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Abstract

Persons living with HIV are known to be at increased risk of developing tuberculosis
(TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has
remained unclear how HIV co-infection affects subsequent Mtb transmission from these
patients. Here, we customized a Bayesian phylodynamic framework to estimate the
effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We
applied our model to four Mtb genomic datasets collected in sub-Saharan African
countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is
a strong risk factor for developing active TB. Additionally, we demonstrate that HIV
co-infection is associated with a reduced effective reproductive number for TB.
Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that,
in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than
HIV infection status. Together, our genome-based analyses complement observational
household studies, and firmly establish the negative association between HIV
co-infection and Mtb transmissibility.

Author summary

Many sub-Saharan African countries have seen a considerable rise in TB incidence since
the introduction of HIV, suggesting a strong interaction between HIV and TB
epidemics. HIV infection is recognized as an important risk factor for developing TB,
but the contribution of HIV-infected TB patients to further Mtb transmission is poorly
understood. In this study, we analyzed four sets of Mtb genomic sequences collected in
different countries, including sequences from HIV-negative and HIV-positive TB
patients. We applied a phylodynamic model to these sequences, aimed at inferring
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transmission dynamics within and between different host populations. While our
findings support that HIV is a strong risk factor for TB, we show that HIV-positive TB
patients generate a significantly lower number of secondary TB cases than HIV-negative
patients. This suggests that HIV-positive patients often act as sinks in Mtb
transmission chains, while HIV-negative patients are a major source of transmission.

Introduction 1

The human immunodeficiency virus 1 (HIV) was first introduced into the human 2

population in the beginning of the 20th century through a zoonotic transmission 3

event [1, 2]. Its silent spread in the following decades resulted in a globally established 4

HIV epidemic, disproportionally affecting sub-Saharan Africa [3]. In addition to directly 5

related healthcare challenges, the high prevalence of HIV in these countries has 6

contributed to a strong rise in tuberculosis (TB) incidence rates [4–9]. Accordingly, HIV 7

co-infection in Mycobacterium tuberculosis (Mtb)-infected patients has been associated 8

with an increased risk of progression to active TB disease, an increased risk of recurrent 9

Mtb infection, and an increased TB case-fatality rate [5, 9–13]. Despite our incomplete 10

understanding of the interactions between TB, HIV, and the human immune system, it 11

is widely accepted that the depletion of CD4+ T-cells underlies the high TB 12

susceptibility and mortality in HIV-positive patients [9, 11,14]. 13

While many studies support this increased susceptibility to TB disease, the effects of 14

HIV co-infection on the generation of secondary TB cases remain poorly 15

understood [9, 15]. The HIV-associated reduction in CD4+ T-cell count has been shown 16

to be associated with an altered TB disease presentation, including lower levels of lung 17

cavitation, lower bacterial loads in the sputum, and a higher likelihood of 18

extrapulmonary TB [9,16]. This distinct lung pathology could result in reduced Mtb 19

transmission, as transmission is mainly driven by the formation of aerosols from infected 20

lungs, and lung cavitations are known to enhance transmission [17,18]. 21

Several household contact studies have indicated reduced infectiousness of 22

HIV-positive TB index cases [19–24], although notably, many of these studies only 23

considered sputum smear-negative HIV patients or patients with considerably reduced 24

CD4+ T-cell counts [21–24]. In contrast, a meta-analysis [25] and a more recent 25

whole-genome sequence analysis of multidrug-resistant (MDR) Mtb isolates [26] found 26

no association between HIV co-infection and the probability of Mtb transmission. 27

While the altered lung pathology of HIV co-infected TB patients could affect the 28

rate at which these patients transmit Mtb, the number of secondary cases generated is 29

also determined by how long these patients remain infectious for Mtb. Previous studies 30

on the duration of Mtb infectiousness in HIV-positive patients showed mixed results. 31

Several studies indicate that HIV co-infection shortens the Mtb infectious period [27–29]. 32

This could be explained by a higher TB mortality rate, or faster TB disease progression, 33

resulting in a more timely diagnosis and initiation of treatment [8, 9, 13,30,31]. In 34

contrast, one study estimated that the time until accessing TB treatment was longer for 35

HIV-positive patients [32], which could be explained by a postponed diagnosis due to 36

barriers to care for HIV patients, or by higher rates of smear-negativity and an atypical 37

disease presentation. 38

As the effects of HIV co-infection on the Mtb transmission rate and infectious period 39

are not well established, it remains unclear how HIV affects the overall transmissibility 40

of Mtb. Here we analyzed four Mtb genomic datasets from countries with a high burden 41

of HIV in sub-Saharan Africa (Malawi, South Africa, Tanzania, and Uganda). In 42

particular, we applied a Bayesian phylodynamic model, coupling an epidemiological 43

model with a model of sequence evolution, to investigate how HIV co-infection affects 44

the Mtb transmission dynamics. Our phylodynamic model stratifies the TB patient 45
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population by HIV infection status, and is parametrized with the aim of estimating the 46

effect of HIV co-infection on the risk of developing active TB upon exposure, as well as 47

the average number of secondary TB cases generated per patient (i.e., the effective 48

reproductive number). Our results confirm that HIV co-infection is associated with an 49

increased risk of developing active TB, and provides evidence for reduced Mtb 50

transmissibility from HIV-positive TB patients. 51

Results 52

We analyzed complete Mtb genomes collected from TB patients in four sub-Saharan 53

