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SUMMARY 
Single-cell RNA sequencing (scRNA-seq) data has elevated our understanding of systemic perturbations to 

organismal physiology at the individual cell level. However, despite the rich information content of scRNA-seq 

data, the relevance of genes to a perturbation is still commonly assessed through differential expression 

analysis. This approach provides a one-dimensional perspective of the transcriptomic landscape, risking the 

oversight of tightly controlled genes characterized by modest changes in expression but with profound 

downstream effects. We present GENIX (Gene Expression Network Importance eXamination), a novel platform 

for constructing gene association networks, equipped with an innovative network-based comparative model to 

uncover condition-relevant genes. To demonstrate the effectiveness of GENIX, we analyze influenza vaccine-

induced immune responses in peripheral blood mononuclear cells (PBMCs) collected from recovered COVID-

19 patients, shedding light on the mechanistic underpinnings of gender differences. Our methodology offers a 

promising avenue to identify genes relevant to perturbation responses in biological systems, expanding the 

scope of response signature discovery beyond differential gene expression analysis. 

 

HIGHLIGHTS 
• Conventional methods used to identify perturbation-relevant genes in scRNA-seq data rely on 

differential expression analysis, susceptible to overlooking essential genes. 

• GENIX leverages cell-type-specific inferred gene association networks to identify condition-relevant 

genes and gene programs, irrespective of their specific expression alterations. 

• GENIX provides insight into the gene-regulatory response to the influenza vaccine in naïve and 

recovered COVID-19 patients, expanding on previously observed gender-specific differences. 
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GRAPHICAL ABSTRACT 

 
 

INTRODUCTION 
Identifying and prioritizing disease-associated or therapeutic response-related genes from a vast pool of 

candidates poses a significant challenge in modern drug discovery pipelines (Mohs, 2017; Jenwitheesuk, 

2008). With 5-7 thousand genes, out of the approximately 20,000 protein-coding genes in the human genome, 

coexisting within cells at any given moment, data-driven strategies are required to discern the genes 

responsible for intra- and extra-cellular functions. Recent advancements in single-cell RNA sequencing 

(scRNA-seq) technology have revolutionized our ability to unravel the complex landscape of gene expression 

within tissues and organisms at the single-cell level (Yofe, 2020; Trombetta, 2014; Svensson, 2018; Stuart, 

2019; Stubbington, 2017; Regev, 2017). This cutting-edge technology provides powerful means to 

comprehensively profile cell-level transcriptomic patterns, thereby facilitating the identification of crucial gene 

signatures associated with disease states and therapeutic responses (Van de Sande, 2023). 

 

Differential expression analysis (DEA) is a widely employed method in transcriptomics research to identify 

gene expression alterations across different conditions or experimental groups (Figure 1A). This approach is 

invaluable, but has limitations. Notably, DEA is susceptible to overlooking genes that do not exhibit 
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pronounced expression changes, which can be magnified downstream (e.g., transcription factors), or genes 

that undergo contextual changes in their interactions rather than changes in expression (e.g., signaling 

molecules) (Figure 1B). Therefore, relying exclusively on DEA may inadvertently exclude pivotal genes that 

play substantial roles in the experimental or biological condition despite subtle transcription level changes. 

 

Moreover, there is a growing recognition that the widespread use of statistical significance (often determined 

by statistical p-value tests) as a basis for making claims of scientific findings may inadvertently mislead the 

interpretation of results (Amrhein, 2019; Wasserstein, 2019). This concern is particularly salient in the realm of 

transcriptomics, where genes undergoing substantial changes in expression (determined by log2-fold change) 

are often classified as significantly differentially expressed if they meet the criterion of an adjusted p-value 

below a pre-defined cut-off (e.g., 0.05). This issue has recently come under scrutiny in a study that revealed 

unexpectedly high false discovery rates when identifying differentially expressed genes between two conditions 

using widely used statistical bioinformatics methods (Li Y. a., 2022). Hence, it is becoming imperative to 

produce complementary and supporting lines of evidence for scientific inference, going beyond narrow reliance 

on statistical significance alone. 

 

In this regard, gene networks are informative constructs that can lay the groundwork for a shift towards a multi-

layered investigation of the data, where the contextual relevance of genes and their expression changes are 

given complementary importance. Derived from scRNA-seq data, gene networks provide a robust framework 

for unraveling the intricate patterns of gene interactions, offering valuable insights into the coordinated 

behavior and functional relationships within biological systems (Zhang, 2005; Margolin, 2006). Particularly 

powerful is the application of topological features extracted from these networks to identify essential genes. For 

instance, measures such as degree, which quantifies the connectivity of a gene within the network, provide 

indications of its involvement in critical biological pathways. Through such bio-topological measures, we can 

complement conventional signature identification strategies (Figure 1C).  

 

In this study, we introduce GENIX, a novel network-based framework designed to identify genes and gene 

modules impacted by perturbations across conditions. The approach comprises two main components: (1) a 

method for sparse, data-driven gene association network construction, followed by (2) a measure of individual 

gene importance with respect to the network topology. In the first component, we apply a probabilistic graphical 

model to infer undirected dependency graphs, which effectively identifies gene interactions, resulting in 

biologically meaningful network representations. These networks lay the groundwork for identifying 

topologically important genes and gene programs. We employ a novel dual metric system for the second 

component to compare perturbation-driven networks. This systematic approach distinguishes topologically 

specific genes, whose overall interaction strength is highly condition-specific, from topologically invariant 



 
genes, whose connectivity pattern is not predominantly influenced by the perturbation. This novel metric is 

versatile and can be applied to any sparse network constructed from single-cell data.  

 

In its entirety, GENIX serves as an autonomous ecosystem for network construction. It takes a scRNA-seq 

count matrix as input to generate undirected dependency graphs alongside a compilation of essential genes 

and gene modules. Additionally, GENIX provides a unique downstream functionality that enables the 

comparison of condition-specific inferred networks, effectively allowing for reverse-engineering of perturbations 

and the identification of novel gene signatures. To demonstrate the power of our approach, we applied it to a 

previously published time-series single-cell dataset characterizing gender-specific responses to seasonal 

influenza vaccine in COVID-19-recovered and naïve patients. We reveal the bio-topological properties of the 

inferred networks in specific cell types and report well-known, as well as novel putative response genes that 

appear to control differences in protective immunity.  

 

RESULTS 
We evaluated the performance of GENIX in two ways. First, we used synthetic data to demonstrate its ability to 

faithfully capture built-in relationships in a sparse network. Next, we applied it to a publicly available dataset, 

GSE206265, reflecting a controlled perturbation (vaccination) in a clinical setting (Sparks, 2023). This dataset 

consists of longitudinal cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) data 

collected at multiple time points (Days 0, 1, and 28) after administrating the seasonal influenza vaccine. It 

includes samples obtained from individuals who have recovered from COVID-19 (COVR) as well as healthy 

controls (HC), with a cohort comprising 12 females and 12 males in the COVR group, and 8 females and 8 

males in the HC group (Figure 2A). Hence, these cohorts encompass 12 groups, representing different 

genders, sampling time points, and disease conditions. None of the participants were enrolled in COVID-19 

vaccine trials and had not received any recent vaccinations prior to receiving the seasonal influenza vaccine. 

 

GENIX Network Construction Disentangles Direct Associations from Indirect Effects in 
Synthetic Data  
Pearson correlation is a widely adopted method to quantify the relationship between genes and serves as the 

foundation for constructing networks (Zhang, 2005; Baran, 2019; Iacono, 2019; Rezaie, 2023). However, 

Pearson correlation quantifies similarity in gene expression patterns without distinguishing between direct and 

indirect relationships (Marbach, 2012). We underscored this issue with a fundamental yet targeted analysis. 

