment for the embedding Y is:261

Z(YYY ) =
∏
i∈III

(2|z(i)|+ 4− 3)!! (24)

Branch likelihood262

The likelihood is based on the ARC model (Didelot et al. 2021). Each branch in the input ML phylogeny263

is scaled in estimated number of substitutions along that branch. This number of substitutions is264

distributed according to Equation 9. The number of substitutions returned by ML software will in265

general not be an integer, although in many cases will be close to an integer value. As the ARC model266

requires integer valued number of substitutions all values are rounded to the nearest integer. Define the267

length of a branch above node i as l(i) = tpaτττ (i)− ti. Given the current genealogy state parameterised268

by YYY , and the clock parameters µ and ω, the likelihood for all branches not incident to the root can269
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be computed as:270 ∏
i∈I:

i/∈CCCτττ∪{2n−1}

NegBin

(
mτττ (i);

µl(i)

ω
,

ω

1 + ω

)
(25)

This has to be multiplied by the likelihood of the branches incident to the root. This depends on271

whether the root is considered fixed, or if it is unknown. If the root is fixed, the branches incident to272

root are treated as any other branch and their contribution is273

∏
i∈CCCτττ

NegBin

(
mτττ (i);

µl(i)

ω
,

ω

1 + ω

)
(26)

If the root position is considered to be unknown then the position of the root on the branch is274

marginalised out and the contribution becomes275

NegBin

(
mτττ (cl) +mτττ (cr);

µ(l(cl) + l(cr))

ω
,

ω

1 + ω

)
(27)

This follows from the additive nature of the ARC clock model (Didelot et al. 2021).276

MCMC scheme277

We use four types of moves to sample parameters characterising Y . These moves can be categorised278

into three families. The first family consists of moves covering transitions that update the position279

within a full dimensional orthant including the boundary. The moves within the first family update280

branch lengths, and therefore merger sizes and internal node heights. The second family consists of281

moves for proposing transitions between full dimensional orthants. The moves within the second family282

update the root position and branching order within polytomies. The third family consists of a single283

move that updates the parameters of the observation model and genealogy model. The scheme consists284

of a single sweep through all three families, selecting one move from each family uniformly at random.285

Orthant interior move286

The orthant interior move is a random walk Metropolis (RWM) (Metropolis et al. 1953) move restricted287

to updating a subset of the vector χχχ corresponding to those coordinates which are currently not288
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restricted to the boundary, and thus a part of a multiple merger289

kRWM(χ′i | χi, qi)σσσ = 10(qi)δ0 + |N |(χ′i − χi;σi), (28)

where |N |(·;σ) denotes the density of the modulus of a normal random variable with variance σ2. As290

expected for RWM the proposal ratio equals to one.291

Orthant boundary move292

The orthant boundary move is responsible for transitioning between binary topologies and multiple293

mergers. To do so the move needs to propose transitions between the boundary and orthant interior.294

The main challenge with designing this move is that due to the structure of the likelihood of the295

extended Beta-coalescent there is a relatively sharp ridge between a 2-merger and a 3-merger when the296

number of active lineages is large, i.e. b� 3. Therefore the move must be able to propose transitions297

that move several coordinates of χ to 0 or back at once. The first step consists of sampling an internal298

node index i ∈ III \ {2n− 1} at random with probability299

P [i = x | χχχ] ∝ w1(χ(x)) (29)

If the coordinate is allocated to the interior (therefore to the slab component of the base measure), i.e.300

if q(i) = 0, χ(i) > 0 then the move begins by proposing χ′(i) = 0. Denoting the parent node above301

j = pa(i) the moves continues upwards and proposing to shrink χ(j) to 0 with probability w2(χ(x))302

as long as it is accessible to this move, i.e. q(pa(j)) = 0 and j 6= 2n− 1. This process repeats until a303

coordinate fails to shrink either due to it not being accessible or due to the coin flip failing.304

