

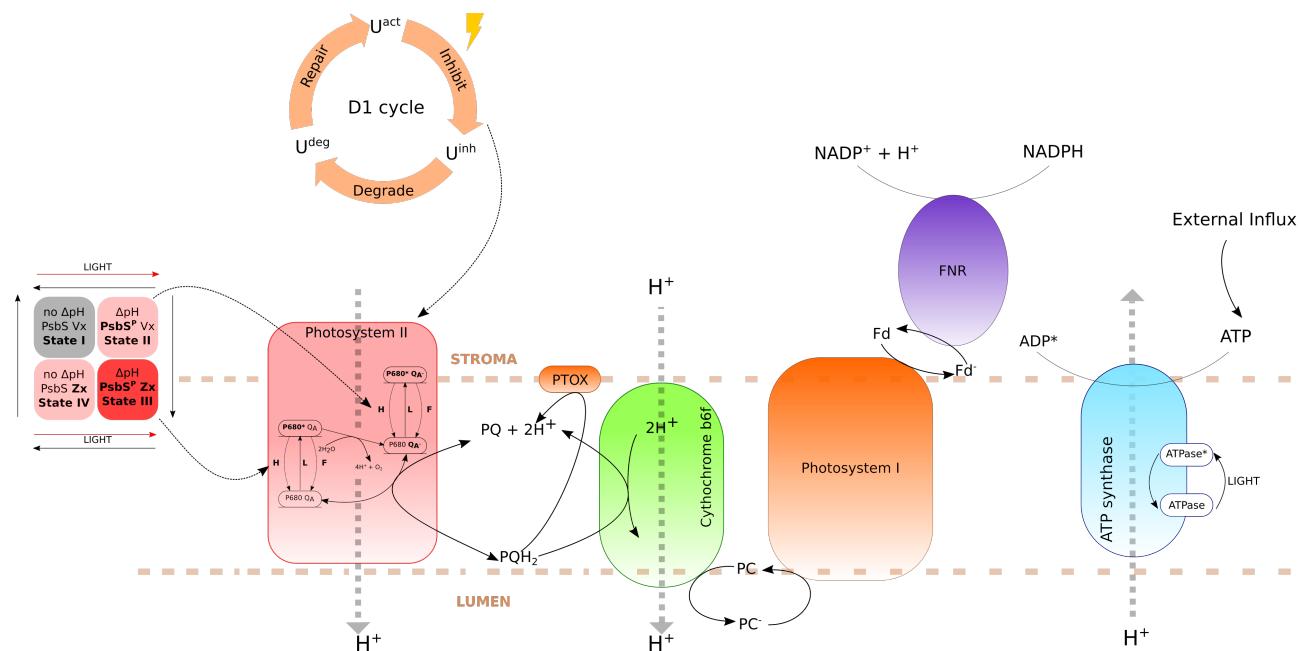
A mathematical model of photoinhibition: exploring the impact of quenching processes

Tim Nies ¹, Shizue Matsubara ^{2,3}, and Oliver Ebenhöh ^{1,3}

¹ Institute of Quantitative and Theoretical Biology, Heinrich Heine University Düsseldorf, 40225, Universitätsstraße 1, Düsseldorf, Germany; ² IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany; ³ Cluster of Excellence on Plant Sciences

Plants are constantly exposed to changing environments, sometimes leading to extreme conditions and stress. For example, sudden exposure to high light leads to excess absorbed light energy, causing reactive oxygen species (ROS) formation. ROS damage the photosynthetic machinery, particularly the D1 protein in photosystem II (PSII), which therefore needs to be continuously repaired and replaced. The effect of the damage inflicted by high light is a prolonged decrease in photosynthetic efficiency. Hence, it is not surprising that photoinhibition has been subject to numerous experimental studies investigating its effects in the context of crop productivity. However, it has become apparent that classical measures of photoinhibition, i.e., changes in the chlorophyll fluorescence parameter F_v/F_m , are not only determined by the loss of PSII core function but also by processes such as energy transfer and quenching. Mathematical models can help dissect the influences on such fluorescence signals and quantify the contributions of various interacting mechanisms. We present a mathematical model with a dynamic description of the photosynthetic electron transport chain (PETC), non-photochemical quenching, and photoinhibition. With our model, we investigate the interconnection between quenching, photoprotection, and fluorescence using simulations and experimental data. We found that different energy-dissipating properties of intact and damaged PSIIs, as well as energy transfer between PSIIs, are critical components that need to be included in the model to ensure a satisfactory fit to the experimental data. We envisage that our model provides a framework for future investigations of photoinhibition dynamics and its importance for plant growth and yield.

Photoinhibition | fluorescence | quenching | mathematical model


Correspondence: oliver.ebenhoech@hhu.de; tim.nies@hhu.de

1 Introduction

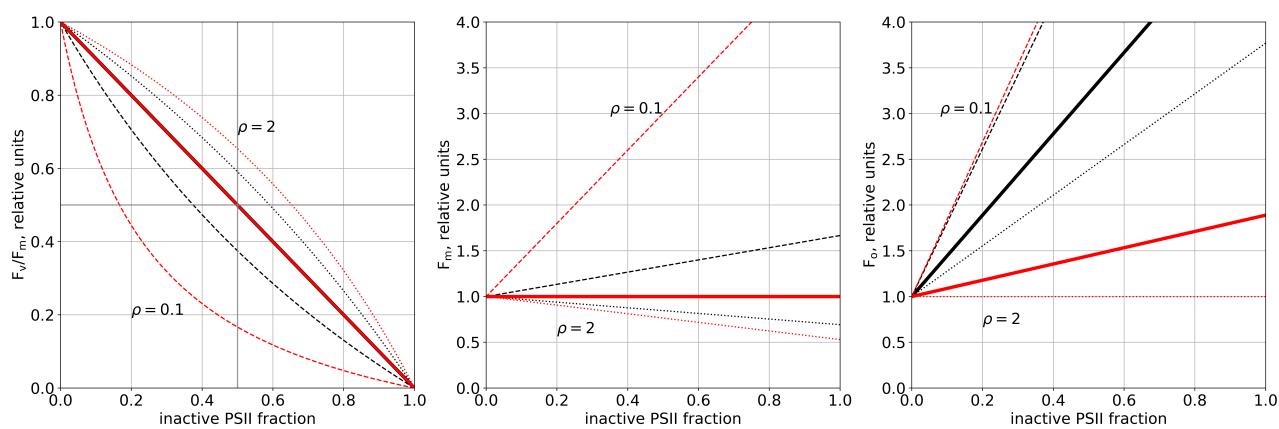
2 Photosynthesis is one of the main processes that make
3 energy available to the biosphere [16]. By capturing
4 light, photosynthetic organisms convert solar energy
5 into usable chemical energy, which is then used to
6 drive metabolic processes, including the formation of
7 biomass. Plants, algae, and other photosynthetic or-
8 ganisms exist in a wide range of environments, rang-
9 ing from deserts to tropical forests. These environ-
10 ments can exhibit drastically and rapidly changing
11 external conditions, considering, e.g. light intensity,
12 temperature, and humidity. Plants, as sessile organ-
13 isms, must adapt to the conditions they are exposed
14 to [11]. However, such fluctuating conditions make
15 the coordination of the photosynthetic electron trans-
16 port chain (PETC), supplying light energy in the form
17 of ATP and NADPH, and the Calvin Benson Bassham
18 cycle (CBB cycle), which uses ATP and NADPH
19 to sequester CO_2 , a challenging task [28]. Antenna
20 complexes in chloroplast thylakoid membranes collect
21 light energy and channel it to the reaction centers of
22 the PETC. This captured energy is used to drive pho-
23 tochemistry, but the excited states can also dissipate
24 energy as heat or re-emit it as fluorescence [26]. Due
25 to variations in external conditions, the light energy
26 supply can frequently exceed the demand, which leads
27 to the formation of reactive oxygen species (ROS) at
28 multiple sites of the PETC. ROS are highly reactive
29 compounds that can damage the molecular machinery
30 of the PETC [12].

31 The photodamage induced by ROS affects various
32 proteins, with the D1 subunit of photosystem II
33 (PSII) being the most susceptible. In fact, with a
34 turnover rate of $> 0.5 \text{ d}^{-1}$, the D1 subunit exhibits
35 one of the shortest protein lifetimes in the PETC [18].
36 For functional photosynthesis, it is therefore essential
37 that this protein is constantly resynthesized and re-
38 placed. This is realized by the so-called D1 protein re-
39 pair cycle, which involves the degradation and syn-
40 thesis of damaged D1 protein. This cycle has a very high
41 energy demand, with an estimated 1304 ATP per sub-
42 unit repaired [27]. Despite considerable advances in
43 our understanding of photoinhibition, the exact mech-
44 anism of how high-light stress inflicts damage on the
45 photosynthetic machinery is still under debate, and
46 various hypotheses have been proposed [45].

47 Classically, photoinhibition is quantified by measur-

Figure 1. Schematic depiction of the model of photoinhibition (compare also [6, 22]). Not shown for clarity but included are the cyclic electron flows around photosystem I.