We generated a simulated dataset comprising four pseudo-genes, where the expression levels across 10,000 

observations were sampled from Gaussian distributions with different characteristics. To emulate a linear 

relationship among these pseudo-genes, each Gaussian distribution is influenced by the previous one and, in 

turn, impacts the following one sequentially. The simulation started with a standard normal distribution with a 

mean of zero and a standard deviation of one (Figure 1D). When constructing a gene co-expression network 



 
using Pearson correlation, as expected, we observed transitive connections that introduced false positive 

edges (Figure 1E).  

 

One commonly employed approach to address the challenge of transitive connections is correlation 

thresholding (Zhang, 2005; Care, 2019). However, the choice of the cut-off requires careful consideration, and 

while it may reduce the impact of transitive connections, it may not completely resolve the bottleneck (Figure 
1E). Therefore, we opted for an alternative approach by utilizing the inverse covariance matrix (ICM; also 

known as the precision matrix) (Wasserman, 2004). The ICM offers the advantage of disentangling direct 

associations between genes from indirect effects mediated through other genes and captures conditional 

dependencies between variables. In this case, an absent edge means that the two genes are conditionally 

independent given all other genes and corresponds to a zero element in the ICM. Hence, it reduces the 

occurrence of false positives, providing a robust and efficient approach for inferring gene networks, referred to 

as gene association networks (GANs) (Figure 1F). 

 

To further validate the relevance of ICM, we extended our simulated pseudo-gene analysis by arranging the 

pseudo-genes in four distinct configurations, resembling alternative transcriptional relationships. This 

supplementary analysis highlights the versatile application of the ICM in constructing diverse network 

structures, effectively addressing the challenge of transitive connections across various contexts 

(Supplementary Fig 1). Therefore, when applied to real single-cell data, ICM captures the partial correlations 

(see Methods) between genes while accounting for the influence of other genes in the network, providing a 

reliable framework for inferring cell-type-specific gene modules and identifying genes with high centrality 

(Figure 1G).  

 

Estimating the ICM requires the use of graphical least absolute shrinkage and selection operator (glasso) 

(Friedman, 2008; Meinshausen, 2006) (see Methods). This is achieved by maximizing a likelihood function 

that is subject to sparsity-inducing penalties governed by a regularization parameter. Higher values of this 

parameter enhance sparsity, whereas lower values diminish it. To determine a justified regularization 

parameter, we leveraged simulated scRNA-seq data consisting of six samples of 5,000 cells and 10,000 genes 

each (see Methods). We inferred the GAN for each of the simulated datasets across a range of regularization 

parameters spanning from 0.25 to 2, with an increment of 0.25. Our objective was to discern the impact of 

different regularization strengths on the resulting number of identified hub genes (see Methods). This analysis 

showed that as the regularization parameter increased, the number of hubs in the inferred gene network 

progressively decreased (Supplementary Fig 2). This observation resonates with the notion that higher 

regularization values lead to sparser networks by encouraging the identification of fewer significant 

associations among genes. To ascertain the optimal choice of the regularization parameter, we invoked the 

elbow-method, which suggests that a turning point in the relationship between the number of hubs and the 



 
regularization parameter corresponds to an appropriate level of sparsity while preserving biologically 

meaningful associations. This analysis led us to select a single regularization parameter (𝜌 = 1) for all stages 

of our analysis. 

 

GENIX Infers Heavy-Tailed Networks in Real Single-Cell Data 
Incorporating the controlled vaccination dataset (Sparks, 2023), we applied GENIX to infer GANs for each cell 

type within each group (n=12). Throughout the analysis, we maintained the original clustering and cell type 

annotation conducted by the authors for consistency (Figure 2A). We aimed to infer GANs for cell types that 

had a minimum of 500 cells within each group, considering this threshold as informative for a reliable analysis, 

i.e., the given group has enough observations to derive an informative graph (see Methods for specific details 

regarding gene, cell, and group filtration). We specifically inferred GANs for monocytes (classical, intermediate, 

and non-classical), CD4+ T cells (central memory, effective memory, naïve, regulatory, MAIT, and gamma-

delta), CD8+ T cells (central memory, effective memory, naïve, and TEMRA), CD16high NK cells, and B cells 

(memory, naïve, and intermediate). 

 

Biological networks exhibit non-random characteristics. Specifically, many of these networks demonstrate a 

distribution of gene degrees that follows a heavy-tailed pattern, with some genes having degrees much higher 

than the average. Therefore, we sought to investigate this topological property and assure the biological 

resemblance of the inferred networks. We utilized the networks derived from classical monocytes (n=12) as a 

showcase. Most genes displayed only a few connections, while a small subset of centralized genes exhibited a 

disproportionately large number of connections, resulting in a heavy-tailed degree distribution (Supplementary 
Fig 3). This analysis underscores the biological authenticity of the inferred networks, aligning them with 

patterns commonly observed in intricate biological systems (Stumpf, 2012; Holme, 2019).  

 

GENIX Infers Modules Related to Biological Function Within and Across Cell Types in Real 
Single-Cell Data 
Modularity is a key property of biological networks. To explore this, we examined graphs inferred from classical 

monocytes in each patient group (n=12) and identified in-group modules (i.e., sets of densely interconnected 

genes; see Methods and Figure 2B). Next, we sought to construct unified cell type-specific modules from the 

in-group modules. We calculated the Jaccard Index to measure the level of similarity among the identified in-

group modules. We then applied hierarchical clustering to identify clusters of modules with similar genes 

(Figure 2B). Henceforth, the term 'module' signifies these resultant clusters, which represent the union of 

clustered in-group-modules. We repeated this process for all 17 investigated cell types, resulting in the 

average identification of 13 ± 4 (SD) modules per each cell type, with a total of 232 modules (Supplementary 
File 1).  

 



 
Genes within the same module often participate in common biological functions. Therefore, we next sought to 

elucidate the biological function of each inferred module. We utilized a well-established module set 

(Chaussabel, 2008; Chiche, 2014) and annotated the inferred modules with the reference functional modules if 

they exhibited an overlap of above 25% (Figure 2C). More specifically, we focused our analysis on three main 

biological functional modules from the reference dataset: interferon-related modules (M1.2, M3.4, and M5.12), 

inflammatory-related modules (M4.2, M5.1, M6.13), and cytotoxic-related modules (M3.6, M4.15, and M8.46), 

which we annotated as IFN, INFLM, and CTX, respectively. Additionally, we annotated inferred modules with 

above 25% overlap with mitochondrial-related genes, antigen-presenting-related genes (HLAs), and ribosomal 

proteins as MT, AP, and RP, respectively. Those remaining are annotated as TBDs (Supplementary File 2). 

Finally, we conducted gene enrichment analysis (see Methods) as a complementary analysis to annotate 

module function, leveraging gene ontology (GO) terms (Supplementary File 3).  

 

Intriguingly, the modular analysis revealed a cell type-specific attribution of biological functions to the inferred 

modules (Figure 2D). AP modules were predominantly found in antigen-presenting cells, including B and 

monocyte subtypes. CTX modules were present in diverse killer cells, such as CD4 effective memory cells, 

CD8 central and effective memory cells, Terminally Differentiated Effector Memory CD8+ T cells (TEMRA), 

CD16high natural killer cells, and gamma-delta T cells (gdT). IFN and INFLM modules were prominently present 

in monocyte subtypes. RP and MT modules were identified across all cell types, indicating their fundamental 

roles in various cellular processes.  

