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Abstract

Persons living with HIV are known to be at increased risk of developing tuberculosis
(TB) disease upon infection with Mycobacterium tuberculosis (Mtb). However, it has
remained unclear how HIV co-infection affects subsequent Mtb transmission from these
patients. Here, we customized a Bayesian phylodynamic framework to estimate the
effects of HIV co-infection on the Mtb transmission dynamics from sequence data. We
applied our model to four Mtb genomic datasets collected in sub-Saharan African
countries with a generalized HIV epidemic. Our results confirm that HIV co-infection is
a strong risk factor for developing active TB. Additionally, we demonstrate that HIV
co-infection is associated with a reduced effective reproductive number for TB.
Stratifying the population by CD4+ T-cell count yielded similar results, suggesting that,
in this context, CD4+ T-cell count is not a better predictor of Mtb transmissibility than
HIV infection status. Together, our genome-based analyses complement observational
household studies, and firmly establish the negative association between HIV
co-infection and Mtb transmissibility.

Author summary

Many sub-Saharan African countries have seen a considerable rise in TB incidence since
the introduction of HIV, suggesting a strong interaction between HIV and TB
epidemics. HIV infection is recognized as an important risk factor for developing TB,
but the contribution of HIV-infected TB patients to further Mtb transmission is poorly
understood. In this study, we analyzed four sets of Mtb genomic sequences collected in
different countries, including sequences from HIV-negative and HIV-positive TB
patients. We applied a phylodynamic model to these sequences, aimed at inferring
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transmission dynamics within and between different host populations. While our
findings support that HIV is a strong risk factor for TB, we show that HIV-positive TB
patients generate a significantly lower number of secondary TB cases than HIV-negative
patients. This suggests that HIV-positive patients often act as sinks in Mtb
transmission chains, while HIV-negative patients are a major source of transmission.

Introduction

The human immunodeficiency virus 1 (HIV) was first introduced into the human
population in the beginning of the 20th century through a zoonotic transmission

event [1|2]. Its silent spread in the following decades resulted in a globally established
HIV epidemic, disproportionally affecting sub-Saharan Africa [3]. In addition to directly
related healthcare challenges, the high prevalence of HIV in these countries has
contributed to a strong rise in tuberculosis (TB) incidence rates [4H9]. Accordingly, HIV
co-infection in Mycobacterium tuberculosis (Mtb)-infected patients has been associated
with an increased risk of progression to active TB disease, an increased risk of recurrent
Mtb infection, and an increased TB case-fatality rate [5,9-13]. Despite our incomplete
understanding of the interactions between TB, HIV, and the human immune system, it
is widely accepted that the depletion of CD4+ T-cells underlies the high TB
susceptibility and mortality in HIV-positive patients [9,/11}/14].

While many studies support this increased susceptibility to TB disease, the effects of
HIV co-infection on the generation of secondary TB cases remain poorly
understood [9,/15]. The HIV-associated reduction in CD44 T-cell count has been shown
to be associated with an altered TB disease presentation, including lower levels of lung
cavitation, lower bacterial loads in the sputum, and a higher likelihood of
extrapulmonary TB [9,/16]. This distinct lung pathology could result in reduced Mtb
transmission, as transmission is mainly driven by the formation of aerosols from infected
lungs, and lung cavitations are known to enhance transmission [1718].

Several household contact studies have indicated reduced infectiousness of
HIV-positive TB index cases [19-24], although notably, many of these studies only
considered sputum smear-negative HIV patients or patients with considerably reduced
CD4+ T-cell counts [21424]. In contrast, a meta-analysis [25] and a more recent
whole-genome sequence analysis of multidrug-resistant (MDR) Mtb isolates [26] found
no association between HIV co-infection and the probability of Mtb transmission.

While the altered lung pathology of HIV co-infected TB patients could affect the
rate at which these patients transmit Mtb, the number of secondary cases generated is
also determined by how long these patients remain infectious for Mtb. Previous studies
on the duration of Mtb infectiousness in HIV-positive patients showed mixed results.

Several studies indicate that HIV co-infection shortens the Mtb infectious period [27H29).

This could be explained by a higher TB mortality rate, or faster TB disease progression,
resulting in a more timely diagnosis and initiation of treatment [8.(9}/13,30,[31]. In
contrast, one study estimated that the time until accessing TB treatment was longer for
HIV-positive patients [32], which could be explained by a postponed diagnosis due to
barriers to care for HIV patients, or by higher rates of smear-negativity and an atypical
disease presentation.