African countries: 1,209 sequences from Karonga District, Malawi (1995-2011) [33], 54

1,133 sequences from Khayelitsha, Cape Town, South Africa (2008-2018) [34], 1,074 55

sequences from Temeke District, Dar es Salaam, Tanzania (2013-2019) [35], and 185 56

sequences from Kampala, Uganda (1995-2012) [36,37] (see Materials and methods for 57

details on the study populations). The sequences from Uganda have been used partially 58

in other studies [38,39] but are analyzed here together for the first time. Mtb lineage 59

distributions per sampling location are shown in S1 Table. 60

To quantify the effects of HIV co-infection on Mtb transmission in these locations, 61

we customized a phylodynamic model based on the structured birth-death model [40], 62

with the TB patient population stratified by HIV infection status as determined at the 63

time of TB diagnosis (S1 Fig). In this model, transmission of Mtb within and between 64

subpopulations (i.e., HIV-negative and HIV-positive TB patients) is described with 65

different transmission rates (number of transmission events per patient per unit of time), 66

and each subpopulation is additionally characterized by a rate of becoming uninfectious 67

(1/infectious period) and a sampling rate. The ratio of the transmission rate and the 68

becoming uninfectious rate corresponds to the effective reproductive number (Re), 69

representing the average number of secondary TB cases that one patient generates in 70

the same or the other subpopulation. To explicitly model the effects of HIV, we 71

reparametrized this model with (1) a base Re, corresponding to the Re for TB in a 72

purely HIV-negative population (Rb
e), (2) a parameter for the multiplicative effect of 73

HIV co-infection on the Re of TB patients, at the donor side of transmission (f1), (3) a 74

parameter for the multiplicative effect of HIV co-infection on the risk of getting 75

diagnosed for active TB disease after Mtb exposure (f2), (4) the rate at which 76

HIV-negative patients become Mtb uninfectious (δ−), (5) a parameter for the 77

multiplicative effect of HIV co-infection on the rate of becoming Mtb uninfectious (f3), 78

and (6) a parameter for the HIV prevalence in the general population (pHIV) (S1 Fig; see 79

Materials and methods for more details on the phylodynamic model). The HIV 80

prevalence was included to account for the HIV-negative and HIV-positive susceptible 81

population sizes, which in turn influence the contact probabilities and thus the Re in 82

each location. HIV prevalences were not estimated from the genomic data, but set to 83

time-varying levels based on location-specific prevalence data from World Bank [41–44] 84

(S2 Fig). To improve the identifiability of the parameters of interest, the becoming 85

uninfectious rate for HIV-negative patients was fixed to 1 year−1. This corresponds to 86

an average Mtb infectious period of 1 year, which is within the range of previous 87

estimates [27–29,32]. We assumed no migration in the model, implying that the HIV 88

status of patients does not change during the course of their Mtb infection. We also 89

assumed a constant Rb
e, as justified by the results of an unstructured birth-death skyline 90

analysis [45] (S3 Fig). Each sampling location was analyzed independently. For each 91

location, we inferred Mtb lineage-specific phylogenetic trees, with each tree modelled as 92

having an independent origin and evolutionary parameters. Epidemiological parameters 93

were assumed to be the same for all lineages co-circulating within a given location. All 94

parameters were estimated with the Bayesian phylogenetics package BEAST2 [46,47], 95
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with prior distributions summarized in S2 Table. 96

The posterior maximum clade credibility trees of Mtb isolates from Tanzania are 97

displayed in Fig 1 (trees for the other locations are shown in S4 Fig, S5 Fig, and S6 98

Fig), indicating limited clustering of HIV-positive patients. The posterior distributions 99

of the parameter estimates show that the TB disease development risk for HIV-positive 100

patients relative to HIV-negative patients is significantly higher than 1 in each sampled 101

location, with posterior means ranging from 4.48 to 11.49 (Fig 2a). These results 102

suggest that HIV-positive patients have a 4- to 11-fold increased risk of developing 103

active TB upon exposure, which is in accordance with the increased TB incidence rate 104

observed in HIV patients [9, 10,12,13]. Posterior estimates for the relative Re 105

(HIV-positive relative to HIV-negative patients) are all significantly lower than 1, with 106

posterior means ranging from 0.047 to 0.20, implying that HIV co-infection is associated 107

with a 5- to 21-fold reduction in Re for TB (Fig 2b). This could result from an altered 108

TB disease presentation, as supported by the significantly lower chest X-ray scores of 109

HIV-positive compared to HIV-negative TB patients in Uganda (Welch’s two-sample 110

t-test, p = 0.044). Similarly, the HIV-positive patients from Tanzania showed reduced 111

chest X-ray scores (Welch’s two-sample t-test, p < 0.001), less cavity development 112

(χ2-test, p < 0.001), and lower bacterial loads in the sputum (Welch’s two-sample t-test, 113

p = 0.0027) [35], reflecting a distinct lung pathology, consistent with a reduced 114

infectiousness. Furthermore, clinical data from Malawi and South Africa showed that 115

HIV-positive patients were strongly associated with extrapulmonary TB (χ2-test, 116

p < 0.001 for both datasets), which is non-transmissible. All these observations are 117

consistent with previous studies [9, 16]. 118

Fig 1. Posterior maximum clade credibility trees of Mtb isolates from
Tanzania. Posterior maximum clade credibility trees per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the Mtb
sequences from Tanzania, with tips labeled by HIV infection status. Trees of isolates
from the other locations are shown in S4 Fig, S5 Fig, and S6 Fig.

