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Abstract Deep generative models are increasingly powerful tools for the in silico design of

novel proteins. Recently, a family of generative models called diffusion models has demon-

strated the ability to generate biologically plausible proteins that are dissimilar to any actual

proteins seen in nature, enabling unprecedented capability and control in de novo protein de-

sign. However, current state-of-the-art models generate protein structures, which limits the

scope of their training data and restricts generations to a small and biased subset of protein

design space. Here, we introduce a general-purpose diffusion framework, EvoDiff, that com-

bines evolutionary-scale data with the distinct conditioning capabilities of diffusion models

for controllable protein generation in sequence space. EvoDiff generates high-fidelity, diverse,

and structurally-plausible proteins that cover natural sequence and functional space. Critically,

EvoDiff can generate proteins inaccessible to structure-based models, such as those with disor-

dered regions, while maintaining the ability to design scaffolds for functional structural motifs,

demonstrating the universality of our sequence-based formulation. We envision that EvoDiff

will expand capabilities in protein engineering beyond the structure-function paradigm toward

programmable, sequence-first design.
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Evolution has yielded a diversity of functional proteins that precisely modulate cellular pro-

cesses. Recent years have seen the emergence of deep generative models that aim to learn

from this diversity to generate proteins that are both valid and novel, with the ultimate goal

of then tailoring function to solve outstanding modern-day challenges, such as the rapid de-

velopment of targeted therapeutics and vaccines or engineered enzymes for the degradation of

industrial waste (Fig. 1A) (1, 2). Diffusion models provide a particularly powerful framework

for generative modeling of novel proteins, as they generate high-diversity samples and can be

conditioned given a wide variety of inputs or design objectives (3–6). Indeed, today’s most

biologically-plausible instances of in silico-designed proteins come from diffusion models of

protein structure (7–15).

These models – including the current state-of-the-art approach RFdiffusion (10) – fit in the

structure-based protein design paradigm of first generating a structure that fulfills desired con-

straints and then designing a sequence that will fold to that structure. However, sequence, not

structure, is the universal design space for proteins. Every protein is completely defined by its

amino-acid sequence. We discover proteins by finding their coding sequences in genomes, and

proteins are synthesized as amino-acid sequences. Sequence then determines function through

both an ensemble of structural conformations and the chemistry enabled by the amino acids

themselves. However, not every protein folds into a static structure. In these cases, structure-

based design is not viable because the function is not mediated by a static structure (16–18),

with the most extreme examples being intrinsically disordered regions (IDRs) (19). Therefore,

static structures characterized by X-ray crystallography are an incomplete distillation of the in-

formation captured in sequence space (20–23). Furthermore, structural data (ca. 200k solved

structures in PDB) is scarce and unrepresentative of the full diversity of natural sequences (ca.

billions of unique natural protein sequences; Fig. 1A), inherently limiting the capacity of any

structure-based generative model to learn the full diversity of protein functional space.
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We combine evolutionary-scale datasets with diffusion models to develop a powerful new

generative modeling framework, which we term EvoDiff, for controllable protein design from

sequence data alone (Fig. 1). Given the natural framing of proteins as sequences of discrete

tokens over an amino acid language, we use a discrete diffusion framework in which a for-

ward process iteratively corrupts a protein sequence by changing its amino acid identities, and a

learned reverse process, parameterized by a neural network, predicts the changes made at each

iteration (Fig. 1B). The reverse process can then be used to generate new protein sequences

starting from random noise (Fig. 1C). Importantly, EvoDiff’s discrete diffusion formulation

is mathematically distinct from continuous diffusion formulations previously used for protein

structure design (7–15). Beyond evolutionary-scale datasets of single protein sequences, mul-

tiple sequence alignments (MSAs) inherently capture evolutionary relationships by revealing

patterns of conservation and variation in the amino acid sequences of sets of related proteins.

We thus additionally build discrete diffusion models trained on MSAs to leverage this additional

layer of evolutionary information to generate new single sequences (Fig. 1C-D).

We evaluate our sequence and MSA models – EvoDiff-Seq and EvoDiff-MSA, respectively

– across a range of generation tasks to demonstrate their power for controllable protein design

(Fig. 1D). We first show that EvoDiff-Seq unconditionally generates high-quality, diverse pro-

teins that capture the natural distribution of protein sequence, structural, and functional space.

Using EvoDiff-MSA, we achieve evolution-guided design of novel sequences conditioned on

an alignment of evolutionarily-related, but distinct, proteins. Finally, by exploiting the condi-

tioning capabilities of our diffusion-based modeling framework and its grounding in a universal

design space, we demonstrate that EvoDiff can reliably generate proteins with IDRs, directly

overcoming a key limitation of structure-based generative models, and generate scaffolds for

functional structural motifs without any explicit structural information.
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Figure 1: Protein sequence generation with evolutionary diffusion. (A) (Left) Evolution has
sampled a tiny fraction of possible protein sequences. Experimental structures have been deter-
mined for even fewer proteins. (Right) EvoDiff is a generative discrete diffusion model trained
on natural protein sequences. Sampling from EvoDiff yields new protein sequences that may
perform desired functions. (B) Discrete diffusion models consist of controlled corruption and
learned denoising processes. In the masked corruption process, input tokens are masked in an
order-agnostic fashion (bottom, left). In the discrete corruption process, inputs are corrupted via
a Markov process controlled by a transition matrix capturing amino acid mutation frequencies
(bottom, right). (C) EvoDiff enables unconditional generation of protein sequences or MSAs.
Starting from masked or uniformly sampled inputs xT , EvoDiff generates new sequences or
MSAs by reversing the corruption process, iteratively denoising xt into realistic sequences or
MSAs x0. (D) Controllable protein design with EvoDiff, via conditioning on evolutionary in-
formation encoded in MSAs (left); inpainting functional domains from masked portions of a se-
quence (middle); or scaffolding structural motifs without explicit structural information (right).

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


Discrete diffusion models of protein sequence EvoDiff is the first generative diffusion model

for protein design trained on evolutionary-scale protein sequence data. We investigated two

types of forward processes for diffusion over discrete data modalities (24, 25) to determine

which would be most effective (Fig. 1B). In order-agnostic autoregressive diffusion (EvoDiff-

OADM, see Methods) (24), one amino acid is converted to a special mask token at each step

in the forward process (Fig. 1B). After T=L steps, where L is the length of the sequence, the

entire sequence is masked. We additionally designed discrete denoising diffusion probabilistic

models (EvoDiff-D3PM, see Methods) (25) for protein sequences. In EvoDiff-D3PM, the for-

ward process corrupts sequences by sampling mutations according to a transition matrix, such

that after T steps the sequence is indistinguishable from a uniform sample over the amino acids

(Fig. 1B). In the reverse process for both, a neural network model is trained to undo the pre-

vious corruption. The trained model can then generate new sequences starting from sequences

of masked tokens or of uniformly-sampled amino acids for EvoDiff-OADM or EvoDiff-D3PM,

respectively (Fig. 1C).

To facilitate direct and quantitative model comparisons, we trained all EvoDiff sequence

models on 42M sequences from UniRef50 (26) using a dilated convolutional neural network

architecture introduced in the CARP protein masked language model (27). We trained 38M-

parameter and 640M-parameter versions for each forward corruption scheme to test the effect

of model size on model performance. As a first evaluation of our EvoDiff sequence models, we

calculated each model’s test-set perplexity, which reflects its ability to capture the distribution of

natural sequences and generalize to unseen sequences (see Methods). We observe that EvoDiff-

OADM learns to reconstruct the test set more accurately than two tested EvoDiff-D3PM vari-

ants employing uniform and BLOSUM62-based transition matrices (Table S1; Fig. S1). Fur-

thermore, EvoDiff-OADM is the only model variant where performance scales with increased

model size (Table S1; Fig. S1).
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To explicitly leverage evolutionary information, we designed and trained EvoDiff MSA

models using the MSA Transformer (28) architecture on the OpenFold dataset (29). To do so,

we subsampled MSAs to a length of 512 residues per sequence and a depth of 64 sequences, ei-

ther by randomly sampling the sequences (“Random”) or by greedily maximizing for sequence

diversity (“Max”). Within each subsampling strategy, we then trained EvoDiff MSA models

with the OADM and D3PM corruption schemes. OADM corruption results in the lowest vali-

dation set perplexities, indicating that OADM models are best able to generalize to new MSAs

(Table S2; Fig. S2). To select a subsampling method, we compared the ability of each model

to reconstruct validation set MSAs, finding that maximizing for sequence diversity yields im-

proved performance no matter how the validation MSAs are subsampled (Table S2). We thus

selected the OADM-Max model for downstream analysis, hereafter referring to it as EvoDiff-

MSA.

