

1
2 **Transmission of synthetic seed bacterial communities to radish seedlings:**
3 **impact on microbiota assembly and plant phenotype**
4
5

6 **Authors:** Marie Simonin¹, Anne Préveaux¹, Coralie Marais¹, Tiffany Garin¹, Gontran
7 Arnault¹, Alain Sarniguet¹, Matthieu Barret¹
8

9 **Affiliation:** ¹Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
10
11

12 **ABSTRACT**

13 Seed-borne microorganisms can be pioneer taxa during germination and seedling emergence.
14 Still, the identity and phenotypic effects of these taxa that constitute a primary inoculum of
15 plant microbiota is mostly unknown. Here, we studied the transmission of bacteria from radish
16 seeds to seedlings using the inoculation of individual seed-borne strains and synthetic
17 communities (SynComs) under *in vitro* conditions. The SynComs were composed of highly
18 abundant and prevalent, sub-dominant or rare bacterial seed taxa. We monitored the
19 transmission of each strain alone or in communities using *gyrB* gene amplicon sequencing
20 and assessed their impacts on germination and seedling phenotype.

21 All strains and SynComs successfully colonized seedlings and we were able to reconstruct a
22 richness gradient (6, 8 and 12 strains) on both seeds and seedlings. *Stenotrophomonas*
23 *rhizophila* became dominant on seedlings of the three SynComs but most strains had variable
24 transmission success (i.e increasing, stable or decreasing during seed to seedling transition)
25 that also depended on the SynCom richness.

26 Some seed-borne strains (*Pseudomonas viridiflava*, *Paenibacillus* sp) had detrimental effects
27 on germination and seedling development. Abnormal seedling morphologies were also
28 observed with SynComs but their proportions decreased at the highest richness level.
29 Interestingly, the three bacterial strains identified as core taxa of radish seeds (*Pseudomonas*
30 *viridiflava*, *Pantoea agglomerans*, *Erwinia persicina*) were associated with detrimental effects
31 on seedling phenotypes either in isolation or in SynComs. These results confirm that the plant
32 core microbiome includes pathogenic and not only commensal or mutualistic taxa.

33 Altogether, these results show that SynCom inoculation can effectively manipulate seed and
34 seedling microbiota diversity and highlight strong fitness differences between native seed-
35 borne taxa in the colonization of these habitats.

36
37 **Key-words:** Plant microbiota, Seed-borne bacteria, Core microbiota, Synthetic community,
38 Phytobiome, Pathobiome
39
40
41
42
43
44
45
46
47

48 **INTRODUCTION**

49 The impact of seed-borne pathogens on plant fitness has been extensively studied but the
50 influence of all the other commensal or mutualistic microorganisms living on/in seeds is mostly
51 unknown. Seed microbiota harbor diverse microbial communities that constitute a primary
52 inoculum for plant microbiota assembly that could originate from maternal transmission or
53 environmental sources during seed maturation (Chesneau *et al.* 2020, 2022). Still, the
54 influence of this primary inoculum on germination and seedling emergence have not been
55 established (Lamichhane *et al.* 2018). Moreover, many knowledge gaps remain regarding the
56 fraction of seed-borne taxa that can be transmitted to seedlings and the influence of the initial
57 seed microbiota composition on their transmission success.

58 Few studies investigated the transmission of seed microbiota to seedlings and they reported
59 a high variability in the contribution of seed taxa to plant microbiota depending on the soil
60 tested (Rochefort *et al.* 2021; Walsh *et al.* 2021). These studies had the advantage to work
61 directly on native seed communities but this comes with the limitation that the seed microbiota
62 had to be characterized on pools of seeds due to the insufficient microbial biomass and DNA
63 present on individual seeds. As a consequence, it is not possible to truly determine which
64 microbial taxa were transmitted from one seed to one seedling. Few studies attempted to
65 characterize the microbiota of individual seeds using culture-dependent (Mundt and Hinkle
66 1976; Newcombe *et al.* 2018) and culture-independent techniques (Bintarti *et al.* 2021;
67 Chesneau *et al.* 2022). These studies demonstrated a very high natural variability in microbiota
68 composition between individual seeds and a low bacterial richness. Hence, studying the
69 transmission of natural microbiota from seed to seedling and assessing their impacts on
70 seedling phenotype is extremely challenging. Controlled conditions with the inoculation of
71 known microbial assemblages are required to characterize the seed to seedling transmission
72 and establish causal links between microbiota and seedling phenotypes.

73 Recent studies using synthetic microbial communities (SynComs) to assess the role of the
74 microbiota on plant nutrition or resistance to pathogens have been performed on the
75 rhizosphere and phyllosphere compartments (e.g. Kwak *et al.* 2018; Carlström *et al.* 2019;
76 Finkel *et al.* 2020). But as for the rest of plant microbiome research, the seed compartment
77 has been neglected. Despite the crucial role of seeds for food production and maintenance of
78 plant biodiversity, microbiome studies on the seed compartment are still a minority (Shade,
79 Jacques and Barret 2017). One correlative study between seed microbiota structure and seed
80 germination of different rapeseed genotypes offers promising results about the key role of
81 microbiota in seed vigor (Rochefort *et al.* 2019). Recent studies are starting to be published
82 on the influence of seed microbiota composition on plant phenotypes using SynComs to infer
83 causal relationships. For instance, Figueiredo dos Santos *et al.* (2021) showed that seed
84 disinfection reduced maize germination rates that could be recovered after inoculation of a
85 SynCom on seeds. These reports encourage further investigations of the role of seed
86 microbiota in seedling microbiota assembly and fitness.

87 In this context, we set up seed inoculation experiments to address the following objectives:

- 88 - Characterize the transmission of individual seed-borne bacteria and synthetic bacterial
89 communities from seed to seedlings (here on radish plants)
- 90 - Determine whether individual seed-borne bacteria or synthetic bacterial communities
91 can impact seedling phenotype.

92 We selected 12 bacterial strains that are representative of radish seed microbiota that we
93 studied individually or in communities (mix of 6, 8, or 12 strains) to monitor their transmission
94 from seed to seedling and their impact on seedling phenotypes (germination, emergence) in
95 *in vitro* conditions.

96

97 MATERIAL AND METHODS

98

99 Seed material and bacterial strains

100 The radish seeds (*Raphanus sativus* var. Flamboyant5) used for strain isolation and the
101 inoculation experiments were obtained from a field trial conducted in 2013 and 2014 at the
102 experimental station of the National Federation of Seed Multipliers (FNAMS, 47°28'012.42"N
103 - 0°23'44.30"W, Brain-sur-l'Authion, France).

104 A bacterial culture collection was obtained from a seed sample composed of approximately
105 1000 mature seeds (Torres-Cortés et al. 2019). Seed samples were soaked in 25 ml of
106 phosphate-buffered saline (PBS, Sigma-Aldrich) with Tween® 20 (0.05 % v/v, Sigma-Aldrich)
107 at 6°C under agitation (150 rpm) for 2h30. One hundred microliters of the suspension was
108 plated on tryptic soy agar 1/10 strength (TSA 10%) supplemented with cycloheximide (50
109 µg.ml-1, Sigma-Aldrich, Saint-Louis, Missouri, USA). Plates were incubated at 20°C during a
110 minimum 5 days. Isolated colonies were picked and grown on TSA 10% plates for 24-48 hours
111 to obtain pure cultures. The taxonomy of the isolated strains was determined using Sanger
112 sequencing of the *gyrB* gene. A total of 528 strains were obtained that represented the 4 main
113 phyla (Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria) found in radish seeds, for a
114 total of 11 assigned bacterial families and 17 genera.

115 To select strains representative of the radish seed bacterial community, we used the Seed
116 Microbiota Database (Simonin et al. 2022) originating from a meta-analysis that gathers re-
117 processed amplicon sequencing datasets from 50 plant species. We extracted from the
118 database all the radish seed datasets using the *gyrB* marker gene (studies all conducted in
119 our team). We obtained data from 7 independent studies on the Flamboyant5 genotype (n=295
120 seed samples). After filtering the ASVs with a low read number (<100 reads), we calculated
121 the prevalence and relative abundance of the ASVs across all samples. We then compared
122 the *gyrB* sequences of the ASVs of the database to the ones of the strains in our culture
123 collection to select a diverse set of strains in terms of phylogenetic diversity, abundance and
124 prevalence (see Result section and Figure 1).

125

126 Seed inoculation experiment

127 Subsamples of seeds (1g ~100 seeds) were surface-sterilized using the following protocol : 1
128 min sonication (40 Hertz), soaking for 1 min in 96° ethanol, 5 min in 2.6% sodium hypochlorite,
129 30 sec in 96° ethanol and rinsed 3 times with sterile water. A subsample of 30 seeds was used
130 to verify the efficacy of the surface-sterilization by soaking the seeds under agitation (150 rpm)
131 for 2h30, plating on TSA 10% and incubating a minimum of 2 days at 20°C. The seeds were
132 dried on sterile paper before the inoculation.