Fig 2. Phylodynamic estimates of the effects of HIV co-infection on Mtb
transmission. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(HIV-positive patients relative to HIV-negative patients), b) the relative Re for TB. For
all posterior distributions, the 95% HPD intervals do not contain 1.

We could not identify a clear effect of HIV co-infection on the Mtb infectious period, 119

due to wide posterior distributions for some locations and conflicting results for others 120

(S7 Fig). However, irrespective of the infectious period, HIV co-infection was associated 121

with a reduced Mtb transmission rate (S7 Fig), suggesting that HIV mainly affects the 122

strength, rather than the period of infectiousness. 123

To investigate how much our results are impacted by the assumptions on the 124

becoming uninfectious rate of HIV-negative patients, we repeated the analyses with 125

fixed values of 0.5 year−1 and 2 year−1 for this parameter (S8 Fig). Further sensitivity 126

analyses comprised different priors on the parameters for the HIV effects on Mtb 127

transmission and TB disease development risk (S9 Fig), and fixing the clock rate to 128

10−8 resp. 10−7 substitutions per site per year (S10 Fig; see S3 Table for the clock rate 129

estimates resulting from the main analyses). While the absolute values of the posterior 130

estimates of interest were weakly dependent on the choice of priors, all sensitivity 131

analyses resulted in the same qualitative conclusions regarding the relative Re and 132

relative progression risk. 133
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Phylodynamic birth-death estimates are not only informed by the genomic data, but 134

also by the distribution of sample collection dates. An additional set of analyses where 135

the sequences were ignored showed that estimates of the relative progression risk with 136

and without the genomic data were in close agreement, with only slightly shifted 137

posterior distributions and more certainty in the estimates when the sequences were 138

included (S11 Fig), suggesting that they contain little information about this parameter. 139

For the relative Re, including the sequences resulted in shifted and narrower posterior 140

distributions (S11 Fig), indicating that while the isolation dates and HIV infection 141

status of patients are the major source of information, the genomic data further inform 142

this parameter. 143

To identify potential biases introduced through model assumptions and priors, we 144

repeated the analyses on datasets where the HIV status of the patients was permuted. 145

These datasets still contained signal for the relative progression risk and relative Re 146

(S12 Fig). This can be explained by the HIV prevalence being 4 to 7 times higher in the 147

sampled TB patients than in the general population in the countries under study. 148

Indeed, randomly assigning the HIV status using the average HIV frequency in the 149

general population during the sampling period resulted in posterior distributions for the 150

relative progression risk and relative Re that overlap with 1, implying no effect of HIV 151

co-infection (S12 Fig). Together, these results demonstrate that the signal for the HIV 152

effect parameters originates from the data rather than from model assumptions, with 153

the parameter inference presumably being driven by 1) the high prevalence of HIV 154

within the population of TB patients, and 2) the sampling dates and sequences 155

informing the overall Re estimate, which in turn constrains the HIV effect parameters. 156

HIV patients might show different levels of CD4+ T-cell depletion, depending on the 157

stage of HIV infection and whether the patient is on antiretroviral therapy (ART). 158

Several studies have indicated that decreased CD4+ T-cell counts are associated with a 159

reduced frequency of lung cavitations (see [9] for an overview), and we found a similar 160

association in HIV patients from Uganda (Welch’s two-sample t-test, p = 0.030), 161

suggesting that CD4+ T-cell counts might be a better predictor for Mtb transmissibility 162

and TB progression than the HIV infection status. In contrast, one study showed that 163

TB incidence rates were increased even in HIV patients with high CD4+ T-cell 164

counts [11], suggesting that other aspects of HIV infection might also play a role. To 165

investigate the contribution of CD4+ T-cell counts to the observed effects of HIV 166

co-infection on Mtb transmission, we repeated our phylodynamic analyses on sequences 167

from South Africa and Uganda, with subpopulations defined by CD4+ T-cell counts 168

(lower resp. higher than 350 cells/µl, the threshold recommended by WHO to prioritize 169

patients for ART) instead of HIV status (S13 Fig). For the other sampling locations, 170

CD4+ T-cell counts were not available. These analyses resulted in similar posterior 171

means and HPD intervals for the parameters of interest (Fig 3), suggesting that the 172