Structural plausibility of generated sequences We next investigated whether EvoDiff could

generate new protein sequences that were individually valid and structurally plausible. To assess

this, we developed a workflow that evaluates the foldability and self-consistency of sequences

generated by EvoDiff (Fig. 2A). We generated 1000 sequences from each EvoDiff sequence

model with lengths drawn from the empirical distribution of lengths in the training set. We

compared EvoDiff’s generations to sequences generated from a left-to-right autoregressive lan-

guage model (LRAR) with the same architecture and training set as EvoDiff and to sequences

generated from protein masked language models such as ESM-2 (30) (Figs. 2B-C, S3, S4;

Table S3).

We assessed the foldability of individual sequences by predicting their corresponding struc-

tures using OmegaFold (31) and computing the average predicted local distance difference test

(pLDDT) across the whole structure (Fig. 2B). pLDDT reflects OmegaFold’s confidence in its
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Figure 2: EvoDiff generates realistic and structurally-plausible protein sequences. (A)

Workflow for evaluating the foldability and self-consistency of sequences generated by EvoDiff
sequence models. (B-C) Distributions of foldability, measured by sequence pLDDT of pre-
dicted structures (B), and self-consistency, measured by scPerplexity (C), for sequences from
the test set, EvoDiff models, and baselines (n=1000 sequences per model; box plots show me-
dian and interquartile range). (D) Sequence pLDDT versus scPerplexity for sequences from the
test set (grey, n=1000) and the 640M-parameter OADM model EvoDiff-Seq (blue, n=1000).
(E) Predicted structures and metrics for representative structurally plausible generations from
EvoDiff-Seq, the 640M-parameter OADM model.
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structure prediction for each residue. In addition to the average pLDDT across a whole protein,

we observe that pLDDT scores can vary significantly across a protein sequence (Fig. S5). It is

important to note that while pLDDT scores above 70 are often considered to indicate high pre-

diction confidence, low pLDDT scores can be consistent with intrinsically disordered regions

(IDRs) of proteins (32), which are found in many natural proteins. As an additional metric of

structural plausibility, we computed a self-consistency perplexity (scPerplexity) by redesigning

each predicted structure with the inverse folding algorithm ESM-IF (33) and computing the

perplexity against the original generated sequence (Fig. 2A, C; Table S3). Given that ESM-IF

and EvoDiff were both trained on UniRef50 data, it is possible that sequences from EvoDiff’s

validation set overlap with sequences in the ESM-IF train set; thus we performed the same self-

consistency evaluations using ProteinMPNN (34), which is not trained on UniRef50, for inverse

folding (Table S3).

While no generative model approaches the test set values for foldability and self-consistency,

EvoDiff-OADM outperforms EvoDiff-D3PM and improves when increasing the model size

(Fig. 2B-D; Table S3). We therefore selected the 640M-parameter EvoDiff-OADM model for

downstream analysis and hereafter refer to it as EvoDiff-Seq. While a left-to-right autoregres-

sive (LRAR) protein language model generates slightly more structurally-plausible sequences

(Table S3), EvoDiff-Seq offers the advantage of direct, flexible conditional generation due to

its order-agnostic decoding. Unconditional generation from masked language models produces

less structurally-plausible sequences because of the mismatch between the training and gener-

ation tasks (Table S3). Analysis of representative examples of structurally plausible sequences

sampled from EvoDiff-Seq across 4 different sequence lengths illustrates their structural plau-

sibility and novelty from sequences in the training set, demonstrating that EvoDiff generates

protein sequences that are individually valid (Fig. 2E).
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Biological properties of generated sequence distributions Having shown that EvoDiff’s

generations are individually foldable and self-consistent, we next evaluated how well the dis-

tribution of designed protein sequences covered natural protein space. Ideally, generated se-

quences should capture the natural distribution of sequence, structural, and functional properties

while still being diverse from each other and from natural sequences.

Previous work has shown that even without explicit supervision, protein language model

embeddings contain information about both sequence and function as captured in GO annota-

tions (35,36). To evaluate coverage over the distribution of sequence and functional properties,

we embedded each generated sequence using ProtT5 (37), a protein language model explicitly

benchmarked for imputing GO annotations (35), and calculated the embedding space Fréchet

distance between a set of generated sequences and the test set, where lower distance reflects

better coverage. We refer to this metric as the Fréchet ProtT5 distance (FPD) and visualize

these embeddings and the corresponding FPDs for sequences generated by EvoDiff-Seq and

baseline models (Figs. 3A, S6, S7; Table S1). For RFdiffusion, we unconditionally generated

1000 structures with the same lengths as for EvoDiff-Seq and then used ESM-IF (33) to design

their sequences. Both qualitatively and quantitatively, EvoDiff-Seq generates proteins that bet-

ter recapitulate natural sequence and functional diversity than sampling from a state-of-the-art

protein masked language model (ESM-2) or predicting sequences from structures generated by

a state-of-the-art structure diffusion model (RFdiffusion) (Fig. 3A).

To evaluate the distribution of structural properties in generated sequences, we computed

3-state secondary structures (38) for each residue in generated and natural sequences and quan-

titatively compared the resulting distributions of structural properties to the distribution for the

test set (Figs. 3B, S8). EvoDiff-Seq generates proportions of strands and disordered regions that

are much more similar to those in natural sequences, while ESM-2 and RFdiffusion both gener-

ate proteins enriched in helices (Fig. 3B). To ensure our models were not memorizing training

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


data, we calculated the Hamming distance between each generated sequence and all training

sequences of the same length and reported the minimum Hamming distance, representing the

closest match of any generated sequence to any sequence in the train set (Table S1). On average,

a sequence generated from EvoDiff-Seq has a Hamming distance of 0.83 from the most sim-

ilar training distance of the same length. Together, these results demonstrate, via comparison

to ESM-2 and RFdiffusion, that EvoDiff’s diffusion objective and evolutionary-scale training

data are both necessary to generate novel sequences that cover protein sequence, functional, and

structural space.

Conditional sequence generation for controllable design EvoDiff’s OADM diffusion frame-

work induces a natural method for conditional sequence generation by fixing some subse-

quences and inpainting the remainder. Because the model is trained to generate proteins with

an arbitrary decoding order, this is easily accomplished by simply masking and decoding the

desired portions. We applied EvoDiff’s power for controllable protein design across three sce-

narios: conditioning on evolutionary information encoded in MSAs, inpainting functional do-

mains, and scaffolding functional structural motifs (Fig. 1D).

Evolution-guided protein generation with EvoDiff-MSA First, we tested the ability of

EvoDiff-MSA to generate query sequences conditioned on the remainder of an MSA, thus gen-

erating new members of a protein family without needing to train family-specific generative

models. We masked the query sequences from 250 randomly-chosen MSAs from the validation

set and newly generated these sequences using EvoDiff-MSA. We then evaluated the quality of

the resulting conditionally-generated query sequences via our foldability and self-consistency

pipeline (Fig. 4A). We find that EvoDiff-MSA generates more foldable and self-consistent se-

quences than sampling from ESM-MSA (28) or using Potts models (39) trained on individual

MSAs (Figs. 4B-C, S9; Table S4). To evaluate sample diversity, we computed the aligned
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residue-wise sequence similarity between the generated query sequence and the most similar

sequence in the original MSA. In contrast to sampling from a Potts model, generating from

EvoDiff-MSA yields sequences that exhibit strikingly low similarity to those in the original

MSA (Fig. 4D; Table S4) while still retaining structural integrity relative to the original query

sequences (Fig. 4E-F; Table S4). To showcase these properties, we visualize OmegaFold-

predicted structures and evaluation metrics for a sample of high pLDDT, low scPerplexity
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Figure 3: Generated protein sequences capture natural distributions of protein functional

and structural features. (A) UMAP of ProtT5 embeddings, annotated with FPD, of natural
sequences from the test set (grey, n=1000) and of generated sequences from EvoDiff-Seq (blue,
n=1000) and ESM-2 (red, n=1000), and inferred sequences inverse-folded from structures from
RFdiffusion (orange, n=1000). (B) Multivariate distributions of helix and strand structural
features in generated sequences, based on DSSP 3-state predictions (n=1000 samples from each
model or the validation set) and annotated with the Kullback-Leibler (KL) divergence relative
to the test set.
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conditionally-generated query sequences that exhibit low sequence similarity to anything in the

conditioning MSA (Fig. 4G). These results indicate that EvoDiff-MSA can conditionally gener-

ate novel, structurally plausible members of a protein family given guidance from evolutionary

information and without further finetuning.

Generating intrinsically disordered regions Because it generates directly in sequence space,

we hypothesized that EvoDiff could natively generate intrinsically disordered regions (IDRs).