48 ing F_v/F_m after prolonged exposure to strong irradiance. This was justified because of the almost linear relationship between F_v/F_m and the loss of photosynthetic O_2 evolution (see, e.g. [31]). It has recently become increasingly apparent that the F_v/F_m , derived from the fluorescence signal, might not be ideal for assessing photoinhibition. The fluorescence signal that a photosynthetic tissue, such as a leaf, emits is influenced by multiple factors, such as non-photochemical quenching, the efficiency of photochemistry, and the three-dimensional structure of the leaf. Hence, F_v/F_m might be determined not only by the loss of the PSII core function but also by other dissipating processes [20]. Moreover, also theoretical studies have suggested an inherently nonlinear relationship between inactive PSII and the fluorescence signal [7].


Over the last decades, various mathematical models of photosynthesis were developed [39]. Some of them focus on the PETC [6, 22, 44] or the CBB cycle [32, 33], and others try to integrate both into one mathematical description [25, 23, 36]. Other models focused on detailed processes in PSII [2]. Many of these models calculate how the fluorescence signal derives from the molecular processes of the PETC. Most of the calculations depend on equations that describe the fluorescence yield associated with closed and open reaction centers of PSII. The difference in how these models determine fluorescence yield primarily arises from different simplified or extended versions of these equations. These equations are based on the current understanding regarding the source of the fluorescence signal, derived from the work conducted during the last sixty years [10, 5, 14, 7, 3]. However, despite much effort, it still needs to be clarified which of the classical equa-

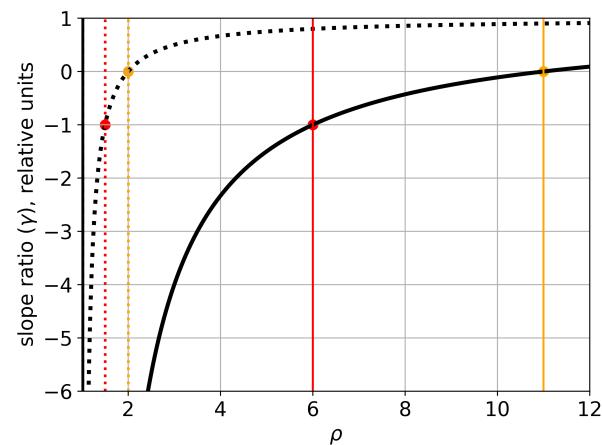
tions and which model representation of the thylakoid membrane (e.g., lake, single unit, domain model, see [3]) is most realistic.

Here we expanded a published model of the PETC and non-photochemical quenching (NPQ) [6, 22, 36] by integrating a mechanistic description of photoinhibition and the D1 repair cycle. For this, we build upon previous models of the D1 damage-repair cycle and an expansion of the energy transfer theory [7, 40, 31]. The goal of our model is to quantitatively reproduce experimental data measuring photodamage as changes in F_v/F_m , F_m , and F_o in wildtype *Arabidopsis thaliana* and the *npq1* mutant. The *npq1* mutant lacks violaxanthin de-epoxidase and, thus, zeaxanthin. Zeaxanthin has been shown to play a critical role in the induction of short- (qE) and long-term (qZ) quenching processes, potentially protecting against high light-induced damage [9, 29]. Our model provides a theoretical framework in which we discuss different formulations for the fluorescence yield based on previous work and assess how these agree with experimental data. In particular, we focus on the effects of different heat dissipation capabilities and quenching activities on the fluorescence signal under photoinhibition conditions. This work helps to clarify which processes contribute to the dynamic changes of photosynthesis under high-light stress. Moreover, we provide a quantitative and mechanistic explanation of the observed changes in F_v/F_m , F_o , and F_m during high light-induced photoinhibition.

Results

For our analysis, we constructed a mathematical model that combines the description of the PETC as

Figure 2. Relationship between F_v/F_m , F_m , and F_o and fraction of inactive photosystem II based on Eq. 6. The dashed, continuous, and dotted lines indicate scenarios in which the ratio of heat dissipation between inactive and active PSII is 0.1, 1, and 2, respectively. Black lines signify a low quenching, while red lines denote high quenching activity ($Q = 0.1$ and 1). Parameter values used for the calculations can be found in the supplement table S1


in [6, 22] and the D1 damage-repair cycle from [40] (for details, see Methods and Supplement). In the following, we describe the development of hypotheses about mechanistic aspects of the fluorescence signal during photoinhibition and compare model predictions with experimental observations. Guided by discrepancies between experiment and simulations, we iteratively refine our hypotheses to arrive at a realistic description of the fluorescence signal.

125 Experimental dynamics of fluorescence signals

126 The data (see Fig. S1) comprises F_v/F_m , F_m and F_o measurements for *Arabidopsis thaliana* wildtype and $npq1$ mutant plants for different exposure times to high light and with or without treatment with lincomycin, which inhibits chloroplast protein synthesis and thus the D1 repair (see Methods). The experimental data suggest that the $npq1$ mutant, which lacks violaxanthin de-epoxidase enzyme and thus cannot form zeaxanthin in the so-called xanthophyll cycle, reacts more sensitively to high-light stress in water (control) and lincomycin treatment. Fig. S1 shows that the relative reduction of F_m is generally more pronounced than the increase of F_o , indicating F_m to be the main factor determining the changes in F_v/F_m in this experiment. While the differences between the water and lincomycin treatment are clearly discernible for the wildtype and $npq1$ mutant in the F_m and F_v/F_m signal, this is not the case for F_o .

146 Changes in the F_v/F_m signal

147 We started our computational analysis with the most simple assumptions for the model extended with photo- 148 toinhibition: We assume that 1) the duration and 149 intensity of the high-light treatment determine the 150 amount of inactive PSII; 2) inactive PSII contributes 151 to fluorescence and has the same quenching proper- 152 ties as active PSII and; 3) there is no energy transfer 153 between active and inactive reaction centers. With 154

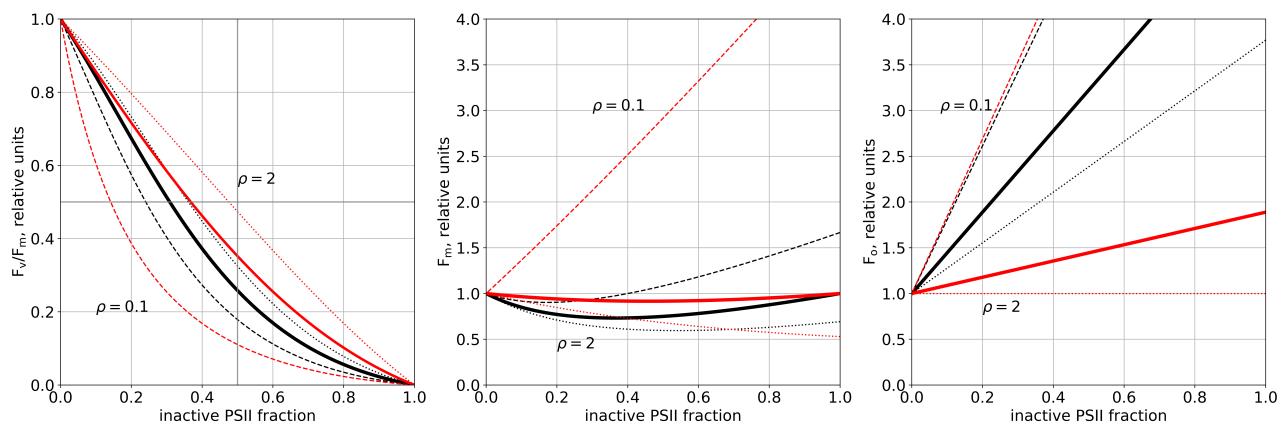


Figure 3. The slope ratio γ for model without energy transfer in a high (dotted line) and low quenching scenario (continuous line). Vertical lines indicate the points at which the slope ratio is -1 or 0 . Parameters are the same as for Fig. 2.

these assumptions, our model of photoinhibition cannot reproduce the experimentally observed data (see Fig. S1). The increase of F_o with prolonged high-light treatment is much higher than in the experiment, while there is only little or no effect for simulated F_m . Interestingly, the F_v/F_m signal can be described by the model, indicating that the F_v/F_m signal alone does not provide sufficient information to understand the underlying mechanisms.

Fluorescence signal in photoinhibition

Motivated by this observation, we modified our model similar to [7] by assuming that the fluorescence signal and heat dissipation properties of active and inactive PSII can differ. This means we relax assumption 2 stated above. To quantify the different behaviour, we introduce the parameter ρ as the ratio of heat dissipation rate constants between inactive and active states of PSII – see Eq.(6). This means that $\rho = 1$ corresponds to the previous model, $\rho < 1$ denotes a model in which inactive PSII dissipate heat less effectively and thus yield more fluorescence than active PSII, and $\rho > 1$ describes the opposite scenario.

Figure 4. Relationship between F_v/F_m , F_m , and F_o and fraction of inactive photosystem II based on Eq. 16. The dashed, continuous, and dotted lines indicate scenarios in which the ratio of heat dissipation between inactive and active PSII is 0.1, 1, and 2, respectively. Black lines signify a low quenching, while red lines denote high quenching activity ($Q = 0.1$ and 1). Parameter values used for the calculations can be found in the supplement table S1. Energy transfer was set to $8 \cdot 10^8 \text{ mmol}^{-1} (\text{mol Chl}) \text{ s}^{-1}$.