CD4+ T-cell count can be used as a predictor of Mtb transmission, but that, within the 173

context of our analyses, it is not more informative than the HIV status. 174

Fig 3. CD4+ T-cell count as predictor for Mtb transmissibility and TB
disease progression. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(patients with low CD4+ T-cell count relative to patients with high CD4+ T-cell count),
b) the relative Re for TB. A threshold of 350 CD4+ T-cells/µl was used to classify
patients. For all posterior distributions, the 95% HPD intervals do not contain 1.
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Discussion 175

The effects of HIV co-infection on Mtb transmission have remained elusive, with 176

previous studies yielding contradictory results. Here we used a phylodynamic approach 177

to address the question based on Mtb sequences and HIV/Mtb co-infection data sampled 178

in four different African countries. Our phylodynamic analyses confirm that HIV/Mtb 179

co-infected individuals are at high risk of developing active TB disease compared to 180

HIV-negative Mtb-infected individuals. Moreover, we found that HIV-positive TB 181

patients on average cause significantly fewer secondary TB cases compared to 182

HIV-negative TB patients. These findings were reproduced across all four countries. 183

Our finding that HIV co-infection is a strong risk factor for developing active TB 184

disease upon exposure explains why many TB epidemics in sub-Saharan Africa seem to 185

be driven by the high HIV prevalence in these settings [4–9]. The underlying cause of 186

this increased susceptibility to TB might be the depletion of CD4+ T-cells in HIV 187

patients [9, 11, 14]. As we could only investigate the overall risk of developing active TB 188

disease after contact with a TB patient, it remains unclear, based on our data, whether 189

HIV also affects the risk of Mtb infection. 190

The consistently reduced TB Re from HIV-positive patients, observed in all 191

countries under study, seems to be linked to a reduced number of transmission events 192

per patient per unit of time. These findings are in accordance with the reduced Mtb 193

infectiousness of HIV patients previously observed in various household contact 194

studies [19–24]. A reduced infectiousness of HIV-positive TB patients can potentially be 195

explained by an altered TB disease presentation in HIV-positive patients, which could 196

in turn result from an impaired immune system. This notion is supported by significant 197

associations between HIV infection status and clinical variables related to lung damage 198

and bacterial burden, observed in this and previous studies [9, 16]. 199

The TB Re of HIV-positive TB patients might be additionally reduced through a 200

shorter infectious period, due to more rapid disease progression and/or an increased 201

mortality rate [8, 9, 13,30,31]. In contrast, increased bacterial drug resistance, delayed 202

diagnosis due to an atypical disease presentation, and barriers to care for HIV patients 203

could increase the Mtb infectious period of HIV-positive TB patients [32]. While we 204

could not identify a consistent HIV effect on the infectious period, we showed that the 205

reduced Re of HIV-positive TB patients was linked to a lower transmission rate, 206

irrespective of the duration of the infectious period. 207

The effects of HIV co-infection might be complicated by ART, which alleviates the 208

CD4+ T-cell depletion in HIV patients [48, 49]. As information on ART was lacking for 209

most patients, we could not directly take this into account in our analyses. However, we 210

assumed that the CD4+ T-cell measurements from the patients in South Africa and 211

Uganda would reflect differences in ART. As the CD4+ T-cell count classification 212

(low/high) for these patients largely overlapped with their HIV infection status (S13 213

Fig), we could not identify any distinguishable effect of CD4+ T-cell counts. ART only 214

recently became widely accessible to HIV patients in South Africa and Uganda [50,51], 215

which might explain why CD4+ T-cell count and HIV status are largely redundant. In 216

other settings, ART might play a more important role in determining CD4+ T-cell 217

counts, and consequently, CD4+ T-cell counts might be a better predictor of Mtb 218

transmissibility. 219

HIV co-infection has been shown to be associated with rifampicin-resistant TB, 220

potentially due to increased resistance acquisition during TB treatment [52]. While the 221

prevalence of drug resistance during the sampling period was low in Malawi, Tanzania, 222

and Uganda, the South-African dataset consists of rifampicin-resistant Mtb isolates only, 223

indicating that HIV is associated with reduced Mtb transmissibility irrespective of drug 224

resistance. Other potential confounders are poverty-related risk factors, patient sex, and 225

patient age. However, with our current approach, these confounders are challenging to 226
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control for due to the rapidly increasing model complexity. 227

Notably, the major source of information on HIV effects in the model are the 228

sampling dates and the HIV status of the TB patients, indicating that our customized 229

birth-death model would have been able to capture the signal in the data even in the 230

absence of Mtb sequences. A potential explanation for this limited signal in the 231

sequence data is the fact that HIV status is a host-related factor that is not associated 232

to the bacterial genetic background. Consequently, the Mtb genomes of HIV-positive 233

TB patients are dispersed across the phylogenetic tree, resulting in high uncertainty on 234

ancestral states and thus few informative branching events. 235

One limitation of our approach is that we did not account for multiple Mtb 236

introductions into the study populations, nor for changes in the TB Re over time. 237