IDRs are regions within a protein that lack secondary or tertiary structure; up to 30% of eukary-

otic proteins contain at least one IDR, and IDRs make up over 40% of the residues in eukaryotic

proteomes (19). IDRs carry out important and diverse functional roles in the cell directly facil-

itated by their lack of structure, such as protein-protein interactions (40, 41) and signaling (42).

Altered abundance and mutations in IDRs have been implicated in human disease, including

neurodegeneration and cancer (43–45). Despite their prevalence and critical roles in function

and disease, IDRs do not fit neatly in the structure-function paradigm and remain outside the

capabilities of structure-based protein design methods.

Having observed that unconditional generation using EvoDiff-Seq produced a similar frac-

tion of residues predicted to lack secondary structure as that in natural sequences (Fig. 3B), we

used inpainting with EvoDiff-Seq and EvoDiff-MSA to intentionally generate disordered re-

gions via conditioning on their surrounding structured regions (Fig. 5A). To accomplish this, we

leveraged a previously curated dataset of computationally predicted IDRs covering the human

proteome (46). We selected this dataset because it also curates orthologs for these proteins, en-

abling construction of MSAs (46). After using EvoDiff to generate putative IDRs via inpainting,

we then predicted disorder scores for each residue in the generated and natural sequences using

DR-BERT (47) (Figs. 5A, S10). Over 100 generations, we observe that IDR regions inpainted

by EvoDiff-Seq and EvoDiff-MSA result in distributions of disorder scores similar to those for
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Figure 4: EvoDiff-MSA enables evolution-guided sequence generation. (A) A new sequence
is generated from EvoDiff-MSA via diffusion over only the query component. Generations
are evaluated for diversity and self-consistency and for the quality and consistency of their
predicted structures. (B-E) Distributions of pLDDT (B), scPerplexity (C), sequence similarity
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the validation set (grey, n=250) and EvoDiff-MSA (blue, n=250). (G) Predicted structures and
metrics for structurally plausible generations from EvoDiff-MSA.
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natural sequences, across both the IDR and the surrounding structured regions (Figs. 5B, S11).

Generations from EvoDiff-MSA exhibit strong correlation in predicted disorder scores to those

of true IDRs (Fig. S11). Although putative IDRs generated by EvoDiff-Seq are less similar to

their original IDR than those from EvoDiff-MSA (Fig. 5C), both models generated disordered

regions that preserve disorder scores over the entire protein sequence and still exhibit low se-

quence similarity to the original IDR (Fig. 5D-E). These results demonstrate that EvoDiff can

robustly generate IDRs conditioned on sequence context from surrounding structured regions.

Scaffolding functional motifs with sequence information alone Thus far, the primary ap-

plication of deep generative models of protein structure in protein engineering is their ability

to scaffold binding and catalytic motifs: given the 3D coordinates of a functional motif, these

models can often generate a structural scaffold that holds the motif in precisely the 3D geometry

needed for function (10,14,48). Given that the fixed functional motif includes the residue iden-

tities for the motif, we investigated whether a structural model is actually necessary for motif

scaffolding.

We used conditional generation with EvoDiff to generate scaffolds for a diverse set of

17 motif-scaffolding problems (10) by fixing the functional motif, supplying only the motif’s

amino-acid sequence as conditioning information, and then decoding the remainder of the se-

quence (Fig. 1D). The problems include simple “inpainting”, viral epitopes, receptor traps,

small molecule binding sites, protein-binding interfaces, and enzyme active sites. Many of

the motifs are not contiguous in sequence space. We compared the performance of EvoDiff,

which uses only sequence information, to the state-of-the-art structure model RFdiffusion, and

facilitated direct comparisons by using OmegaFold to predict structures for our generated se-

quences as well as for sequences inverse-folded from RFdiffusion structures. Notably, we use

the same EvoDiff models for both unconditional and conditional generation, while the version
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of RFdiffusion used for scaffolding is finetuned from that used for unconditional generation.

We evaluated the ability of each of EvoDiff-Seq, EvoDiff-MSA, and RFdiffusion to gener-

ate successful scaffolds (Fig. 6A-B), where we define a scaffold to be successful if the predicted

motif coordinates have less than 1Å RMSD from the desired motif coordinates. Despite oper-

ating entirely in sequence space, EvoDiff-Seq and EvoDiff-MSA generate successful scaffolds

for 8 and 13 of the 17 problems, respectively (Table S5, S6). EvoDiff-MSA has a higher

success rate than EvoDiff-Seq for 10 problems and a higher success rate than RFdiffusion for

6 problems. EvoDiff-Seq has a higher success rate than RFdiffusion for 2 problems and a

higher success rate than EvoDiff-MSA for 3 problems. There are two scaffolding problems

(1YCR, 3IXT) where EvoDiff-MSA is outperformed by both EvoDiff-Seq and RFdiffusion

(Table S5, S6). These are both examples where, for scaffolding, an MSA containing fewer than

64 protein sequences was input to EvoDiff-MSA, which did not see MSAs with fewer than 64

sequences during training.

Interestingly, there is almost no correlation between the problem-specific success rates of

EvoDiff and RFdiffusion, and there are very few problems for which both methods have high

success rates, showing that EvoDiff may have orthogonal strengths to RFdiffusion (Fig. 6A-

B). Due to its conditioning on evolutionary information, EvoDiff-MSA generates scaffolds that

are more structurally similar to the native scaffold than EvoDiff-Seq (Fig. 6C). To ensure that

EvoDiff is not finding trivial solutions, we show that it outperforms both random generation

and the single-order LRAR model (which decodes unconditionally up to and after a motif)

(Table S5). ESM-MSA performs similarly to EvoDiff-MSA on this task, as the motif scaf-

folding task is well-aligned with its training task, and it is trained on approximately 200x more

MSAs than EvoDiff-MSA (Table S6). We illustrate examples of successful scaffolds sampled

from EvoDiff and note both the qualitative and quantitative quality of generated proteins and

predicted structures across a range of functional motifs (Fig. 6D-G). These results demonstrate

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


that EvoDiff can design functional scaffolds around structural motifs via conditional generation

in sequence space alone.

Discussion

We present EvoDiff, a diffusion modeling framework capable of generating high-fidelity, di-

verse, and novel proteins with the option of conditioning according to sequence constraints.

Because it operates in the universal protein design space, EvoDiff can unconditionally sample

diverse structurally-plausible proteins, generate intrinsically disordered regions, and scaffold

structural motifs using only sequence information, challenging a paradigm in structure-based

protein design.

EvoDiff is the first deep learning framework to demonstrate the power of diffusion genera-

tive modeling over evolutionary-scale protein sequence space. Unlike previous attempts to train

diffusion models on protein structures (7–15) and/or sequences (49–53), EvoDiff is trained on

a large, diverse sample of all natural sequences, rather than on smaller protein structure datasets

or sequence data from a specific protein family. Previous protein generative models trained on

global sequence space have been either left-to-right autoregressive (LRAR) models (54–57) or

masked language models (MLMs) (27, 28, 30, 37, 58). EvoDiff’s OADM training task general-

izes the LRAR and MLM training tasks. Specifically, the OADM setup generalizes LRAR by

considering all possible decoding orders, while the MLM training task is equivalent to training

on one step of the OADM diffusion process.

This generalized mathematical formulation yields empirical benefits, as EvoDiff-Seq pro-

duces sequences that better cover protein functional and structural space than sampling from

state-of-the-art protein MLMs (Fig. 3). While an LRAR model learned to fit the evolution-

ary sequence distribution better (Table S1), the fixed decoding order of traditional left-to-right

autoregression cannot be used to perform conditional generation. EvoDiff directly addresses
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Figure 6: EvoDiff scaffolds functional motifs without explicit structural information. (A)

Number and identity of successful scaffolds from n=100 trials for EvoDiff-Seq (x-axis) ver-
sus EvoDiff-MSA (y-axis) across scaffolding problems in which at least one method succeeds.
(B) Performance comparison of sequence-based scaffolding via EvoDiff-MSA (y-axis) versus
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this barrier by enabling different forms of conditioning, including evolution-guided generation

(Fig. 4) as well as inpainting and scaffolding (Figs. 5-6). We report the first demonstrations of

these programmable generation capabilities from deep generative models of protein sequence

alone.

Future work may expand these capabilities to enable conditioning via guidance, in which

generated sequences can be iteratively refined to fit desired properties. While we observe that

OADM generally outperforms D3PM in unconditional generation, likely because the OADM

denoising task is easier to learn than that of D3PM, conditioning via guidance intuitively fits

into the EvoDiff-D3PM framework because the identity of each residue in a sequence can be

edited at every decoding step. OADM and existing conditional LRAR models, such as Pro-

Gen (54), both fix the identity of each amino acid once it is decoded, limiting the effectiveness

of guidance. Guidance-based conditioning of EvoDiff-D3PM should enable the generation of

new protein sequences specifying functional objectives, such as those specified by sequence-

function classifiers.