If the coordinate initially selected is allocated to the boundary then there are two options. The move305

either expands that coordinate, proposing χ′(i) > 0. Alternatively the move expands that coordinate306

and then attempts to expand the coordinate above it if it is allocated to the boundary. If the coordinate307

above it is allocated to the boundary it is expanded and this procedure repeats, terminating when either308

the root is reached or a non-zero coordinate is reached. The expanded coordinates are sampled from309

a proposal distribution d, i.e. χ′ ∼ d. Whether the move expands coordinates recursively or not310

is decided uniformly at random. Denote the sequence of nodes that have had their corresponding311
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coordinates modified by v1, v2, ..., vm, where v1 is the first node modified by the move. If the initial312

coordinate chosen was allocated to the interior the proposal ratio is equal to313

a(χχχ′,χχχ) =
w1(χ′(v1))

∑
j∈III\{2n−1} w1(χ(j))

w1(χ(v1))
∑
j∈III\{2n−1} w1(χ′(j))

d(χ(v1))1−2q(v1)

×

1x≥2(n)
∏

vj :2≤j≤n

(
d(χ(vj))

w2(χ(vj))

)1−2q(v1)

+ 11(n)


×
[

1

2
(1 + 11(n))

]1−2q(v1)

×
(

1

Ps

)1−2q(v1)

(30)

Note that 1 − 2q(v1) = 1 if the move is shrinking coordinates towards the boundary and −1 if it is314

expanding coordinates. Therefore it determines the direction of the move. The first term corresponds315

to the probability of selecting the same starting node, the second term corresponds to the likelihood316

of the coordinate transformation for subsequent nodes, the third accounts for the possibility of the317

reverse move being chosen, and the fourth term corresponds accounts for the stopping probability of318

the recursion, Ps which is equal to319

Ps =


1− w2(pa(vn)) if pa(vn) is accessible

1 otherwise

(31)

Crucially setting w2(χ) to be equal to the density of d(χ) leads to the second term cancelling to one.320

In practice we use321

d(x) =

√
2

b
√
π

exp− x2

2b2
1x≥0

w2(x) = w1(x) = exp− x2

2a2

(32)

Setting a = b =
√

2/π leads to d(x) = w1(x) = w2(x).322

Root NNI move323

The root NNI move updates the root position, and is used if the root position is considered unknown.324

It is a version of the nearest neighbour interchange (NNI) commonly used in phylogenetic inference325

(Yang and Rannala 1997). This moves first proceeds in selecting one of the child nodes of the root as a326
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pivot. The move then moves the root to one of the descendant edges of the pivot. The pivot is chosen327

with equal probability from both root descendant nodes at random with the exception of two special328

cases. If one of the descendant nodes is a tip node the other descendant of the root is selected as a329

pivot. This is because NNI move is undefined for a tip node selected as a pivot. The other special case330

is if one of the root descendants has the branch above it collapsed as a part of a multiple merger but331

the other does not. In this case the descendant with the edge collapsed is chosen as the pivot. This is332

to prevent the move from wasting computational effort as this way the node with edge collapsed stays333

adjacent to the root. Otherwise it may become adjacent to an edge that cannot support a multiple334

merger leading to 0 likelihood. With the pivot selected the branch to move the root to is sampled with335

equal probability from two edges that descend from the pivot. We denote the pivot by p ∈ CCCτττ and its336

probability mass function under the topology τττ337

Pτττ [p = i] =



1
2 , if (cl > n) ∧ (cr > n) ∧ (q(cl) = q(cr))

1cl(i), if (cr ≤ n) ∨ ((q(cl) = 1) ∧ (q(cr) = 0))

1cr (i), if (cl ≤ n) ∨ ((q(cr) = 1) ∧ (q(cl) = 0))

(33)

With p fixed, sample j from the two descendants of p uniformly at random. Based on this generate a338

new rooted tree topology τττ ′, which is the same as τττ except where:339

paτττ ′(i) =


p, if i ∈ CCCτττ ∧ i 6= p

2n− 2, if i = j

paτττ (i), otherwise

(34)

The mutations above the affected nodes are then adjusted accordingly:340

mτττ ′(i) =



mτττ (cr) +mτττ (cl), if i ∈ CCCτττ ∧ i 6= p

bmτττ (j)sc, if i = j

bmτττ (j)(1− s)c, if i = p

paτττ (i), otherwise

(35)
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For some arbitrarily chosen s ∈ [0, 1].341