However, HIV was most likely introduced only after the establishment of different Mtb 238

lineages, and the majority of branching events informing the epidemiological parameters 239

occur after the introduction of HIV, suggesting minimal impact on the estimates. In 240

support of this notion, current evidence indicates that the main Mtb lineages circulating 241

in these parts of Africa were introduced several centuries ago [35,38,53–56]. Moreover, 242

no biases were observed when randomly re-assigning the HIV status of patients. A 243

second limitation is that our estimates might be biased due to an underestimation of 244

the HIV prevalence in the general population. As these potential biases originate from 245

the input data rather than the model, they cannot be identified with our randomization 246

approach. A third limitation is the assumption that the probabilities of contact between 247

and within HIV-positive and HIV-negative subpopulations are solely a function of the 248

size of each subpopulation, ignoring any preferential contacts due to social effects. 249

Finally, a fourth limitation of the model is the assumption that patients infected with 250

Mtb immediately become infectious (i.e., no period of latent infection). While this 251

assumption could affect the interpretation of the transmission rate and infectious period, 252

the relative Re is expected to be robust, even if the duration of the latent period would 253

be associated with HIV infection. Notably, our model does not distinguish between 254

Mtb-uninfected patients and patients who are infected but never develop active TB 255

disease. 256

Taken together, our results demonstrate that a high HIV prevalence can fuel a TB 257

epidemic by increasing the risk for TB disease progression in HIV-positive patients, but 258

that these patients do not proportionally contribute to further Mtb transmission. 259

HIV-positive patients can thus be considered as ‘sinks’ in transmission chains. By 260

contrast, HIV-negative TB patients serve as the ‘sources’ by being disproportionally 261

responsible for Mtb transmission. Our findings have implications for TB control, and 262

call for a particular attention to HIV-negative TB patients, ideally through active case 263

finding, thereby ensuring that these patients are diagnosed and treated as early as 264

possible to prevent further spread of the disease. 265

Materials and methods 266

Study populations 267

All datasets in this study consist of whole genome sequences (Illumina) of Mtb strains 268

collected in countries with a generalized HIV epidemic. 269

Malawi Raw Illumina reads were retrieved from the European Nucleotide Archive 270

(project accession numbers ERP000436 and ERP001072). These sequences were 271

obtained from adults with culture-confirmed TB diagnosed at the hospital and 272

peripheral health centres in Karonga District, northern Malawi between 1995 and 273

2011 [33]. Information about the HIV status of the patients was kindly provided by the 274
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authors of the study, and only sequences from patients with known HIV status were 275

retained (n = 1, 209). The incidence of smear-positive TB in adults in the district 276

during the sampling period corresponds to 87-124 cases per 100,000 people per year [33]. 277

South Africa We used previously sequenced isolates from a retrospective cohort 278

study of individuals routinely diagnosed with rifampicin-resistant (RR) or 279

multidrug-resistant (MDR) TB in Khayelitsha, Cape Town, South Africa between 2008 280

and 2018 (raw reads available in the European Nucleotide Archive under project 281

accession numbers PRJEB45389 and PRJNA670836) [34]. Only sequences from patients 282

with known HIV status were retained (n = 1, 133). The TB notification rate in 283

Khayelitsha was estimated around 80 RR/MDR cases per 100,000 people per year [52]. 284

Tanzania We used previously sequenced isolates from a cohort of sputum 285

smear-positive and GeneXpert-positive adult TB patients prospectively recruited at the 286

Temeke District hospital in Dar es Salaam, Tanzania between 2013 and 2019 (raw reads 287

available in the European Nucleotide Archive under project accession number 288

PRJEB49562) [35]. Only sequences from patients with known HIV status were retained 289

(n = 1, 074). The TB notification rate in Temeke in 2020 was 3,994 cases per year (Jerry 290

Hella, personal communication). 291

Uganda Bacterial isolates and clinical data were obtained from TB patients recruited 292

in two large household contact studies. An initial study was conducted from 1995 to 293

1999 to describe the epidemiology of TB in urban Kampala, Uganda [36,57]. The second 294

is known as the “Kawempe Community Health” study which ran from 2000 to 2012 [37]. 295

We whole-genome sequenced 185 isolates belonging to Mtb sublineage 4.6.1 (raw reads 296

available in the European Nucleotide Archive under project accession numbers 297

PRJEB11460, PRJNA354716, and PRJEB64921). These isolates were obtained from 298

HIV-positive and HIV-negative TB patients defined mostly as index cases within a 299

household (with the exception of 4 and 3 strains from contact and co-prevalent cases, 300

respectively). HIV status was determined by ELISA and confirmed by Western blot at 301

baseline. CD4+ T-cell counts were available for 48 patients. The incidence rate of 302

sputum smear-positive TB in Kampala in 2001-2002 was estimated around 370 cases 303

per 100,000 people per year [36]. As only the year of sample isolation was available, all 304

isolates were assumed to be collected on the 1st of January of the corresponding year. 305

The institutional review boards at University Hospitals of Cleveland in the United 306

States and AIDS Research Council in Uganda reviewed the study protocols and final 307

approval was obtained from the Uganda National Council for Science and Technology. 308

Written informed consent was obtained from all patients that participated in the study. 309

All participants were given appropriate pre- and post-test HIV counseling and AIDS 310

education. The protocols and the procedures for the protection of human subjects were 311

approved by the Uganda National Council Ethics Committee and the Institutional 312