Because EvoDiff only requires sequence data, it can readily be extended for diverse down-

stream applications, including those not reachable from a traditional structure-based paradigm.

As a first example, we have demonstrated EvoDiff’s ability to generate IDRs – overcoming a

prototypical failure mode of structure-based predictive and generative models – via inpainting

without fine-tuning. Fine-tuning EvoDiff on application-specific datasets, such as those from

display libraries or large-scale screens, may unlock new biological, therapeutic, or scientific

design opportunities that would be otherwise inaccessible due to the cost of obtaining struc-

tures for large sequence datasets. Experimental data for structures is much sparser compared

to sequences, and while structures for many sequences can be predicted using AlphaFold and

similar algorithms, these methods do not work well on point mutants and can be overconfident

on spurious proteins (59, 60).
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While we demonstrated some coarse-grained strategies for conditioning generation through

scaffolding and inpainting, to achieve even more fine-grained control over protein function,

with future development EvoDiff may be conditioned on text, chemical information, or other

modalities. For example, text-based conditioning (61) could be used to ensure that generated

proteins are soluble, readily expressed, and non-immunogenic. Future use cases for this vision

of controllable protein sequence design include programmable modulation of nucleic acids via

conditionally-designed transcription factors or endonucleases, improved therapeutic windows

via biologics optimized for in vivo delivery and trafficking, as well as newly-enabled catalysis

via zero-shot tuning of enzyme substrate specificity.

In summary, we present an open-source suite of discrete diffusion models that provide a

foundation for sequence-based protein engineering and design. EvoDiff models can be directly

deployed for unconditional, evolution-guided, and conditional generation of protein sequences

and may be extended for guided design based on structure or function. We envision that EvoDiff

will enable new abilities in controllable protein design by reading and writing function directly

in the language of proteins.
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Methods

Diffusion models Diffusion models are a class of generative models that learn to generate

data from noise. They consist of a forward corruption process and a learned reverse denoising

process. The forward process is a Markov chain of diffusion steps q(xt|xt�1) that corrupts an

input (x0) over T timesteps such that xT is indistinguishable from random noise. The learned

reverse denoising process p✓(xt�1|xt) is parameterized by a model such as a neural network

and generates new data from noise. Discrete diffusion models have previously been developed

over binary random variables (3), developed over categorical random variables with uniform

transition matrices (62, 63), linked to autoregressive models (24), and optimized for use with

transition matrices (25).

This work presents models from two different discrete diffusion frameworks – order-agnostic

autoregressive diffusion models (OADMs) and discrete denoising diffusion probabilistic mod-

els (D3PMs) – on protein sequences and multiple sequence alignments (MSAs).

Discrete Denoising Diffusion Probabilistic Models (D3PMs) Discrete denoising diffusion

probabilistic models (D3PMs) operate by defining a transition matrix Q such that, over T

timesteps, discrete inputs (i.e. protein amino-acid sequences for EvoDiff) are iteratively cor-

rupted via a controlled Markov process until they constitute samples from a uniform stationary

distribution at time T . This section describes the D3PM process and loss for a single categorical

variable x in one-hot format. The forward corruption process is described by:

q(xt|xt�1) = Cat(xt; p = xt�1Qt). (1)

This allows for efficient training via efficient computation of q(xt|x0) and q(xt�1|xt). The

D3PM approach can emulate a masked modeling process by choosing a transition matrix with

an absorbing state (e.g., [MASK]; (25)). However, in this work, the D3PM formulation is only
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used for discrete corruption because masking corruption via OADM generally outperforms

absorbing-state D3PM (24). EvoDiff includes two discrete corruption schemes: one based on a

uniform transition matrix (D3PM-Uniform) and one based on a biologically-informed transition

matrix (D3PM-BLOSUM).

EvoDiff-D3PM models are trained via a hybrid loss function

L� = Lvb + �Lce. (2)

This loss combines a variational lower bound Lvb on the negative log likelihood

Lvb = Eq(x0)[DKL [q(xT |x0)kp(xT )]| {z }
LT

+
TX

t=2

Eq(xt|x0) [DKL [q(xt�1|xt, x0)kp✓(xt�1|xt)]]| {z }
Lt�1

+

�Eq(x1|x0) [log(p✓(x0|x1)]| {z }
L0

]. (3)

and a cross-entropy loss Lce on p✓(x0|xt). Investigation of the impact of � on model perfor-

mance revealed minimal improvement to sample generation quality when � > 0, consistent

with the findings of the original D3PM paper (25). Thus �=0 and T=500 were used in all

D3PM experiments.

Lvb has three terms. LT measures whether the corruption reaches the stationary distribution

p(xT ) at time T and does not depend on ✓. Next consider the remaining two terms Lt�1 and

L0, which depend on ✓. Following the original D3PM paper, p̃✓(x̃0|xt) is directly predicted by

the neural network. To compute the loss at timesteps 0 < t < T , the terms q(xt�1|xt, x0) and

p✓(xt�1|xt) must be computed from xt, x0, and p̃✓(x̃0|xt) using Markov properties

Defining Qt = Q1Q2 · · ·Qt:

q(xt�1|xt, x0) = Cat

✓
xt�1; p =

xtQ>
t � x0Qt�1

x0Qtx
>
t

◆
(4)

p✓(xt�1|xt) _
X

x̃0

q(xt�1, xt|x̃0)p̃✓(x̃0|xt) (5)
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where � represents an element-wise product. For Equation 5 rules of conditional probability

and Markov properties are used to define q(xt�1, xt|x̃0) in terms of xt and x̃0:

q(xt�1, xt|x̃0) = Cat
�
xt�1; p = xtQ

>
t � x̃0Qt�1

�
(6)

Putting everything together, at each step of training a corruption timestep is sampled accord-

ing to t ⇠ U(1, . . . , T � 1). xt is then sampled via q(xt|x0) ⇠ Cat
�
xt; p = x0Qt

�
for every

residue in the input protein, and the neural network predicts p̃✓(x̃0|xt). Note that, while the

corruption and loss are computed independently over each residue, the neural network predicts

p̃ in the context of the entire sequence. If t = 1, only the loss L0 is used, reflecting a standard

negative log likelihood. Otherwise, Equations 4 and 5 are used to compute the loss Lt�1.

Sampling from a trained model begins with the noised xT , where each residue is randomly

sampled from a uniform distribution over amino acids. xt�1 is then iteratively sampled via

p✓(xt�1|xt) as described in Equation 5. For all models, generated sequences are sampled to

match the distribution of sequence lengths in the training set, going up to 2048 residues as the

maximum length.

EvoDiff-D3PM-Uniform Many strategies exists to schedule corruption in D3PMs. EvoDiff-

D3PM-Uniform employs the simplest case – a uniform corruption scheme. Specifically, EvoDiff-

D3PM-Uniform models implement a doubly stochastic, uniform transition matrix Qt with a

corruption schedule (T � t+1)�1 from Sohl-Dickstein et al. (3), so that information is linearly

corrupted between xt and x0 for all t < T .

EvoDiff-D3PM-BLOSUM EvoDiff-D3PM-BLOSUM implements a transition matrix derived

from BLOSUM62 matrices of amino acid substitution frequencies (64). BLOSUM matrices are

derived from observed alignments across highly conserved regions of protein families and thus
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provide the relative frequencies of amino acids and their substitution probabilities.

Rows that represent uniform transition probabilities for non-standard amino acid codes (J,

O, U) and for < GAP > tokens in the MSA input case are included in addition to standard amino

acids. BLOSUM substitution frequencies are converted to a matrix of transition probabilities

by performing a Softmax over the frequencies and then normalizing over rows and columns via

the Sinkhorn-Knopp algorithm to obtain a doubly stochastic matrix. In this scheme, the gradual

corruption of a single sequence to random noise is simulated in a way that prioritizes conserved

evolutionary relationships of amino acid mutations. A �-schedule was implemented to taper

the number of mutations over time for timesteps up to T=500, specifically via an empirical

schedule that corrupts half the sequence content by half of T (t=250) (Fig. S12). This schedule

was chosen to approximate the linear rate of mutations observed over 500 timesteps in the

uniform transition matrix case, shown in Fig. S12b.

Order-Agnostic Autoregressive Diffusion Models (OADMs) Order-agnostic autoregressive

diffusion models (OADMs) generalize absorbing-state D3PM and left-to-right autoregressive

models (LRARs) (24). This section describes the OADM process and loss for a sequence x of

L categorical variables. In the case of EvoDiff, L is the sequence length.