As the effects of HIV co-infection on the Mtb transmission rate and infectious period
are not well established, it remains unclear how HIV affects the overall transmissibility
of Mtb. Here we analyzed four Mtb genomic datasets from countries with a high burden
of HIV in sub-Saharan Africa (Malawi, South Africa, Tanzania, and Uganda). In
particular, we applied a Bayesian phylodynamic model, coupling an epidemiological
model with a model of sequence evolution, to investigate how HIV co-infection affects
the Mtb transmission dynamics. Our phylodynamic model stratifies the TB patient
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population by HIV infection status, and is parametrized with the aim of estimating the
effect of HIV co-infection on the risk of developing active TB upon exposure, as well as
the average number of secondary TB cases generated per patient (i.e., the effective
reproductive number). Our results confirm that HIV co-infection is associated with an
increased risk of developing active TB, and provides evidence for reduced Mtb
transmissibility from HIV-positive TB patients.

Results

We analyzed complete Mtb genomes collected from TB patients in four sub-Saharan
African countries: 1,209 sequences from Karonga District, Malawi (1995-2011) [33],
1,133 sequences from Khayelitsha, Cape Town, South Africa (2008-2018) [34], 1,074
sequences from Temeke District, Dar es Salaam, Tanzania (2013-2019) [35], and 185
sequences from Kampala, Uganda (1995-2012) [36}37] (see Materials and methods for
details on the study populations). The sequences from Uganda have been used partially
in other studies [38,/39] but are analyzed here together for the first time. Mtb lineage
distributions per sampling location are shown in

To quantify the effects of HIV co-infection on Mtb transmission in these locations,
we customized a phylodynamic model based on the structured birth-death model [40],
with the TB patient population stratified by HIV infection status as determined at the
time of TB diagnosis . In this model, transmission of Mtb within and between
subpopulations (i.e., HIV-negative and HIV-positive TB patients) is described with
different transmission rates (number of transmission events per patient per unit of time),
and each subpopulation is additionally characterized by a rate of becoming uninfectious
(1/infectious period) and a sampling rate. The ratio of the transmission rate and the
becoming uninfectious rate corresponds to the effective reproductive number (R,),
representing the average number of secondary TB cases that one patient generates in
the same or the other subpopulation. To explicitly model the effects of HIV, we
reparametrized this model with (1) a base R., corresponding to the R, for TB in a
purely HIV-negative population (RY), (2) a parameter for the multiplicative effect of
HIV co-infection on the R, of TB patients, at the donor side of transmission (f1), (3) a
parameter for the multiplicative effect of HIV co-infection on the risk of getting
diagnosed for active TB disease after Mtb exposure (f2), (4) the rate at which
HIV-negative patients become Mtb uninfectious (6_), (5) a parameter for the
multiplicative effect of HIV co-infection on the rate of becoming Mtb uninfectious (f3),
and (6) a parameter for the HIV prevalence in the general population (pu;v) (S1 Fig see
Materials and methods for more details on the phylodynamic model). The HIV
prevalence was included to account for the HIV-negative and HIV-positive susceptible
population sizes, which in turn influence the contact probabilities and thus the R, in
each location. HIV prevalences were not estimated from the genomic data, but set to
time-varying levels based on location-specific prevalence data from World Bank [41H44]
(S2 Fig)). To improve the identifiability of the parameters of interest, the becoming
uninfectious rate for HIV-negative patients was fixed to 1 year—!. This corresponds to
an average Mtb infectious period of 1 year, which is within the range of previous
estimates [27129/32]. We assumed no migration in the model, implying that the HIV
status of patients does not change during the course of their Mtb infection. We also
assumed a constant R?, as justified by the results of an unstructured birth-death skyline
analysis [45] . Each sampling location was analyzed independently. For each
location, we inferred Mtb lineage-specific phylogenetic trees, with each tree modelled as
having an independent origin and evolutionary parameters. Epidemiological parameters
were assumed to be the same for all lineages co-circulating within a given location. All
parameters were estimated with the Bayesian phylogenetics package BEAST2 [46,47],
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with prior distributions summarized in

The posterior maximum clade credibility trees of Mtb isolates from Tanzania are
displayed in Fig[l| (trees for the other locations are shown in [S4 Fig} |S5 Figl and [S6 |
, indicating limited clustering of HIV-positive patients. The posterior distributions
of the parameter estimates show that the TB disease development risk for HIV-positive
patients relative to HIV-negative patients is significantly higher than 1 in each sampled
location, with posterior means ranging from 4.48 to 11.49 (Fig ) These results
suggest that HIV-positive patients have a 4- to 11-fold increased risk of developing
active TB upon exposure, which is in accordance with the increased TB incidence rate
observed in HIV patients [9,/10L{12|13]. Posterior estimates for the relative R,
(HIV-positive relative to HIV-negative patients) are all significantly lower than 1, with
posterior means ranging from 0.047 to 0.20, implying that HIV co-infection is associated
with a 5- to 21-fold reduction in R, for TB (Fig[2p). This could result from an altered
TB disease presentation, as supported by the significantly lower chest X-ray scores of
HIV-positive compared to HIV-negative TB patients in Uganda (Welch’s two-sample
t-test, p = 0.044). Similarly, the HIV-positive patients from Tanzania showed reduced
chest X-ray scores (Welch’s two-sample t-test, p < 0.001), less cavity development
(x%-test, p < 0.001), and lower bacterial loads in the sputum (Welch’s two-sample t-test,
p = 0.0027) [35], reflecting a distinct lung pathology, consistent with a reduced
infectiousness. Furthermore, clinical data from Malawi and South Africa showed that
HIV-positive patients were strongly associated with extrapulmonary TB (x2-test,

p < 0.001 for both datasets), which is non-transmissible. All these observations are
consistent with previous studies [9}16].