Using Eqs. (7) and (9), we can predict the qualitative changes of F_m and F_o as a response to photodamage:

F_m . To reproduce this behavior, the slope ratio must be negative, in the range between -1 and 0. For this, ρ must be constrained to the interval

$$\rho = \begin{cases} 0 < \rho < 1, & F_m \text{ increases, } F_o \text{ increases,} \\ 1 < \rho < \frac{k_P}{k_H \cdot Q} + 1, & F_m \text{ decreases, } F_o \text{ increases,} \\ \rho > \frac{k_P}{k_H \cdot Q} + 1, & F_m \text{ decreases, } F_o \text{ decreases,} \end{cases} \quad (1)$$

$$\frac{k_P}{2k_H \cdot Q} + 1 \leq \rho \leq \frac{k_P}{k_H \cdot Q} + 1. \quad (2)$$

Fig. 3 depicts the slope ratio for the parameter values in the model for two different quenching activities. In a low quenching scenario ($Q = 0.1$, solid line), the parameter ρ is predicted to lie in the range between 6 and 11. This means that, in order to reproduce the experimentally observed slope ratio, damaged PSII needs to dissipate heat with a rate at least six times larger than that at which intact PSII does. Similarly, in a high quenching scenario ($Q = 1$, dotted line) we find $1.5 \leq \rho \leq 2$, which means a one- to twofold faster heat dissipation for damaged vs. active PSII.

We used these constraints to fit our model to the experimental data. We find that the data could be considerably better explained than in the model with $\rho = 1$ (see Supplementary Figs. S2 and S3). With the parameter ρ in the range determined above, all qualitative features of the fluorescence traces could be reproduced. However, there are still quantitative discrepancies, which could not be resolved using this model.

We therefore expanded the model to include excitation energy transfer between closed active and damaged PSII, following the example in [7]. This leads to a modified formula to describe F_m , whereas the description for F_o remains the same as in the case without energy transfer (see Eqs. 17 and 18). Consequently, the relation between F_m and active PSII becomes nonlinear (see Fig. 4). The effect of an excitation energy transfer between active and inactive PSII leads to a faster decrease of the F_v/F_m value in response to lowering the active PSII fraction. Moreover,

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

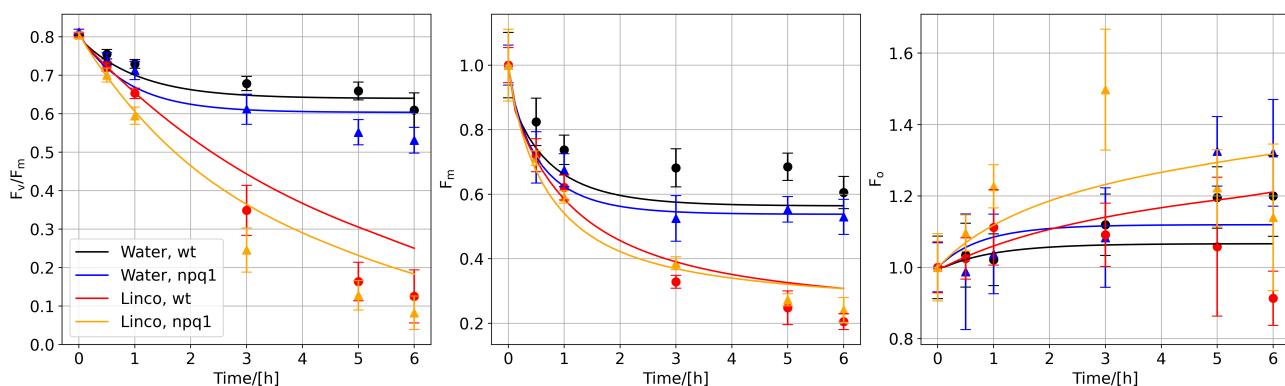
475

476

477

478

479


480

481

482

483

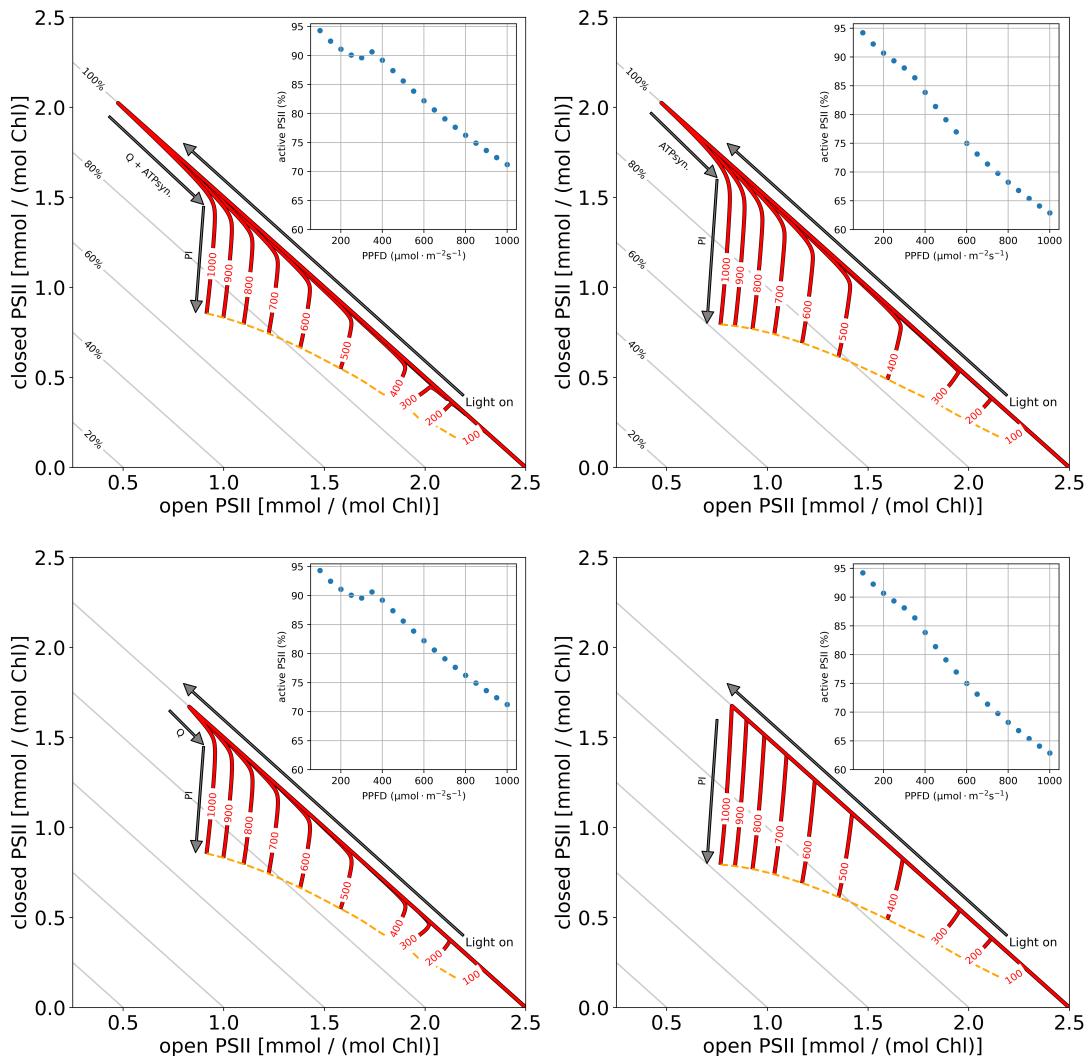
484

Figure 5. Experimental measurement and simulated changes in F_v/F_m , F_m , and F_o in high-light treatment of *A.thaliana* plants for 6 hours. The plants were either treated with water (black and blue lines) or lincomycin (red and orange line) inhibiting protein synthesis. Light intensity was $800 \mu\text{mol m}^{-2} \text{s}^{-1}$.

241 the effect of the energy transfer seems to be larger in a 242 low quenching than a high quenching state (compare 243 Figs. 2 and 4). Because the description of F_o does 244 not change compared to the isolated case, ρ and the 245 quencher activity are still the determining factor for 246 the behavior of F_o . However, the behavior of F_m is 247 a nonlinear function of the active PSII fraction, and 248 therefore a slope ratio can no longer be uniquely de- 249 fined.

250 Model predictions

251 Guided by comparison of model predictions and ex- 252 perimental data, we have iteratively refined a model 253 of the photosynthetic electron transport chain. The 254 resulting model includes the assumption that energy 255 quenching differs between active and damaged pho- 256 tosystems. Moreover, energy can be transferred from 257 active to damaged photosystems. This model version 258 can satisfactorily reproduce our experimental data for 259 *A. thaliana* (see Fig. 5). In the following, we employ 260 our model to make novel predictions how photoinhi- 261 bition affects key photosynthetic parameters.


262 **Quenching shifts the fraction of closed and open PSII** 263 **during photoinhibition.** To describe internal processes 264 of photosystem II, we used a simplified mathemati- 265 cal representation that has been applied successfully 266 for modeling fluorescence signal changes in connection 267 to state transition and non-photochemical quenching 268 [6, 22, 23]. This representation of PSII can be approx- 269 imated by a two-state system consisting of the open 270 and closed active PSII states.