133 Twelve bacterial strains of our culture collection conserved at the CIRM-CFBP were selected
134 to build a simplified seed radish bacterial community (more details in the Result section, Figure
135 1). The strains were either inoculated alone on seeds or as SynComs of 6, 8, or 12 strains.
136 The inoculation of the strains or SynComs were performed on subsamples of 30 seeds by
137 placing them for 30 minutes under agitation (70 rpm) at 20°C in a suspension at a final
138 concentration around 10⁷ CFU/mL (Optical density 600 nm = 0.01) from fresh 24/48-hour
139 cultures. The inoculated seeds were then placed individually at the surface of a sterile cotton
140 pad moistened with 4 mL of sterile water in sterile glass tubes. A total of 30 seeds were sown
141 by condition (control, single strains or SynComs, total of 16 conditions) that were incubated
142 for 4 days in a growth chamber (photoperiod: 16h/8h, temperature 25/22°C).

143 The bacterial cell density of the inocula and inoculated seeds (pool of 30 seeds) were
144 assessed by plating on TSA 10% (CFU/mL or /seed). In the SynCom experiment, an amplicon
145 sequencing approach was used to measure the relative abundance of the different strains in
146 the inocula, inoculated seeds and seedlings. Thus, 3 repetitions of 500 μ L of the inocula and
147 of the macerate of inoculated seeds were stored at -80°C in a 96-well plate before DNA
148 extraction and library preparation for the *gyrB* gene amplicon sequencing.
149 After 4 days of growth, the phenotypes of the seedlings were determined and then the
150 seedlings were individually processed to assess bacterial cell density by plating and bacterial
151 community composition by amplicon sequencing. The effects on seedling phenotypes were
152 assessed using the protocol established by the International Seed Testing Association
153 (<https://www.seedtest.org/en/home.html>). Three types of phenotypes could be observed: non-
154 germinated seeds, normal seedling or abnormal seedling. A seedling was considered
155 abnormal if at least 50% of the cotyledons or leaves were necrotic or rotten, if the hypocotyl
156 or epicotyl were deformed, or if the root system was absent, stunted or rotten.
157 To measure the bacterial cell density of seedlings, each plant was crushed in a sterile plastic
158 bag (n=30 seedlings by condition), resuspended in 2 mL of sterile water and homogenized.
159 The seedling suspension was then serial-diluted and plated on TSA 10% to determine the
160 CFU by seedling and to assess the capacity of strains and SynComs to colonize seedlings.
161 The remaining seedling suspensions were stored at -80°C in a 96-well plate before DNA
162 extraction and library preparation for the *gyrB* gene amplicon sequencing.
163

164 **Amplicon sequencing of seed and seedling bacterial community**

165 DNA extraction was performed on the inocula, inoculated seeds and seedlings of the SynCom
166 conditions (control, 6-strain, 8-strain, 12-strain SynComs) with the NucleoSpin® 96 Food kit
167 (Macherey-Nagel, Düren, Germany) following the manufacturer's instructions.
168 The first PCR was performed with the primers *gyrB_aF64/gyrB_aR553* (Barret *et al.* 2015),
169 which target a portion of *gyrB* gene in bacteria. PCR reactions were performed with a high-
170 fidelity Taq DNA polymerase (AccuPrimeTM Taq DNA Polymerase High Fidelity, Invitrogen,
171 Carlsbad, California, USA) using 5 μ L of 10X Buffer, 1 μ L of forward and reverse primers
172 (100 μ M), 0.2 μ L of Taq and 5 μ L of DNA. PCR cycling conditions were done with an initial
173 denaturation step at 94°C for 3 min, followed by 35 cycles of amplification at 94°C (30 s), 55°C
174 (45 s) and 68°C (90 s), and a final elongation at 68°C for 10 min. Amplicons were purified with
175 magnetic beads (Sera-MagTM, Merck, Kenilworth, New Jersey). The second PCR was
176 conducted to incorporate Illumina adapters and barcodes. The PCR cycling conditions were:
177 denaturation at 94°C (1 min), 12 cycles at 94°C (1 min), 55°C (1 min) and 68°C (1 min), and
178 a final elongation at 68°C for 10 min. Amplicons were purified with magnetic beads and pooled.
179 Concentration of the pool was measured with quantitative PCR (KAPA Library Quantification
180 Kit, Roche, Basel, Switzerland). Amplicon libraries were mixed with 5% PhiX and sequenced
181 with MiSeq reagent kits v2 500 cycles (Illumina, San Diego, California, USA). A blank
182 extraction kit control, a PCR-negative control and PCR-positive control (*Lactococcus piscium*,
183 a fish pathogen that is not plant-associated) were included in each PCR plate. The raw
184 amplicon sequencing data are available on the European Nucleotide Archive (ENA) with the
185 accession number PRJEB58635.

186 The bioinformatic processing of the amplicons was performed in R. In brief, primer sequences
187 were removed with cutadapt 2.7 (Martin 2011) and trimmed fastq files were processed with
188 DADA2 version 1.10 (Callahan *et al.* 2016). Chimeric sequences were identified and removed
189 with the removeBimeraDenovo function of DADA2. Amplicon Sequence Variant (ASV)
190 taxonomic affiliations were performed with a naive Bayesian classifier (Wang *et al.* 2007) with

191 our in-house *gyrB* database (train_set_gyrB_v4.fa.gz) available upon request. Unassigned
192 sequences at the phylum level and *parE* sequences (a *gyrB* paralog) were filtered. After these
193 filtering steps, samples with less than 1000 reads were excluded from the study.

194

195

196 **Statistics and microbial community analyses**

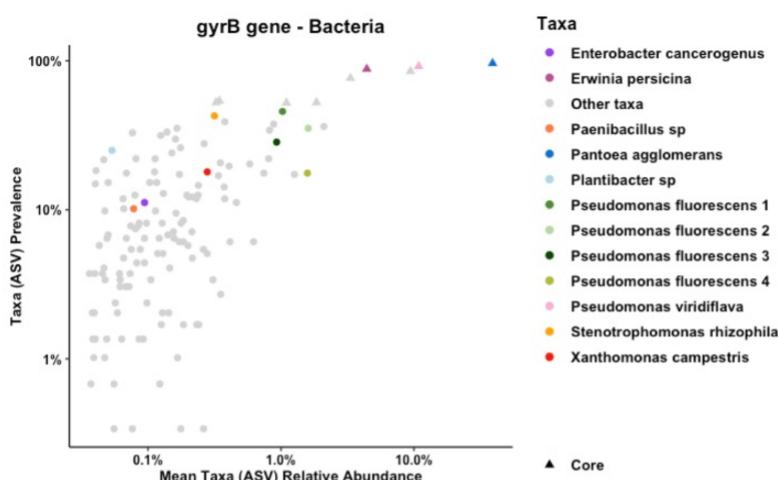
197 All the scripts and datasets used to conduct the study are available on GitHub
198 (https://github.com/marie-simonin/Radish_SynCom). We assessed the effect of the
199 inoculation and sample type on the various univariate variables (e.g. seedling bacterial cell
200 density, strain relative abundance, ASV richness) using generalized mixed models (*glm*
201 function in *lme4* package) and post hoc comparisons were performed using the Tukey method
202 (*warp.emm* function in package *emmeans*).

203 The analyses on bacterial community structure based on the amplicon sequencing data were
204 done after rarefaction at 14116 reads per sample to conserve sufficient replicates while having
205 a good sampling depth. Diversity and community structure analyses were performed in R 3.6.2
206 using the *phyloseq* (v1.28.0), *vegan* (v2.5-7) and *microbiome* (v1.7.21) packages (Oksanen
207 *et al.* 2007; McMurdie and Holmes 2013; Lahti, Shetty and Blake 2017). The diversity of the
208 inocula, inoculated seeds and seedlings was characterized using ASV richness. The effects
209 of inoculation and sample types on bacterial community structure were assessed using Bray-
210 Curtis dissimilarity associated with a permutational multivariate analysis of variance (*adonis*
211 and *pairwise.adonis* functions, 999 permutations). Non-Metric Multidimensional Scaling
212 (NMDS) were used to plot the ordinations. The influence of the inoculation of community beta-
213 dispersion was assessed using the *betadisper* function in *vegan* based on Bray-Curtis
214 distance matrix and distance to centroid to each condition. The statistical effects were
215 evaluated using a permutation-based test of multivariate homogeneity of group dispersions
216 followed by a Tukey's honest significant differences test.