 

Finally, we aimed to demonstrate the module’s specificity concerning all cell types in the dataset. Using the 

identified modules, we assigned scores to individual cells based on the expression levels of the associated 

module gene lists (see Methods). This analysis allowed us to assess the relative significance of modules 

within each cell type, categorizing them into 11 groups sharing similar phenotypic characteristics through 

hierarchical clustering (Figure 2E). The largest group, C1 (n = 12), comprised T and NK cell states. C2-3 (n = 

3, each) consisted of monocyte and B cell states, respectively. C4-8 (n = 2, each) encompassed plasmatic, 

naïve CD4 and CD8, neutrophils and macrophages, activated CD8 and NK, and proliferating CD8 and NK 

states, respectively. Finally, C9-11 (n = 1, each) included platelets, conventional dendritic cells (cDCs), and 

hematopoietic stem and progenitor cells (HSPCs), respectively. This investigation confirmed the phenotypic 

specificity of the identified modules. Overall, this comprehensive analysis provided evidence of the biological 

plausibility of the inferred graphs and the associated identified modules, thus affirming the reliability of GENIX 

performance. 

 

GENIX Module Analysis Across Conditions Provides Insights into Variation in Response to 
Influenza Vaccine 



 
One of the main objectives in time-series vaccination studies is to identify sets of functionally coherent genes 

and their associations with the immune states (pre- and post-vaccination), thereby providing insights into the 

essential pathways governing the immune response. Notably, responses to influenza vaccination have been 

extensively characterized, revealing the augmented activity of the IFN, CTX, and AP pathways post-

vaccination (Wimmers, 2021; Mellett, 2022; Giacomelli Cao, 2022). Therefore, vaccination is an ideal 

perturbation for validating the functional relevance of modules inferred by GENIX.  

 

The longitudinal influenza vaccination conducted by Sparks et al. (Sparks, 2023) reported that male individuals 

who had recovered from COVID-19 exhibited higher early, influenza vaccine-induced responses compared to 

healthy male and female individuals, as well as female individuals who had recovered from COVID-19 (COVR). 

In this context, our investigation aimed to assess the condition specificity of inferred modules among female (F) 

and male (M) individuals in both the COVR and HC groups. Additionally, we sought to parse out the 

differences in response in terms of specific driver genes and pathways, thereby providing supporting evidence 

and enhanced insights into gender-specific responses to immunization. 

 

Given that vaccination induces an antiviral-like response involving both the myeloid and lymphoid 

compartments, we narrowed our focus to classical monocytes (cMon) and CD8+ central memory T cells (CD8-

CM), as these cell types play pivotal roles in orchestrating the early immune response. Notably, the gene 

enrichment analysis of the inferred modules from cMon and CD8-CM populations (as discussed in the previous 

section) recapitulated essential immunoregulatory functions (Supplementary File 2). Specifically, the 

cMon.M2 module exhibited enrichment of AP-related genes, including major histocompatibility complex (HLA) 

class-II genes, while the cMon.M15 module demonstrated enrichment with IFN-related genes. In addition, the 

CD8-CM.M7 module showed enrichment of CTX-related genes, and CD8-CM.M9 displayed enrichment of AP-

related genes, including HLA class-I genes (Supplementary Fig 4). We leveraged these immune-response 

driving modules to score each cell (see Methods) and explore their comparative importance among cMon and 

CD8-CM populations. This analysis highlighted the cell-type specificity of the inferred IFN and CTX modules, 

effectively distinguishing cMon and CD8-CM cells (Figure 3A - top panel), underscoring their unique 

functionality in modulating immune responses. Additionally, the comparison between cMon and CD8-CM cells, 

scored using HLA class-I and II modules, emphasized the phenotypic association of the HLA class-II 

molecules to antigen-presenting cells (Figure 3A - bottom panel). 

 

We hypothesized that the activity of these modules may vary in a sex- and time-dependent manner in the 

context of vaccination and that this variation may explain differences in response across groups. We therefore 

investigated the time-dependent score of these modules in each group. At baseline, pre-vaccination IFN-

related activity (cMon.M15) demonstrated consistency among all participants (Figure 3B). Additionally, a 

significant increase in IFN activity was observed in cMon on Day 1 after influenza vaccination. The elevated 



 
IFN activity returned to normal at Day 28 across all groups. Notably, the increase in IFN activity captured by 

cMon.M15 was particularly pronounced in the COVR-M group. Concurrently, a significant increase in the 

activity of the MHC class II module (cMon.M2) was observed only in the COVR-M group on Day 1 (Figure 3B). 

Thus, our module-based analysis highlights an amplified response in the COVR-M group, compared to other 

patient groups, evident within the cMon population on Day 1 following seasonal influenza vaccination. This 

heightened activity is notably concentrated in the IFN module, encompassing genes coding for IFN-inducible 

antiviral proteins such as IRF1, ISG15, and IFITM3, as well as in the enhanced AP activity, characterized by 

elevated expression of HLA class-II related genes including HLA-DRA, HLA-DMA, and CD74 (Figure 3C). 

 

Similarly, a significant increase in the activity of the CD8-specific CTX module (CD8-CM.M7) was observed in 

COVR-M individuals on Day 1 after influenza vaccination (Figure 3D). This elevated activity was suppressed 

by Day 28. Additionally, a relatively modest response in the activity of the MHC class I module (CD8-CM.M9) 

was observed on Day 1 across all groups (Figure 3D), with the exception of the COVR groups, which exhibited 

a particularly pronounced increase again in male patients. Thus, the COVR-M group exhibits an elevated CTX 

response in CD8-CM T-cells, characterized by increased expression of key cytotoxic genes such as PRF1, 

GZMK, GZMM, KLRG1, and NKG7 (Figure 3E), accompanied by an enhanced AP activity, marked by 

elevated expression of HLA class-I related genes such as HLA-A, HLA-B, HLA-C, and B2M (Figure 3E), on 

Day 1 following seasonal influenza vaccination. 

 

In summary, these results are consistent with the findings in the original paper (Sparks, 2023), indicating that 

male individuals who had recovered from COVID-19 exhibited coordinately higher early, influenza vaccine-

induced responses compared to other groups in the study. In addition, GENIX identified the IFN, CTX, and AP 

cell-type-specific modules as drivers of this difference, thereby providing supportive and detailed insights into 

the underlying immune pathways at play following seasonal influenza vaccination. 

 

GENIX Identifies Vaccine-Response Gene Signatures Beyond Differential Expression 

To identify genes that drive group-specific vaccine responses, we devised a two-dimensional topological 

measure that compares the structure of pre- and post-vaccination inferred networks. Prior to this, we sought to 

establish that the observed differences in network structures are not mere artifacts of random noise, but rather 

indicative of significant variations. To achieve this goal, we employed a permutation test (see Methods). This 

test aimed to gauge the robust distinctiveness of inferred networks from cMon at D0 and D1 after vaccination 

in individuals who had recovered from COVID-19. By juxtaposing the observed Jaccard similarity index 

between pre- and post-vaccination networks with corresponding indices calculated from randomly 

reconstructed networks (50,000 times), our analysis underscored the statistical significance (p < 0.05) of 

structural disparities between the observed networks (Supplementary Fig 5). This substantiated the 

identification of reliable topological changes stemming from perturbations. 



 
 

To measure the importance of a given gene in the overall structure of the network, we formulated a unique 

metric that gauges the consequences of gene knockout on the network topology pre- and post-vaccination 

(see Methods). We started by computing the similarity of networks across conditions using their Jaccard 

index, considering both shared genes and edges (Figure 4A, panel 1). Next, we conducted an iterative 

removal of each gene from both networks and recalculated the similarity index. Finally, we defined the gene 

removal impact (GRI) metric of each gene as the relative difference in similarity of networks after removal 

compared to before removal. The GRI metric can take both positive and negative values, underscoring its 

potential to discern genes substantially impacting on the network structure. A positive GRI indicates that the 

elimination of a specific gene leads to a more similar state between the networks (Figure 4A, panel 2), while a 

negative GRI indicates that the elimination of a specific gene causes the networks to become less similar 

(Figure 4A, panel 3).  