Ethics Review Board at Makerere University, Kampala. 313

Whole-genome sequencing 314

Bacterial isolates from Kampala, Uganda were cultured on Middlebrook 7H10 315

supplemented with 10% glycerol and OADC until confluent colonies appeared on the 316

plates. The colonies were scraped off and their genomic DNA was extracted using the 317

CTAB method [58]. Selected strains were whole-genome sequenced on an Illumina 318

HiSeq 2000 instrument at the commercial facility GATC (Germany). Library 319

preparation was performed according to Illumina’s TruSeq DNA Sample Preparation 320

Guide (Illumina, San Diego, CA). Single-end sequence reads of approximately 50 bp 321
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were obtained. Demultiplexing was performed automatically by the CASAVA pipeline 322

v1.8.0 (Illumina, San Diego, CA). 323

WGS analyses and alignments 324

For all datasets, the Illumina reads were processed and analyzed as described in [34,35]. 325

Lineages and sublineages were identified using the SNP-based classification by Steiner et 326

al. [59]. For all sequences per lineage and per location, an alignment of polymorphic 327

positions was assembled by concatenating all high-quality SNPs. Sites that had more 328

than 10% of missing data, as well as drug-resistance-related sites, were excluded from 329

the alignment. 330

Phylodynamic analyses 331

We fit a multitype birth-death model to the sequence alignments [40], with two types 332

corresponding to HIV-negative TB patients and HIV-positive TB patients (S1 Fig). 333

Under this model, a ‘birth’ event corresponds to an Mtb transmission event from one 334

host to another, which can occur within and between types. A ‘death’ event occurs 335

when a host becomes uninfectious for Mtb due to recovery or death. The model was 336

parametrized with the Re within a purely HIV-negative population (Rb
e), the rate at 337

which HIV-negative patients become uninfectious (δ−), the multiplicative effect of HIV 338

co-infection on transmitting Mtb (f1), the multiplicative effect of HIV co-infection on 339

the risk of TB disease development upon exposure (f2), and the multiplicative effect of 340

HIV co-infection on the rate of becoming uninfectious for Mtb (f3). The effective 341

reproductive number for TB within the HIV-negative subpopulation, within the 342

HIV-positive subpopulation, from the HIV-negative to the HIV-positive subpopulation, 343

and from the HIV-positive to the HIV-negative subpopulation (R−−
e , R++

e , R−+
e , and 344

R+−
e , respectively), as well as the rate at which HIV-positive patients become Mtb 345

uninfectious (δ+), are then as follows: 346

R−−
e = (1 − pHIV)Rb

e

R++

e = f1f2pHIVR
b
e

R−+

e = f2pHIVR
b
e

R+−
e = f1(1 − pHIV)Rb

e

δ+ = f3δ−

pHIV represents the overall prevalence of HIV in the general population (including 347

both Mtb-infected and Mtb-uninfected individuals) and is included to account for 348

different sizes of the HIV-negative and HIV-positive populations. As the HIV prevalence 349

in a country changed over time since the date of HIV introduction, we let pHIV change at 350

three different time points in the past, according to HIV prevalence data from World 351

Bank [41–44] (S2 Fig). Hence, the effective reproductive numbers also changed through 352

time. 353

The overall reproductive numbers for HIV-negative and HIV-positive patients are 354

stated below. From these equations, it can be seen that f1 = R+
e /R

−
e . 355

R−
e = R−−

e +R−+

e = (1 − pHIV)Rb
e + f2pHIVR

b
e

R+

e = R+−
e +R++

e = f1(1 − pHIV)Rb
e + f1f2pHIVR

b
e

Transmission rates (i.e., rates of Mtb transmission per patient per unit of time) from 356

HIV-negative and HIV-positive TB patients can be obtained using the definition of the 357

reproductive number: 358
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λ− = R−
e δ−

λ+ = R+

e δ+

We assumed no migration between subpopulations, implying that HIV-negative 359

patients cannot get infected with HIV during their period of Mtb infectiousness. TB 360

patients are sampled with sampling proportion s, which was set equal to zero before the 361

onset of sampling. Upon sampling an infected patient, the patient is assumed to become 362

uninfectious with probability r [60]. 363

We further assumed a strict molecular clock and a general time-reversible nucleotide 364

substitution model with four gamma rate categories to account for site-to-site rate 365

heterogeneity (GTR+Γ4). 366

We performed phylodynamic inference using the bdmm package [40] in BEAST 367

v2.6.6 [46, 47]. Data from each location were analyzed independently. For each location, 368

variable SNP alignments were generated per Mtb lineage and augmented with a count of 369

invariant A, C, G, and T nucleotides to avoid ascertainment bias [61]. To avoid 370

unreasonably long runtimes, any alignment containing more than 400 sequences was 371

randomly downsampled to 400 sequences, and sampling proportion priors were adjusted 372

accordingly. Population dynamic parameters were inferred jointly for the different Mtb 373

lineages within one location: each lineage was represented with an independent tree 374

with its own origin time and nucleotide substitution parameters, but sharing all other 375

parameters with the other lineages. 376

Three independent Markov Chain Monte Carlo chains were run for each analysis, 377

with states sampled every 1,000 steps. Tracer [62] was used to assess convergence and 378

confirm that the effective sample size (ESS) was at least 200 for the parameters of 379

interest. 10% of each chain was discarded as burn-in, and the remaining samples across 380

the three chains were pooled using LogCombiner [47], resulting in at least 300,000,000 381

iterations in combined chains. 382

Prior distributions 383

All parameters and their corresponding prior distributions are listed in S2 Table. For the 384

sampling proportion, a uniform prior was chosen with lower bound set to zero and upper 385

bound set equal to the ratio of the number of sequences, corrected for downsampling, 386

and the total number of reported cases during the sampling period (S4 Table). 387