271 Fig. 6 shows the changes of closed and open active 272 PSII states during exposure to various light intensi- 273 ties for four hours as phase-space trajectories. We 274 investigate four model versions with (right column) 275 and without (left column) dynamic quencher activ- 276 ity as well as with non-constantly (top row) and con- 277 stantly active (bottom row) ATP synthase. The ver- 278 sion with non-constantly active ATP synthase and 279 dynamic quencher is our original model (top left). 280 For all four versions, the phase-space provides infor- 281 mation about the different stages we observe during 282

the onset of photoinhibition. These stages are char- 283 acterised by the different time-scales on which they 284 operate. The simulation starts with a dark-adapted 285 state and, hence, with no closed PSII. When the light 286 is switched on, the system almost instantaneously 287 changes to a state where both closed, and open PSII 288 are present. The ratio of open to closed PSII depends 289 on the light intensity. A light intensity of around 1000 290 $\mu\text{mol m}^{-2} \text{s}^{-1}$ results in approximately 85% of PSII in 291 the closed state. This initial stage is driven by the 292 rapid processes in photosystem II.

293 The first stage is followed by the second stage, which 294 operates on a time-scale of seconds to minutes. In 295 this phase, two effects dominate. Firstly, ATP syn- 296 thase is activated (arrows marked as "Q + ATPsyn." 297 and "ATPsyn"). Secondly, the fast component of the 298 quencher is rapidly activated, leading to a slower ac- 299 tivation of PSII and thus a smaller fraction of closed 300 states (compare top row with bottom row). Com- 301 paring the left (dynamic quencher) and right (no 302 quencher) columns as well as the top (non-constantly 303 active ATP synthase) and bottom (constantly active 304 ATP synthase) rows of Fig. 6 illustrates the effect of 305 these two processes individually. In this stage, pho- 306 toinhibition starts to become active but photodamage 307 is still negligible.

308 This stage is followed by the slower stage of photoinhi- 309 bition, which extends over several hours. Here, the 310 active amount of PSII is gradually reduced due to 311 photodamage. In the phase-space this is reflected by 312 the downward pointing red lines. This phase contin- 313 ues until repair processes compensate for the extent 314 of the light-induced damage, indicated by the dashed 315 yellow lines. By comparing the four model versions 316 with and without a dynamic quencher and with non- 317 constantly and constantly active ATP synthase, it be- 318 comes apparent that quenching not only leads to more 319 open PSII but also reduces the extent of photodam- 320 age, visible by the shorter downward trajectories for 321 the model with active quencher. In our model simu- 322 lation and with our chosen parameters, the quenching 323 activity leads to almost 10% more active PSII after

Figure 6. phase-space of open (B_0) and closed (B_2) active PSII states during photoinhibition treatment in various light intensities ($100 - 1000 \mu\text{mol m}^{-2} \text{s}^{-1}$). Red lines indicate changes in open and closed PSII. The orange dashed line connects all points in the phase-space reached after 4 hours of light treatment. Grey lines indicate the fraction of total active PSII. Inset shows the fraction of active PSII as a function of applied light intensity at the end of the simulation. The top left and top right panel show the phase-space of a model version with and without a dynamic quencher. The bottom left and bottom right show the phase-space of a model version with and without a dynamic quencher and without ATP synthase activation.

324 four hours of light treatment with an intensity of 1000 336
 325 $\mu\text{mol m}^{-2} \text{s}^{-1}$ (see inset in Fig. 6).

336 was simulated until it reached a steady state. Fig. 7
 337 displays the computed steady state photoinhibition
 338 rate.

326 **Steady state photoinhibition analysis.** We observed that
 327 dynamic quenching, associated with PsbS and the 339
 328 xanthophyll cycle (Fig. 5), is a key determinant for 340
 329 the extent of high-light stress-induced photodamage. 341
 330 We employed our model to systematically analyze the 342
 331 connection between quenching and the steady-state 343
 332 behavior for different light intensities. For this, rate 344
 333 constants associated with non-photochemical quench- 345
 334 ing were set to zero, and the quenching activity was 346
 335 fixed to be a constant value. Subsequently, the system 347

348 In low quenching regimes, we observe a slightly sig-
 349 moidal transition between high and low photoinhibi-
 350 tion rates with increasing light intensities. For very
 351 low quenching activities, the photoinhibition rate in-
 352 creases quickly, having a disproportionately high in-
 353 crease at around $400 \mu\text{mol m}^{-2} \text{s}^{-1}$. This demon-
 354 strates that small light intensity changes can al-
 355 ready have strong photoinhibitory effects in low light
 356 regimes. By contrast, when quenching is active, we

348 observe a smooth transition from low to high-light 376
349 intensities, indicating greater tolerance against high- 377
350 light stress. 378
379
380

351 Discussion & Conclusions 381

352 We have presented a model of the PETC inte- 382
353 grating non-photochemical quenching and photoin- 383
354 hibitory processes. The model aims to a) investigate 384
355 how fluorescence signals (F_m and F_o) in response to 385
356 photoinhibition can be explained, b) explore which 386
357 assumptions are sufficient to reproduce experimental 387
358 data, c) study the effects of different modes of en- 388
359 ergy quenching, and d) quantify stationary photoin- 389
360 hibitory rates. To do so, we followed a reductionist 390
361 approach. Our initial model version of photodamage 391
362 in the PETC was built on the simple assumptions 392
363 that 1) photoinhibition is proportional to intensity 393
364 and duration of light treatment, 2) there is no dif- 394
365 ference between heat dissipation properties of active 395
366 and damaged photosystems, and 3) there is no energy 396
367 transfer between photosystems. However, this 397
368 version could not reproduce the experimental data; see 398
369 Fig. S1. Motivated by differences between simulations 399
370 and experimental data, we systematically increased 400
371 the complexity of the model representation by firstly 401
372 introducing differences in heat dissipation properties 402
373 of active and inactive photosystems (Fig. 2) and sec- 403
374 ondly an energy transfer between closed active and 404
375 inactive photosystems in the description of the fluo- 405
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
80297
80298
80299
80300
80301
80302
80303
80304
80305
80306
80307
80308
80309
80310
80311
80312
80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
80349
80350
80351
80352
80353
80354
80355
80356
80357
80358
80359
80360
80361
80362
80363
80364
80365
80366
80367
80368
80369
80370
80371
80372
80373
80374
80375
80376
80377
80378
80379
80380
80381
80382
80383
80384
80385
80386
80387
80388
80389
80390
80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
80408
80409
80410
80411
80412
80413
80414
80415
80416
80417
80418
80419
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
80435
80436
80437
80438
80439
80440
80441
80442
80443
80444
80445
80446
80447
80448
80449
80450
80451
80452
80453
80454
80455
80456
80457
80458
80459
80460
80461
80462
80463
80464
80465
80466
80467
80468
80469
80470
80471
80472
80473
80474
80475
80476
80477
80478
80479
80480
80481
80482
80483
80484
80485
80486
80487
80488
80489
80490
80491
80492
80493
80494
80495
80496
80497
80498
80499
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
80520
80521
80522
80523
80524
80525
80526
80527
80528
80529
80530
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
80550
80551
80552
80553
80554
80555
80556
80557
80558
80559
80560
80561
80562
80563
80564
80565
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
80584
80585
80586
80587
80588
80589
80590
80591
80592
80593
80594
80595
80596
80597
80598
80599
80600
80601
80602
80603
80604
80605
80606
80607
80608
80609
80610
80611
80612
80613
80614
80615
80616
80617
80618
80619
80620
80621
80622
80623
80624
80625
80626
80627
80628
80629
80630
80631
80632
80633
80634
80635
80636
80637
80638
80639
80640
80641
80642
80643
80644
80645
80646
80647
80648
80649
80650
80651
80652
80653
80654
80655
80656
80657
80658
80659
80660
80661
80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
80677
80678
80679
80680
80681
80682
80683
80684
80685
80686
80687
80688
80689
80690
80691
80692
80693
80694
80695
80696
80697
80698
80699
80700
80701
80702
80703
80704
80705
80706
80707
80708
80709
80710
80711
80712
80713
80714
80715
80716
80717
80718
80719
80720
80721
80722
80723
80724
80725
80726
80727
80728
80729
80730
80731
80732
80733
80734
80735
80736
80737
80738
80739
80740
80741
80742
80743
80744
80745
80746
80747
80748
80749
80750
80751
80752
80753
80754
80755
80756
80757
80758
80759
80760
80761
80762
80763
80764
80765
80766
80767
80768
80769
80770
80771
80772
80773
80774
80775
80776
80777
80778
80779
80780
80781
80782
80783
80784
80785
80786
80787
80788
80789
80790
80791
80792
80793
80794
80795
80796
80797
80798
80799
80800
80801
80802
80803
80804
80805
80806
80807
80808
80809
80810
80811
80812
80813
80814
80815
80816
80817
80818
80819
80820
80821
80822
80823
80824
80825
80826
80827
80828
80829
80830
80831
80832
80833
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
80849
80850
80851
80852
80853
80854
80855
80856
80857
80858
80859
80860
80861
80862
80863
80864
80865
80866
80867
80868
80869
80870
80871
80872
80873
80874
80875
80876
80877
80878
80879
80880
80881
80882
80883
80884
80885
80886
80887
80888
80889
80890
80891
80892
80893
80894
80895
80896
80897
80898
80899
80900
80901
80902
80903
80904
80905
80906
80907
80908
80909
80910
80911
80912
80913
80914
80915
80916
80917
80918
80919
80920
80921
80922
80923
80924
80925
80926
80927
80928
80929
80930
80931
80932
80933
80934
80935
80936
80937
80938
80939
80940
80941
80942
80943
80944
80945
80946
80947
80948
80949
80950
80951
80952
80953
80954
80955
80956
80957
80958
80959
80960
80961
80962
80963
80964
80965
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
80981
80982
80983
80984
80985
80986
80987
80988
80989
80990
80991
80992
80993
80994
80995
80996
80997
80998
80999
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
80119
80120
80121
80122
80123
80124
80125
80126
80127
80128
80129
80130
80131
80132
80133
80134
80135
80136
80137
80138
80139
80140
80141
80142
80143
80144
80145
80146
80147
80148
80149
80150
80151
80152
80153
80154
80155
80156
80157
80158
80159
80160
80161
80162
80163
80164
80165
80166
80167
80168
80169
80170
80171
80172
80173
80174
80175
80176
80177
80178
80179
80180
80181
80182
80183
80184
80185
80186
80187
80188
80189
80190
80191
80192
80193
80194
80195
80196
80197
80198
80199
80200
80201
80202
80203
80204
80205
80206
80207
80208
80209
80210
80211
80212
80213
80214
80215
80216
80217
80218
80219
80220
80221
80222
80223
80224
80225
80226
80227
80228
80229
80230
80231
80232
80233
80234
80235
80236
80237
80238
80239
80240
80241
80242
80243
80244
80245
80246
80247
80248
80249
80250
80251
80252
80253
80254
80255
80256
80257
80258
80259
80260
80261
80262
80263
80264
80265
80266
80267
80268
80269
80270
80271
80272
80273
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
8