LRARs factorize a high-dimensional joint distribution p(x) into the product of L univariate

distributions using the probability chain rule:

log p(x) =
LX

t=1

log p(xt|x<t) (7)

where x<t = x1, x2, . . . xt�1. LRARs are typically parametrized using a triangular dependency

structure, such as causal masking in a transformer or CNN, in order to allow parallelized com-

putation of all the conditional distributions in the likelihood during training. LRARs learn to

generate sequences in a pre-specified left-to-right decoding order, which may be non-obvious

for modalities such as proteins and does not allow conditioning on arbitrary fixed subsequences.
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LRARs can be expanded into a diffusion framework via two subtle changes. Following the

exposition in Hoogeboom et al., (24), the first change is to allow order-agnostic decoding. In

an order-agnostic autoregressive model, a decoding order � is first sampled uniformly from all

possible decoding orders SL. At time step t in the forward process, x�(L�t) is masked. The

log-likelihood for an order-agnostic autoregressive model is derived using Jensen’s inequality:

log p(x) = logE�⇠U(SL)
p(x|�) � E�⇠U(SL)

log p(x|�)

� E�⇠U(SL)

LX

t=1

log p(x�(t)|x�(<t))

The next change involves an objective that optimizes over arbitrary decoding orders one

timestep at a time in the style of modern diffusion models, without requiring a neural network

that enforces a triangular or causal dependency structure. This is accomplished by replacing the

summation over t by an expectation that is appropriately re-weighted.

log p(x) � E�⇠U(SL)

LX

p=1

log p(x�(t)|x�(<t))

= E�⇠U(SL)
L · Et⇠U(1,...,L) log p(x�(t)|x�(<t))

= L · Et⇠U(1,...,L)E�⇠U(SL)

1

L� t+ 1

X

k2�(�t)

log p(xk|x�(<t))

The overall expected log likelihood log p(x) can be thought of according to a series of

likelihoods, each captured in the loss at step t, Lt:

Lt =
1

L� t+ 1
E�⇠U(SL)

X

k2�(�t)

log p(xk|x�(<t)). (8)

Thus, the overall expected log likelihood is lower bounded as:

log p(x) � Et⇠U(1,...,L) [L · Lt] (9)

A neural network can be efficiently trained to learn the reverse process p✓(x�(t)|x�(<t)) by

randomly masking a set of t tokens at each iteration and minimizing the reweighted loss, allow-

ing the model to learn from predictions of all masked positions at each timestep. By learning
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one model over all possible decoding orders, OADM allows for conditioning by fixing arbi-

trary subsequences at generation time. Sequences were generated unconditionally from OADM

models by beginning with an all-mask sequence as input, randomly sampling a decoding order,

and sampling each token from the predicted probability distribution.

Left-to-right autoregressive and masked language models are diffusion models The con-

nection between autoregressive models and diffusion models has been described previously (24,

25). Left-to-right autoregressive (LRAR) diffusion models implement a masked modeling pro-

cess that is akin to a process which iteratively and deterministically masks all tokens to the

right of the sampled token xt, where the current diffusion timestep t is equivalent to the number

of tokens masked over the entire sequence length, with all tokens masked at the final timestep

T = L.

Likewise, masked language models (MLMs) are equivalent to only learning one step t of

OADM:

LMLM =
1

L� t+ 1
E�⇠U(SL)

X

k2�(�t)

log p(xk|x�(<t)). (10)

Thus, the OADM setup generalizes LRAR models by considering all possible decoding

orders rather than left-to-right decoding, while the MLM learning task is equivalent to only

training on one step of the OADM diffusion process.

Datasets Sequence-only EvoDiff models were trained on UniRef50 (26) which contains ap-

proximately 45 million protein sequences. The UniRef50 release and train/validation/testing

splits from CARP (27) were used to facilitate comparisons between models. Sequences longer

than 1024 residues were randomly subsampled to 1024 residues. Multiple sequence align-

ment (MSA) EvoDiff models were trained on OpenFold (29), which contains 401,381 MSAs

for 140,000 unique Protein Data Bank (PDB) chains and 16,000,000 UniClust30 clusters. To

36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


construct the MSAs used to train EvoDiff, lowercase characters were removed to restore the

alignments, as the queries do not contain gap characters. Next, MSAs that contained sequences

with more than 512 consecutive < GAP > tokens as well as MSAs that contained fewer than 64

sequences per alignment were filtered out. This filtering resulted in 382,296 total MSAs, which

were then randomly split into 372,296 training and 10,000 validation MSAs.

MSA subsampling for training EvoDiff-MSA models To optimize for memory constraints

during training, MSAs were subsampled to 64 sequences and a maximum sequence length of

512. MSAs shorter than 512 sequences were padded to a sequence length of 512, but MSAs

containing fewer than 64 sequences were excluded from training. For MSAs with more than

64 sequences, two subsampling schemes were implemented: random (“Rand.”) and MaxHam-

ming (“Max”). The random subsampling scheme (“Rand.”) randomly samples 64 sequences

from the MSA, making sure that the reference/query sequence (i.e. the first sequence) is al-

ways included. The “Max” subsampling scheme greedily selects for sequence diversity in the

64 sequence subset by iteratively selecting the sequence that maximizes the minimum Ham-

ming distance to the sequences already selected. The Hamming distance measures the distance

between two sequences, denoted by the number of amino acids that differ between aligned se-

quences. Subsampling to maximize the Hamming distance enabled input of an MSA rich with

evolutionarily diverse sequences to EvoDiff-MSA models.

Modeling, architecture, and training details For sequences, the EvoDiff denoising model

adopts a ByteNet-style CNN architecture (65) previously shown to perform similarly to trans-

formers for protein sequence masked language modeling tasks (27). All models are imple-

mented in PyTorch (66). In EvoDiff-OADM models, the diffusion timestep is implicitly en-

coded in the number of masked positions. EvoDiff-D3PM models use a 1D sinusoidal encod-

ing (67) to denote the timestep for each input. All sequence models were trained with the Adam
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optimizer (68), a learning rate of 1e-4 with linear warmup over 16,000 steps, and dynamic

batching to optimize GPU usage. EvoDiff’s small sequence models implement a ByteNet-style

architecture with ca. 38M parameters. Large models were scaled to a ByteNet architecture of

ca. 640M parameters by increasing the model dimension d from 1020 to 1280, increasing the

encoder hidden dimension from d/2 to d, and increasing the number of layers from 16 to 56.

38M parameter models were trained on 8 32GB NVIDIA V100 GPUs; 640M parameter

models were trained on 32 (2x16) 32GB NVIDIA V100 GPUs. The maximum number of

tokens per GPU in each batch was reduced from 40,000 to 6,000 to accommodate training the

larger 640M parameter models. 38M parameter models were trained for approximately 2 weeks

and saw ca. 3e14 tokens over 700,000 training steps. 640M parameter models were trained for

as long as computationally feasible to achieve the best results possible; models saw between ca.

1e10 and 1e17 tokens over ca. 400,000-2,000,000 training steps. The D3PM-BLOSUM model

stopped improving after approximately 12 days of training. The D3PM-Uniform and OADM

models were trained for 23 days without reaching convergence.

For MSAs, the EvoDiff denoising model adopts a 100M parameter MSA Transformer ar-

chitecture (28). As with the single sequence models, EvoDiff-MSA-OADM models implicitly

encode the diffusion timestep; EvoDiff-MSA-D3PM models include an additional sinusoidal

timestep embedding. All MSA models were trained with the Adam optimizer with a learning

rate of 1e-4 and linear warmup over 15,000 steps. EvoDiff MSA models were trained on 16

32GB NVIDIA V100 GPUs for 10 days and saw ca. 3e9 tokens over 55,000 training steps.

Baseline models To enable direct comparison, the left-to-right autoregressive (LRAR) and

CARP baselines were trained with the same CNN architectures on the same dataset as EvoDiff

sequence models. For LRAR, the convolution modules have a causal mask to prevent informa-

tion leakage. For additional MLM baselines, sequences were sampled from the protein MLMs

38

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


ESM-1b (58) and ESM-2 (30), which were trained on different releases of UniRef50. ESM-

1b and ESM-2 both generated many “unknown” amino acids (X); performance was improved

results by manually setting the logits for X to inf. Sequences were sampled from MLMs by

treating the MLM as an OADMs and beginning from an all-mask state. For the structure-based

diffusion baselines, sequences were obtained from FoldingDiff (8) and RFdiffusion (10) by first

unconditionally generating structures and then using ESM-IF (33) to design their sequences.

For MSA baselines, new query sequences were generated from ESM-MSA (28) by treating

it as an OADM and sampling from an all-mask starting query sequence. CCMgen (39) with

default parameters was used to train and generate from Potts models of validation MSAs from

OpenFold.