Fig 1. Posterior maximum clade credibility trees of Mtb isolates from
Tanzania. Posterior maximum clade credibility trees per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the Mtb
sequences from Tanzania, with tips labeled by HIV infection status. Trees of isolates

from the other locations are shown in [S4 Fig|, S5 |_:ig|7 and [S6 Figl

Fig 2. Phylodynamic estimates of the effects of HIV co-infection on Mtb
transmission. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(HIV-positive patients relative to HIV-negative patients), b) the relative R, for TB. For
all posterior distributions, the 95% HPD intervals do not contain 1.

We could not identify a clear effect of HIV co-infection on the Mtb infectious period,
due to wide posterior distributions for some locations and conflicting results for others
(S7 Figl). However, irrespective of the infectious period, HIV co-infection was associated
with a reduced Mtb transmission rate (S7 Fig)), suggesting that HIV mainly affects the
strength, rather than the period of infectiousness.

To investigate how much our results are impacted by the assumptions on the
becoming uninfectious rate of HIV-negative patients, we repeated the analyses with
fixed values of 0.5 year~! and 2 year™! for this parameter (S8 Fié). Further sensitivity
analyses comprised different priors on the parameters for the HIV effects on Mtb
transmission and TB disease development risk (S9 Fig)), and fixing the clock rate to
1078 resp. 10~7 substitutions per site per year (S10 Fig} see [S3 Table| for the clock rate
estimates resulting from the main analyses). While the absolute values of the posterior
estimates of interest were weakly dependent on the choice of priors, all sensitivity
analyses resulted in the same qualitative conclusions regarding the relative R, and
relative progression risk.
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Phylodynamic birth-death estimates are not only informed by the genomic data, but
also by the distribution of sample collection dates. An additional set of analyses where
the sequences were ignored showed that estimates of the relative progression risk with
and without the genomic data were in close agreement, with only slightly shifted
posterior distributions and more certainty in the estimates when the sequences were
included , suggesting that they contain little information about this parameter.
For the relative R., including the sequences resulted in shifted and narrower posterior
distributions (S11 Fig), indicating that while the isolation dates and HIV infection
status of patients are the major source of information, the genomic data further inform
this parameter.

To identify potential biases introduced through model assumptions and priors, we
repeated the analyses on datasets where the HIV status of the patients was permuted.
These datasets still contained signal for the relative progression risk and relative R,
(S12 Fig). This can be explained by the HIV prevalence being 4 to 7 times higher in the
sampled TB patients than in the general population in the countries under study.
Indeed, randomly assigning the HIV status using the average HIV frequency in the
general population during the sampling period resulted in posterior distributions for the
relative progression risk and relative R, that overlap with 1, implying no effect of HIV
co-infection . Together, these results demonstrate that the signal for the HIV
effect parameters originates from the data rather than from model assumptions, with
the parameter inference presumably being driven by 1) the high prevalence of HIV
within the population of TB patients, and 2) the sampling dates and sequences
informing the overall R, estimate, which in turn constrains the HIV effect parameters.

HIV patients might show different levels of CD4+ T-cell depletion, depending on the
stage of HIV infection and whether the patient is on antiretroviral therapy (ART).
Several studies have indicated that decreased CD4+ T-cell counts are associated with a
reduced frequency of lung cavitations (see [9] for an overview), and we found a similar
association in HIV patients from Uganda (Welch’s two-sample t-test, p = 0.030),
suggesting that CD4+ T-cell counts might be a better predictor for Mtb transmissibility
and TB progression than the HIV infection status. In contrast, one study showed that
TB incidence rates were increased even in HIV patients with high CD4+ T-cell
counts [11], suggesting that other aspects of HIV infection might also play a role. To
investigate the contribution of CD4+ T-cell counts to the observed effects of HIV
co-infection on Mtb transmission, we repeated our phylodynamic analyses on sequences
from South Africa and Uganda, with subpopulations defined by CD4+ T-cell counts
(lower resp. higher than 350 cells/ul, the threshold recommended by WHO to prioritize
patients for ART) instead of HIV status (S13 Fig). For the other sampling locations,
CD4+ T-cell counts were not available. These analyses resulted in similar posterior
means and HPD intervals for the parameters of interest (Fig , suggesting that the
CD4+ T-cell count can be used as a predictor of Mtb transmission, but that, within the
context of our analyses, it is not more informative than the HIV status.