 

To complement the GRI metric, we also incorporated the change in gene centrality to enhance our analysis. By 

comparing the normalized degree of connectivity for each gene within the pre- and post-vaccination inferred 

networks, we derived the gene centrality change (GCC) metric (see Methods). In this context, a positive GCC 

indicates that specific genes become more central to the network structure, whereas a negative GCC suggests 

that certain genes become less central, signifying a potential shift in their importance or regulatory influence 

following vaccination.  

 

Concentrating our analysis on classical monocytes from individuals who had recovered from COVID-19, we 

identified 36 topologically variant genes (TVGs) (see Methods) in the female group and 44 TVGs in the male 

group, when comparing inferred networks from Day 1 post-vaccination to Day 0 (Figure 4B). Several 

interferon-related genes, including IRF1, STAT1, and IFITM3 (part of interferon module cMon.M15) were 

identified in both groups (Figure 4B-C and Supplementary File 1). Notably, the type I interferon-inducible 

protein 3 (IFITM3) emerged as a hub gene solely at Day 1 after influenza vaccination, suggesting its potential 

role in the early response to vaccination (Cao, 2014).  

 

Furthermore, we detected inflammatory-related genes such as calprotectin S100A8/9 (belonging to 

inflammatory module cMon.M4) and NCF1 (belonging to inflammatory module cMon.M14) in both male and 

female groups (Figure 4B-C and Supplementary File 1). Noteworthy is the neutrophil cytosolic factor 1 

(NCF1), a regulator of reactive oxygen species (ROS), which exhibited hub gene characteristics exclusively on 

Day 1 post-vaccination, emphasizing its potential immunoregulatory effects in response to the seasonal 

influenza vaccine. Additionally, the HLA class-I gene set (A, B, and C), all belonging to module cMon.M7 and 

demonstrating hub gene characteristics on Day 1 post-vaccination, were uniquely observed in the male group 

(Figure 4B-C and Supplementary File 1).  



 
 

Next, we sought to juxtapose the outcomes of our network-based comparative model with those of the DEA in 

uncovering vaccine-induced signatures. We carried out the DEA using time point D0 as the baseline in 

classical monocytes from COVID-19 recovered female and male participants. We stablished a threshold of 

adjusted p-values below 0.05 and a log-2-fold change exceeding 1. This led us to identify three genes in the 

COVR-F group and 20 genes in the COVR-M with significantly altered expression patterns at Day 1 post-

seasonal influenza vaccination (Figure 4D).  

 

Interestingly, none of the three differentially expressed genes, GBP1, GBP4, and GBP5 from the COVR-F 

group were detected by the network-based comparative model (Figure 4E). In fact, all three of them resided 

within the non-essential region (Figure 4B and 4C). Conversely, all 36 genes identified by the network-based 

comparative model were overlooked by the DEA, despite comprising several key immunoregulator genes 

known to mediate response to vaccination and various cellular stimuli, including interferon-related genes IRF1, 

IFITM2, and IFITM3 (Feeley, 2011; Zhai, 2015; Keshavarz, 2019; Wimmers, 2021), as well as inflammatory-

related genes S100A8, S100A9, and NCF1 (Peiris, 2009; Tsai, 2014; Holmdahl, 2016; Mellett, 2022).  

 

Moreover, in the COVR-M group analysis, both methodologies converged on 6 common genes, 5 of which 

were interferon-related, including WARS, STAT1, LAP3, GBP1, and GBP5 (Figure 4E). Interestingly, the 

immune-inflammatory regulator vimentin (VIM) (Li, 2020), absent from the DEA, was unveiled through network 

analysis in both the female and male groups (Figure 4E). Notably, VIM was also a constituent of the inferred 

cMon.M3 module, which included Annexins A1 and A2 (ANXA1/2) recognized for their role in influenza virus 

pathogenesis (Ampomah, 2018; Rahman, 2018) (Supplementary File 1 and Supplementary Fig 4A). This 

observation underscores the potential immune regulatory coherence of VIM and ANXA1/2, rendering them 

intriguing candidates for further investigation, especially within the context of influenza vaccination (Figure 4C). 

Overall, this comparative analysis highlights the complementary nature of both methodologies in unveiling 

perturbation-induced signatures. 

 

DISCUSSION 
In the pursuit of unraveling the complexities of biological systems, traditional identification of gene regulatory 

responses approaches, such as DEA, have proven to be indispensable tools. However, these approaches are 

primarily designed to prioritize genes that exhibit significant changes in their expression levels, potentially 

overlooking other genes that may play crucial roles in the studied biology despite not showing pronounced 

alterations in expression. To address this limitation and enhance our comprehension of the intricate interplay 

within biological systems, we have developed a novel network-based comparative model, integrated into 

GENIX algorithm. This approach focuses on condition-driven structural changes within gene networks, thereby 



 
highlighting genes that might have otherwise gone unnoticed through conventional analyses but could be 

essential components of the underlying biological pathways driving a specific response to perturbation. 

 

Specifically, we utilized a glasso-based network construction approach to capture gene expression 

dependencies in single-cell data. By leveraging this probabilistic graphical model, GENIX faithfully 

differentiates between direct and indirect connections while remaining immune to neglecting novel interactions, 

a common downside of reference-guided network construction methods (Mohammadi, 2019). Within GENIX, 

we further developed a systematic module identification and analysis approach, and a two-dimensional 

quantitative metric, providing a more comprehensive understanding of changes in gene essentiality within the 

network upon perturbation. We introduced the gene removal impact (GRI) metric, which assesses the influence 

of a specific gene on the overall change in architecture of inferred networks across conditions. The GRI is 

combined with the gene centrality change (GCC) metric, which measures the degree of a specific gene's 

involvement in response to the perturbation. These metrics can yield positive and negative values, highlighting 

their potential to distinguish topologically variant genes (TVGs) that impact the network's structure. 

 

To provide biological intuition to the GRI metric, we envision a 3D space wherein the pre-perturbation network 

state is located at the center, while the post-perturbation network state resides at a distinct location in space, 

symbolizing the alterations brought about by the perturbation. In this context, a positive GRI indicates that 

removing a specific gene leads to a convergence of the networks by increasing their structural similarity. This 

convergence suggests that the biological pathway involving the gene is likely to drive the changes associated 

with the perturbation and that knocking out the gene would reverse or attenuate the effect of the perturbation. 

Inversely, a negative GRI indicates that removing a specific gene causes the networks to diverge. This 

divergence suggests that the relationship between the biological pathway involving the gene and the 

perturbation is likely complex and multifaceted and that knocking out the gene would amplify the effect of the 

perturbation. 

 

With regard to the GCC metric, a positive change in centrality implies the establishment of new connections or 

interactions within the network, serving as a proxy for revealing novel regulatory relationships that emerge in 

response to the perturbation. Conversely, when GCC is negative, the reasoning is the opposite, suggesting 

that certain genes may interact less or become more specific in the altered pathways. The GCC and GRI 

metrics are orthogonal approaches to assess the importance of individual genes, and by integrating them, we 

have provided a comprehensive view of how individual genes influence the overall network following a 

biological perturbation. 

 

Conducted within the context of the seasonal influenza vaccine, we assessed the applicability and 

performance of GENIX. We inferred cell-type-specific and condition-specific gene association networks from 



 
healthy individuals and COVID-19 recovered individuals who underwent vaccine administration. Subsequently, 

we analyzed the bio-topological properties, including modules and hubs, of the inferred networks. Our findings 

demonstrated the cell-type specificity of gene modules and their biological functional coherency, supporting 

their immunobiological plausibility. Furthermore, we reported both well-known and novel regulatory signatures 

that might have implications for protective immunity against influenza. Finally, we demonstrated the 

effectiveness of our novel network-based comparative model in complementing traditional signature 

identification approaches, such as differential expression analysis. 