217 All figures were prepared using the *ggplot2* (v3.3.3) package and the data management was
218 done using the *dplyr* (v1.0.4) and *tidyverse* (v1.3.0) packages in R.

219

220


221 **RESULTS**

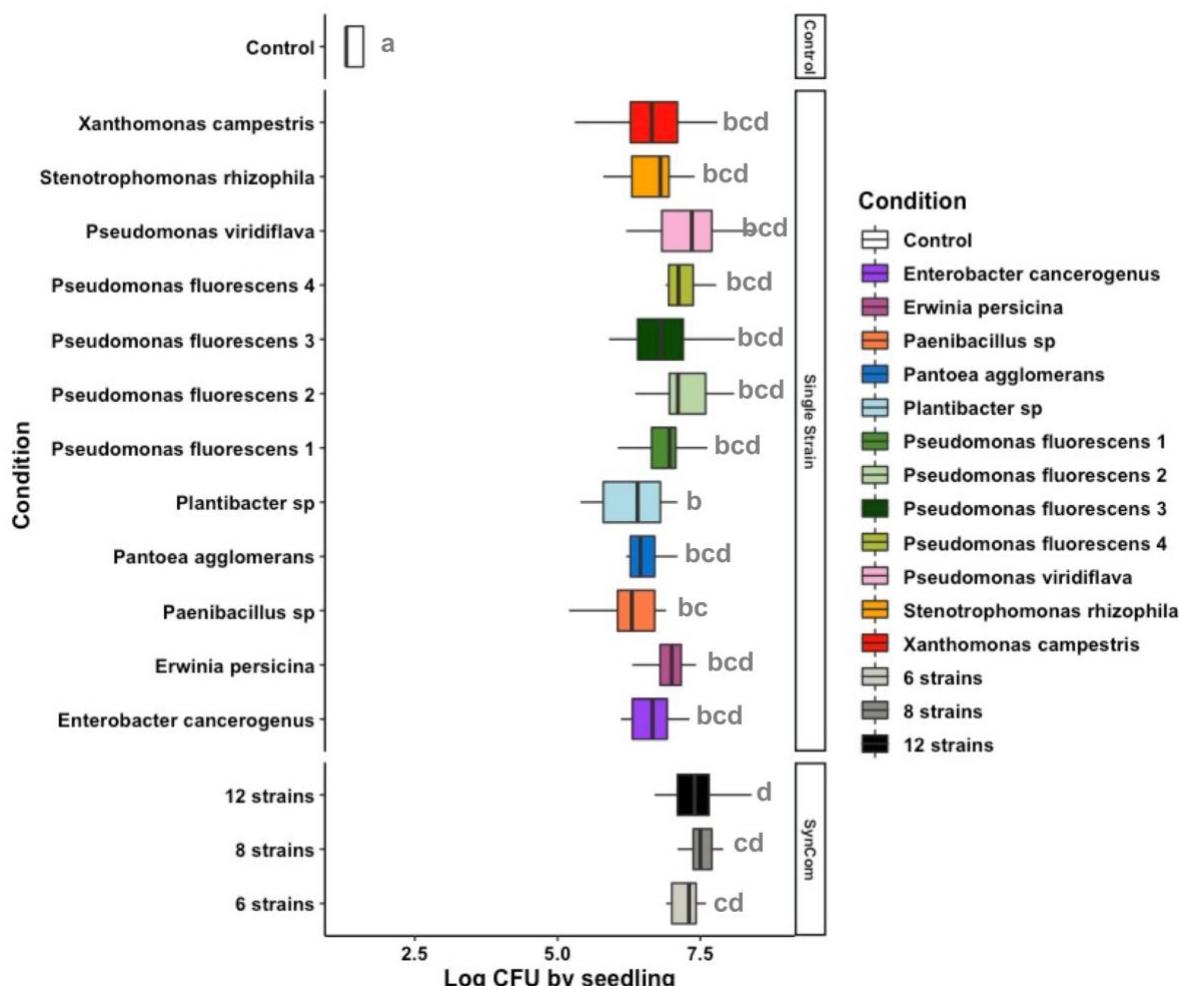
222 **1. Bacterial strain selection based on a meta-analysis of radish seed microbiota**

223 We have selected twelve bacterial strains based on an original selection design based on a
224 meta-analysis on seed microbiota studies (Simonin *et al.* 2022). The twelve strains were
225 representative of the diversity and prevalence-abundance profiles of radish seed microbiota
226 (Figure 1A). The selection included three extremely abundant and prevalent taxa (i.e core
227 taxa, Figure 1A and 1B), but also five sub-dominant (relative abundance < 1.5% and
228 prevalence < 20%) and four rare taxa (prevalence < 20%). Ten strains belonged to
229 Gammaproteobacteria (Enterobacteriaceae, Erwiniaceae, Pseudomonadaceae,
230 Xanthomonadaceae) and the two remaining strains were from the Actinobacteria and Bacilli
231 classes (Figure 1B). In addition to selecting strains that were phylogenetically diverse, we also
232 included intra-species diversity with four strains of the *Pseudomonas fluorescens* subgroup
233 (Hesse *et al.*, 2018) with contrasted prevalence and abundance profiles. The twelve strains
234 presented different *gyrB* gene sequences (subspecies level detection) to enable their
235 individual tracking using *gyrB* amplicon sequencing. The strains were studied in isolation and
236 in SynComs of 6, 8 and 12 strains (Figure 1B) to match the bacterial diversity observed on
237 individual radish seeds (median = 8 ASVs; Figure S1; Chesneau *et al.* 2022). We performed
238 a nested design for the three diversity levels, with the 6-strain SynCom composed of two high

239 prevalence strains, two intermediate and two low prevalence strains. The 8-strain and 12-
240 strain SynComs were built on this initial community with an increasing number of high-,
241 intermediate- and low-prevalence strains.
242

A. Prevalence-Abundance of selected taxa in radish seed microbiota

B. Identity of selected strains for SynCom experiments


Strain	Class	Species	Type	Prevalence	Relative Abundance	SynCom 6 strains	SynCom 8 strains	SynCom 12 strains
CFBP13505	Gammaproteobacteria	Pantoea agglomerans	Core	96.3%	39.04%	●	●	●
CFBP13507	Gammaproteobacteria	Pseudomonas viridisflava	Core	91.9%	10.86%	●	●	●
CFBP13511	Gammaproteobacteria	Erwinia persicina	Core	88.1%	4.42%	●	●	●
CFBP13509	Gammaproteobacteria	Pseudomonas fluorescens subgroup 1		45.8%	1.03%			●
CFBP13503	Gammaproteobacteria	Stenotrophomonas rhizophila		42.7%	0.32%	●	●	●
CFBP13528	Gammaproteobacteria	Pseudomonas fluorescens subgroup 2		35.3%	1.60%			●
CFBP13506	Gammaproteobacteria	Pseudomonas fluorescens subgroup 3		28.5%	0.93%	●	●	●
CFBP13513	Actinobacteria	Plantibacter sp		25.1%	0.05%			●
CFBP6650	Gammaproteobacteria	Xanthomonas campestris		18.0%	0.28%	●	●	●
CFBP13502	Gammaproteobacteria	Pseudomonas fluorescens subgroup 4		17.6%	1.58%			●
CFBP13530	Gammaproteobacteria	Enterobacter cancerogenus		11.2%	0.09%	●	●	●
CFBP13512	Bacilli	Paenibacillus sp		10.2%	0.08%	●	●	●