Fig 3. CD4+ T-cell count as predictor for Mtb transmissibility and TB
disease progression. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(patients with low CD4+ T-cell count relative to patients with high CD4+ T-cell count),
b) the relative R, for TB. A threshold of 350 CD4+ T-cells/ul was used to classify
patients. For all posterior distributions, the 95% HPD intervals do not contain 1.
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Discussion

The effects of HIV co-infection on Mtb transmission have remained elusive, with
previous studies yielding contradictory results. Here we used a phylodynamic approach
to address the question based on Mtb sequences and HIV/Mtb co-infection data sampled
in four different African countries. Our phylodynamic analyses confirm that HIV/Mtb
co-infected individuals are at high risk of developing active TB disease compared to
HIV-negative Mtb-infected individuals. Moreover, we found that HIV-positive TB
patients on average cause significantly fewer secondary TB cases compared to
HIV-negative TB patients. These findings were reproduced across all four countries.

Our finding that HIV co-infection is a strong risk factor for developing active TB
disease upon exposure explains why many TB epidemics in sub-Saharan Africa seem to
be driven by the high HIV prevalence in these settings [4H9]. The underlying cause of
this increased susceptibility to TB might be the depletion of CD4+ T-cells in HIV
patients [9,[11}|14]. As we could only investigate the overall risk of developing active TB
disease after contact with a TB patient, it remains unclear, based on our data, whether
HIV also affects the risk of Mtb infection.

The consistently reduced TB R, from HIV-positive patients, observed in all
countries under study, seems to be linked to a reduced number of transmission events
per patient per unit of time. These findings are in accordance with the reduced Mtb
infectiousness of HIV patients previously observed in various household contact
studies |19H24]. A reduced infectiousness of HIV-positive TB patients can potentially be
explained by an altered TB disease presentation in HIV-positive patients, which could
in turn result from an impaired immune system. This notion is supported by significant
associations between HIV infection status and clinical variables related to lung damage
and bacterial burden, observed in this and previous studies [9,16].

The TB R, of HIV-positive TB patients might be additionally reduced through a
shorter infectious period, due to more rapid disease progression and/or an increased
mortality rate [819L[13L[30L[31]. In contrast, increased bacterial drug resistance, delayed
diagnosis due to an atypical disease presentation, and barriers to care for HIV patients
could increase the Mtb infectious period of HIV-positive TB patients [32]. While we
could not identify a consistent HIV effect on the infectious period, we showed that the
reduced R, of HIV-positive TB patients was linked to a lower transmission rate,
irrespective of the duration of the infectious period.

The effects of HIV co-infection might be complicated by ART, which alleviates the
CD4+ T-cell depletion in HIV patients [48l|49]. As information on ART was lacking for
most patients, we could not directly take this into account in our analyses. However, we
assumed that the CD4+ T-cell measurements from the patients in South Africa and
Uganda would reflect differences in ART. As the CD4+ T-cell count classification

low /high) for these patients largely overlapped with their HIV infection status

, we could not identify any distinguishable effect of CD4+ T-cell counts. ART only
recently became widely accessible to HIV patients in South Africa and Uganda [50,/51],
which might explain why CD4+ T-cell count and HIV status are largely redundant. In
other settings, ART might play a more important role in determining CD4+ T-cell
counts, and consequently, CD4+ T-cell counts might be a better predictor of Mtb
transmissibility.

HIV co-infection has been shown to be associated with rifampicin-resistant TB,
potentially due to increased resistance acquisition during TB treatment [52]. While the
prevalence of drug resistance during the sampling period was low in Malawi, Tanzania,
and Uganda, the South-African dataset consists of rifampicin-resistant Mtb isolates only,
indicating that HIV is associated with reduced Mtb transmissibility irrespective of drug
resistance. Other potential confounders are poverty-related risk factors, patient sex, and
patient age. However, with our current approach, these confounders are challenging to
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control for due to the rapidly increasing model complexity.

Notably, the major source of information on HIV effects in the model are the
sampling dates and the HIV status of the TB patients, indicating that our customized
birth-death model would have been able to capture the signal in the data even in the
absence of Mth sequences. A potential explanation for this limited signal in the
sequence data is the fact that HIV status is a host-related factor that is not associated
to the bacterial genetic background. Consequently, the Mtb genomes of HIV-positive
TB patients are dispersed across the phylogenetic tree, resulting in high uncertainty on
ancestral states and thus few informative branching events.