 

The glasso algorithm employs a tuning parameter (𝜌) to modulate the sparsity level of the inferred network. A 

common approach to selecting the glasso tuning parameter involves constructing multiple networks across a 

range of 𝜌 values and identifying the most suitable value based on its impact on a network topological criterion 

(Zhao, 2006; Epskamp, 2018). We used the count of identified hubs as a surrogate to assess the impact of 

different 𝜌 values, ultimately selecting a value that exhibited a turning point in the changes of the total hub 

count as larger values were considered. An alternative approach for tuning parameter determination involves 

minimizing the extended Bayesian information criterion (EBIC) (Chen, 2008). Despite EBIC's generally high 

specificity, its sensitivity can display variability (Foygel, 2010; Van Borkulo, 2014; Barber, 2015). Not 

surprisingly, EBIC is once again dependent on another hyperparameter, which governs the extent of 

preference for simpler models within EBIC's framework. Thus, determining the optimal hyperparameters is tied 

to the characteristics of the data under investigation. Effective selection of the glasso tuning parameter, tailored 

to the unique attributes of scRNA-seq data, will remain an important area of further study. 

 

The glasso algorithm employs a streamlined approach to enhance computational efficiency (Witten, 2011). In 

terms of the computational load, utilizing a single core with a 3.1 GHz processor and 128 GB memory, we 

recorded that the process of constructing a network with 10,000 genes expressed across 5,000 cells (the size 

of simulated data used in this study) may take around 5 hours. However, it is worth noting that a pre-filtering 

stage can help improve the run-time. In particular, a considerable number of genes are expressed sparsely 

across cells, and these genes can be removed as they do not provide sufficient observations to participate in 

the network inference. Another approach is to focus only on genes with high variations across conditions. 

However, this method may eliminate genes with robust expression across conditions, concentrating solely on 

genes drastically impacted by perturbation, potentially defeating the purpose of our network-based approach. 

 

It is noteworthy that mutual information (MI) has also been proposed as a basis for network construction 

(Margolin, 2006). However, while MI is well-defined for discrete or categorical variables, estimating it between 

quantitative variables poses challenges and can be computationally intensive. In addition, independent studies 

have shown that MI often falls short compared to correlation-based methods in revealing gene pairwise 

relationships and identifying co-expression modules (Song, 2012). Each network inference method is 



 
underpinned by specific theories and assumptions that may introduce biases in estimating network topologies. 

Thus, conducting a comprehensive and independent evaluation of these methodologies necessitates additional 

scrutiny. 

 

Deep learning architectures have been developed for predicting transcriptional responses to single-gene 

perturbations (Lotfollahi, 2019; Roohani, 2023). However, their predictive accuracy is constrained by the need 

for reliable training data and prior knowledge of gene-gene relationships. GENIX can serve as a valuable 

complement, enriching these emerging in silico technologies by supplying essential information, including data-

driven gene-gene graphs, as well as biologically plausible target genes and gene programs. This alliance 

enhances the capabilities of predictive modeling, aimed at achieving a spectrum of outcomes with greater 

precision. 

 

In conclusion, our integration of insights from gene networks and advanced quantitative metrics has provided a 

comprehensive perspective on how individual genes exert influence over the network structure following 

perturbation. Our approach complements traditional signature prioritization methods and deepens our 

understanding of the underlying biological processes. Hence, in conjunction with other lines of evidence, 

GENIX has the potential to inform target identification and response biomarker discovery pipelines by 

pinpointing genes with pivotal roles in perturbation-induced pathways from scRNA-seq data. 
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DATA AND CODE AVAILABILITY 
The GENIX R package source code has been uploaded to GitHub at https://github.com/Sanofi-Public/PMCB-

Genix and is publicly available. This paper analyzes existing, publicly available data. Single-cell data are 

available from the NCBI Gene Expression Omnibus, accession numbers GSE206265. The source code and 

materials required to reproduce the results will be publicly available as of the date of publication. 

 

METHODS 
Cells and Genes Pruning. Given the vast number of genes measured in scRNA-seq experiments, it is 

prudent to apply filtering strategies to focus on a more informative subset of genes and cells. In our study, prior 

to inferring networks, we applied filters to exclude genes expressed in less than 10 percent of the cells and 

cells expressing fewer than 250 genes. Cell populations with less than 500 cells per given condition were also 

excluded from the analyses. Accordingly, we excluded CD4_Tfh, CD8_TRM, CD8_proliferating, 

NK_proliferating, NK_CD56hiCD16lo, Plasmablast, Mac_or_Mono, Neut, HSPC, pDC, cDC, ILC, and Platelet 

populations. Additionally, we removed from the analyses small doublet populations, such as CD4_platelet_bind 

and Mono-T-dblt. 

 

Count Matrix Normalization. The count expression matrix is normalized to the mean library size, where each 

cell is scaled to sum up to the mean total counts. 

 
Inverse Covariance Matrix (ICM) Estimation. The glasso algorithm was utilized to estimate the ICM 

(Friedman, 2008; Meinshausen, 2006). This method uses a regularization technique that extends the concept 

of ordinary least squares regression to estimate the ICM, of which the elements are proportional to the partial 

correlations between variables (Yuan, 2007; Banerjee, 2008; Mazumder, 2012). The “glasso” function from the 

glasso R package (version 1.11) was used to estimate the inverse covariance matrix (Friedman, 2008) with a 

regularization parameter value of 1. The default arguments were employed for all the analyses in this study. 

 

Partial Correlation Matrix Calculation. When considering the relationship between the graphical lasso and 

partial correlation, let 𝑅 denote the matrix of partial correlations and 𝛺 represent the corresponding inverse 

covariance matrix, then the 𝑖!", 𝑗!" element of 𝑅 can be computed as 𝑅#,% = −𝛺#,% )𝛺#,#𝛺%,%⁄ .  

 
scRNA-seq Data Simulation. The Splatter R package (version 1.24.0) (Zappia, 2017) was used to create a 

set of 6 simulated scRNA-seq data with 5,000 cells and 10,000 genes. The default arguments were employed 

for all the analyses in this study. 
 

https://github.com/Sanofi-Public/PMCB-Genix
https://github.com/Sanofi-Public/PMCB-Genix


 
Module Inference. First, each network is represented as an adjacency matrix A. To normalize the data, the 

values are shifted from [−1, 1] to [0, 1] using the formula 	𝐴1 = 	0.5 + 0.5 × 𝐴. Subsequently, the transformed 

adjacency matrix is converted into a distance measure by subtracting each value from 1, (1	 −	𝐴1). Next, the 

distance matrix is subjected to hierarchical clustering using the "average" method. This clustering approach 

generates a dendrogram, allowing for the identification of cohesive modules. Finally, the modules are 

automatically delineated based on the dendrogram's structure using the “cutreeDynamic” function from the 

dynamicTreeCut R package (version 1.63.1), with a minimum module size of 7. The default arguments were 

employed for all the analyses in this study. 

 

Genes Centrality Calculation. The degree of a gene in the network is calculated as the number of direct 

connections the gene has with other genes. A normalized degree for the gene is calculated by dividing the 

gene's degree by n-1, where n is the number of vertices in the network. 
 
Hub Identification. A gene is classified as a hub if its degree value is an outlier, exceeding at least 1.5 

interquartile ranges above the 75th percentile of all degrees in the network and if it is connected to at least 1% 

of the total genes in the network. 
 

Networks Distinctiveness. A permutation test is developed to examine the statistical distinctiveness of the 

overall structures of the inferred networks before and after perturbation. The process is initiated by calculating 

the Jaccard index to assess network similarity, taking into account shared genes and edges. This resulting 

value serves as the observed statistic. Subsequently, the two networks are combined (union) into a pull, 

providing the foundation for subsequent comparisons. Pre- and post-perturbation networks are then 

reconstructed by randomly sampling from the pull, while preserving the original edge counts and connections, 

with no-replacement. Through an iterative process of resampling and calculating the Jaccard index, a 

distribution of similarities is generated (n=50,000). This distribution is utilized to calculate a two-sided t-test p-

value, reflecting the proportion of permuted statistics that differ from the observed statistic. A p-value less than 

0.05 is employed to classify the statistical significance of structural disparities between gene networks before 

and after perturbation. 