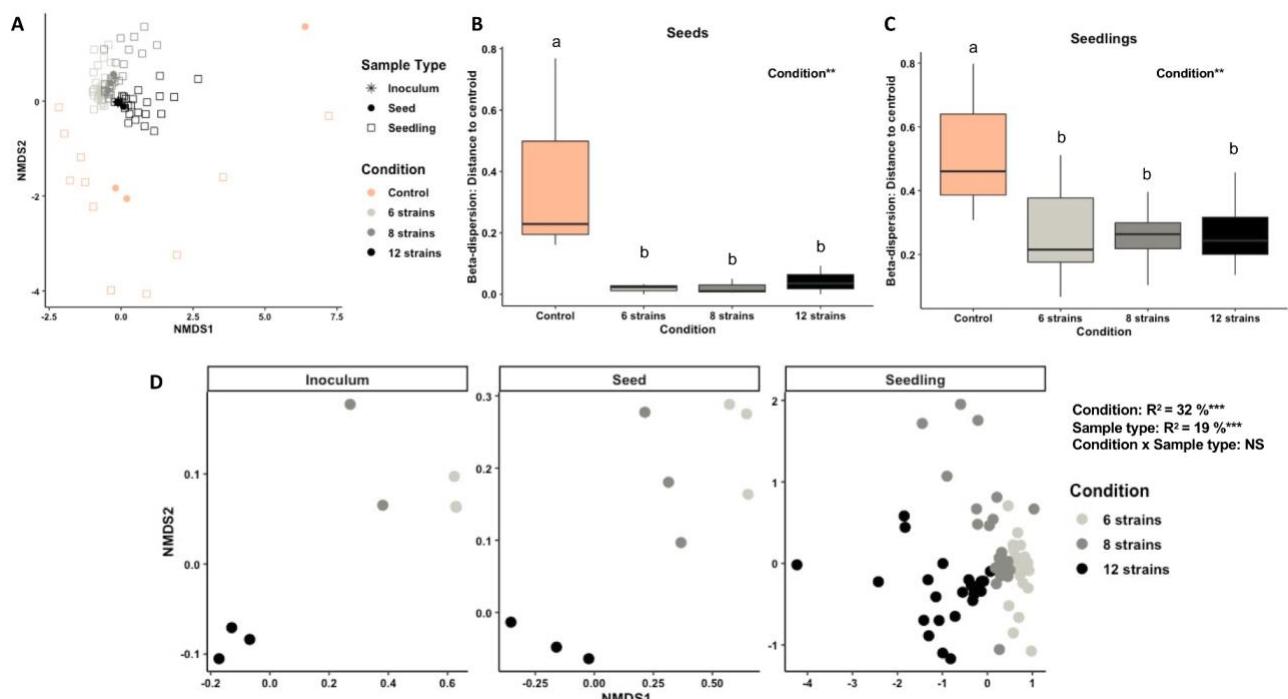
243
244 **Figure 1: Selection of bacterial strains representative of the radish seed microbiota. A. Prevalence and**
245 **relative abundance of bacterial ASVs (gyrB amplicon sequencing) in radish seed microbiota (R. sativus**
246 **Flamboyant5) from seven independent studies (n=295 seed samples, 139 ASVs with minimum of 100 reads**
247 **in dataset). The colored points represent the taxa selected in this study and the triangle shapes represent**
248 **the taxa identified as members of the radish core seed microbiota. Data extracted from the Seed Microbiota**
249 **Database (Simonin et al. 2022). B. Identity of the strains isolated from radish seeds and used in the SynCom**
250 **experiments.**

252 2. Transmission of single strains and synthetic communities from seed to 253 seedling

254 a. Bacterial colonization of seedlings by all strains and SynComs

255 Transmission of the twelve individual strains and the three SynComs to radish seedlings was
256 first assessed. When individual strains were seed-inoculated, they were all successfully
257 transmitted to seedlings with a median of 6.8 log CFU per seedling. The seedlings originating
258 from seeds inoculated with SynComs were colonized at similar levels of bacterial cell density
259 (median = 7.4 log CFU/seedling). Single strains and SynComs all reached around 7 log
260 CFU/seedling that appear to be the bacterial carrying capacity of a radish seedling in our
261 system. The control seedlings that originated from surface-sterilized seeds were below
262 detection limit or close to 2 log CFU/seedling, validating that the bacterial populations
263 observed on seedlings in the different conditions originated from our inocula.

264


265 **Figure 2: Seedling bacterial colonization for the different inoculation treatments (n=30 seedlings per**
 266 **condition). CFU: Colony Forming Unit. The different letters represent the results of a post-hoc Tukey HSD**
 267 **test.**

268

269

270 **b. Bacterial community structure of seeds and seedlings inoculated with**
 271 **SynComs**

272 We wanted to assess our ability to manipulate the seed and seedling bacterial community
 273 using SynCom inoculation compared to non-inoculated control seeds. Using *gyrB* gene
 274 amplicon sequencing, we validated that the SynCom inoculation led to a significant
 275 modification of seed and seedling bacterial community compared to the control condition
 276 (pairwise adonis: $P<0.007$; Figure 3A). On the NMDS ordination, the three sample types
 277 (inoculum, seed and seedling) clustered closely by SynCom indicating a high degree of
 278 similarity, whereas the control seeds and seedlings were very dispersed. This observation was
 279 further confirmed by a beta-dispersion analysis (distance to centroid) indicating that the
 280 SynCom inoculation strongly reduced the variability in seed and seedling community structure
 281 compared to the control condition (Figure 3B, 3C). We also confirmed that the three SynComs
 282 were significantly distinct in the three types of samples (inocula, seeds, seedlings, Figure 3D),
 283 with an expected structuration showing the 6 and 12-strain SynComs as the most different
 284 and the 8-strain SynCom with an intermediate composition.

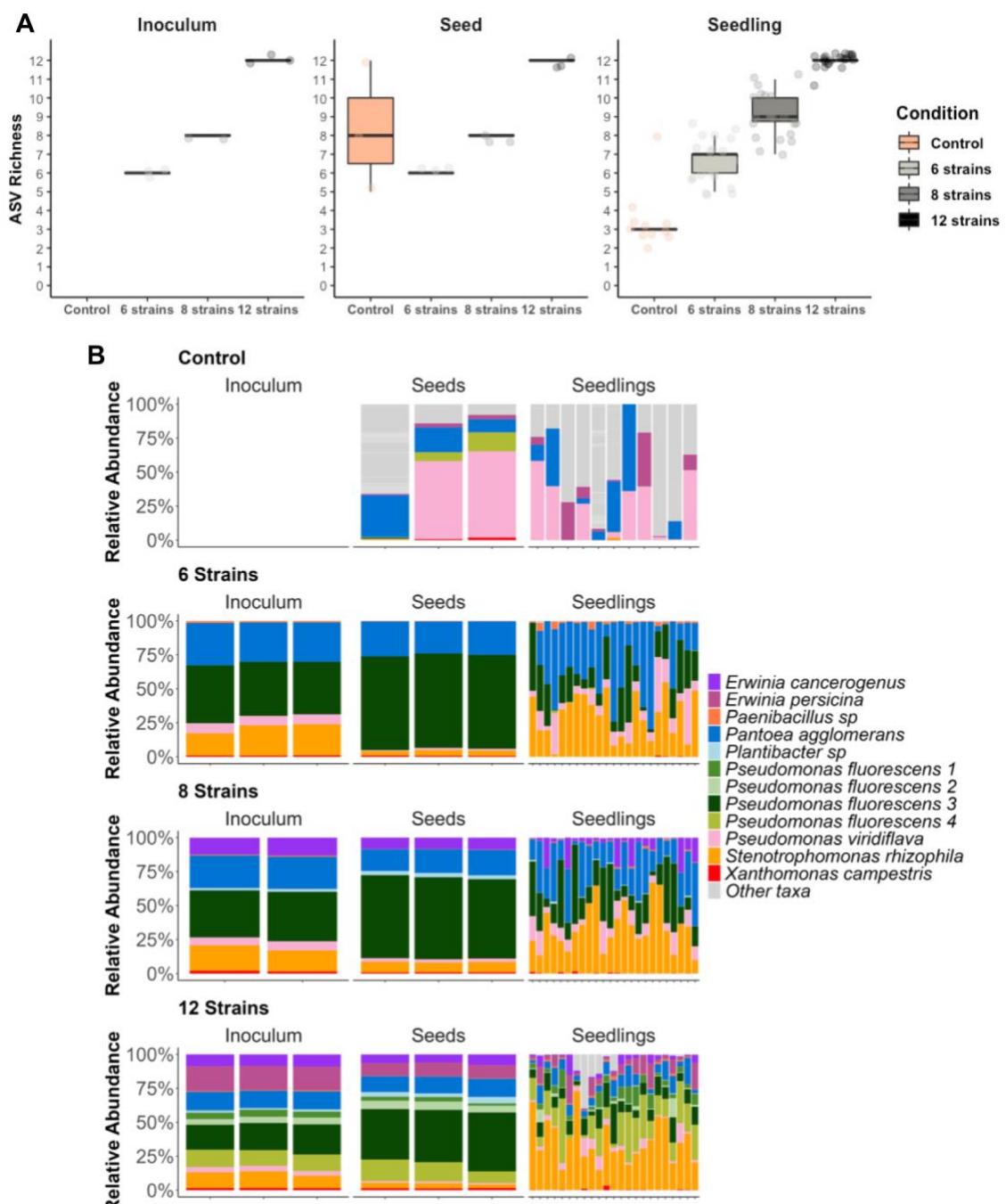

285
286
287
288
289
290
291
292
293
294

Figure 3: A) Influence of SynCom inoculation and sample type on bacterial community structure visualized through an NMDS ordination based on Bray-Curtis distances (stress = 0.155). Beta-dispersion assessed using distance to centroid of the B) seed and C) seedling community structure in the control and SynCom conditions. D) Bacterial community structure of the three SynComs in the inocula, seeds and seedlings visualized through an NMDS ordination based on Bray-Curtis distances (stress = 0.165). The asterisks represent the significativity of the Permanova test: * $P < 0.001$, NS=Non-Significant. The different letters represent the results of a post-hoc Tukey HSD test; two conditions with no letters in common are statistically different.**

295

c. Effect of SynCom inoculation on seed and seedling richness

296 We assessed the effect of SynCom inoculation on the bacterial richness of seeds and
297 seedlings. We verified that the SynCom inoculation enabled us to reconstruct a diversity
298 gradient on both seeds and seedlings (Figure 4A). The bacterial richness measured on seeds
299 and seedlings corresponded to the expected taxa richness present in the inocula (6, 8 or 12
300 ASVs). The control seeds were surface-disinfected but they still harbored a low bacterial
301 diversity likely of endophytic bacteria, including ASVs of strains included in the SynComs
302 because the strains selected have been isolated from the same radish genotype. Altogether,
303 these results show the efficacy of the SynCom inoculation on seeds to drive the bacterial
304 diversity of both seeds and seedlings.