The proposal ratio is342

a(τττ ′, τττ) =
Pτττ ′ [p = i]

Pτττ [p = i]
(36)

Polytomy neighbour interchange move343

The polytomy neighbour interchange move changes the binary topology within polytomies as this344

topology is randomly resolved (if at all) by the ML estimation program. It does so by first sampling a345

pivot node p from all nodes for which the edge above contains 0 mutations. With the pivot selected a346

node j is chosen uniformly at random from all the descendants of p that are adjacent to the polytomy.347

That is from all descendant nodes such that the parent of that node is 0 mutations away from p.348

Denote this set of nodes Aτττ . Next a node k is selected from all nodes in the outgroup relative to p349

such that the distance of the parent of those nodes to the parent of p is 0 mutations. Denote this set of350

nodes Bτττ . Based on this generate a new rooted tree topology τττ ′, which is the same as τττ except where:351

paτττ ′(i) =


paτττ (j), if i = k

paτττ (k), if i = j

paτττ (i), otherwise

(37)

The reverse move consists of selecting the same pivot and then the corresponding descendants. Denote352

the sibling of the pivot p with sp. The proposal ratio is353

a(τττ ′, τττ) =

∣∣Aτττ ′
∣∣−1∣∣Bτττ ′

∣∣−1
+ (1− 1sp(k))(

∣∣Aτττ ′
∣∣+ 1)−1(

∣∣Bτττ ′
∣∣− 1))−1∣∣Aτττ ∣∣−1∣∣Bτττ ∣∣−1

+ (1− 1sp(k))(
∣∣Aτττ ∣∣+ 1)−1(

∣∣Bτττ ∣∣− 1))−1
(38)

Tuning the sampler354

In order to tune the sampler a preconditioning matrix of individual parameter variances is estimated,355

along with a scale factor multiplying this matrix. The RWM moves updating the parameters and node356

height variables are then scaled accordingly. This is done in a sequence of six steps. Let T denote357

the thinning factor. The first two steps consists of running the sampler with orthant boundary moves358
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disabled. The first step consists of burn-in for 100× T iterations. The second step then estimates the359

χ preconditioning matrix for 100 × T iterations. For the following steps all moves are enabled. The360

third step consists of burn-in for 100× T steps. The fourth step estimates the preconditioning matrix361

for the parameter moves for 100 × T steps. The fifth and sixth steps estimate the step scaling for362

50× T steps. All previous iterations are then discarded.363

RESULTS364

Implementation365

We implemented the approach as described in an new R package titled MMCTime, which is available366

at367

https://github.com/dhelekal/MMCTime . The package uses ape (Paradis and Schliep 2019) as a368

backend for handling phylogenies. bayesplot is used for handling MCMC diagnostic visualisations,369

(Gabry et al. 2019) and ggtree (Yu et al. 2017) is used for visualising phylogenies. The package370

posterior (Vehtari et al. 2021) is used for computing MCMC diagnostics.371

Illustration on simulated phylogenies372

All simulations follow the same protocol. First a dated phylogeny is simulated from a genealogical373

model, conditional on appropriate parameter values and tip sample times. Then the expected number374

of substitutions for each branch is sampled using the ARC model (Didelot et al. 2021). Then Seq-Gen375

(Rambaut and Grass 1997) is used to generate sequences of a given length under the HKY model376

(Hasegawa et al. 1985). For all simulation experiments the length was set to 10000bp, except if377

otherwise mentioned. Finally, a ML phylogenetic tree is reconstructed using IQ-TREE (Minh et al.378

2020). This, along with the tip dates, serves as a starting point for the analysis. For all simulation379

benchmarks, the root position was assumed to be unknown and to be inferred.380

A first dated phylogeny was simulated under the Beta-coalescent (Equation 5) with parameters381

{ν = 1/12, α∗ = 1/2} as shown in Figure 2A. The ARC clock model with parameters {µ = 1, ω = 1}382
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was applied, and the input ML phylogeny is shown in Figure S1. Inference was performed under the383