 
Gene Removal Impact (GRI). Pre- and post-perturbation network similarity is calculated using the Jaccard 

index, considering both shared genes and edges. An iterative gene removal process is then executed in both 

network states. With each gene removal, the similarity index between network states is recalculated. The GRI 

for each gene is calculated as the relative difference in post-removal network similarity compared to the pre-

removal state. 

 



 
Gene Centrality Change (GCC). The GCC for each gene is calculated by subtracting the normalized degree 

of genes between pre- and post-perturbation network states. A normalized degree for the gene is calculated by 

dividing the gene's degree by n-1, where n is the number of genes in the network. Genes that were not 

included in at least one of the networks are assigned a degree value of zero. 

 

Topologically Variant Genes (TVG). A gene is classified as topologically variant if it exhibits a change in 

either the GRI or GCC metrics exceeding three times the standard deviation (3-sigma) of the distribution of 

GRIs and GCCs. 

 

Single-cell Module Score Calculation. The "AddModuleScore" function from Seurat R package (version 

4.3.0) was used to calculate module scores for each individual cell based on the average expression of 

associated gene lists. A positive score would suggest that this module of genes is expressed in a particular cell 

more highly than would be expected, given the average expression of this module across the population. The 

default arguments were employed for all the analyses in this study. 

 

Gene Enrichment Analysis. Enrichment between inferred modules and reference Gene Ontology (GO) 

pathways was analyzed using the “newGeneOverlap” function from GeneOverlap R package (version 1.26.0). 

It utilizes Fisher exact tests to determine whether enrichment is significant (adjusted p < 0.05) and reports odds 

ratio and Jaccard index to denote the level of enrichment (Shen, 2014). Results are reported for the top five 

GO modules with the highest odds ratios. The default arguments were employed for all the analyses in this 

study. 

 

Gene Differential Expression Analysis. The “FindMarkers” function from Seurat R package (version 4.3.0) 

was used to identify differentially expressed genes using the Wilcoxon rank sum test. Genes with an absolute 

log-2-fold change larger than 1 and an adjusted p-value less than 0.05 were considered significant. 

 

Remaining Used Functions. Plots were created using ggplot2 R package (version 3.3.5) unless noted. igraph 

R package (version 4.0.0) was used for creating and manipulating graphs. The function “DotPlot” from Seurat 

R package (version 4.3.0) was used to visualize the gene expression with dot plot. The function “DimPlot” from 

Seurat R package (version 4.3.0) was used to visualize the final UMAP on a 2D scatter plot. The 

“EnhancedVolcano” function from EnhancedVolcano R package (version 1.18.0) was used to visualize the 

deferentially expressed genes. All analyses were performed using R version 4.3.0. 
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FIGURES 

 
Figure 1: Unveiling overlooked genes through novel measurement techniques. (A) Schematic illustration depicting 
three possible alterations in the expression level of genes upon a stimulus, including upregulation (red circles), 
downregulation (blue circles), and no variation (white circles). (B) Schematic illustration representing a one-dimensional 
conventional differential expression analysis, aiming to distinguish genes with varying expression levels and identify novel 
condition-relevant genes. (C) Schematic illustration showcasing the potential of novel new measurement techniques to 
complement traditional differential expression analysis. (D) Simulated dataset resembling the sequential regulatory effect 
of gene G1 on G2, G2 on G3, and G3 on G4. The expression levels are sampled from a Gaussian distribution. The 
heatmap displays the expression levels of G1-G4 across 10K cells. (E) Pearson correlation coefficients calculated from 
the simulated dataset from D, laying the framework to build a gene co-expression network comprised of genes G1-G4. 
The red elements of the Pearson correlation matrix represent the transitive red edges in the network, i.e., false positives. 
The networks at the bottom of the panel illustrate the correlation thresholding effort to remove the transitive edges. The 
red legend at the bottom illustrates the range of thresholds used to remove the transitive edges. (F) Inverse covariance 
matrix is estimated for the same simulated dataset from D, laying the groundwork for the inference of a gene association 
network without any transitive edges, represented by green zeros in the matrix. (G) Schematic illustration of the GENIX 
algorithm starting from single-cell RNA sequencing data. The gene expression matrix of a given cell type is then utilized to 
estimate the inverse covariance matrix using the glasso algorithm. This process lays the groundwork to build a gene 
association network and infer associated bio-topological features, hub genes, and modules. 
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Figure 2: Inferring cell type specific gene modules from query data. (A) UMAP representation of GSE206265 PBMC 
single-cell data obtained from healthy females (n=8), healthy males (n=8), COVID-19 recovered females (n=12), and 
COVID-19 recovered males (n=12). The groups were vaccinated with the seasonal influenza vaccine, and samples were 
collected longitudinally at Day 0, 1, and 28 post-vaccination. Clusters and cell types were color-coded according to the 
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published manuscript (Sparks, 2023). (B) Schematic illustration of the module inference process for each group of 
patients (n=12; top panel). The panel showcases only the classical monocyte population. Correlation analysis followed by 
hierarchical clustering was performed to combine in-group-module gene sets (bottom panel). The color keys on the top 
represent the clustered modules, sampling time points, disease groups, and genders. Row and column dendrograms are 
generated by hierarchical clustering. (C) Schematic representation for annotating modules by comparing them to the 
reference functional modules (Chaussabel, 2008; Chiche, 2014) (left panel). Modules that have a similarity larger than 
25% (red dashed line) with the reference modules are annotated accordingly (right panel). The facet titles on the top 
represent the modules annotation: AP for antigen presenting, CTX for cytotoxic, IFN for interferon, INFLM for 
inflammation, MT for mitochondrial, RP for ribosomal protein, and TBD for unannotated modules. The color-coded legend 
on the bottom represents the cell types from which the modules have been inferred. (D) Number of annotated modules (y-
axis) in each cell type (x-axis) from which they have been inferred. The legend on the right represents the modules 
annotation similar to panel C. (E) Heatmap representing row-scaled module scores (rows) averaged over cells from each 
cell-type population (columns). The color keys on the left represent the annotated module types and the cell types from 
which the modules have been inferred. The color key at the top represents the cell type associations with hierarchical 
clusters. 

 
 
 
 
 
 
 
 
 
 
 

 
 



 