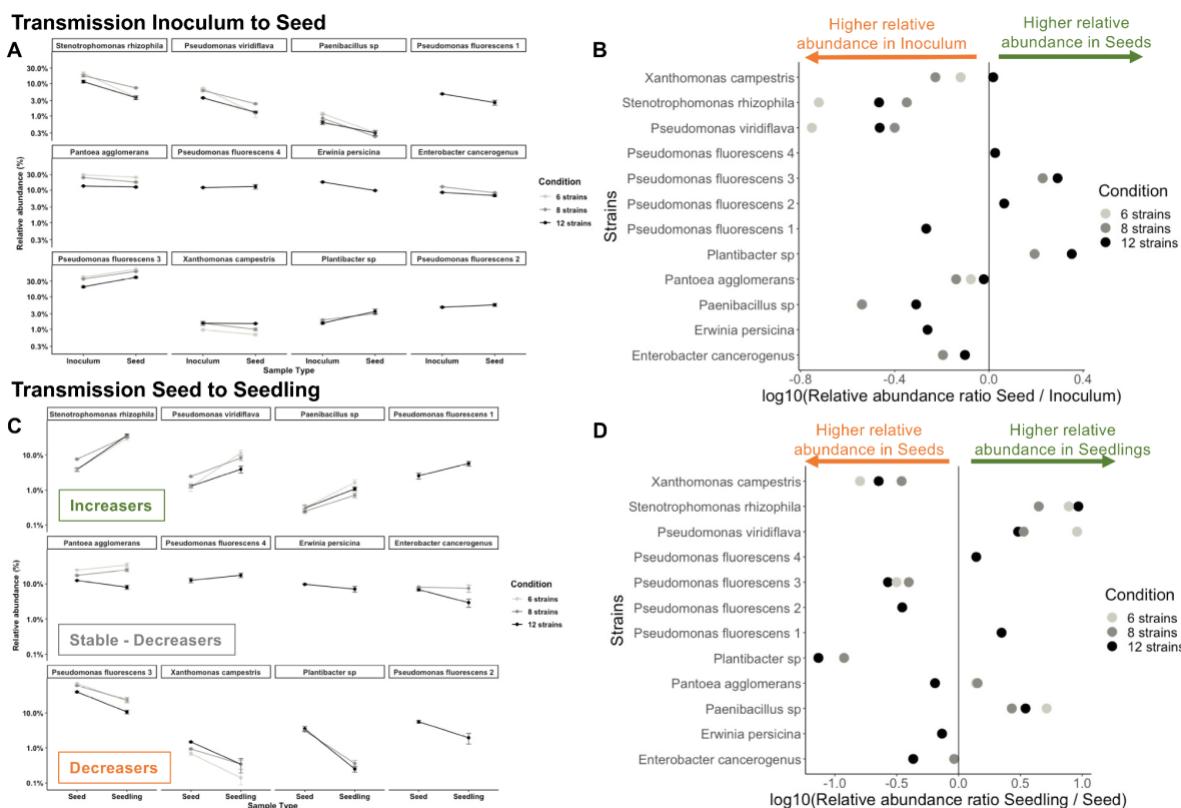

305
306
307
308
309
310

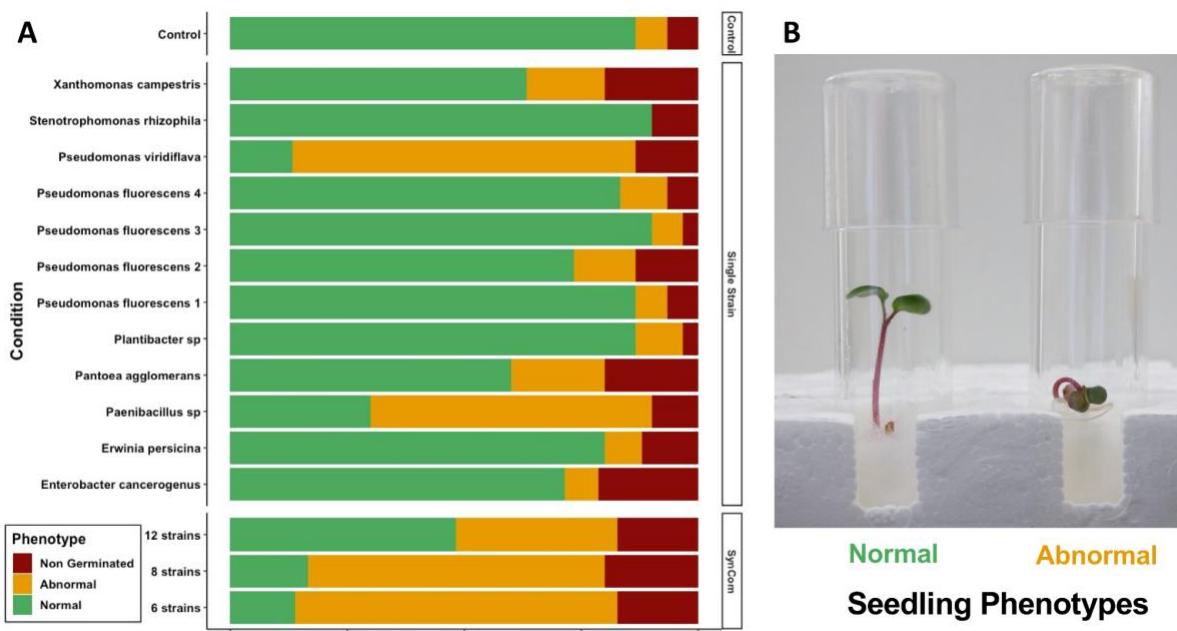
Figure 4: A) Bacterial taxa richness (ASV richness) of the inocula, inoculated seeds and seedlings in the different conditions. B) Taxonomic profile of the inoculum, seeds and seedlings in the four different conditions (control, 6 strains, 8 strains and 12 strains). Each stacked bar represents a sample.

311 d. Tracking of the transmission of the SynCom strains between the inoculum,
312 seeds and seedlings

313 Based on the unique *gyrB* ASV of the 12 strains, we were able to track their transmission
314 patterns from the inoculum to the seedling. First, we characterized the natural abundance of
315 the strain ASVs in the control seeds and seedlings. The 12 ASVs were naturally found in
316 control seeds and seedlings, especially the ASVs associated with the *Pseudomonas*
317 *viridiflava*, *Pantoea agglomerans*, *Pseudomonas fluorescens* 4 and *Erwinia persicina* strains
318 (Figure 4B). As already seen in Figure 3A, the SynCom inoculations led to completely different