One limitation of our approach is that we did not account for multiple Mtb
introductions into the study populations, nor for changes in the TB R, over time.
However, HIV was most likely introduced only after the establishment of different Mtb
lineages, and the majority of branching events informing the epidemiological parameters
occur after the introduction of HIV, suggesting minimal impact on the estimates. In
support of this notion, current evidence indicates that the main Mtb lineages circulating
in these parts of Africa were introduced several centuries ago [35L38,53-H56]. Moreover,
no biases were observed when randomly re-assigning the HIV status of patients. A
second limitation is that our estimates might be biased due to an underestimation of
the HIV prevalence in the general population. As these potential biases originate from
the input data rather than the model, they cannot be identified with our randomization
approach. A third limitation is the assumption that the probabilities of contact between
and within HIV-positive and HIV-negative subpopulations are solely a function of the
size of each subpopulation, ignoring any preferential contacts due to social effects.
Finally, a fourth limitation of the model is the assumption that patients infected with
Mtb immediately become infectious (i.e., no period of latent infection). While this
assumption could affect the interpretation of the transmission rate and infectious period,
the relative R, is expected to be robust, even if the duration of the latent period would
be associated with HIV infection. Notably, our model does not distinguish between
Mtb-uninfected patients and patients who are infected but never develop active TB
disease.

Taken together, our results demonstrate that a high HIV prevalence can fuel a TB
epidemic by increasing the risk for TB disease progression in HIV-positive patients, but
that these patients do not proportionally contribute to further Mtb transmission.
HIV-positive patients can thus be considered as ‘sinks’ in transmission chains. By
contrast, HIV-negative TB patients serve as the ‘sources’ by being disproportionally
responsible for Mtb transmission. Our findings have implications for TB control, and
call for a particular attention to HIV-negative TB patients, ideally through active case
finding, thereby ensuring that these patients are diagnosed and treated as early as
possible to prevent further spread of the disease.

Materials and methods

Study populations

All datasets in this study consist of whole genome sequences (Illumina) of Mtb strains
collected in countries with a generalized HIV epidemic.

Malawi Raw Illumina reads were retrieved from the European Nucleotide Archive
(project accession numbers ERP000436 and ERP001072). These sequences were
obtained from adults with culture-confirmed TB diagnosed at the hospital and
peripheral health centres in Karonga District, northern Malawi between 1995 and
2011 [33]. Information about the HIV status of the patients was kindly provided by the

September 11, 2023

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274


https://doi.org/10.1101/2023.09.12.557301
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.12.557301; this version posted September 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

authors of the study, and only sequences from patients with known HIV status were
retained (n = 1,209). The incidence of smear-positive TB in adults in the district

during the sampling period corresponds to 87-124 cases per 100,000 people per year [33].

South Africa We used previously sequenced isolates from a retrospective cohort
study of individuals routinely diagnosed with rifampicin-resistant (RR) or
multidrug-resistant (MDR) TB in Khayelitsha, Cape Town, South Africa between 2008
and 2018 (raw reads available in the European Nucleotide Archive under project
accession numbers PRJEB45389 and PRIJNAG670836) [34]. Only sequences from patients
with known HIV status were retained (n = 1,133). The TB notification rate in

Khayelitsha was estimated around 80 RR/MDR cases per 100,000 people per year [52].

Tanzania We used previously sequenced isolates from a cohort of sputum
smear-positive and GeneXpert-positive adult TB patients prospectively recruited at the
Temeke District hospital in Dar es Salaam, Tanzania between 2013 and 2019 (raw reads
available in the European Nucleotide Archive under project accession number
PRJEB49562) [35]. Only sequences from patients with known HIV status were retained
(n =1,074). The TB notification rate in Temeke in 2020 was 3,994 cases per year (Jerry
Hella, personal communication).

Uganda Bacterial isolates and clinical data were obtained from TB patients recruited
in two large household contact studies. An initial study was conducted from 1995 to
1999 to describe the epidemiology of TB in urban Kampala, Uganda [36L/57]. The second

is known as the “Kawempe Community Health” study which ran from 2000 to 2012 [37].

We whole-genome sequenced 185 isolates belonging to Mtb sublineage 4.6.1 (raw reads
available in the European Nucleotide Archive under project accession numbers
PRJEB11460, PRINA354716, and PRJEB64921). These isolates were obtained from
HIV-positive and HIV-negative TB patients defined mostly as index cases within a
household (with the exception of 4 and 3 strains from contact and co-prevalent cases,
respectively). HIV status was determined by ELISA and confirmed by Western blot at
baseline. CD4+ T-cell counts were available for 48 patients. The incidence rate of
sputum smear-positive TB in Kampala in 2001-2002 was estimated around 370 cases
per 100,000 people per year [36]. As only the year of sample isolation was available, all
isolates were assumed to be collected on the 1st of January of the corresponding year.
The institutional review boards at University Hospitals of Cleveland in the United
States and AIDS Research Council in Uganda reviewed the study protocols and final
approval was obtained from the Uganda National Council for Science and Technology.

Written informed consent was obtained from all patients that participated in the study.