Beta-coalescent model using four chains, sampling every 2000 iterations for a total of 1000 samples384

retained per chain. Assessing mixing and qualities of estimates is challenging in this setting as the385

topology changes due to the uncertain branching on polytomies. Furthermore standard metrics like386

the Robinson-Foulds distance (Robinson and Foulds 1981) are inappropriate for dated trees and not387

applicable to multiple merger trees. To circumvent this we compute effective sample sizes (ESS) and388

r̂ estimates for the genealogical parameters as well as the clock parameters along with the tree height389

and the two following summaries: the number of multiple mergers and the maximum merger size. The390

r̂ and ESS estimates are computed using technique in (Vehtari et al. 2021) as implemented in the391

R package posterior. This confirmed that the MCMC had converged and mixed as expected. The392

MCMC traces are shown in Figure S2 and the inferred parameters in Figure S3, with all inferred ranges393

covering the correct values. Nine posterior samples of the dated phylogeny are shown in Figure S4. To394

summarise the full posterior sample of dated phylogenies, we use a modified version of the DensiTree395

representation (Bouckaert 2010) as shown in Figure 2B. Comparison of the simulated (Figure 2A) and396

inferred (Figure 2B) phylogenies demonstrate the accuracy of the inference, including the identification397

of which nodes are likely to be multiple merger events.398

Next a dated phylogeny was simulated under the extended Beta-coalescent (Equation 7) with399

parameters {ν = 1/12, α∗ = 1/5, φ = 2/5} (Figure 3A). The same analysis as above was performed,400

except that the extended Beta-coalescent model was used for inference. The ML tree is shown in Figure401

S5, the MCMC traces in Figure S6, the parameters in Figure S7, nine posterior sampled phylogenies in402

Figure S8 and the posterior phylogeny summary in Figure 3B. Once again we find that the parameters403

and phylogeny are inferred satisfactorily. There were only a few multiple merger events in the simulated404

tree, most of which behaved as a Kingman’s coalescent tree. This represents a good illustration of405

what can be achieved with the extended Beta-coalescent, and would be very unlikely to happen under406

the Beta-coalescent model.407

Benchmark under the Beta-coalescent408

To benchmark the performance of inference under the Beta-coalescent, we considered three ARC clocks409

with the following parameters: Clock 1 has µ = 1.5 and ω = 0.5, Clock 2 has µ = 3 and ω = 1.0,410
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A B

Figure 2: Simulation and inference under the Beta-coalescent model. (A) The simulated phylogeny. (B)
A qualitative summary of the posterior, showing locations possible multiple mergers and uncertainty
in polytomy topology. Clades appearing in over 50% of posterior samples are indicated with black
dots fixed at median height, and grey bars overlayed indicated the 95% posterior credible interval for
the height of these nodes.
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A B

Figure 3: Simulation and inference under the extended Beta-coalescent. (A) The simulated phylogeny.
(B) A qualitative summary of the posterior, showing locations possible multiple mergers and
uncertainty in polytomy topology. Clades appearing in over 50% of posterior samples are indicated
with black dots fixed at median height, and grey bars overlayed indicated the 95% posterior credible
interval for the height of these nodes.
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Clock 3 has µ = 6 and ω = 2. Figure S9 shows the distributions of the number of substitutions per411

site under each of these clock models. For each clock model, Figure 4 shows the results of parameter412

inference under the Beta-coalescent for 150 datasets generated with ν = 0.1 and values of α∗ increasing413

between 0 and 1. In every case the parameters are correctly inferred, except for α∗ which is slightly414

overestimated when the correct value was lower than 0.1. Low values of α∗ lead to trees with a high415

probability of large multiple merger events. To avoid this biologically implausible scenario we used a416

Beta(3,1) prior for inference, which only has cumulative probability 0.001 for α∗ ∈ [0, 0.1]. The use of417

this prior explains the slight overestimation of α∗ when the correct value was low.418