319 seed and seedling bacterial community compositions than in the control condition (Figure 4B).
320 Interestingly, we observed some differences in the abundance of strains between the inoculum
321 and the seed community profile (Figure 5A), indicating differences between strains for their
322 capacity to colonize the seed during inoculation (Figure 5B). For instance, the strain
323 *Pseudomonas fluorescens* 3 had a higher relative abundance on seeds (40-70%) compared
324 to the inocula (20-40%), while the strains *Pseudomonas viridiflava* and *Stenotrophomonas*
325 *rhizophila* had the opposite pattern (Figure 5B).
326 During the phenological transition from seed to seedling, we observed an important
327 restructuration of the bacterial community (Figure 4B). All the strains were able to transmit
328 from seeds to seedlings but with variable success depending on the SynCom richness and
329 the seedling individual (Figure 4B, 5). Across the three SynComs, *Stenotrophomonas*
330 *rhizophila* was the most successful seedling colonizer (mean relative abundance = 30 to 36%),
331 followed by *Pantoea agglomerans* but only in the 6- and 8-strain SynComs (mean relative
332 abundance = 34 and 25%). In contrast, the strain *Pseudomonas fluorescens* 3 that was
333 dominant on seeds strongly decreased in abundance on seedlings (11 to 24%).
334
335 We analyzed the fate of each strain during the seed to seedling transmission across the three
336 SynComs and we grouped the strains in three categories: increasers, stable, decreasers
337 (Figure 5C). We identified four 'increaser' strains and three of them presented this positive
338 transmission pattern across the three SynComs (*Stenotrophomonas rhizophila*,
339 *Pseudomonas viridiflava*, *Paenibacillus* sp.). In contrast, four 'decreaser' strains were identified
340 with three of them with a consistent negative transmission pattern (*Pseudomonas fluorescens*
341 3, *Xanthomonas campestris*, *Plantibacter* sp.). Finally, four strains presented a stable
342 transmission or a variable profile depending on the inoculated SynCom. For instance, *Pantoea*
343 *agglomerans* and *Enterobacter cancerogenus* had a stable transmission in the 6- or 8-strain
344 SynComs, but decreased in the 12-strain SynCom. Interestingly, the 4 strains of
345 *Pseudomonas fluorescens* tested presented contrasted transmission patterns or abundance
346 profiles and were found in the three categories (increaser, stable or decreaser). Another
347 interesting result was that the four strains identified as "increasers" were not the best seed
348 colonizers after inoculation (Figure 5A, 5B). Inversely, some of the best seed colonizers
349 (*Pseudomonas fluorescens* 3) were identified as "decreasers" on seedlings, indicating
350 contrasted strain fitness depending on the plant phenological stage.
351 We also analyzed the influence of the SynCom composition on the ability of each strain to
352 colonize seedlings compared to their initial relative abundance on seeds (i.e ratio of relative
353 abundance seedling / seed, Figure 5D). We observed that the SynCom richness strongly
354 influenced the abundance patterns of the strains. Most strains had a lower seedling
355 colonization in the 12-strain SynCom (e.g. *Pantoea agglomerans*, *Enterobacter*
356 *cancerogenus*), with the exception of *Stenotrophomonas rhizophila* (Figure 5D). Some strains
357 had a higher seedling colonization in the 6-strain SynCom than the 8-strain SynCom
358 (*Pseudomonas viridiflava*, *Paenibacillus* sp, *Stenotrophomonas rhizophila*). Altogether, these
359 results indicate strong fitness differences between strains in the seed and seedling habitat,
360 that is highly dependent on the surrounding community.
361

362
363
364
365
366
367


Figure 5: A. Relative abundance patterns of each strain during the transmission from inoculum to seed (A) and from seed to seedling (C) in synthetic bacterial communities. B. Ability of each strain to colonize: (B) seeds compared to their initial relative abundance in the inocula: ratio of relative abundance seed / inoculum, and (D) seedlings compared to their initial relative abundance on seeds: ratio of relative abundance seedling / seed.

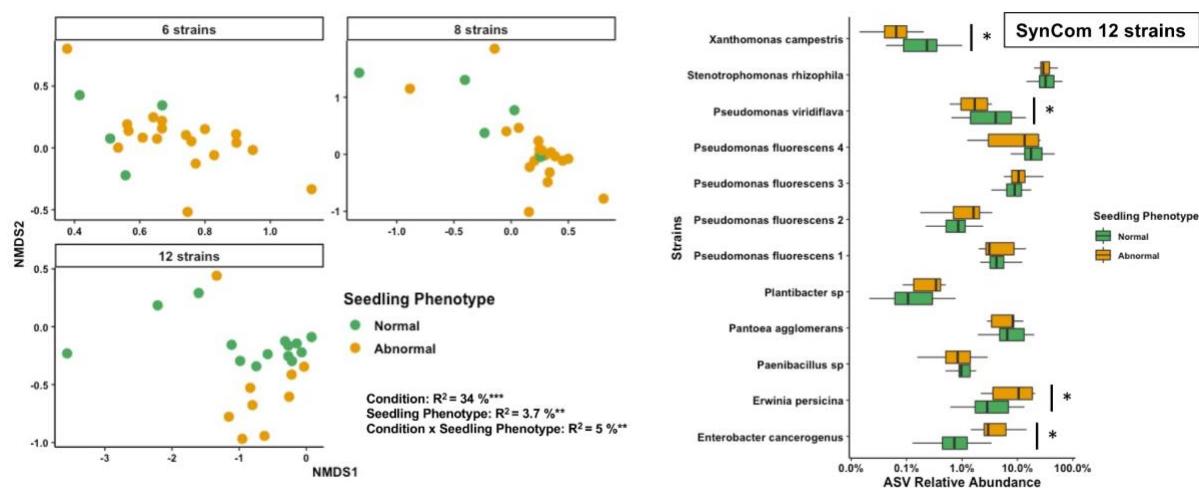
368

3. Effect of single bacterial strains or synthetic communities on seedling phenotype
a. Some strains and SynComs increase the proportion of abnormal seedlings and non-germinated seeds

373

The impact of the inoculation of single strains or SynComs on seedling phenotypes was assessed based on the proportion of non-germinated seeds, normal and abnormal seedlings observed (Figure 6). In the control condition, we observed a low proportion of non-germinated (7%) and abnormal seedlings (7%). Several individual strains and the three SynComs caused detrimental effects on germination and seedling phenotypes. In particular, *Pseudomonas viridiflava*, *Paenibacillus sp* and two of the SynComs (6 and 8 strains) presented large proportions of abnormal seedlings (60 to 73%). The conditions that had the highest proportion of non-germinated seeds were the strains *Enterobacter cancerogenus* (21%), *Xanthomonas campestris* (20%), *Pantoea agglomerans* (20%) and the three SynComs (17 to 20%). The conditions that presented the highest proportion of normal seedlings were *Stenotrophomonas rhizophila* (90%), *Plantibacter sp* (87%) and the four *Pseudomonas fluorescens* strains (73 to 90%).

386
387
388
389


Figure 6: A) Effect of the inoculation of single bacterial strains or synthetic bacterial community on germination and seedling phenotypes. B) Photography of the typical phenotypes observed in the experiment (Credit: Guillaume Chesneau).

390

b. Modifications in the composition of seedling microbiota between normal and abnormal seedlings

391
392
393
394
395
396
397
398
399
400

Next, we analyzed if the seedling bacterial community structure was different depending on the seedling phenotype (Figure 7A). The seedling phenotype was a significant driver of seedling microbiota, especially in the 12-strain SynCom (interaction Condition x Phenotype, $P=0.006$), for which the number of normal and abnormal seedlings was more balanced (14 normal vs 10 abnormal). In the 12-strain SynCom, we analyzed if some strains had a significantly higher or lower relative abundance in abnormal seedlings (Figure 7B). The strains *Enterobacter cancerogenus* and *Erwinia persicina* were more abundant in abnormal seedlings, while *Pseudomonas viridiflava* and *Xanthomonas campestris* were less abundant.

401
402
403
404
405

Figure 7: Influence of seedling phenotype (normal or abnormal) on A) bacterial community structure (stress=0.17) and B) on the strain relative abundance on the 12-strain SynCom. The asterisks represent the significance of the Permanova test or post-hoc Tukey test: * $P<0.05$; ** $P<0.01$; * $P<0.001$.**

406 **DISCUSSION**

407

408 **Community- and strain-specific patterns of seedling transmission of seed-borne**
409 **bacteria**

410 Using inoculation experiments of bacterial SynComs, we studied the relative ability of
411 communities composed of diverse strains naturally present in radish seed microbiota to
412 colonize seedlings. All SynComs and the individual strains were able to colonize seedlings at
413 high cell density levels, indicating their capacity to survive the major environmental changes
414 that represent germination and seedling emergence compared to the seed habitat. The
415 SynComs inoculations enabled to successfully reconstruct a richness gradient (6, 8 and 12
416 strains) on both seeds and seedlings and to significantly modulate plant microbiota
417 composition. An important result was that SynCom inoculation allowed to strongly reduce the
418 natural variability of seed and seedling microbiota structure (beta-dispersion) and obtain more
419 homogeneous microbial community compositions between replicates compare to native
420 communities (Moroenyane *et al.* 2021; Walsh *et al.* 2021). This is a prerequisite to study the
421 transmission of microorganisms from seed to seedling and establish causal relationship
422 between seed microbiota and plant microbiota or phenotype. The inoculation of the three
423 different SynComs on seeds led to the assembly of significantly distinct seedling bacterial
424 communities at the expected richness levels. However, the relative abundance of the strains
425 changed drastically from the inocula to seeds and then to seedlings. Some strains like
426 *Pseudomonas fluorescens* 3 were excellent seed colonizers, while others had a reduced
427 abundance compared to the inocula (ex: *Stenotrophomonas rhizophila*). These differences in
428 seed colonization can be due to contrasted adhesion capacity of strains related to the
429 secretion of large adhesins (i.e LapA, LapF) and the presence of flagella (DeFlaun *et al.* 1994;
430 Yousef-Coronado, Travieso and Espinosa-Urgel 2008; Duque *et al.* 2013).