433 of quenching for steady-state rates of photodamage 490
434 and found a disproportionately strong effect of high- 491
435 light stress in low-quenching scenarios (Fig. 7). In 492
436 high-quenching scenarios, the response becomes lin- 493
437 ear, indicating that quenching might be essential for 494
438 the flexible behavior of photosynthetic organisms un- 495
439 der high-light stress. 496

440 Combining the previous observations, we might spec- 497
441 ulate that fluorescence changes induced by high-light 498
442 stress are caused by a combination of various pro- 499
443 cesses, including the reduction of PSII core function- 500
444 ality and multiple long- and short-term quenching 501
445 mechanisms. Our simulations indicate that, to ex- 502
446 plain observed changes in the F_v/F_m , F_m and F_o sig- 503
447 nals, three components are essential: 1) the amount 504
448 of active and inactive PSII, 2) the difference between 505
449 their heat dissipation properties and 3) quenching 506
450 phenomena. For the latter, it is essential to distin- 507
451 guish between short- and long-lived quencher compo- 508
452 nents. While short-lived quenchers influence the de- 509
453 crease of the active PSII fraction but not the fluores- 510
454 cence signal measured after dark-adaption, long-lived 511
455 quenchers influence both. 512

456 There is a continuous discussion about whether inac- 513
457 tive PSII is photoprotective [21, 37, 15]. This hypoth- 514
458 esis was based on the observation that an active PSII 515
459 pool remained even after prolonged high-light treat- 516
460 ment and repair inhibited by lincomycin [17]. How- 517
461 ever, later studies did not support these findings and 518
462 it was speculated that the observed active pools re- 519
463 sulted from the specific experimental setup [15]. Re- 520
464 garding the mechanism, it was hypothesized that pho- 521
465 toprotection is caused by an energy transfer from ac- 522
466 tive to inactive photosystems, which are more efficient 523
467 energy quenchers [21]. It was argued that without en- 524
468 ergy transfer photoinhibition is a first-order process, 525
469 and that the existence of an energy transfer and pho- 526
470 toprotection should be detectable by a deviation from 527
471 an exponential kinetics [21, 37]. 528

472 With our model, we can test these hypotheses by sim- 529
473 ulating the respective scenarios. Fig. S5 shows the 530
474 dynamics of PSII simulated with (red) and without 531
475 (orange) assumed energy transfer. We observe that 532
476 in both cases the dynamics of active PSII closely re- 533
477 semble a simple exponential, and thus may be inter- 534
478 preted as a first-order process. However, even in the 535
479 case without energy transfer, small discrepancies from 536
480 the exponential behavior are visible. Although such 537
481 small differences are unlikely to be experimentally de- 538
482 tectable, they can be theoretically explained. An ex- 539
483 act exponential decay would entail that the fraction 540
484 of excited PSII (relative to active PSII) remains con- 541
485 stant. However, in our simulations this is not precisely 542
486 the case (see Fig. S6). The cause for this is that the 543
487 redox state of the plastoquinone pool and the state of 544
488 the quencher depend on the rate of electrons provided 545
489 by PSII, and thus on the amount of active PSII itself, 546

leading to a non-trivial dynamics which is only ap- 497
500 proximately exponential. Interestingly, even the de- 501
502 cay of PSII under the assumption of energy transfer 503
504 closely resembles an exponential. We therefore con- 505
506 clude that observing discrepancies from an exponen- 507
508 tial behaviour might not be the best suited method 509
510 to discriminate between the two hypotheses. 511

512 This is especially the case when using F_v/F_m as a 513
514 measure of photoinhibition. Our calculations have 515
516 shown that, in a scenario without energy transfer, 517
518 changes in F_v/F_m only follow the active PSII decay 519
520 proportionally if the active and inactive PSII have 521
522 identical heat dissipation properties ($\rho = 1$, see Fig. 2). 523
524 However, because we used F_m and F_o , besides F_v/F_m , 525
526 to guide our simulations, we could show that the ex- 527
528 perimental observations can only be explained if $\rho > 1$, 529
530 which means that inactive PSII quench energy more 531
532 efficiently than active PSII. This in turn means that 533
534 F_v/F_m is a nonlinear function of inactive PSII, and as 535
536 a consequence the F_v/F_m signal displays a slightly dif- 537
538 ferent kinetic than the active PSII pool (see Figs. S5 539
540 and S7). Nonetheless, without energy transfer also a 541
542 value of $\rho > 1$ results in simulated F_v/F_m that is too 543
544 large compared to the experiment (see Figs. S2 and 545
546 S3). Assuming an energy transfer, leads to reduced 547
548 simulated F_v/F_m values and allows quantitative re- 549
550 production of the measured signal (Figs. 4 and 5). 551
552 Interestingly, energy transfer leads to a more linear 553
554 response of the F_v/F_m signal to inactive/active PSII 555
556 (see Fig. S7), resulting in a F_v/F_m dynamics that fol- 557
558 lows the response of the approximately simulated ex- 559
560 ponential decay of PSII more closely. Thus, our the- 561
562 oretical analysis allowed discrimination between the ef- 563
564 fects of higher energy quenching of inactive PSII and 565
566 energy transfer. Our results support the existence of 567
568 energy transfer processes from active to inactive 569
570 PSII. 571

572 In conclusion, we used a mathematical model of the 573
574 PETC to investigate the fluorescence signal during 575
576 photoinhibition and identified key factors that need 577
578 to be included in order to realistically explain experi- 579
580 mental fluorescence data. In addition to the hypoth- 581
582 eses explored in this work, there are many other con- 583
584 ceivable extensions and improvements. One possible 585
586 extension is to include PSI fluorescence, as was done 587
588 in [38]. We speculate that the PSI contribution might 589
590 lead to a more realistic reproduction of the F_o signal. 591
592 In addition, it may become important to include a 593
594 description of PSII heterogeneity. The PSII pool con- 595
596 sists of so called PSII α and PSII β complexes. Both 597
598 differ in their antenna size and localization in the thy- 599
599 lakoid membrane [24, 4]. In preliminary investiga- 600
601 tions we found that including such a heterogeneity does 602
603 not change the slope ratio as defined in Eq. (13), which 604
605 is a key indicator for the model response (see supple- 606
607 ment). However, a full and realistic implementation 608
609 of PSII α and PSII β and their different properties into 610
611

547 our dynamic model is a future project. So far, also 602
548 spatial effects have been ignored, in order to reduce 603
549 the complexity of the *in silico* analysis. However, con- 604
550 sidering the complex three-dimensional structure of 605
551 thylakoid membranes, these may be important to con- 606
552 sider for more realistic models [13]. Additionally, it 607
553 has been shown that the spatial architecture of leaves
554 and the place of measurement (ad-, abaxial, or within 608
555 leaves) influence the fluorescence signal obtained by 609
556 spectroscopic techniques during photoinhibition [30]. 610
557 Because we used a Dual-KLAS-NIR device for our 611
558 measurements that records fluorescence on the abax- 612
559 ial leaf surface, future model versions should account 613
560 for different local origins of the fluorescence signal. 614
561 This is because the changes in the fluorescence signal 615
562 obtained by devices measuring the abaxial surface, 616
563 such as a Dual-KLAS-NIR, might correlate more with 617
564 changes in chloroplasts in the lower than in the upper 618
565 layers of the leaf. We envisage that our model can 619
566 be used as a platform for the investigation of pho- 620
567 toinhibitory effects, with several applications in mind. 621
568 These include the study of long-term extinction phe- 622
569 nomena (qZ and qH), which could support experimen- 623
570 tal efforts to identify the molecular mechanisms re- 624
571 sponsible for such quenching phenomena [20]. More- 625
572 over, our model also opens the possibility of investi-
573 gating evolutionary questions. For example, by modi- 626
574 fying the appropriate parameters, it can be used to ex-
575 plore the quenching capacities of a wide range of plant 627
576 and algal species, thus supporting the generation of 628
577 hypotheses explaining the enormous natural variation 629
578 found in photoprotective processes [22, 35]. 630
631
632