All participants were given appropriate pre- and post-test HIV counseling and AIDS
education. The protocols and the procedures for the protection of human subjects were
approved by the Uganda National Council Ethics Committee and the Institutional
Ethics Review Board at Makerere University, Kampala.

Whole-genome sequencing

Bacterial isolates from Kampala, Uganda were cultured on Middlebrook 7H10
supplemented with 10% glycerol and OADC until confluent colonies appeared on the
plates. The colonies were scraped off and their genomic DNA was extracted using the
CTAB method [58]. Selected strains were whole-genome sequenced on an Illumina
HiSeq 2000 instrument at the commercial facility GATC (Germany). Library
preparation was performed according to Illumina’s TruSeq DNA Sample Preparation
Guide (Hlumina, San Diego, CA). Single-end sequence reads of approximately 50 bp
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were obtained. Demultiplexing was performed automatically by the CASAVA pipeline
v1.8.0 (Illumina, San Diego, CA).

WGS analyses and alignments

For all datasets, the Illumina reads were processed and analyzed as described in [34}35].

Lineages and sublineages were identified using the SNP-based classification by Steiner et
al. [59]. For all sequences per lineage and per location, an alignment of polymorphic
positions was assembled by concatenating all high-quality SNPs. Sites that had more
than 10% of missing data, as well as drug-resistance-related sites, were excluded from
the alignment.

Phylodynamic analyses

We fit a multitype birth-death model to the sequence alignments [40], with two types
corresponding to HIV-negative TB patients and HIV-positive TB patients .
Under this model, a ‘birth’ event corresponds to an Mtb transmission event from one
host to another, which can occur within and between types. A ‘death’ event occurs
when a host becomes uninfectious for Mtb due to recovery or death. The model was
parametrized with the R, within a purely HIV-negative population (R%), the rate at
which HIV-negative patients become uninfectious (4_), the multiplicative effect of HIV
co-infection on transmitting Mtb (f1), the multiplicative effect of HIV co-infection on
the risk of TB disease development upon exposure (f2), and the multiplicative effect of
HIV co-infection on the rate of becoming uninfectious for Mtb (f5). The effective
reproductive number for TB within the HIV-negative subpopulation, within the
HIV-positive subpopulation, from the HIV-negative to the HIV-positive subpopulation,
and from the HIV-positive to the HIV-negative subpopulation (R;~, RI*, R;*, and
R}~ respectively), as well as the rate at which HIV-positive patients become Mtb
uninfectious (4, ), are then as follows:

R;™ = (1 - pun)R?

RT = fl f2pHIvRZ

R;+ = prHIVRZ

R =01~ lev)RZ
0, = f30_

Purv represents the overall prevalence of HIV in the general population (including
both Mtb-infected and Mtb-uninfected individuals) and is included to account for
different sizes of the HIV-negative and HIV-positive populations. As the HIV prevalence
in a country changed over time since the date of HIV introduction, we let py; change at
three different time points in the past, according to HIV prevalence data from World
Bank [41H44] (S2 Fig). Hence, the effective reproductive numbers also changed through
time.

The overall reproductive numbers for HIV-negative and HIV-positive patients are
stated below. From these equations, it can be seen that f1 = RY/R;.

Re_ = Re__ + Re_+ = (1 _pHIV)RZ + prHIVRle)
R;r = sz + Rz+ = fl(l - pHIV)RZ + f1f2pHIVRZ

Transmission rates (i.e., rates of Mtb transmission per patient per unit of time) from
HIV-negative and HIV-positive TB patients can be obtained using the definition of the
reproductive number:
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A=R;6_
A, =Rto,

We assumed no migration between subpopulations, implying that HIV-negative
patients cannot get infected with HIV during their period of Mtb infectiousness. TB
patients are sampled with sampling proportion s, which was set equal to zero before the
onset of sampling. Upon sampling an infected patient, the patient is assumed to become
uninfectious with probability r [60].

We further assumed a strict molecular clock and a general time-reversible nucleotide
substitution model with four gamma rate categories to account for site-to-site rate
heterogeneity (GTR+T'y).

We performed phylodynamic inference using the bdmm package [40] in BEAST
v2.6.6 [46}[47]. Data from each location were analyzed independently. For each location,
variable SNP alignments were generated per Mtb lineage and augmented with a count of
invariant A, C, G, and T nucleotides to avoid ascertainment bias [61]. To avoid
unreasonably long runtimes, any alignment containing more than 400 sequences was
randomly downsampled to 400 sequences, and sampling proportion priors were adjusted
accordingly. Population dynamic parameters were inferred jointly for the different Mtb
lineages within one location: each lineage was represented with an independent tree
with its own origin time and nucleotide substitution parameters, but sharing all other
parameters with the other lineages.

Three independent Markov Chain Monte Carlo chains were run for each analysis,
with states sampled every 1,000 steps. Tracer [62] was used to assess convergence and
confirm that the effective sample size (ESS) was at least 200 for the parameters of
interest. 10% of each chain was discarded as burn-in, and the remaining samples across
the three chains were pooled using LogCombiner [47], resulting in at least 300,000,000
iterations in combined chains.