431 Interestingly, the best seed colonizers were not the best seedling colonizers. On the opposite,
432 all the strains that declined during the inocula-seed transition phase increased in the seed-
433 seedling transition (i.e "increasers"). In particular, *Stenotrophomonas rhizophila* became
434 dominant on seedlings of the three SynComs. These results indicate that the bacterial traits
435 required to colonize seeds or seedlings are different. Moreover, these findings show that being
436 dominant on seeds does not provide an advantage to become dominant on seedlings. These
437 findings are in line with Rochefort *et al.* (2021) and Chesneau *et al.* (2022) demonstrating a
438 low transmission success of abundant seed taxa to seedlings in natural microbial
439 communities.

440 Additionally, we observed that SynCom richness influenced the seedling transmission of the
441 strains, indicating an important role of biotic interactions in seedling microbiota assembly. The
442 ability of each strain to colonize seedlings compared to their initial relative abundance on
443 seeds (i.e ratio of relative abundance seedling / seed) was strongly modified depending on
444 the SynCom considered. For instance, *Pantoea agglomerans* had a positive seedling
445 colonization success in the 6- and 8-strain SynComs and a negative one in the 12-strain
446 SynCom. These SynCom-specific patterns of each strain are likely driven by exploitative and
447 interference competition between individuals but the specific mechanisms involved here are
448 difficult to identify in a community context *in planta* (Hibbing *et al.* 2010; Granato, Meiller-
449 Legrand and Foster 2019).

450 Our experiments included four different strains of *Pseudomonas fluorescens* to compare the
451 intra-specific patterns of seedling transmission. Both seed and seedling colonization patterns
452 were highly strain-specific. We observed all possible outcomes depending on the
453 *Pseudomonas fluorescens* strain considered (increasers, stable or decreases). This result

454 suggests important differences between strains in traits involved in habitat colonization and
455 competitive interactions, that prevent any generalization of these observations at the species
456 level.

457 Altogether, these results show that SynCom inoculation can effectively manipulate seed and
458 seedling microbiota diversity and highlight strong fitness differences between native seed-
459 borne taxa in the colonization of these habitats.

460

461 ***Detrimental effects of seed-borne bacteria on seedling phenotype***

462 We observed that individual seed-borne bacteria or synthetic bacterial communities can
463 impact germination and seedling morphology. Some seed-borne strains and SynComs had
464 detrimental effects on germination and seedling development. In isolation *Pseudomonas*
465 *viridiflava* and *Paenibacillus* sp strongly increased the proportion of abnormal seedlings.
466 *Pseudomonas viridiflava* is a very common plant-associated bacteria with various life-styles
467 (endophytes, epiphytes, saprotrophs) that can also be pathogenic to a large diversity of hosts
468 (Lipps and Samac 2022). *Pseudomonas viridiflava* is frequently seed-transmitted and can
469 cause germination arrest or symptoms on seedlings, including in radish (Shakya and Vinther
470 1989; Samad *et al.* 2017). *Paenibacillus* strains are mainly recognised for their biocontrol
471 capacities against various bacterial or fungal pathogens (Ryu *et al.* 2006; Ling *et al.* 2011),
472 but one report indicate root damages caused by this bacteria under gnotobiotic conditions like
473 in our study (Rybalkova *et al.* 2016). Another important observation was that the three bacterial
474 strains identified as seed core taxa (*Pseudomonas viridiflava*, *Pantoea agglomerans*, *Erwinia*
475 *persicina*) were associated with detrimental effects on seedling phenotypes either in isolation
476 or in SynComs. These results confirm that the plant core microbiome includes pathogens and
477 opportunistic pathogens and not only commensal or mutualistic taxa (Simonin *et al.* 2020).

478 Abnormal seedling phenotypes were also observed with SynComs but their proportions
479 decreased at the highest richness level (12 strains). This observation could be explained by a
480 "dilution" of the negative effects of the detrimental strains as the diversity increased and their
481 relative abundances decreased. Still surprisingly, the strains enriched in abnormal seedlings
482 in the 12-strain SynCom had not been identified as detrimental in isolation (*Enterobacter*
483 *cancerogenus* and *Erwinia persicina*). Furthermore, we found that *Pseudomonas viridiflava*
484 and the seed-borne pathogen *Xanthomonas campestris* were even reduced in abundance in
485 abnormal seedlings in this condition. We can propose different hypotheses to explain these
486 results. One is that the strains responsible for the abnormal phenotypes are different when
487 inoculated in a community (*Enterobacter cancerogenus* and *Erwinia persicina*) or in isolation
488 (*Pseudomonas viridiflava* and *Paenibacillus*). Another hypothesis is that *Enterobacter*
489 *cancerogenus* and *Erwinia persicina* are opportunistic taxa that are enriched in abnormal
490 seedlings (e.g necrotrophy or "cry for help" of the plant) but are not responsible for the altered
491 phenotype.

492 Additionally, we show that the inoculation of multiple strains with potential pathogenic effects
493 (i.e pathobiome) do not have additive effects that could have led to an absence of germination
494 or 100% of abnormal seedlings. The reduction of detrimental effects in the 12-strain SynCom
495 experimentally confirms the importance of bacterial interactions in plant disease development
496 in a pathobiome context (Bass *et al.* 2019). Increasing microbial interactions with higher
497 SynCom diversity is a promising leverage for reducing the impact of deleterious bacterial
498 strains.

499 Further research is needed to determine the functional role of these seed core taxa especially
500 during seed development and the conditions of expression of their detrimental effects under
501 natural conditions.

502 Altogether, these results indicate that this synthetic ecology approach is valuable to better
503 understand the role of seed microbiota for plant health and the context dependency of disease
504 expression in a community setting. This approach permitted identifying several seed core
505 bacteria with detrimental effects on germination and seedlings but also to characterize the
506 transmission success of diverse bacterial strains (i.e. increasers, stable, decreasers) to
507 seedlings in three community contexts.

508

509 REFERENCES

510 Barret M, Briand M, Bonneau S *et al.* Emergence Shapes the Structure of the Seed Microbiota. *Appl Environ Microbiol* 2015;81:1257–66.

511 Bass D, Stentiford GD, Wang H-C *et al.* The Pathobiome in Animal and Plant Diseases. *Trends Ecol Evol* 2019;34:996–1008.

512 Bintarti AF, Sulesky-Grieb A, Stopnisek N *et al.* Endophytic Microbiome Variation Among 513 Single Plant Seeds. *Phytobiomes J* 2021;PBIOMES-04-21-0030-R.

514 Callahan BJ, McMurdie PJ, Rosen MJ *et al.* DADA2: High-resolution sample inference from 515 Illumina amplicon data. *Nat Methods* 2016;13:581–3.

516 Carlström CI, Field CM, Bortfeld-Miller M *et al.* Synthetic microbiota reveal priority effects and 517 keystone strains in the *Arabidopsis* phyllosphere. *Nat Ecol Evol* 2019;3:1445–54.

518 Chesneau G, Laroche B, Préveaux A *et al.* Single Seed Microbiota: Assembly and 519 Transmission from Parent Plant to Seedling. *mBio* 2022;0:e01648-22.

520 Chesneau G, Torres-Cortes G, Briand M *et al.* Temporal dynamics of bacterial communities 521 during seed development and maturation. *FEMS Microbiol Ecol* 2020;96, DOI: 522 10.1093/femsec/fiaa190.

523 DeFlaun MF, Marshall BM, Kulle E-P *et al.* Tn 5 insertion mutants of *Pseudomonas* 524 *fluorescens* defective in adhesion to soil and seeds. *Appl Environ Microbiol* 525 1994;60:2637–42.

526 Duque E, de la Torre J, Bernal P *et al.* Identification of reciprocal adhesion genes in pathogenic 527 and non-pathogenic *Pseudomonas*. *Environ Microbiol* 2013;15:36–48.

528 Figueiredo dos Santos L, Fernandes Souta J, de Paula Soares C *et al.* Insights into the 529 structure and role of seed-borne bacteriome during maize germination. *FEMS Microbiol Ecol* 530 2021;97:fiab024.

531 Finkel OM, Salas-González I, Castrillo G *et al.* A single bacterial genus maintains root growth 532 in a complex microbiome. *Nature* 2020;587:103–8.