579 Methods

580 A mathematical model was developed that combines
581 non-photochemical quenching, the D1 protein repair
582 cycle, and the main protein complexes in the PETC.
583 The model is based on published mathematical
584 descriptions that successfully simulated experimental
585 data in the past [40, 6, 22]. Most parameter val-
586 ues were obtained from the literature. The model
587 was tested against published data from various plant
588 species and experimentally measured F_v/F_m values
589 (*Arabidopsis thaliana* ecotype Columbia-0 and the
590 *npq1* mutant). 645
646
647

591 Experimental approach

592 *Arabidopsis thaliana* (Columbia-0 and *npq1*) seeds
593 were sown on commercial soil (Pikier, Balster Einheit-
594 serdewerk, Fröndenberg, Germany) and stratified for 648
595 three days in the dark at 4 °C. After that, they were 649
596 transferred to the climate chamber with 12 h/12 h 650
597 light/dark photoperiod, 26 °C/20 °C day/night air 651
598 temperature and 60% relative air humidity. The 652
599 photosynthetically active radiation was provided by 653
600 fluorescent lamps (Fluora L58 W/77; Osram, Mu- 654
601 nich, Germany) with an intensity of approximately 655

100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ at plant height. Finally, seedlings
509 were transferred to pots (7 × 7 × 8 cm, one plant per
510 pot) filled with soil (Lignostrat Dachgarten exten-
511 sive, HAWITA, Vechta, Germany). Care was taken
512 to avoid soil drying during cultivation. Six to seven
513 weeks old plants were used for measuring.

Leaves of *A.thaliana* plants were detached, and petioles
509 were submerged in a 5 mM lincomycin solution
510 in reaction tubes for 3 h in dim light under ventila-
511 tion. After incubation in the lincomycin solution,
512 leaf discs with a diameter of 1.1 cm were punched
513 out and floated on a water bath to keep the leaf tem-
514 perature constant at 20 °C. The floating leaf discs
515 were exposed to white LED light (SL 3500-W-G, Photon
516 Systems Instruments) with an intensity of 800
517 $\mu\text{mol m}^{-2} \text{s}^{-1}$. After 0 h, 0.5 h, 1 h, 3 h, 5 h, and
518 6 h hours, F_v/F_m was measured on six replicate leaf
519 discs using a DUAL-KLAS-NIR system (Heinz Walz
520 GmbH, Effeltrich, Germany). Each leaf was dark-
521 adapted 20 minutes before a red saturation pulse (635
522 nm, 0.8 seconds) of $>10000 \mu\text{mol m}^{-2} \text{s}^{-1}$ was applied
523 from both upper and lower sides of the leaf. Flu-
524 orescence was detected on the lower leaf surface to
525 determine F_m .

529 Model description

Simulations were based on previous models of photo-
529 synthesis [6, 22] and the D1 protein repair cycle. For
530 a detailed explanation, see the supplement. The photo-
531 synthetic electron transport chain in the thylakoid
532 membrane of chloroplasts is implemented according
533 to [6]. A four-state Photosystem II (PSII) description
534 (B_0 - open and non-excited, B_1 - open and excited, B_2
535 - closed and non-excited, B_3 - closed and excited) was
536 used. The rate of cytochrome b_6f complex is described
537 via mass-action kinetics. Photosystem I (PSI) is a
538 three-state system similar to PSII. Convenience kinet-
539 ics describes the activities of the ferredoxin-NADPH-
540 reductase (FNR) [19]. The proton leak across the thy-
541 lakoid membrane, ATP synthesis, and cyclic electron
542 flow around PSI are modeled via mass action kinet-
543 ics. Reversible reactions are included by calculating
544 luminal pH-dependent equilibrium constants. Similar
545 to [23] and [36], a four-state quencher module, based
546 on the xanthophyll cycle and the protonation of PsbS,
547 was integrated (see Fig. 1). The model is detailed in
548 the supplementary material.

549 D1 protein repair cycle and fluorescence

The repair and synthesis of the D1 protein of PSII
549 were implemented by first-order equations governing
550 the dynamics of three states of PSII [40]. These are
551 PSII with intact D1 protein (U_a), PSII with damaged
552 D1 protein (U_i), and PSII without D1 protein (U_d).
553 Here $U_a = \sum_{i=1 \dots 4} B_i$ comprises the four states of the
554 model without photoinhibition.

$$\frac{dU_a}{dt} = k_{REP} \cdot \frac{A}{A + K_m^{pi}} \cdot U_d - (B_1 + B_3) \cdot k_0^{PI} \quad (3)$$

$$\frac{dU_i}{dt} = (B_1 + B_3) \cdot k_0^{PI} - k_{DEG} \cdot \frac{A}{A + K_m^{pi}} \cdot U_i \quad (4)$$

$$\frac{dU_d}{dt} = k_{DEG} \cdot \frac{A}{A + K_m^{pi}} \cdot U_i - k_{REP} \cdot \frac{A}{A + K_m^{pi}} \cdot U_d. \quad (5)$$

Here k_{REP} and k_{DEG} are the rate constants for the insertion of newly synthesized and degradation of damaged D1 protein. k_0^{PI} is the rate constant of photoinhibition. Several studies indicate that photoinhibition is a costly, energy-consuming process [34, 27]. Hence, degradation and insertion (PSII repair) of the D1 protein is proportional to the ATP concentration.

Fluorescence

We assume that inactive PSII can dissipate excitation energy as heat and emit fluorescence. The fluorescence emitted by these PSII states is still affected by quenching.

Isolated PSII. Assuming no energy transfer between active and inactive PSII, the yield of fluorescence is described as (see [7, 6]),

$$F = \frac{k_F}{k_F + k_H \cdot Q + k_P} \cdot B_0 + \frac{k_F}{k_F + k_H \cdot Q} \cdot B_2 + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d) \quad (6)$$

Here k_F , k_P , and k_H are the rate constant of fluorescence, photochemistry, and dissipation of light energy other than fluorescence and photochemistry. B_0 and B_2 are open and closed states of active PSII (U_a). The parameter ρ has been introduced to account for different heat dissipation properties between active and inactive PSII. Specifically, it describes the ratio of energy dissipation rates as heat between inactive ($U_i + U_d$) and active (U_a) states of PSII. Q is the quencher activity.

Minimal fluorescence (F_o) is observed in a dark-adapted state, where $B_0 \approx U_a$. Thus,

$$F_o = \frac{k_F}{k_F + k_H \cdot Q + k_P} \cdot U_a + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d). \quad (7)$$

Assuming there are no inactive photosystems, Eq. (7) becomes,

$$F_{o,a} = \frac{k_F}{k_F + k_H \cdot Q + k_P} \cdot PSII^{tot}. \quad (8)$$

This is the expected F_o signal at the beginning of an experiment before high-light treatment started.

The maximal fluorescence yield is obtained in saturating light conditions, where $B_2 \approx U_a$. Therefore,

$$F_m = \frac{k_F}{k_F + k_H \cdot Q} \cdot U_a + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d), \quad (9)$$

and without inactive PSII, representing the signal at the beginning of high-light treatment,

$$F_{m,a} = \frac{k_F}{k_F + k_H \cdot Q} \cdot PSII^{tot}. \quad (10)$$

To quantify the response of F_o and F_m to high-light stress, we determine the derivatives of the relative fluorescence signals with respect to the active reaction centres, U_a . The non-inhibited state corresponds to $U_a = PSII^{tot}$. We define

$$\varphi_o := \frac{d}{dU_a} \left(\frac{F_o}{F_{o,a}} \right) = \frac{Q \cdot k_H (\rho - 1) - k_P}{PSII^{tot} (Q \cdot k_H \cdot \rho + k_F)}, \quad (11)$$

and

$$\varphi_m := \frac{d}{dU_a} \left(\frac{F_m}{F_{m,a}} \right) = \frac{Q \cdot k_H (\rho - 1)}{PSII^{tot} (Q \cdot k_H \cdot \rho + k_F)}, \quad (12)$$

and the ratio of these two values,

$$\gamma := \frac{\varphi_o}{\varphi_m} = \frac{Q \cdot k_H (\rho - 1) - k_P}{Q \cdot k_H (\rho - 1)} \quad (13)$$

For a non-photoinhibited state, we get with Eqs. (8) and (10)

$$\frac{F_v}{F_m} = 1 - \frac{F_o}{F_m} = 1 - \frac{k_F + k_H \cdot Q}{k_F + k_H \cdot Q + k_P} = \frac{k_P}{k_F + k_H \cdot Q + k_P}, \quad (14)$$

and, likewise using Eqs. (7) and (9), for a photoinhibited state

$$\left(\frac{F_v}{F_m} \right)^i = U_a \cdot \frac{F_v}{F_m} \cdot \frac{k_H \cdot Q \cdot \rho + k_F}{U_a \cdot k_H \cdot Q \cdot (\rho - 1) + PSII^{tot} (k_H \cdot Q + k_F)}. \quad (15)$$

Eq. 15 becomes Eq. 14 when $U_a = PSII^{tot}$.