Figure S10 shows the number of nodes in the inferred phylogenies minus the true number of nodes in419

the simulated phylogenies. Positive values indicate an excess of nodes and therefore an underestimation420

of the number of multiple merger events. Negative values indicate a lack of nodes and therefore an421

underestimation of the number of multiple merger events. Most intervals cover the correct value of422

zero. There is a slight tendency to overestimate the number of nodes overall, which is again driven by423

our use of a conservative prior for α∗.424

Benchmark under the extended Beta-coalescent425

We performed a similar benchmark for the inference under the extended Beta-coalescent. Four426

scenarios were considered with φ ∈ {0, 0.5, 0.75, 1}. Each scenario consists of 48 genealogies. Within a427

scenario the values of α∗ were linearly varied from α∗ = 0.01 to α∗ = 0.75. The upper limit was chosen428

to 0.75 since as α∗ → 1 the process behaves like Kingman’s coalescent irrespective of the value of φ,429

rendering the scenario meaningless. As for the previous benchmark the genealogies were then used to430

generate three datasets each with different clock parameters. Figure S11 shows the distributions of431

the number of substitutions per site under each of the three clock models.432

The inferred values of the parameters φ and α∗ are shown in Figures S12 and S13, respectively.433

The scenario φ = 0 corresponds to the Kingman’s coalescent. In this scenario the parameter φ was434

consistently estimated to be low as expected, and α∗ could not be estimated (i.e. the posterior was435

approximately equal to the prior) since in this scenario this parameter does not play a role. In the436

scenarios where the Kingman’s coalescent and Beta-coalescent were mixed with φ = 0.5 and φ = 0.75437
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Figure 4: Simulation benchmark under the Beta-coalescent. Posterior summaries for analysis of
limitations of the likelihood approximation. Red lines indicate ground truth. Vertical bars represent
95% posterior credible intervals, and points represent the median. Red crosses indicate insufficient
mixing in the corresponding.
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the parameter φ was usually underestimated to the point that the inferred values of α∗ did not follow438

the correct values. However, in the scenario φ = 1, which corresponds to the pure Beta-coalescent, it439

was possible to infer the values of φ and α∗ as long as α∗ was not too high. When α∗ is high the Beta-440

coalescent component of the extended Beta-coalescent prior behaves like the Kingman’s coalescent441

component, so that the mixing proportion φ does not have much effect on the data.442

Thus the extended Beta-coalescent suffers from identifiability issues on the parameters φ and α∗ in443

the part of the parameter space where the model reduces to the Kingman’s coalescent, namely when φ444

is low and/or α∗ is high. This does not affect the estimates of the remaining parameters though. The445

parameters ν, µ and ω are shown in Figures S14, S15 and S16, respectively, and are all well estimated.446

Figures S17 and S18 show that the time to the most recent common ancestor and number of nodes in447

the tree are also estimated around their correct values. Note that in the scenario with φ = 0 the correct448

tree is completely binary and so the number of nodes can only be underestimated. Finally, Figure S19449

shows the estimated probabilities that a tree sampled from the posterior contains a multiple merger,450

which increases as expected as φ increases.451

High mutation rate limitation452

A difficulty arises when the mutation rate per site is too high. In this case the probability of reversal453

or homoplasious mutation increases, such that the maximum likelihood estimated branch lengths of454

the input phylogeny become unlikely to be exactly zero even when a multiple merger event occurred.455

This is related to the branch saturation observed in dating methods that use a maximum likelihood456

tree as input, such as LSD (To et al. 2016) or BactDating (Didelot et al. 2018). In order to gain an457

understanding of when this phenomenon becomes problematic, we repeated the simulation benchmark458

under the Beta-coalescent but with a genome length of 1000bp (i.e. 10 times less than previously) and459

mutation rates doubled for each clock model, i.e. µ ∈ {3, 6, 12}. Figure 5 shows the results for this460

analysis. There is a clear and consistent overestimation of α∗ when the correct value of this parameter461

was low. This corresponds to bias against configurations of the Beta-coalescent that produce larger462

multiple mergers. This was accompanied by underestimation of the process timescale parameter ν.463