Sensitivity analyses 388

The robustness of the phylodynamic inference was assessed by changing the fixed value 389

of δ− to 0.5 and 2 year−1, by changing the prior on f1 and f2 to a Lognormal(0,0.5) 390

distribution, and by fixing the clock rate to 10−8 and 10−7 substitutions per site per 391

year. To evaluate the relative impact of the sequence data on our parameter estimates, 392

a phylodynamic analysis was performed using the same setup as the main analyses, but 393

without any sequence data. 394

Birth-death skyline analysis 395

To investigate whether Rb
e can be assumed constant through time, we ran a birth-death 396

skyline analysis on sequences from the most abundant lineage per sampling location [45]. 397

No population structure is assumed in this model. Two time intervals were used to 398

estimate potential changes in the overall Re over time, with the change point set at the 399

estimated time of HIV introduction (S2 Fig). The overall rate of becoming Mtb 400

uninfectious was assumed constant through time. For the sampling proportion, clock 401
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model and substitution model parameters, the same settings and priors were used as in 402

the multitype birth-death model. 403

Randomization of HIV status 404

The HIV infection status of the patients was randomized in two ways. First, the HIV 405

status labels were permuted, implying that the HIV prevalence among the sampled TB 406

patients was kept unchanged. Second, the HIV status was randomly assigned to each 407

patient, with an overall HIV prevalence among the patients assumed equal to the 408

average HIV prevalence in the general population (including both Mtb-uninfected and 409

Mtb-infected individuals) during the sampling period (S2 Fig) [41–44]. Each of the 410

randomization procedures was replicated 10 times. 411

Population stratification by CD4+ T-cell count 412

The TB patient population was stratified based on CD4+ T-cell count, with a threshold 413

set at 350 cells/µl, corresponding to the threshold recommended by WHO to prioritize 414

patients for ART (S13 Fig) [63]. As CD4+ T-cell counts were not monitored for 415

HIV-negative TB patients from Uganda, these patients were all classified as having a 416

high CD4+ T-cell count (in accordance with data from South Africa, Figure ). The 417

fitted phylodynamic model was equivalent to the model based on HIV status, with 418

HIV-negative patients being replaced by patients with a high CD4+ T-cell count (≥ 350 419

cells/µl) and HIV-positive patients being replaced by patients with a low CD4+ T-cell 420

count (< 350 cells/µl). Correspondingly, pHIV was replaced by plowCD4+, the prevalence 421

of patients with low CD4+ T-cell counts. This prevalence was estimated as follows: the 422

HIV prevalence in the general population was multiplied by the observed proportion of 423

patients with low CD4+ T-cell count among HIV-positive patients in the dataset. 424

plowCD4+ was set to 75% of this value, as HIV-positive patients with low CD4+ T-cell 425

counts are likely overrepresented among TB patients. Changing this 75% to higher or 426

lower values did not change the qualitative conclusions. 427

Statistical analyses 428

Associations between HIV infection status and other variables were tested using Welch’s 429

t-tests and χ2-tests implemented in R. 430

Data availability 431

185 genome sequences collected in Kampala, Uganda, were deposited to the European 432

Nucleotide Archive (ENA) at EBI, registered under project accession numbers 433

PRJEB11460 (https://www.ebi.ac.uk/ena/browser/view/PRJEB11460), 434

PRJNA354716 (https://www.ebi.ac.uk/ena/browser/view/PRJNA354716) and 435

PRJEB64921 (https://www.ebi.ac.uk/ena/browser/view/PRJEB64921). 436

Code availability 437

The code for the phylodynamic analyses, including BEAST2 XML files, is available at 438

https://github.com/EtthelWindels/tb_hiv. 439
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17. Jones-López EC, Namugga O, Mumbowa F, Ssebidandi M, Mbabazi O, Moine S,
et al. Cough aerosols of Mycobacterium tuberculosis predict new infection: A
household contact study. American Journal of Respiratory and Critical Care
Medicine. 2013;187(9):1007–1015.
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Supporting information

S1 Fig. Schematic representation of the phylodynamic model.
Phylodynamic model used to estimate HIV effects on Mtb transmission, based on a
structured birth-death model with HIV-negative and HIV-positive TB patients
representing different subpopulations. Each subpopulation has its own rate of becoming
uninfectious (indicated as δ− and δ+) and sampling rate (indicated as s− and s+).
Transmission events occur within each subpopulation with reproductive numbers
indicated as R−−

e and R++
e , and between subpopulations with effective reproductive

numbers indicated as R−+
e and R+−

e . b) For the analyses in this study, the model was
reparametrized by expressing the reproductive numbers as a function of a base Re (Rb

e),
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the HIV prevalence in the general population (pHIV), the multiplicative effect of HIV
co-infection on the Re of TB patients (f1), the multiplicative effect of HIV co-infection
on the risk of developing active TB when exposed (f2), and the multiplicative effect of
HIV co-infection on the rate of becoming uninfectious (f3).