Computation of test-set perplexities Perplexity was calculated by uniformly sampling a

timestep for each test sequence, corrupting the sequence according to each diffusion model,

predicting the sequence x0 at t = 0 by passing inputs once through each trained model, and

then computing the perplexity. For D3PM models, the perplexity is:

Perp
D3PM

= Et⇠U(1,...,T ) exp

 
� 1

L

LX

i

log p✓(x0|xt)

!
(11)

For OADMs, the perplexity is:

Perp
OADM

= ·Et⇠U(1,...,L)E�⇠U(SD) exp

2

4 �1

L� t+ 1

X

k2�(�t)

log p(xk|x�(<t))

3

5 (12)

To enable model comparison, perplexities for MLMs (CARP, ESM-1b, ESM-2) were com-

puted as if they are OADMs.

And for LRAR models, the perplexity is:
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Perp
LRAR

= exp

"
�

LX

t=1

log p(xt|x<t)

#
(13)

Calculated D3PM perplexities were on average higher as t ! T and lower as t ! 1, and

masked perplexities were similarly higher for a greater number of masked tokens per sequence,

i.e., as t ! Lmasked (Fig. S1, S2). Lower perplexities indicated improved performance and

generalization capacity.

Evaluation of structural plausibility The structural plausibility pipeline (Fig. 2A) evaluates

both the foldability and self-consistency of a given sequence. Foldability was evaluated by av-

eraging the per-residue confidence score, reported as pLDDT by OmegaFold, across the entire

sequence. Sequence self-consistency, denoted scPerpelxity, describes how likely the generated

sequence is to correspond to the predicted structure. Self-consistency was measured by tak-

ing structures predicted for a sequence from OmegaFold, running them through ESM-IF, and

calculating the perplexity between the ESM-IF predicted-sequence and the original generated

sequence.

The novelty of generated sequences was evaluated relative to training data seen by the

model, by computing the Hamming distance between each generated sequence and every training-

set sequence of the same sequence length. The minimum of these Hamming distances, repre-

senting the closest sequence seen by the model during training, was reported for each sequence.

Computation of functional and structural features To evaluate sequence coverage, ProtT5

embeddings were computed for each of 1,000 generated protein sequences and 10,000 se-

quences sampled from the test set using the Tools from Protein Prediction for Interpretation

of Hallucinated Proteins (PPIHP) package (69). The resulting distributions of sequence embed-

dings (i.e., representing the corresponding distributions of sequences) were compared via the
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Fréchet ProtT5 distance (FPD),

FPD = ||µtest � µgen||2 + Tr(Ctest + Cgen � 2
p

CtestCgen) (14)

where, given the embedding space feature vectors for the test and generated distributions, µ

is the feature-wise mean for each set of sequences, C is the respective covariance matrix, and

Tr refers to the trace linear algebra operation, defined as the sum of the elements along the

main diagonal of a square matrix. Embeddings were visualized in 2D via uniform manifold

approximation and projection (UMAP), fit to the test data and with n neighbors=25. The

number of neighbors hyperparameter was selected to favor local similarities in place of global

ones, in order to appropriately visualize the corresponding differences in embedding space and

FPD measured for each model.

Structural features of generated sequences were evaluated via the ProtTrans (37) CNN pre-

dictor model to assign a 3-state secondary structure definition from DSSP (helix, strand, or

other) to each residue in a protein. The fraction of predicted ‘helix’, ‘strand’, or ‘other’ was

computed (the three values sum to 1 per sequence). The resulting multivariate distributions

of secondary structure features (computed over 1000 generated or natural sequences) were vi-

sualized via kernel density estimation. The KL divergence between the mean values across

the 3-state predictions for the generated and test sets was used to quantitatively evaluate the

distribution of secondary-structures assigned for each model.

Evolution-guided generation with EvoDiff-MSA Starting with either a random or Max-

Hamming subsampled MSA, new query sequences were generated by sampling from an all-

mask starting query sequence. The generated query sequence was evaluated relative to the

corresponding original query sequence using the same tools and workflow described in Eval-

uation of structural plausibility. Each generated sequence was additionally evaluated for sim-

ilarity relative to its reference MSA, which is comprised of a query sequence and alignment
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sequences. The % similarity of each generated sequence relative to its parent MSA was com-

puted as the maximum % similarity over all sequences in the original MSA. Specifically, for a

pair of sequences, the % similarity was computed by calculating the number of shared residue

identities (accounting for both amino-acid identity and position index in the sequence), and for

a given generated sequence the maximum value of these % similarities was determined. Across

generated sequences both the CDF and mean of maximum % similarity were reported. Gen-

erated sequences were additionally evaluated for structural similarity relative to their original

query sequences. Structures were predicted for each of the generated query sequences and the

original query sequences using OmegaFold. Structural similarity was measured via the template

modeling score (TM-score) (70) for the two predicted structures following structural alignment:

TM-score = max

2

64
1

Lgen

LcommonX

i

1

1 +
⇣

di
d0(Ltrue)

⌘2

3

75 (15)

where Lgen is the length of the generated query sequence; Lcommon is the number of shared

residues; di is the distance between the ith pair of residues; Ltrue is the length of the true query

sequence; and d0(Ltrue) = 1.24 3
p
Ltrue � 15� 1.8 is a distance scale for normalization.

Generation of intrinsically disordered regions (IDRs) IDR generation and analysis lever-

aged a publicly available dataset of 15,996 human IDRs and their orthologs (46). This dataset

was generated by running SPOT-Disorder v1 (71) on the human proteome and applying the

predicted IDR positions to an MSA of likely-similar-function orthologs (determined using an

evolutionary distance heuristic), curated from the larger set of orthologs contained in the OMA

database (72). The resulting dataset only contained IDRs, not full protein sequences, and thus

IDR sequences were mapped back to the MSAs of full protein sequences in OMA in order to

provide context about the sequence regions surrounding the IDRs.

For input to EvoDiff models, the full sequence of an IDR-containing human protein was
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treated as the query sequence, and a corresponding MSA was constructed by subsampling 63

other sequences from all the query’s orthologs. All sequences were subsampled to 512 residues

in length, with the following criteria maintained. Subsampling criteria were that the subsampled

query sequence contain at least 1 IDR, and that the total IDR region was less than half the total

length of the subsampled sequence (LIDR  256). For IDR generation from EvoDiff-Seq, the

query sequence with the IDR region masked was provided as the only input to EvoDiff-Seq,

which then generated new residues for the masked region (i.e., the region corresponding to the

true IDR). For IDR generation from EvoDiff-MSA, the query sequence with the IDR region

masked, aligned to the rest of the MSA, was provided as input to EvoDiff-MSA, which then

generated new residues for the masked region.

The resulting generations, containing putative IDRs, were input to DR-BERT, a protein

language model fine-tuned for disorder prediction (47), to obtain per-residue disorder scores

ranging from 0-1 (less to more disordered). A single-sequence IDR predictor (DR-BERT) was

used in place of MSA-based IDR scoring methods, because of an observed bias towards higher

disorder scores with MSA-based methods – e.g., random uniform sampling of residues in the

masked query positions still resulted in a prediction of disorder given the presence of the or-

thologs in the alignment. Disorder scores for true IDRs, generated IDRs, scrambled IDRs,

and randomly generated IDRs were computed to evaluate the performance of DR-BERT pre-

dictions. The randomly-sampled baseline was constructed by randomly sampling amino acids

over an IDR region; the scrambled baseline was constructed by shuffling the existing amino

acids over an IDR region into a scrambled permutation. In all cases (true IDRs, generated

IDRs, scrambled and random baselines), the entire protein sequence was input to DR-BERT

for scoring. Since DR-BERT is for single-sequences, for putative IDRs generated by EvoDiff-

MSA, the entire query sequence was inputted into DR-BERT, with < GAP > tokens eliminated,

to obtain per-residue disorder scores. Lastly, a direct comparison between the original IDR and
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the generated putative IDR was conducted by calculating the % sequence similarity between

the fraction of shared residues between the two IDR regions.

Motif scaffolding Scaffolding performance was evaluated on a recently published bench-

mark (10) of 25 scaffolding problems across 17 unique proteins.

In our scaffolding benchmark, each unique protein was treated as 1 example, for a total

of 17 unique scaffolding examples. 100 samples were generated for each unique scaffolding

example. For proteins 6E6R, 6EXZ, 7MRX, and 5TRV, which were the 4 examples evaluated

at 3 different scaffolding lengths in RFdiffusion (10), the number of successes across these three

different scaffolding lengths were averaged to facilitate comparisons between RFDiffusion and

EvoDiff.

To generate a scaffold with EvoDiff-Seq, a scaffold length between 50-100 residues (exclu-

sive of the motif) was sampled uniformly; the motif was placed randomly within the length; and

scaffold residues were generated from EvoDiff-Seq conditioned on the provided motif residues.