This bias worsens as the mutation rate increases and thus the expected number of substitutions per site464

increases. This result shows that the approach presented here is not appropriate when the number of465
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substitutions per site is too high, specifically in the order of µ ≈ 10 per year. Since the simulated trees466

had sums of branch lengths in excess of 100 years (eg Figure 4A), and the number of sites simulated467

was 1000bp, this corresponds to an expected number of substitutions greater than one for each site,468

which would not be an issue in practice for the applications envisaged here.469

Case Study: Spread of Vibrio cholerae in Argentina470

A recent study compared genome sequences of Vibrio cholerae, the causative agent of cholera, sampled471

from Argentina and neighboring countries between 1992 and 2000 in order to characterise its population472

structure (Dorman et al. 2020). We selected from the previously published phylogeny the genomes that473

had been isolated in Argentina and for which the isolation date was known, resulting in a phylogeny474

containing 411 leaves as shown in Figure S20. We applied inference under the extended Beta-coalescent475

model, which produced the traces shown in Figure S21 and the parameter estimates shown in Figure476

S22. The rooting of the tree was fixed using an outgroup. Nine samples from the posterior phylogeny477

are shown in Figure S23. A phylogenetic posterior sample is summarised as a DensiTree in Figure 6A.478

This contains several large well supported multiple merger events, consistent with the high estimate479

of φ and low estimate of α∗.480

For comparison purposes, we also performed inference under the pure Kingman’s coalescent model,481

and nine samples from the posterior phylogeny are shown in Figure S24. As we can see in Figure482

6B the clock rate estimated for the Vibrio cholerae genealogy under Kingman’s coalescent is much483

higher than the one under the extended Beta-coalescent. Furthermore the relaxation parameter ω is484

higher when using the Kingman’s coalescent, indicating that evolution is less clock-like. The estimated485

mutation rate under the extended Beta-coalescent falls into a posterior 95% credible interval of [1.90486

- 2.84] mutations per genome per year. This is in good agreement with previous estimates of the487

V. cholerae clock rate based on sparsely sampled worldwide collections of genomes (Mutreja et al.488

2011; Didelot et al. 2015). In contrast the substitution rate estimated under Kingman’s coalescent489

is higher with credible interval [4.98 - 6.64] mutations per genome per year, which is inconsistent490

with previous estimates. Consequently, the time to the most recent common ancestor for the whole491

Argentinian dataset is underestimated when using Kingman’s coalescent as opposed to the extended492

Beta-coalescent (Figure 6B).493
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Figure 5: Posterior summaries for analysis of limitations of the likelihood approximation. Red lines
indicate ground truth. Vertical bars represent 95% posterior credible intervals, and points represent
the median. Red crosses indicate insufficient mixing in the corresponding run.
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Figure 6: Analysis of the Vibrio cholerae dataset. (A) Qualitative summaries of the posterior inferred
under the extended Beta-coalescent and Kingman’s coalescent, showing locations possible multiple
mergers and uncertainty in polytomy topology. Note that the tip ordering is not identical between the
two summaries. Clades appearing in over 50% of posterior samples are indicated with black dots fixed
at median height, and grey bars overlayed indicated the 95% posterior credible interval for the height
of these nodes. (B) A comparison of estimated parameters under the extended Beta-coalescent and
Kingman’s coalescent models.
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Case Study: Mycobacterium tuberculosis outbreak phylogenies494

The importance of multiple merger genealogies to study tuberculosis outbreaks has been recently495

demonstrated (Menardo et al. 2021) using data from eleven previously published outbreaks.496

We selected three of these for reanalysis, labelled Bainomugisa2018 (Bainomugisa et al. 2018),497

Eldholm2015 (Eldholm et al. 2015) and Lee2015 (Lee et al. 2015). These three datasets were selected498

because they had more than 90% probability of the model selected being a Beta-coalescent in the499

previous analysis (Menardo et al. 2021) and their phylogenies were not being excessively large. Analysis500

was performed for each of the three phylogenies under three models: the extended Beta-coalescent, the501