Prior distributions

All parameters and their corresponding prior distributions are listed in[S2 Tablel For the
sampling proportion, a uniform prior was chosen with lower bound set to zero and upper
bound set equal to the ratio of the number of sequences, corrected for downsampling,
and the total number of reported cases during the sampling period .

Sensitivity analyses

The robustness of the phylodynamic inference was assessed by changing the fixed value
of §_ to 0.5 and 2 year™!, by changing the prior on f; and f» to a Lognormal(0,0.5)
distribution, and by fixing the clock rate to 10~® and 10~7 substitutions per site per
year. To evaluate the relative impact of the sequence data on our parameter estimates,
a phylodynamic analysis was performed using the same setup as the main analyses, but
without any sequence data.

Birth-death skyline analysis

To investigate whether R? can be assumed constant through time, we ran a birth-death

skyline analysis on sequences from the most abundant lineage per sampling location [45].

No population structure is assumed in this model. Two time intervals were used to
estimate potential changes in the overall R, over time, with the change point set at the
estimated time of HIV introduction . The overall rate of becoming Mtb
uninfectious was assumed constant through time. For the sampling proportion, clock
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model and substitution model parameters, the same settings and priors were used as in
the multitype birth-death model.

Randomization of HIV status

The HIV infection status of the patients was randomized in two ways. First, the HIV
status labels were permuted, implying that the HIV prevalence among the sampled TB
patients was kept unchanged. Second, the HIV status was randomly assigned to each
patient, with an overall HIV prevalence among the patients assumed equal to the
average HIV prevalence in the general population (including both Mtb-uninfected and
Mtb-infected individuals) during the sampling period [41H44]. Each of the
randomization procedures was replicated 10 times.

Population stratification by CD4-+ T-cell count

The TB patient population was stratified based on CD4+ T-cell count, with a threshold
set at 350 cells/ul, corresponding to the threshold recommended by WHO to prioritize
patients for ART (S13 Fig) [63]. As CD4+ T-cell counts were not monitored for
HIV-negative TB patients from Uganda, these patients were all classified as having a
high CD4+ T-cell count (in accordance with data from South Africa, Figure ). The
fitted phylodynamic model was equivalent to the model based on HIV status, with
HIV-negative patients being replaced by patients with a high CD4+ T-cell count (> 350
cells/ul) and HIV-positive patients being replaced by patients with a low CD4+ T-cell
count (< 350 cells/ul). Correspondingly, pury was replaced by piowcpay, the prevalence
of patients with low CD4+ T-cell counts. This prevalence was estimated as follows: the
HIV prevalence in the general population was multiplied by the observed proportion of
patients with low CD4+ T-cell count among HIV-positive patients in the dataset.
Diowcpas Was set to 75% of this value, as HIV-positive patients with low CD4+ T-cell
counts are likely overrepresented among TB patients. Changing this 75% to higher or
lower values did not change the qualitative conclusions.

Statistical analyses

Associations between HIV infection status and other variables were tested using Welch’s
t-tests and y2-tests implemented in R.

Data availability

185 genome sequences collected in Kampala, Uganda, were deposited to the European
Nucleotide Archive (ENA) at EBI, registered under project accession numbers
PRJEB11460 (https://www.ebi.ac.uk/ena/browser/view/PRJEB11460),
PRJNA354716 (https://www.ebi.ac.uk/ena/browser/view/PRINA354716)) and
PRJEB64921 (https://www.ebi.ac.uk/ena/browser/view/PRJEB64921).

Code availability

The code for the phylodynamic analyses, including BEAST2 XML files, is available at
https://github.com/EtthelWindels/tb_hiv.
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Supporting information

S1 Fig. Schematic representation of the phylodynamic model.
Phylodynamic model used to estimate HIV effects on Mtb transmission, based on a
structured birth-death model with HIV-negative and HIV-positive TB patients
representing different subpopulations. Each subpopulation has its own rate of becoming
uninfectious (indicated as §_ and 4, ) and sampling rate (indicated as s_ and s, ).
Transmission events occur within each subpopulation with reproductive numbers
indicated as R;~ and RJ™, and between subpopulations with effective reproductive
numbers indicated as R;* and R}~. b) For the analyses in this study, the model was
reparametrized by expressing the reproductive numbers as a function of a base R, (R%),
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the HIV prevalence in the general population (py;v), the multiplicative effect of HIV
co-infection on the R, of TB patients (f1), the multiplicative effect of HIV co-infection
on the risk of developing active TB when exposed (f2), and the multiplicative effect of
HIV co-infection on the rate of becoming uninfectious (f3).

S2 Fig. HIV prevalence in different countries over time. Coloured lines
represent the prevalence per country over time, as reported by World Bank [41}144],
while the dashed grey lines represent the values used in our phylodynamic model.