S2 Fig. HIV prevalence in different countries over time. Coloured lines
represent the prevalence per country over time, as reported by World Bank [41–44],
while the dashed grey lines represent the values used in our phylodynamic model.

S3 Fig. Re estimates resulting from the birth-death skyline analyses. Prior
(grey) and posterior (coloured) distributions per sampling location of the estimates of
the overall Re before and after the estimated time of HIV introduction into the country,
assuming no structure in the population.

S4 Fig. Posterior maximum clade credibility trees of Mtb isolates from
Malawi. Posterior maximum clade credibility tree per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the sequences
from Malawi, with tips labeled by HIV infection status.

S5 Fig. Posterior maximum clade credibility trees of Mtb isolates from
South Africa. Posterior maximum clade credibility tree per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the sequences
from South Africa, with tips labeled by HIV infection status.

S6 Fig. Posterior maximum clade credibility tree of Mtb isolates from
Uganda. Posterior maximum clade credibility tree, summarizing the posterior tree
distribution resulting from the phylodynamic analyses on the sequences from Uganda
(lineage 4 only), with tips labeled by HIV infection status.

S7 Fig. Additional parameter estimates resulting from the main
phylodynamic analyses. Posterior distributions per sampling location of the
estimates for a) the relative Mtb infectious period (HIV-positive relative to
HIV-negative patients), b) the relative Mtb transmission rate. For all posterior
distributions in (b), the 95% HPD intervals do not contain 1.

S8 Fig. Parameter estimates for the sensitivity analyses on the becoming
uninfectious rate. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(HIV-positive relative to HIV-negative patients), assuming a fixed becoming
uninfectious rate of 0.5 year−1, b) the relative Re for TB, assuming a fixed becoming
uninfectious rate of 0.5 year−1, c) the relative risk of developing active TB upon
exposure, assuming a fixed becoming uninfectious rate of 2 year−1, d) the relative Re

for TB, assuming a fixed becoming uninfectious rate of 2 year−1. For all posterior
distributions, the 95% HPD intervals do not contain 1.

S9 Fig. Parameter estimates for the sensitivity analyses on the HIV effect
priors. Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), and b) the relative Re for TB, assuming
Lognormal(0,0.5) priors on the effect of HIV on Mtb transmission (f1) and TB disease
progression (f2). For all posterior distributions, the 95% HPD intervals do not contain 1.
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S10 Fig. Parameter estimates for the sensitivity analyses on the clock
rate. Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), assuming a fixed clock rate of 10−8 substitutions per
site per year, b) the relative Re for TB, assuming a fixed clock rate of 10−8

substitutions per site per year, c) the relative risk of developing active TB upon
exposure, assuming a fixed clock rate of 10−7 substitutions per site per year, d) the
relative Re for TB, assuming a fixed clock rate of 10−7 substitutions per site per year.
For all posterior distributions, the 95% HPD intervals do not contain 1.

S11 Fig. Parameter estimates for the analyses with and without genomic
data. a) Posterior distributions per sampling location of the estimates for the relative
risk of developing active TB upon exposure (HIV-positive relative to HIV-negative
patients), only based on the sampling dates and HIV infection status (light colours), or
also including the sequences (dark colours). b) Posterior distributions per sampling
location of the estimates for the relative Re for TB, only based on the sampling dates
and HIV infection status (light colours), or also including the sequences (dark colours).

S12 Fig. Parameter estimates for the analyses on randomized datasets.
Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), on 10 different datasets where the HIV status labels
of the patients were permuted, b) the relative Re for TB, on 10 different datasets where
the HIV status labels of the patients were permuted, c) the relative risk of developing
active TB upon exposure, on 10 different datasets where the HIV status labels were
randomly assigned using the average HIV frequency in the general population during
the sampling period, d) the relative Re for TB, on 10 different datasets where the HIV
status labels were randomly assigned using the average HIV frequency in the general
population during the sampling period.

S13 Fig. CD4+ T-cell counts of HIV-negative and HIV-positive TB
patients from South Africa and Uganda. In Uganda, CD4+ T-cell counts were
only recorded for HIV-positive patients. The dashed line represents the threshold (350
cells/µl) recommended by WHO to prioritize patients for ART [63]. This threshold was
used to stratify the TB patient population.

S1 Table. Observed lineage distribution at the different sampling
locations, based on the number of sequences in the datasets.

S2 Table. Prior distributions for the parameters of the multitype
birth-death model.

S3 Table. Clock rate estimates resulting from the main phylodynamic
analyses.

S4 Table. Total number of reported cases during the sampling period and
total number of sequences included in the analyses at the different
sampling locations.
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