In this approach, on average, protein sequences generated by EvoDiff-Seq were longer (be-

tween 45 and 194 residues in length) than those inverse-folded from structures generated by

RFdiffusion, which range from 30-152 residues in total length inclusive of the length of the

motif.

For scaffolding with EvoDiff-MSA, MSAs for each sequence corresponding to the origi-

nal PDB structure were generated using the tools from AlphaFold (73) and then subsampled to

64 sequences, and a maximum of 150 residues in length, where the original sequence obtained

from the PDB crystal structure was assigned as the query sequence. In cases where the scaffold-

ing examples were shorter than 150 residues, sequences were padded with a < GAP > token,

to allow EvoDiff to generate longer-scaffolds. Sequences generated by EvoDiff-MSA were

between 56 and 150 residues in length, inclusive of the motif and scafffold. For each scaffold-
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ing example, a common set of 100 subsampled MSAs, where 50 were randomly subsampled

and 50 were subsampled via MaxHamming, was used commonly across EvoDiff-MSA (Max),

EvoDiff-MSA (Random), and ESM-MSA. That is, an individual generation trial for each model

corresponded to a unique MSA from the common set of 100 MSAs constructed for a scaffold-

ing example. At inference time, all non-motif residues in the query sequence were masked, and

new residues in these locations were generated by EvoDiff-MSA.

OmegaFold was used to predict structures corresponding to sequences generated by EvoD-

iff. A generation was counted as ‘successful’ if its predicted structure had a pLDDT � 70 and

a motifRMSD  1.0Å relative to the original motif crystal structure. Note that these success

criteria are cutoffs proposed by structure-based models (10) and adopted here to facilitate com-

parison. The motifRMSD was computed as the RMSD between the alpha-carbons of the motif

in the original crystal structure and the predicted structure for the scaffolded motif.
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EvoDiff-D3PM-BLOSUM 38M EvoDiff-D3PM-Uniform 38M EvoDiff-OADM 38M

EvoDiff-D3PM-BLOSUM 640M EvoDiff-D3PM-Uniform 640M EvoDiff-OADM 640M

LR-AR 38M CARP 38M ESM-1b-650M

LR-AR 640M CARP 640M ESM2-650M

Figure S1: Perplexity as a function of corruption step for EvoDiff sequence models. Test-set
perplexities at sampled intervals of the degree of corruption, specifically the diffusion timestep
for D3PM models, the fraction of masked residues for OADM and masked language models,
and the fraction of evaluated sequence for LRAR models. Intervals reflect evenly spaced win-
dows of 50 timesteps for D3PM models or 10% masking for masked models.
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EvoDiff-MSA-D3PM-BLOSUM 
(Rand sampling)

EvoDiff-MSA-D3PM-Uniform
(Rand sampling)

EvoDiff-MSA-OADM
(Rand sampling)

EvoDiff-MSA-D3PM-BLOSUM 
(Max sampling)

EvoDiff-MSA-D3PM-Uniform
(Max sampling)

EvoDiff-MSA-OADM
(Max sampling)

ESM-MSA-1b
(Max sampling)

Figure S2: Perplexity as a function of corruption step for EvoDiff MSA models. Test-set
MSA perplexities at sampled intervals of the degree of corruption, specifically the diffusion
timestep for D3PM models and the fraction of masked residues for OADM and ESM models.
The test-set evaluated for each model was sampled using the same sampling scheme assigned
during training. Intervals reflect evenly spaced windows of 50 timesteps for D3PM models or
10% masking for masked models.
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Figure S3: Summary statistics for structural plausibility metrics for sequence models. (A-

B) Distribution of pLDDT and scPerplexity metrics for sequences from the test set, 38M pa-
rameter EvoDiff and baseline models (A), and 640M parameter EvoDiff and baseline models
(B) (n=1000 sequences per model). Test and Random baselines are reproduced in (A) and (B)
for reference.
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Figure S4: Sequence pLDDT versus self-consistency perplexity for EvoDiff sequence mod-

els. (A-B) Results for sequences from 38M parameter EvoDiff, baseline models, and test
data plotted alone (A), and 640M parameter EvoDiff and baseline models (B) (various col-
ors, n=1000), except for EvoDiff-OADM-640M (EvoDiff-Seq, shown in Fig. 2C), relative to
sequences from the test set (grey, n=1000). The self-consistency perplexity (ESM-IF Perplex-
ity) is computed using sequences inverse-folded by ESM-IF.
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PDB_945 (48 Residues) PDB_876 (90 Residues) PDB_669 (98 Residues)

PDB_380 (239 Residues) PDB_200 (260 Residues)

Figure S5: Per-residue pLDDT for representative proteins generated by EvoDiff-Seq.

pLDDT scores computed based on the OmegaFold predicted structures, for individual residues
in representative high-fidelity generations from EvoDiff-Seq (Fig. 2E). Points are colored by
pLDDT (0-100, red to blue).
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LR-AR 38M EvoDiff-OADM 38M EvoDiff-D3PM-Uniform 38M

EvoDiff-D3PM-BLOSUM 38M CARP 38M

Figure S6: Coverage of sequence and functional space for generated distributions from

38M parameter EvoDiff sequence models and baselines. UMAP of ProtT5 embeddings,
annotated with FPD, of natural sequences from test set (grey, n= 1000 plotted) and of generated
sequences from EvoDiff 38M parameter models and baselines (various colors, n=1000).
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LR-AR 640M EvoDiff-D3PM-Uniform 640M EvoDiff-D3PM-BLOSUM 640M

CARP 640M ESM-1b 650M FoldingDiff

Valid Random

Figure S7: Coverage of sequence and functional space for generated distributions from

640M parameter EvoDiff sequence models and baselines. UMAP of ProtT5 embeddings,
annotated with FPD, of natural sequences from test set (grey, n= 1000) and of generated se-
quences from EvoDiff 640M parameter models and baselines (various colors, n=1000). A
visualization of sequences from the validation set (dark grey, n=1000) is included for reference.
The visualization for the 640M OADM model is excluded due to inclusion in Fig. 3A.
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LRAR D3PM BLOSUM D3PM Uniform CARP

ESM-1b FoldingDiff Random

LRAR D3PM BLOSUM D3PM Uniform

CARP

OADM

38M Models A

640M Models B

Figure S8: Structural features in generated sequences from all sequence models. (A-B)

Multivariate distributions of helix and strand features in sequences from 38M (A) and 640M
(B) parameter models, and baselines based on DSSP 3-state predictions and annotated with the
KL divergence relative to the test set (n=1000 samples from each model). In (B), the distribution
for the 640M OADM model is excluded (see Fig. 3B); the distribution for random sequences
(n=1000) is provided as reference.
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EvoDiff-MSA-OADM 
(Rand  sampling)

ESM-MSA-1b
(Max sampling) Potts

Figure S9: Sequence pLDDT versus scPerplexity for EvoDiff MSA models, for sequences
from the validation set (grey, n=250) and evaluated MSA models (various colors, n=250), ex-
cept for EvoDiff-OADM-MSA-Max (EvoDiff-MSA, shown in Fig. 4F).

55

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.11.556673doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.556673
http://creativecommons.org/licenses/by/4.0/


Scrambled Randomly sampledCB

D
is

or
de

r s
co

re
 

Disordered Structured

D
is

or
de

r s
co

re
 

Disordered Structured

A

D
is

or
de

r s
co

re
 

Disordered Structured

True 

Figure S10: Baseline performance of DR-BERT evaluator. (A-C) Distributions of DR-BERT
predicted disorder scores across disordered and structured regions for sequences with true (A),
scrambled (B), and randomly sampled (C) IDRs (n=100).

Disorder score (true IDRs) Disorder score (true IDRs)

D
is

or
de

r s
co

re
 (g

en
. I

D
R

s)

D
is

or
de

r s
co

re
 (g

en
. I

D
R

s)

AA BEvoDiff-Seq EvoDiff-MSA

R=0.67R=0.25

Figure S11: Performance of DR-BERT evaluator on disorder regions. (A-B) Disorder
scores predicted by DR-BERT for true (x-axis) vs. generated (y-axis) IDRs for the same given
sequence, for generations from EvoDiff-Seq (A) and EvoDiff-MSA (B). Each dot represents an
individual IDR (n=100). The Pearson R is given for each of EvoDiff-Seq and EvoDiff-MSA.
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Figure S12: Details of EvoDiff-D3PM corruption schemes. The top and bottom rows corre-
spond to EvoDiff-D3PM-Uniform and EvoDiff-D3PM-BLOSUM, respectively. (A) Visualiza-
tion of EvoDiff-D3PM transition matrices. (B) Evolution of the number of mutations accrued
as a function of the diffusion timestep t for a sample input. (C) Evolution of � as a function of
the diffusion timestep t. (D) Evolution of DKL [q(xt|x0)kp(xT )] as a function of the diffusion
timestep t, indicating convergence to a uniform stationary distribution at t = 500 as DKL ap-
proaches zero.
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Table S1: Performance of EvoDiff sequence models. The reconstruction KL (Recon KL)
was calculated between the distribution of amino acids in the test set and in generated samples
(n=1000). The perplexity was computed on 25k samples from the test set. The minimum
Hamming distance to any train sequence of the same length (Hamming) is reported for each
model as the mean ± standard deviation over the generated samples. Fréchet ProtT5 distance
(FPD) was calculated between the test set and generated samples. The secondary structure KL
(SS KL) was calculated between the means of the predicted secondary structures of the test and
generated samples.