 
Figure 3: Discovery of vaccine-induced gene programs in classical monocytes and CD8 central memory cells. (A) 
Visualization of classical monocytes (dark orange) and CD8 central memory cells (dark blue) in the context of the inferred 
interferon (cMon.M15) and cytotoxic (CD8-CM.M7) modules in the top panel, and HLA class II (cMon.M2) and HLA class I 
(CD8-CM.M9) modules in the bottom panel. (B) Module scores of interferon (cMon.M15) and HLA class II (cMon.M2) 
modules in classical monocytes in the HC-Female (n = 8), HC-Male (n = 8), COVR-Female (n = 12), and COVR-Male (n = 
12) participants at D0, D1, and D28. Each point represents a participant. The upper and lower bounds of the boxplot 
represent the 75th and 25th percentiles, respectively. The center bars indicate the medians, and the whiskers denote 
values up to 1.5 interquartile ranges above the 75th or below the 25th percentiles. Data beyond the end of the whiskers 
are considered outliers. (C) Expression levels of selected genes from the interferon (cMon.M15) and HLA class II 
(cMon.M2) modules in classical monocytes across different groups and time points. Each circle's color represents the 
average expression level of the gene, while its size indicates the percentage of cells expressing that particular gene. (D-E) 
Similar to panels B and C, but calculated from CD8 central memory cells using cytotoxic (CD8-CM.M7) and HLA class I 
(CD8-CM.M9) modules. 
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Figure 4: Identification of vaccine-induced topological variant genes (TVGs) in classical monocytes. (A) 
Schematic illustration of the gene removal impact (GRI) metric calculation. The Jaccard Index is calculated to quantify the 
similarity, considering both shared genes and edges, comparing the inferred networks at D0 and D1 post-vaccination 
(panel 1). Genes are iteratively removed from both networks, and the similarity index is recalculated. The impact of 
individual genes is then determined through the relative comparison of these pre- and post-removal measurements. The 
GRI is positive if the elimination of a specific gene leads to a more similar state between the two networks (panel 2). The 
GRI is negative if the elimination of a specific gene causes the two networks to become less similar (panel 3). (B) Change 
in gene normalized centrality (y-axis; D1 versus D0) is compared against gene removal impact (x-axis; D1 versus D0) in 
inferred networks from classical monocytes in female (top panel) and male (bottom panel) participants recovered from 
COVID-19 (COVR). Each point indicates a TVG labeled by the gene name. The label color indicates the hubness status 
of the given gene, either being a hub at D0 (orange), D1 (red), in both D0 and D1 (green), or not a hub gene (a common 
gene) in neither time points (black). The points color shade indicates the log-2-fold change (Log2 FC) in the expression 
level of the given gene, comparing D1 post-vaccination versus D0. The point shape indicates the differential expression 
status of each individual gene, either being invariant (circle), significantly downregulated (inverted triangle), or significantly 
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upregulated (triangle). The shaded area indicates the region where the removal of the given gene has a low influence on 
the overall architecture of the inferred networks, quantified with a change less than 3-sigma in either the GRI (x-axis) or 
GCC (y-axis) distributions. The x-axis values are normalized to their extremum positive and negative values. (C) 
Expression levels of selected genes in classical monocytes of COVID-19 recovered female (n = 12) and male (n = 12) 
participants at D0, D1, and D28. Each point represents a participant. The upper and lower bounds of the boxplot 
represent the 75th and 25th percentiles, respectively. The center bars indicate the medians, and the whiskers denote 
values up to 1.5 interquartile ranges above the 75th or below the 25th percentiles. Data beyond the end of the whiskers 
are considered outliers. (D) Volcano plot illustrating differential expression analysis (DEA) comparing D1 post-vaccination 
versus D0 in classical monocytes from female participants (top panel) and male participants (bottom panel) recovered 
from COVID-19 (COVR). Red points represent genes with statistically significant up- or down-regulation (p-adjust less 
than 0.05 and absolute log2 fold change larger than 1), while blue points correspond to genes satisfying only the 
statistically significant criteria (p-adjust less than 0.05). Black points denote genes that do not meet either of the two 
criteria. (E) Shows vaccine-induced gene signatures identified using both the DEA and the network-based comparative 
model in female and male participants recovered from COVID-19 (COVR). The dashed red line indicates signatures 
identified by both methodologies as differentially expressed genes (DEGs) or topological variant genes (TVGs). Note: the 
GBP1,2,4, and 5 genes have not been removed from the panel B to highlight the complementary nature of DEA and 
network-based comparative model in identifying perturbation-induced signatures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
SUPPLEMENTARY FIGURES 

 
Supplementary Figure 1: Inverse covariance matrix deciphers direct associations from indirect effects in 
synthetic data. (A-D) First row: Four unique pseudo-gene configurations representing alternative transcriptional 

relationships. Second row: Set of equations used to simulate pseudo-gene expressions based on predefined relationships 

and characteristics. Third and fourth rows: Pearson correlation matrices used for constructing gene co-expression 

networks, respectively. The red values in the matrices and red edges in the networks highlight indirect effects, 

representing false positives. Fifth and sixth rows: Inverse covariance matrices used for constructing gene association 
networks, respectively. The green zeros in the matrices highlight removed indirect effects. 
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Supplementary Figure 2: Regularization parameter selection for glasso algorithm using simulated data analysis. 
Six simulated scRNA-seq datasets, each comprising 5,000 cells and 10,000 genes, were used to infer gene association 

networks using a range of regularization parameters spanning from 0.25 to 2. The graph depicts the number of hub genes 
(y-axis) plotted against the regularization parameter (x-axis), incremented by 0.25. Error bars illustrate the standard 

deviation of hub gene counts in the inferred networks (n = 6). The blue dashed line represents the curve fitting the 

average number of hubs for each regularization parameter. The red dashed line signifies the selected regularization 

parameter of 1. 
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Supplementary Figure 3: GENIX infers gene networks with heavy tail degree distribution. Illustrates the distribution 
of gene degrees in the networks inferred from classical monocytes in healthy control (HC) and COVID-19 recovered 
(COVR) female and male participants at D0, D1, and D28. The x-axis represents the degree of each gene (the number of 
connections), and the y-axis shows the number of genes with a specific degree.  
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Supplementary Figure 4: Gene enrichment analysis for annotating inferred modules functions using Gene 
Ontology (GO) database. The gene enrichment analysis results for classical monocytes are shown in (A) and for CD8 
central memory cells are shown in (B). The x-axis corresponds to the inferred module identifiers, while the y-axis 
represents the identified GO terms. The legend color-bar indicates the odds ratio, representing the strength of association 
between the modules and GO terms. The legend circles size displays the Jaccard index, measuring the similarity between 
two lists of genes. Fisher’s exact test was employed to determine statistical significance. The results are presented for the 
top five GO modules with the highest odds ratios and an adjusted p-value below 0.05. The top labels indicate the 
annotation of modules according to Figure 2C by comparing the inferred modules to the reference functional modules 
from (Chaussabel, 2008; Chiche, 2014). AP for antigen presenting, CTX for cytotoxic, IFN for interferon, INFLM for 
inflammation, MT for mitochondrial, RP for ribosomal protein, and TBD for unannotated modules. The red dashed vertical 
rectangles highlight modules used in the analysis of the Results section.  

ACTIN_FILAMENT_BASED_PROCESS
ACTIN_FILAMENT_ORGANIZATION

AEROBIC_RESPIRATION
AMIDE_BIOSYNTHETIC_PROCESS

AMIDE_METABOLIC_PROCESS
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_ANTIGEN

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_PEPTIDE_ANTIGEN
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_II

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_I

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_OR_POLYSACCHARIDE_ANTIGEN_VIA_MHC_CLASS_II
BIOLOGICAL_PROCESS_INVOLVED_IN_INTERSPECIES_INTERACTION_BETWEEN_ORGANISMS