S3 Fig. R. estimates resulting from the birth-death skyline analyses. Prior
(grey) and posterior (coloured) distributions per sampling location of the estimates of
the overall R, before and after the estimated time of HIV introduction into the country,
assuming no structure in the population.

S4 Fig. Posterior maximum clade credibility trees of Mtb isolates from
Malawi. Posterior maximum clade credibility tree per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the sequences
from Malawi, with tips labeled by HIV infection status.

S5 Fig. Posterior maximum clade credibility trees of Mtb isolates from
South Africa. Posterior maximum clade credibility tree per lineage, summarizing the
posterior tree distribution resulting from the phylodynamic analyses on the sequences
from South Africa, with tips labeled by HIV infection status.

S6 Fig. Posterior maximum clade credibility tree of Mtb isolates from
Uganda. Posterior maximum clade credibility tree, summarizing the posterior tree
distribution resulting from the phylodynamic analyses on the sequences from Uganda
(lineage 4 only), with tips labeled by HIV infection status.

S7 Fig. Additional parameter estimates resulting from the main
phylodynamic analyses. Posterior distributions per sampling location of the
estimates for a) the relative Mtb infectious period (HIV-positive relative to
HIV-negative patients), b) the relative Mtb transmission rate. For all posterior
distributions in (b), the 95% HPD intervals do not contain 1.

S8 Fig. Parameter estimates for the sensitivity analyses on the becoming
uninfectious rate. Prior (grey) and posterior (coloured) distributions per sampling
location of the estimates for a) the relative risk of developing active TB upon exposure
(HIV-positive relative to HIV-negative patients), assuming a fixed becoming
uninfectious rate of 0.5 year—!, b) the relative R, for TB, assuming a fixed becoming
uninfectious rate of 0.5 year—!, c¢) the relative risk of developing active TB upon
exposure, assuming a fixed becoming uninfectious rate of 2 year—!, d) the relative R,
for TB, assuming a fixed becoming uninfectious rate of 2 year~!. For all posterior
distributions, the 95% HPD intervals do not contain 1.

S9 Fig. Parameter estimates for the sensitivity analyses on the HIV effect
priors. Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), and b) the relative R, for TB, assuming

Lognormal(0,0.5) priors on the effect of HIV on Mtb transmission (f1) and TB disease
progression (f2). For all posterior distributions, the 95% HPD intervals do not contain 1.
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S10 Fig. Parameter estimates for the sensitivity analyses on the clock
rate. Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), assuming a fixed clock rate of 10~ substitutions per
site per year, b) the relative R, for TB, assuming a fixed clock rate of 1078
substitutions per site per year, c) the relative risk of developing active TB upon
exposure, assuming a fixed clock rate of 107 substitutions per site per year, d) the
relative R, for TB, assuming a fixed clock rate of 107 substitutions per site per year.
For all posterior distributions, the 95% HPD intervals do not contain 1.

S11 Fig. Parameter estimates for the analyses with and without genomic
data. a) Posterior distributions per sampling location of the estimates for the relative
risk of developing active TB upon exposure (HIV-positive relative to HIV-negative
patients), only based on the sampling dates and HIV infection status (light colours), or
also including the sequences (dark colours). b) Posterior distributions per sampling
location of the estimates for the relative R, for TB, only based on the sampling dates
and HIV infection status (light colours), or also including the sequences (dark colours).

S12 Fig. Parameter estimates for the analyses on randomized datasets.
Prior (grey) and posterior (coloured) distributions per sampling location of the
estimates for a) the relative risk of developing active TB upon exposure (HIV-positive
relative to HIV-negative patients), on 10 different datasets where the HIV status labels
of the patients were permuted, b) the relative R, for TB, on 10 different datasets where
the HIV status labels of the patients were permuted, ¢) the relative risk of developing
active TB upon exposure, on 10 different datasets where the HIV status labels were
randomly assigned using the average HIV frequency in the general population during
the sampling period, d) the relative R, for TB, on 10 different datasets where the HIV
status labels were randomly assigned using the average HIV frequency in the general
population during the sampling period.

S13 Fig. CD4+ T-cell counts of HIV-negative and HIV-positive TB
patients from South Africa and Uganda. In Uganda, CD4+ T-cell counts were
only recorded for HIV-positive patients. The dashed line represents the threshold (350
cells/ul) recommended by WHO to prioritize patients for ART [63]. This threshold was
used to stratify the TB patient population.

S1 Table. Observed lineage distribution at the different sampling
locations, based on the number of sequences in the datasets.

S2 Table. Prior distributions for the parameters of the multitype
birth-death model.

S3 Table. Clock rate estimates resulting from the main phylodynamic
analyses.

S4 Table. Total number of reported cases during the sampling period and
total number of sequences included in the analyses at the different
sampling locations.
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