533 Granato ET, Meiller-Legrand TA, Foster KR. The Evolution and Ecology of Bacterial Warfare. 534 *Curr Biol* 2019;29:R521–37.

535 Hibbing ME, Fuqua C, Parsek MR *et al.* Bacterial competition: surviving and thriving in the 536 microbial jungle. *Nat Rev Microbiol* 2010;8:15–25.

537 Kwak M-J, Kong HG, Choi K *et al.* Rhizosphere microbiome structure alters to enable wilt 538 resistance in tomato. *Nat Biotechnol* 2018;36:1100–9.

539 Lahti L, Shetty S, Blake T. Tools for microbiome analysis in R. *Microbiome Package Version* 540 099 2017;88:2012–7.

541 Lamichhane JR, Debaeke P, Steinberg C *et al.* Abiotic and biotic factors affecting crop seed 542 germination and seedling emergence: a conceptual framework. *Plant Soil* 2018;432:1– 543 28.

544 Ling N, Huang Q, Guo S *et al.* *Paenibacillus polymyxa* SQR-21 systemically affects root 545 exudates of watermelon to decrease the conidial germination of *Fusarium oxysporum* 546 *f.sp. niveum*. *Plant Soil* 2011;341:485–93.

547 Lipps SM, Samac DA. *Pseudomonas viridisflava*: An internal outsider of the *Pseudomonas* 548 *syringae* species complex. *Mol Plant Pathol* 2022;23:3–15.

549 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 550 *EMBnet.journal* 2011;17:10–2.

551 McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and 552 graphics of microbiome census data. *PloS One* 2013;8:e61217.

553 554

555 Moroenyane I, Tremblay J, Yergeau É. Soybean Microbiome Recovery After Disruption is
556 Modulated by the Seed and Not the Soil Microbiome. *Phytobiomes J* 2021;5:418–31.
557 Mundt JO, Hinkle NF. Bacteria within ovules and seeds. *Appl Environ Microbiol* 1976;32:694–
558 8.
559 Newcombe G, Harding A, Ridout M et al. A Hypothetical Bottleneck in the Plant Microbiome.
560 *Front Microbiol* 2018;9, DOI: 10.3389/fmicb.2018.01645.
561 Oksanen J, Kindt R, Legendre P et al. The vegan package. *Community Ecol Package* 2007.
562 Rochefort A, Briand M, Marais C et al. Influence of Environment and Host Plant Genotype on
563 the Structure and Diversity of the *Brassica napus* Seed Microbiota. *Phytobiomes J*
564 2019;3:326–36.
565 Rochefort A, Simonin M, Marais C et al. Transmission of Seed and Soil Microbiota to Seedling.
566 *mSystems* 2021;6:e00446-21.
567 Rybakova D, Schmuck M, Wetzlinger U et al. Kill or cure? The interaction between endophytic
568 *Paenibacillus* and *Serratia* strains and the host plant is shaped by plant growth
569 conditions. *Plant Soil* 2016;405:65–79.
570 Ryu C-M, Kim J, Choi O et al. Improvement of biological control capacity of *Paenibacillus*
571 *polymyxa* E681 by seed pelleting on sesame. *Biol Control* 2006;39:282–9.
572 Samad A, Antonielli L, Sessitsch A et al. Comparative genome analysis of the vineyard weed
573 endophyte *Pseudomonas viridiflava* CDRTc14 showing selective herbicidal activity.
574 *Sci Rep* 2017;7:17336.
575 Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity,
576 transmission, and assembly. *Curr Opin Microbiol* 2017;37:15–22.
577 Shakya DD, Vinther F. Occurrence of *Pseudomonas viridiflava* in Seedlings of Radish. *J*
578 *Phytopathol* 1989;124:123–7.
579 Simonin M, Briand M, Chesneau G et al. Seed microbiota revealed by a large-scale meta-
580 analysis including 50 plant species. *New Phytol* 2022;234:1448–63.
581 Simonin M, Dasilva C, Terzi V et al. Influence of plant genotype and soil on the wheat
582 rhizosphere microbiome: evidences for a core microbiome across eight African and
583 European soils. *FEMS Microbiol Ecol* 2020;96, DOI: 10.1093/femsec/fiaa067.
584 Torres-Cortés G, Garcia BJ, Compart S, Rezki S, Jones P, Préveaux A et al. Differences in
585 resource use lead to coexistence of seed-transmitted microbial populations. *Sci Rep*
586 2019; 9(1), 6648.
587 Walsh CM, Becker-Uncapher I, Carlson M et al. Variable influences of soil and seed-
588 associated bacterial communities on the assembly of seedling microbiomes. *ISME J*
589 2021;15:2748–62.
590 Wang Q, Garrity GM, Tiedje JM et al. Naïve Bayesian Classifier for Rapid Assignment of rRNA
591 Sequences into the New Bacterial Taxonomy. *Appl Environ Microbiol* 2007;73:5261–
592 7.
593 Yousef-Coronado F, Travieso ML, Espinosa-Urgel M. Different, overlapping mechanisms for
594 colonization of abiotic and plant surfaces by *Pseudomonas putida*. *FEMS Microbiol*
595 *Lett* 2008;288:118–24.
596

597 ACKNOWLEDGEMENTS

598 The authors are grateful to Guillaume Chesneau, Gloria Torres-Cortes and Samir Rezki that
599 produced several radish seed microbiota datasets used in the meta-analysis performed. We
600 thank Emmanuelle Laurent and Vincent Odeau (FNAMS) for field crop management and the
601 production of the initial seed samples used in this study. We thank Muriel Bahut (ANAN
602 platform, SFR Quasav) for amplicon sequencing.

603 The authors declare that they have no conflicts of interest.

604 FUNDING

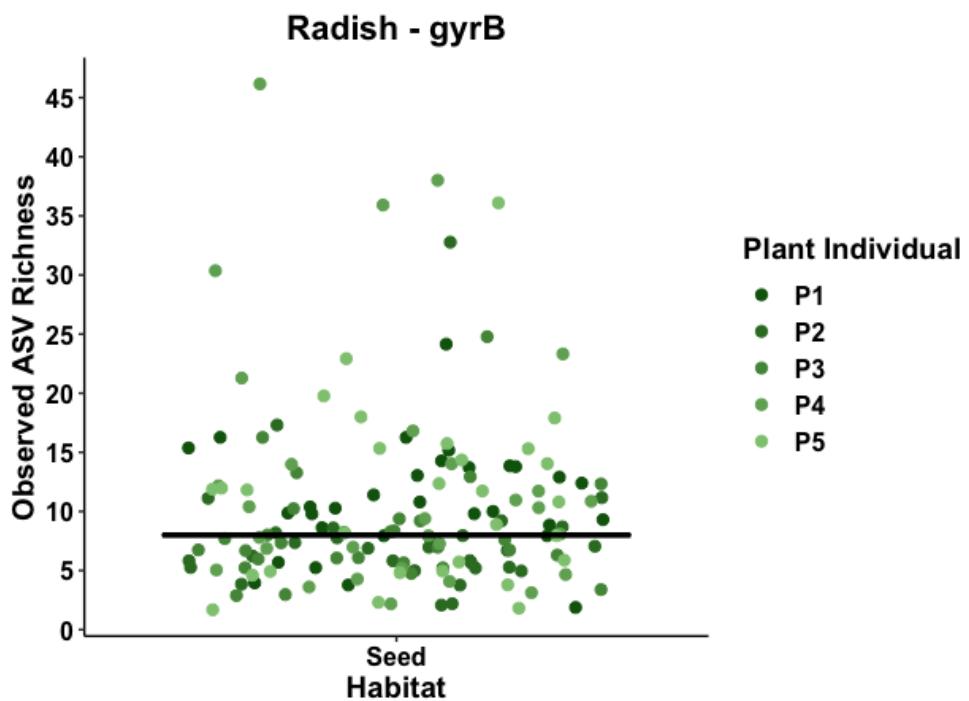
605 This work was supported by the French National Research Agency [ANR-17-CE20-0009-
606 01].

608

609 DATA AVAILABILITY

610 The raw amplicon sequencing data are available on the European Nucleotide Archive (ENA)
611 with the accession number PRJEB58635.

612 All the scripts (bioinformatics, analyses, figures) and datasets used to conduct the study are
613 available on GitHub (https://github.com/marie-simonin/Radish_SynCom).


614

615

616

617 SUPPLEMENTARY INFORMATION

618

619

620 **Figure S1:** Observed ASV richness of individual mature seeds of radish (Flamboyant5). The
621 data were obtained from Chesneau et al. (2022) based on 149 seeds analyzed. The horizontal
622 line represents the median value at 8 ASVs per seed.

623