CELL_ADHESION
CELL_CELL_ADHESION

CELLULAR_RESPIRATION
CELLULAR_RESPONSE_TO_CALCIUM_ION

CELLULAR_RESPONSE_TO_REACTIVE_OXYGEN_SPECIES
CELLULAR_RESPONSE_TO_SALT

CYTOPLASMIC_TRANSLATION
CYTOSKELETON_ORGANIZATION

DEFENSE_RESPONSE_TO_OTHER_ORGANISM
ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANIC_COMPOUNDS

GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY
HEMOPOIESIS

INNATE_IMMUNE_RESPONSE
INTERFERON_MEDIATED_SIGNALING_PATHWAY

MAINTENANCE_OF_LOCATION
MAINTENANCE_OF_LOCATION_IN_CELL

MONOCARBOXYLIC_ACID_METABOLIC_PROCESS
NEGATIVE_REGULATION_OF_VIRAL_PROCESS

NUCLEOBASE_CONTAINING_SMALL_MOLECULE_METABOLIC_PROCESS
OXIDATIVE_PHOSPHORYLATION

PEPTIDE_ANTIGEN_ASSEMBLY_WITH_MHC_CLASS_II_PROTEIN_COMPLEX
PEPTIDE_ANTIGEN_ASSEMBLY_WITH_MHC_PROTEIN_COMPLEX

PEPTIDE_BIOSYNTHETIC_PROCESS
PEPTIDE_METABOLIC_PROCESS

POSITIVE_REGULATION_OF_CELL_ADHESION
POSITIVE_REGULATION_OF_CELL_DIFFERENTIATION

POSITIVE_REGULATION_OF_CELL_POPULATION_PROLIFERATION
POSITIVE_REGULATION_OF_DEFENSE_RESPONSE

POSITIVE_REGULATION_OF_T_CELL_MEDIATED_CYTOTOXICITY
PURINE_CONTAINING_COMPOUND_METABOLIC_PROCESS

REGULATION_OF_ANATOMICAL_STRUCTURE_SIZE
REGULATION_OF_DEFENSE_RESPONSE

REGULATION_OF_ENDOPEPTIDASE_ACTIVITY
REGULATION_OF_PEPTIDASE_ACTIVITY

REGULATION_OF_PROTEIN_CATABOLIC_PROCESS
RESPONSE_TO_CALCIUM_ION

RESPONSE_TO_CYTOKINE
RESPONSE_TO_EXTRACELLULAR_STIMULUS

RESPONSE_TO_INTERFERON_BETA
RESPONSE_TO_MECHANICAL_STIMULUS

RESPONSE_TO_ORGANIC_CYCLIC_COMPOUND
RESPONSE_TO_TYPE_I_INTERFERON

RESPONSE_TO_TYPE_II_INTERFERON
RESPONSE_TO_WOUNDING

RIBOSOME_ASSEMBLY
SUPRAMOLECULAR_FIBER_ORGANIZATION

WOUND_HEALING

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

Inferred Module

G
O

 B
io

lo
gi

ca
l P

ro
ce

ss
 o

nt
ol

og
y

1

2

3

4

Odds
Ratio
[log10]

Jaccard
Index

0.1
0.2
0.3
0.4
0.5

Classical Monocyte

B

A

ACTIN_FILAMENT_BASED_PROCESS
ACTIN_FILAMENT_ORGANIZATION

ACTIN_FILAMENT_POLYMERIZATION
ACTIN_POLYMERIZATION_OR_DEPOLYMERIZATION

AEROBIC_RESPIRATION
AMIDE_BIOSYNTHETIC_PROCESS

AMIDE_METABOLIC_PROCESS
ANATOMICAL_STRUCTURE_FORMATION_INVOLVED_IN_MORPHOGENESIS

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_ENDOGENOUS_ANTIGEN
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_ENDOGENOUS_PEPTIDE_ANTIGEN

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_PEPTIDE_ANTIGEN
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_EXOGENOUS_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_II

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_I
ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_ANTIGEN_VIA_MHC_CLASS_IB

ANTIGEN_PROCESSING_AND_PRESENTATION_OF_PEPTIDE_OR_POLYSACCHARIDE_ANTIGEN_VIA_MHC_CLASS_II
ANTIGEN_PROCESSING_AND_PRESENTATION_VIA_MHC_CLASS_IB

BIOLOGICAL_PROCESS_INVOLVED_IN_INTERACTION_WITH_HOST
BIOLOGICAL_PROCESS_INVOLVED_IN_INTERSPECIES_INTERACTION_BETWEEN_ORGANISMS

CELL_KILLING
CELLULAR_MACROMOLECULE_BIOSYNTHETIC_PROCESS

CELLULAR_RESPIRATION
CELLULAR_RESPONSE_TO_CALCIUM_ION

CELLULAR_RESPONSE_TO_SALT
CYTOLYSIS

CYTOPLASMIC_TRANSLATION
DEFENSE_RESPONSE_TO_OTHER_ORGANISM

ENERGY_DERIVATION_BY_OXIDATION_OF_ORGANIC_COMPOUNDS
GENERATION_OF_PRECURSOR_METABOLITES_AND_ENERGY

HOMOTYPIC_CELL_CELL_ADHESION
IMMUNE_RESPONSE

LEUKOCYTE_MEDIATED_CYTOTOXICITY
LYMPHOCYTE_ACTIVATION

MAINTENANCE_OF_LOCATION
MRNA_METABOLIC_PROCESS

NEGATIVE_REGULATION_OF_CELL_POPULATION_PROLIFERATION
NEGATIVE_REGULATION_OF_UBIQUITIN_PROTEIN_LIGASE_ACTIVITY

ORGANONITROGEN_COMPOUND_BIOSYNTHETIC_PROCESS
OXIDATIVE_PHOSPHORYLATION

PEPTIDE_ANTIGEN_ASSEMBLY_WITH_MHC_CLASS_II_PROTEIN_COMPLEX
PEPTIDE_ANTIGEN_ASSEMBLY_WITH_MHC_PROTEIN_COMPLEX

PEPTIDE_BIOSYNTHETIC_PROCESS
PEPTIDE_METABOLIC_PROCESS

PLATELET_AGGREGATION
POSITIVE_REGULATION_OF_CELL_DEATH

REGULATION_OF_ACTIN_FILAMENT_LENGTH
REGULATION_OF_CELL_DEATH

REGULATION_OF_CELL_POPULATION_PROLIFERATION
REGULATION_OF_CELLULAR_RESPONSE_TO_STRESS

REGULATION_OF_DEFENSE_RESPONSE
REGULATION_OF_IMMUNE_SYSTEM_PROCESS

REGULATION_OF_LEUKOCYTE_MIGRATION
REGULATION_OF_MONOATOMIC_CATION_TRANSMEMBRANE_TRANSPORT

REGULATION_OF_MONOATOMIC_ION_TRANSMEMBRANE_TRANSPORT
REGULATION_OF_MULTICELLULAR_ORGANISMAL_DEVELOPMENT

REGULATION_OF_PROTEIN_POLYMERIZATION
REGULATION_OF_RESPONSE_TO_BIOTIC_STIMULUS

REGULATION_OF_TRANSPORTER_ACTIVITY
RESPONSE_TO_CALCIUM_ION

RESPONSE_TO_ENDOGENOUS_STIMULUS
RESPONSE_TO_MECHANICAL_STIMULUS

RESPONSE_TO_TUMOR_NECROSIS_FACTOR
RIBOSOMAL_SMALL_SUBUNIT_ASSEMBLY

T_CELL_MEDIATED_IMMUNITY
WOUND_HEALING

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

Inferred Module

G
O

 B
io

lo
gi

ca
l P

ro
ce

ss
 o

nt
ol

og
y

Jaccard
Index

0.1
0.2
0.3

1.0
1.5
2.0
2.5
3.0

Odds
Ratio
[log10]

CD8 CM
M
T
A
P
TB
D

IN
FL
M

TB
D

TB
D

TB
D

R
P

IN
FL
M

R
P

TB
D

TB
D

R
P

IF
N

R
P

M
T
A
P
TB
D

TB
D

TB
D

C
TX
R
P

R
P

TB
D

TB
D

TB
D

TB
D

R
P
TB
D



 

 
Supplementary Figure 5: Network distinctiveness assessment using permutation test. The histogram illustrates the 
distribution of Jaccard index similarities (x-axis) obtained from the permutation test, comparing the pairs of networks that 
are sampled (n = 50,000) from a union of observed networks from classical monocytes on D0 and D1 after vaccination. 
The left panel depicts the result from female participants, while the right panel depicts male participants who had 
recovered from COVID-19 (COVR). The y-axis indicates the density of occurrences for each similarity. The vertical red 
dashed line denotes the observed similarity value. The displayed p-value at the top is calculated using a two-sided t-test 
and serves to demarcate statistically significant (p < 0.05) differences in network structures. 
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