705 **Connected inactive and active PSII.** In a second model,
 706 we assume that active closed PSII can transfer excita-
 707 tion energy to damaged PSII, see [7]. We describe this
 708 energy transfer rate as a first order process with rate
 709 constant k_T . This leads to the following description
 710 of the fluorescence signal,

$$F = \frac{k_F}{k_F + k_H \cdot Q + k_P} \cdot B_0 + \frac{k_F}{k_F + k_H \cdot Q + k_T \cdot (U_i + U_d)} \cdot B_2 + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d). \quad (16)$$

711 Hence,

$$F_o = \frac{k_F}{k_F + k_H \cdot Q + k_P} \cdot U_a + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d). \quad (17)$$

712 and

$$F_m = \frac{k_F}{k_F + k_H \cdot Q + k_T \cdot (U_i + U_d)} \cdot U_a + \frac{k_F}{k_F + \rho \cdot k_H \cdot Q} \cdot (U_i + U_d). \quad (18)$$

713 The expression for F_m is a rational function of active
 714 PSII ($U_i + U_d = PSII^{tot} - U_a$). This function has a
 715 singularity at,

$$U_a = \frac{PSII^{tot} k_T + Q k_H + k_F}{k_T}, \quad (19)$$

716 and extrema at,

$$U_a = \frac{PSII^{tot} k_T + Q k_H + k_F - \sqrt{(Q k_H \rho + k_F)(PSII^{tot} k_T + Q k_H + k_F)}}{k_T} \quad (20)$$

717 as well as,

$$U_a = \frac{PSII^{tot} k_T + Q k_H + k_F + \sqrt{(Q k_H \rho + k_F)(PSII^{tot} k_T + Q k_H + k_F)}}{k_T} \quad (21)$$

718 Note that for $k_T = 0$ the expressions for F_m and F_o are
 719 identical to the isolated case. Using Eqs. 17 and 18
 720 we can derive an expression for F_v/F_m ,

$$\left(\frac{F_v}{F_m} \right)^{i,T} = K \cdot U_a \cdot \left(\frac{F_v}{F_m} - \frac{k_T (PSII^{tot} - U_a)}{k_F + k_H \cdot Q + k_P} \right), \quad (22)$$

721 where K

$$K = \frac{k_H \cdot Q \cdot \rho + k_F}{U_a (k_F + k_H \cdot Q \cdot \rho) + (PSII^{tot} - U_a) \cdot (k_F + k_H \cdot Q + k_T \cdot (PSII^{tot} - U_a))}. \quad (23)$$

722 For $k_T = 0$ Eq. 22 becomes identical to Eq. 15.

723 ATP source

724 In previous models [6, 23], an external influx of ATP
 725 into the chloroplast is not included. However, several
 726 studies have shown that the metabolism of chloro-
 727 plasts and mitochondria are interconnected and can
 728 influence each other [8, 42, 43]. We assumed that dur-
 729 ing light conditions, the external influx of ATP into
 730 the chloroplast is negligible, and the activity of the
 731 PETC provides all ATP. We model the external influx
 732 of ATP as constant flux with a light switch to ensure
 733 the resynthesis of the D1 protein in darkness.

$$v_{mito} = k_{mito} \cdot \frac{K_{PFD}^{nL}}{K_{PFD}^{nL} + PFD^{nL}} \quad (24)$$

734 Computational analysis

735 The model was implemented in the Python-based
 736 software `modelbase` version 1.3.8 [41]. For sim-
 737 ulations the `cvode` solver implemented in As-
 738 simulo [1] was used. Python files containing the
 739 model and analyses can be found in the Gitlab
 740 repository [https://gitlab.com/qtb-hhu/models/2023-](https://gitlab.com/qtb-hhu/models/2023-photoinhibition)
 741 [photoinhibition](https://gitlab.com/qtb-hhu/models/2023-photoinhibition).

742 Abbreviations

743 CBB — Calvin-Benson-Bassham-cycle, PETC —
 744 photosynthetic electron transport chain, ROS — re-
 745 active oxygen species, U_a — active photosystem II,
 746 U_i — damaged photosystem II, U_d — D1 protein-less
 747 photosystem II, PSII — photosystem II.

748 Funding

749 This work was funded by the Deutsche Forschungsge-
 750 meinschaft (DFG), project ID 391465903/GRK 2466
 751 (T.N.), the Deutsche Forschungsgemeinschaft (DFG)
 752 under Germany's Excellence Strategy EXC 2048/1,
 753 Project ID: 390686111 (O.E., S.M.).

755 Acknowledgment

756 We thank Ana Carolina dos Santos Sá and Yuxi
 757 Niu for their help during the experimental measure-
 758 ments.

759 Author contributions

760 TN, OE: initial idea and conceptualisation. OE: fund-
 761 ing acquisition. TN: visualisation. TN: formal anal-

761 yses. TN, OE: writing—original draft and introduc- 829
762 tion. TN, OE: writing—original draft and methods. 830
763 TN, OE: writing—original draft and results. TN, OE: 831
764 writing—original draft, discussion, and TN, OE, SM 832
765 writing—review and editing. All authors read and 833
766 accepted the final version of the manuscript. 834
835

767 Data Availability Statement

768 The original contributions presented in the study 842
769 are included in the article/Supplementary Mate- 843
770 rial, further inquiries can be directed to the 844
771 corresponding author/s. The code can be 845
772 found at [846
773 photoinhibition](https://gitlab.com/qtb-hhu/models/2023-) 847

774 Conflict of interest

775 The authors declare that the research was conducted 842
776 in the absence of any commercial or financial relation- 843
777 ships that could be construed as a potential conflict 844
778 of interest. 845