Beta-coalescent and the Kingman’s coalescent. The three input trees are shown in Figure S25. The502

rooting of the trees was fixed using outgroup rooting.503

As can be seen in Figure 7, analysis under Kingman’s coalescent leads to a higher clock relaxation504

parameter ω value, suggesting that this model is less appropriate. This is also shown by the fact that α∗505

was always inferred much smaller than one. The effect is most pronounced for the Eldhom2015 dataset.506

In the extended Beta-coalescent the parameter φ was estimated to be very close to one for this dataset,507

in which case it becomes approximately equivalent to the Beta-coalescent. A qualitative summary of508

the genealogies inferred for this dataset can be seen in Figure 8. Nine realisations of the dated509

genealogies are shown for the Beta-coalescent, extended Beta-coalescent and Kingman’s coalescent510

in Figures S26, S27 and S28, respectively. As expected, the results under the Beta-coalescent and511

extended Beta-coalescent are very similar, including evidence for several large multiple merger events.512

These results are in good agreement with the previous analysis of these three datasets (Menardo et al.513

2021), and highlight the importance of considering multiple mergers when analysing phylogenetic data514

from tuberculosis outbreaks.515

DISCUSSION516

We have presented an approach to reconstructing dated phylogenies with multiple mergers under517

Lambda-coalescent models. To our knowledge this is the first such approach that scales to real world518

phylogeny sizes, explicitly reconstructs the underlying multiple merger genealogy, and does not rely519
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Figure 7: A comparison of parameter marginals estimated under different models for each dataset.
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Figure 8: A comparison of three qualitative summaries of posteriors inferred for the the underlying
genealogies for the Eldhom2015 dataset when timed under different coalescent priors. Note that the
tip ordering is not exactly the same between the different summaries.
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on likelihood-free approaches such as Approximate Bayesian Computation. Our focus has been on520

the implementation of the methodology presented, extensive benchmarks, and applications to real521

world examples from pathogen phylogenetics. On the other hand we have not yet addressed how522

this reconstruction can be used to further study of pathogen population genetics. Some implications523

are relatively straightforward. For example our method could be used as a starting point to do524

multifurcating skyline plot analysis (Ho and Shapiro 2011). We also envisage that it will lead to other525

forms of studies becoming possible, for example using genomic data to learn about superspreading,526

outbreaks, and impacts of selection.527

Other Lambda-coalescents models that the ones we used have been studied or derived. While this study528

was only focused on the Beta-coalescent and its mixture with a Kingman’s coalescent, it is worthwhile529

to mention some alternatives. In principle there is no reason why the presented methodology would not530

be applicable to them. A first alternative class of Lambda-coalescent is the extinction-recolonisation531

Dirac coalescent of (Eldon and Wakeley 2006). In the corresponding forwards in time model all large532

reproductive events replace a fixed proportion of the population. Each time a potential multiple merger533

event occurs, a biased coin with probability of heads p ∈ (0, 1] gets flipped for every extant lineage534

in the process. Lineages whose coin shows heads all merge into a common ancestor. This model is535

noteworthy primarily because it was amongst the first to be derived, is simple, and well studied, but536

it may not be the most biologically plausible.537

Another alternative class of Lambda-coalescent is the Durrett-Schweinsberg (DS) coalescent (Durrett538

and Schweinsberg 2005). This model describes populations undergoing successive hard selective sweeps539

throughout the genome, and in particular, the hitchhiking effect of those sweeps on a fixed, neutral540

site. The sweeps are modelled as points in a Poisson process of fixed rate. During a sweep, some541

ancestral lineages carrying the neutral site of interest can escape the sweep by recombining, while542

those lineages which don’t recombine will merge to a common ancestor which initiated the sweep.543

Between individual sweeps the population follows neutral Moran type dynamics. This class of model544

has recently been found to describe the genetic diversity in cod populations (Árnason et al. 2023). In545

general, the measure Λ associated with this class of coalescents takes the form of Λ = δ0 + Λ0 where546