Model parameters Recon KL perplexity Hamming FPD SS KL

Test - 9.92e-41 - 0.00392 0.101 1.37e-51

D3PM BLOSUM 38M 1.77e-2 17.16 0.83 ± 0.05 1.42 3.30e-5
D3PM Uniform 38M 1.48e-3 18.82 0.83 ± 0.05 1.31 3.73e-5
OADM 38M 1.11e-3 14.61 0.83 ± 0.07 0.92 1.61e-4
D3PM BLOSUM 640M 3.73e-2 15.74 0.83 ± 0.05 1.53 4.96e-4
D3PM Uniform 640M 2.90e-3 18.47 0.83 ± 0.05 1.35 2.13e-4
OADM 640M 1.26e-3 13.05 0.83 ± 0.08 0.88 1.48e-4

LRAR 38M 7.90e-4 12.38 0.82 ± 0.06 0.86 1.61e-4
CARP 38M 5.71e-1 25.13 0.74 ± 0.07 6.30 2.72e-3
LRAR 640M 7.01e-4 10.41 0.83 ± 0.06 0.63 1.76e-5
CARP 640M 3.56e-1 31.77 0.84 ± 0.05 1.78 5.03e-3
ESM-1b 3 650M 4.91e-1 53.49 0.83 ± 0.06 6.67 5.48e-4
ESM-2 3 650M 5.00e-1 68.39 0.84 ± 0.06 6.79 3.05e-3

FoldingDiff 4 14M 5.49e-2 - - 1.64 1.76e-3
RFdiffusion 5 60M 7.19e-2 - - 1.96 5.98e-3

Random - 1.65e-1 20 0.85 ± 0.04 3.16 1.90e-4
1 Calculated between the test set and validation set.
2 Reported value is the minimum Hamming distance between any two natural sequences of
the same length in UniRef50.
3 Due to model constraints, the maximum sequence length sampled was 1022.
4 For the FoldingDiff baseline, 1000 structures generated by FoldingDiff were randomly
selected, and the corresponding 1000 inferred sequences were inverse-folded using ESM-
IF. These sequences are between lengths of 50 and 128 residues.
5 For the RFdiffusion baseline, 1000 structures were generated corresponding to the UniRef
train distribution length, and 1000 corresponding sequences were inverse-folded using
ESM-IF.
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Table S2: Validation-set perplexities for EvoDiff MSA models. The perplexity is calculated
based on the ability of each model to reconstruct a subsampled MSA from the validation set.
“Max Perplexity” and “Rand. Perplexity” indicate MaxHamming and Random subsampling,
respectively, for construction of the validation MSA.

Corruption Subsampling Params Max Perplexity Rand. Perplexity

D3PM BLOSUM Random 100M 11.35 8.31
D3PM BLOSUM Max 100M 10.98 7.61
D3PM Uniform Random 100M 10.14 6.77
D3PM Uniform Max 100M 10.06 6.66
OADM Random 100M 6.05 3.64
OADM Max 100M 6.14 3.60

ESM-MSA-1b Max 100M 11.20 5.89

Table S3: Structural plausibility metrics for EvoDiff sequence models and baselines. Met-
rics are reported as the mean ± standard deviation for 1000 generated samples for each model.

Model Params ESM-IF ProteinMPNN OmegaFold
scPerplexity scPerplexity pLDDT

Test - 8.04 ± 4.04 3.09 ± 0.63 68.25 ± 17.85

D3PM Blosum 38M 12.38 ± 2.06 3.80 ± 0.49 42.76 ± 14.55
D3PM Uniform 38M 12.03 ± 2.04 3.77 ± 0.50 42.37 ± 14.39
OADM 38M 11.61 ± 2.38 3.72 ± 0.50 43.78 ± 14.18
D3PM Blosum 640M 11.86 ± 2.21 3.73 ± 0.48 44.14 ± 13.80
D3PM Uniform 640M 12.29 ± 2.05 3.78 ± 0.49 41.65 ± 14.32
OADM 640M 11.53 ± 2.50 3.71 ± 0.52 44.46 ± 14.62

LRAR 38M 11.61 ± 2.38 3.64 ± 0.56 48.26 ± 14.87
CARP 38M 9.68 ± 2.56 3.66 ± 0.62 50.79 ± 12.06
LRAR 640M 10.99 ± 2.63 3.59 ± 0.54 48.71 ± 15.47
CARP 640M 14.13 ± 2.42 4.05 ± 0.52 41.56 ± 14.35
ESM-1b 650M 13.90 ± 2.44 3.47 ± 0.68 58.07 ± 15.64
ESM-2 650M 14.02 ± 2.87 3.58 ± 0.69 50.70 ± 15.67

Random - 14.68 ± 1.97 3.96 ± 0.50 39.97 ± 14.05
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Table S4: Performance of EvoDiff MSA models in generating query sequences conditioned

on MSAs. Metrics are reported as the mean ± standard deviation over 250 generated samples
for each model.

Model scPerplexity pLDDT Seq. similarity TM score

Valid 5.93 ± 3.19 73.99 ± 17.80 14.58 ± 21.64 1 -

OADM (Rand) - Rand MSA 9.41 ± 2.61 55.99 ± 14.75 6.13 ± 9.88 0.49 ± 0.23
OADM (Max) - Max MSA 9.38 ± 2.57 57.08 ± 16.01 6.74 ± 11.00 0.50 ± 0.23
OADM (Max) - Rand MSA 9.59 ± 2.69 54.95 ± 16.83 6.55 ± 10.49 0.46 ± 0.23

ESM-MSA-1b 10.05 ± 2.92 51.64 ± 16.54 7.13 ± 11.60 0.40 ± 0.23
Potts 10.34 ± 2.26 55.46 ± 13.82 12.01 ± 17.19 0.17 ± 0.10

1 Sequence similarity is calculated between the original query sequence and all the sequences in
the MSA.
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Table S5: Scaffolding performance of EvoDiff-Seq. Number of scaffolding successes out of
100 generations for RFdiffusion, EvoDiff-Seq, the LRAR baseline, the CARP baseline, and
randomly sampled scaffolds (Random), for each of 17 scaffolding problems. The bottom row
contains the total number of successful scaffolds generated per model.

PDB RFdiffusion EvoDiff-Seq LRAR CARP Random

1BCF 100 24 0 4 0
6E6R 71 16 7 3 1
2KL8 88 0 1 1 0
6EXZ 42 0 0 0 0
1YCR 74 13 12 10 7
6VW1 69 1 0 0 0
4JHW 0 0 0 0 0
5TPN 61 0 0 0 0
4ZYP 40 0 0 0 0
3IXT 25 23 22 13 7
7MRX 7 0 0 0 0
1PRW 8 68 70 54 5
5IUS 2 0 0 0 0
5YUI 0 4 0 0 0
5WN9 0 0 0 0 2
1QJG 0 0 0 0 0
5TRV 22 0 0 0 0

Total 610 149 112 85 22
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Table S6: Scaffolding performance of EvoDiff-MSA. Number of scaffolding successes out
of 100 generations for RFdiffusion, EvoDiff-MSA (Max), EvoDiff-MSA (Random), and the
ESM-MSA baseline, for each of 17 scaffolding problems. The bottom row contains the total
number of successful scaffolds generated per model.

PDB RFdiffusion EvoDiff-MSA EvoDiff-MSA ESM-MSA
(Max) (Random)

1BCF 100 100 98 99
6E6R 71 87 63 96
2KL8 88 11 31 42
6EXZ 42 86 87 73
1YCR 74 3 0 0
6VW1 69 4 3 4
4JHW 0 0 0 0
5TPN 61 0 0 0
4ZYP 40 0 0 0
3IXT 25 1 0 5
7MRX 7 72 68 66
1PRW 8 48 46 92
5IUS 2 3 1 7
5YUI 0 58 44 70
5WN9 0 0 0 0
1QJG 0 34 22 38
5TRV 22 15 12 12

Total 610 522 475 604
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