δ0 is an atom at 0 responsible for Kingman-like mergers between sweeps and Λ0 is a finite measure547

on [0, 1] without an atom at 0, which drives multiple mergers due to selective sweeps. This model is548

not directly applicable to pathogen populations, primarily due to traditional recombination being less549
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frequent in bacterial and viral pathogens. An adaptation of this model to bacterial pathogens may be550

possible but is outside of the scope of this study.551

Future studies are needed to investigate what type of Lambda-coalescents best describe pathogen552

dynamics. The approach presented here is an approximate, albeit explicit approach to Bayesian553

inference of multiple merger genealogies. It has limitations: for instance, it is not appropriate for554

studying genealogies spanning geological timescales, as was demonstrated by worsening bias as the555

number of substitutions per site becomes high (Figure 5). The possibility of extending the inference556

under Lambda-coalescents to the fully Bayesian setting, incorporating uncertainty about the phylogeny557

and relying on the phylogenetic likelihood, remains an open problem. Extending some aspects of558

the parametrisation and construction of multiple merger genealogies presented in this work to the559

aforementioned setting is straightforward. However, we anticipate that the parametrisation presented560

here may not be computationally efficient when used in such a setting.561

Finally there is the question of extending the approach presented here to, for example, joint estimation562

of varying effective population size (Ho and Shapiro 2011). This is relevant both for the sake of the past563

effective population size being an interesting quantity, as well as being relevant from the perspective of564

statistical robustness. As Menardo et al. (2021) noted, population expansion can be misidentified as565

a Lambda-coalescent if population growth is not properly accounted for. In order to do this there are566

separate questions that have to be answered. Firstly, the impact of varying effective population size on567

the genealogy depends on the forwards-in-time model. Therefore it is first necessary to decide which568

Lambda-coalescent is the correct one to use for a given scenario. Secondly, adding a non-parametric569

model for the effective population size will increase the complexity of the inference problem. More570

efficient MCMC schemes, or other inference tools, would therefore need to be investigated. This might571

include non-reversible samplers with boundary conditions such as (Bierkens et al. 2023) or Hamiltonian572

Monte-Carlo methods (Dinh et al. 2017). Note that some phenomena might be indistinguishable573

from multiple mergers, such as population structure. For example a sufficiently fast expansion of a574

subpopulation that shares identity by descent (?) will likely lead to multiple mergers in the genealogy.575
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Cvijović, I., B. H. Good, and M. M. Desai. 2018. The Effect of Strong Purifying Selection on Genetic603

Diversity. Genetics 209:1235–1278.604

Desai, M. M., A. M. Walczak, and D. S. Fisher. 2013. Genetic Diversity and the Structure of605

Genealogies in Rapidly Adapting Populations. Genetics 193:565–585.606

Didelot, X., N. J. Croucher, S. D. Bentley, S. R. Harris, and D. J. Wilson. 2018. Bayesian inference of607

ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46:e134–e134.608

Didelot, X., B. Pang, Z. Zhou, A. McCann, P. Ni, D. Li, M. Achtman, and B. Kan. 2015. The Role of609

China in the Global Spread of the Current Cholera Pandemic. PLoS Genetics 11:e1005072.610

Didelot, X. and J. Parkhill. 2022. A Scalable Analytical Approach from Bacterial Genomes to611

Epidemiology. Philosophical Transactions of the Royal Society B: Biological Sciences 377:20210246612

publisher: Cold Spring Harbor Laboratory.613

Didelot, X., I. Siveroni, and E. M. Volz. 2021. Additive uncorrelated relaxed clock models for the614

dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 38:307–317.615

Dinh, V., A. Bilge, C. Zhang, and F. A. M. Iv. 2017. Probabilistic Path Hamiltonian Monte Carlo.616

Pages 1009–1018 in Proceedings of the 34th International Conference on Machine Learning PMLR617

iSSN: 2640-3498.618

Donnelly, P. and T. G. Kurtz. 1999. Particle Representations for Measure-Valued Population Models.619

The Annals of Probability 27:166–205 publisher: Institute of Mathematical Statistics.620

Dorman, M. J., D. Domman, T. Poklepovich, C. Tolley, G. Zolezzi, L. Kane, M. R. Viñas,621
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