779 References

1. Christian Andersson, F Claus, and Johan Akesson. ScienceDirect Assimulo: A unified framework for ODE solvers. *Mathematics and Computers in Simulation*, 116:26–43, 2015. doi: [10.1016/j.matcom.2015.04.007](https://doi.org/10.1016/j.matcom.2015.04.007).
2. NE Belyaeva, AA Bulychev, G Yu Riznichenko, and AB Rubin. Thylakoid membrane model of the chl a fluorescence transient and p700 induction kinetics in plant leaves. *Photosynthesis research*, 130:491–515, 2016. doi: <https://doi.org/10.1007/s11120-016-0289-z>.
3. Karen Bernhardt and Hans-Wilhelm Träsl. Theories for kinetics and yields of fluorescence and photochemistry: how, if at all, can different models of antenna organization be distinguished experimentally? *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1409(3):125–142, 1999. doi: [https://doi.org/10.1016/S0005-2728\(98\)00149-2](https://doi.org/10.1016/S0005-2728(98)00149-2).
4. Michael T Black, Trevor H Brearley, and Peter Horton. Heterogeneity in chloroplast photosystem ii. *Photosynthesis research*, 8:193–207, 1986. doi: <https://doi.org/10.1007/BF00037128>.
5. WL Butler and M Kitajima. Fluorescence quenching in photosystem ii of chloroplasts. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 376(1):116–125, 1975. doi: [https://doi.org/10.1016/0005-2728\(75\)90210-8](https://doi.org/10.1016/0005-2728(75)90210-8).
6. Oliver Ebenhö, Geoffrey Fucile, Giovanni Finazzi, Jean-David Rochaix, and Michel Goldschmidt-Clermont. Short-term acclimation of the photosynthetic electron transfer chain to changing light: a mathematical model. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 369(1640):20130223, 2014.
7. Christoph Giersch and G Heinrich Krause. A simple model relating photoinhibitory fluorescence quenching in chloroplasts to a population of altered photosystem ii reaction centers. *Photosynthesis research*, 30:115–121, 1991. doi: <https://doi.org/10.1007/BF00042009>.
8. Marcel HN Hoefnagel, Owen K Atkin, and Joseph T Wiskich. Interdependence between chloroplasts and mitochondria in the light and the dark. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1366(3):235–255, 1998. doi: [10.1016/S0005-2728\(98\)00126-1](https://doi.org/10.1016/S0005-2728(98)00126-1).
9. Peter Horton, Matthew P Johnson, Maria L Perez-Bueno, Anett Z Kiss, and Alexander V Ruban. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem ii in higher plant grana membranes regulate light harvesting? *The FEBS journal*, 275(6):1069–1079, 2008. doi: <https://doi.org/10.1111/j.1742-4658.2008.06263.x>.
10. P Joliot. Etude cinétique de la réaction photochimique libérant l'oxygène au cours de la photosynthèse. *CR Acad. Sci.*, 258:4622–4625, 1964.
11. Elias Kaiser, Alejandro Morales, and Jeremy Harbinson. Fluctuating light takes crop photosynthesis on a rollercoaster ride. *Plant Physiology*, 176(2):977–989, 2018. doi: <https://doi.org/10.1104/pp.17.01250>.
12. Sergey Khorobrykh, Vesa Havurinne, Heta Mattila, and Esa Tyystjärvi. Oxygen and ros in photosynthesis. *Plants*, 9(1):91, 2020. doi: <https://doi.org/10.3390/plants9010091>.
13. Helmut Kirchhoff. Architectural switches in plant thylakoid membranes. *Photosynthesis research*, 116:481–487, 2013. doi: <https://doi.org/10.1007/s11120-013-9843-0>.
14. MBWL Kitajima and WL Butler. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 376(1):105–115, 1975. doi: [https://doi.org/10.1016/0005-2728\(75\)90209-1](https://doi.org/10.1016/0005-2728(75)90209-1).
15. Jiancun Kou, Riichi Oguchi, Da-Yong Fan, and Wah Soon Chow. The time course of photoinactivation of photosystem ii in leaves revisited. *Photosynthesis research*, 113: 157–164, 2012. doi: <https://doi.org/10.1007/s11120-012-9743-8>.
16. Octavian S Ksenzhek and Alexander G Volkov. *Plant energetics*. Elsevier, 1998.
17. H-Y Lee, Y-N Hong, and WS Chow. Photoinactivation of photosystem ii complexes and photoprotection by non-functional neighbours in *capsicum annum* l. leaves. *Planta*, 212:332–342, 2001. doi: <https://doi.org/10.1007/s004250000398>.
18. Lei Li, Eva-Mari Aro, and A Harvey Millar. Mechanisms of photodamage and protein turnover in photoinhibition. *Trends in plant science*, 23(8):667–676, 2018. doi: <https://doi.org/10.1016/j.tplants.2018.05.004>.
19. Wolfram Liebermeister and Edda Klipp. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. *Theoretical Biology and Medical Modelling*, 3:1–13, 2006. doi: <https://doi.org/10.1186/1742-4682-3-41>.
20. Alizée Malnoë. Photoinhibition or photoprotection of photosynthesis? update on the (newly termed) sustained quenching component qh. *Environmental and Experimental Botany*, 154:123–133, 2018. doi: <https://doi.org/10.1016/j.enexpbot.2018.05.005>.
21. Shizue Matsubara and Wah Soon Chow. Populations of photoinactivated photosystem ii reaction centers characterized by chlorophyll a fluorescence lifetime in vivo. *Proceedings of the National Academy of Sciences*, 101(52):18234–18239, 2004. doi: <https://doi.org/10.1073/pnas.0403857102>.
22. Anna Matuszyńska, Somayeh Heidari, Peter Jahns, and Oliver Ebenhö. A mathematical model of non-photochemical quenching to study short-term light memory in plants. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1857(12):1860–1869, 2016.
23. Anna Matuszyńska, Nima P Saadat, and Oliver Ebenhö. Balancing energy supply during photosynthesis—theoretical perspective. *Physiologia plantarum*, 166(1):392–402, 2019. doi: <https://doi.org/10.1111/ppl.12962>.
24. Anastasios Melis. Functional properties of photosystem ii β in spinach chloroplasts. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 808(2):334–342, 1985. doi: [https://doi.org/10.1016/0005-2728\(85\)90017-9](https://doi.org/10.1016/0005-2728(85)90017-9).
25. Alejandro Morales, Xinyu Yin, Jeremy Harbinson, Steven M Driever, Jaap Molenaar, David M Kramer, and Paul C Struik. In silico analysis of the regulation of the photosynthetic electron transport chain in c3 plants. *Plant physiology*, 176(2):1247–1261, 2018. doi: [10.1104/pp.17.00779](https://doi.org/10.1104/pp.17.00779).
26. Patricia Muller, Xiao-Ping Li, and Krishna K Niyogi. Non-photochemical quenching: a response to excess light energy. *Plant physiology*, 125(4):1558–1566, 2001. doi: <https://doi.org/10.1104/pp.125.4.1558>.
27. Norio Murata and Yoshitaka Nishiyama. Atp is a driving force in the repair of photosystem ii during photoinhibition. *Plant, cell & environment*, 41(2):285–299, 2018. doi: <https://doi.org/10.1111/pce.13108>.
28. Tim Nies, Marvin Van Aalst, Nima Saadat, Joshua Ebeling, and Oliver Ebenhö. What controls carbon sequestration in plants under which conditions? *Biosystems*, 231: 104968, 2023. doi: [10.1016/j.biosystems.2023.104968](https://doi.org/10.1016/j.biosystems.2023.104968).
29. Manuela Nilkens, Eugen Kress, Petar Lambrev, Yuliya Miloslavina, Marc Müller, Alfred R Holzwarth, and Peter Jahns. Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in arabidopsis. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1797(4):466–475, 2010. doi: <https://doi.org/10.1016/j.bbabi.2010.01.001>.
30. Riichi Oguchi, Peter Douwstra, Takashi Fujita, Wah Soon Chow, and Ichiro Terashima. Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. *New Phytologist*, 191(1):146–159, 2011. doi: <https://doi.org/10.1111/j.1469-8137.2011.03669.x>.
31. Eija Patsikka, Eva-Mari Aro, and Esa Tyystjärvi. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo. *Plant Physiology*, 117(2):619–627, 1998. doi: <https://doi.org/10.1104/pp.117.2.619>.
32. Gosta Pettersson and Ulf RYDE-PETTERSSON. A mathematical model of the calvin photosynthesis cycle. *European Journal of Biochemistry*, 175(3):661–672, 1988. doi: <https://doi.org/10.1111/j.1432-1033.1988.tb14242.x>.
33. Mark G Poolman, David A Fell, and Simon Thomas. Modelling photosynthesis and its control. *Journal of Experimental Botany*, 51(suppl_1):319–328, 2000. doi: [10.1093/jexbot/51.suppl_1.319](https://doi.org/10.1093/jexbot/51.suppl_1.319).
34. John A Raven. The cost of photoinhibition. *Physiologia plantarum*, 142(1):87–104, 2011. doi: [10.1111/j.1365-3054.2011.01465.x](https://doi.org/10.1111/j.1365-3054.2011.01465.x).
35. Tepuza Rungrat, Andrew A Almonte, Riany Cheng, Peter J Gollan, Tim Stuart, Eva-Mari Aro, Justin O Borevitz, Barry Pogson, and Pip B Wilson. A genome-wide association study of non-photochemical quenching in response to local seasonal climates in arabidopsis thaliana. *Plant Direct*, 3(5):e00138, 2019. doi: <https://doi.org/10.1002/pld3.138>.
36. Nima P Saadat, Tim Nies, Marvin Van Aalst, Brandon Hank, Büsra Demirtas, Oliver Ebenhö, and Anna Matuszyńska. Computational analysis of alternative photosynthetic electron flows linked with oxidative stress. *Frontiers in plant science*, 12:750580, 2021. doi: <https://doi.org/10.3389/fpls.2021.750580>.
37. Päivi Sarvikas, Taina Tyystjärvi, and Esa Tyystjärvi. Kinetics of prolonged photoinhibition revisited: photoinhibited photosystem ii centres do not protect the active ones against loss of oxygen evolution. *Photosynthesis research*, 103:7–17, 2010. doi: <https://doi.org/10.1007/s11120-009-9496-1>.
38. Alexandrina Stirbet and Govindjee. The slow phase of chlorophyll a fluorescence induction in silico: origin of the s–m fluorescence rise. *Photosynthesis research*, 130: 193–213, 2016. doi: <https://doi.org/10.1007/s11120-016-0243-0>.
39. Alexandrina Stirbet, Dušan Lazár, Ya Guo, and Govindjee Govindjee. Photosynthesis: basics, history and modelling. *Annals of Botany*, 126(4):511–537, 2020. doi: <https://doi.org/10.1093/aob/mca171>.
40. Esa Tyystjärvi, Pirkko Mäenpää, and Eva-Mari Aro. Mathematical modelling of photoinhibition and photosystem ii repair cycle. i. photoinhibition and d1 protein degradation in vitro and in the absence of chloroplast protein synthesis in vivo. *Photosynthesis*

916 *Research*, 41:439–449, 1994. doi: 10.1007/BF02183046.

917 41. Marvin van Aalst, Oliver Ebenhöh, and Anna Matuszyńska. Constructing and analysing
918 dynamic models with modelbase v1. 2.3: a software update. *BMC bioinformatics*, 22
919 (1):1–15, 2021. doi: 10.1186/s12859-021-04122-7.

920 42. Chihiro KA Watanabe, Wataru Yamori, Shunichi Takahashi, Ichiro Terashima, and
921 Ko Noguchi. Mitochondrial alternative pathway-associated photoprotection of photo-
922 system ii is related to the photorespiratory pathway. *Plant and Cell Physiology*, 57(7):
923 1426–1431, 2016. doi: 10.1093/pcp/pcw036.

924 43. Shoya Yamada, Hiroshi Ozaki, and Ko Noguchi. The mitochondrial respiratory chain
925 maintains the photosynthetic electron flow in arabidopsis thaliana leaves under high-
926 light stress. *Plant and Cell Physiology*, 61(2):283–295, 2020. doi: 10.1093/pcp/
927 pcz193.

928 44. Julia Zaks, Kapil Amarnath, David M Kramer, Krishna K Niyogi, and Graham R Fleming.
929 A kinetic model of rapidly reversible nonphotochemical quenching. *Proceedings of the
930 National Academy of Sciences*, 109(39):15757–15762, 2012.

931 45. Alonso Zavaleta. A theoretical framework of the hybrid mechanism of photosystem ii
932 photodamage. *Photosynthesis Research*, 149(1-2):107–120, 2021. doi: <https://doi.org/10.1007/s11120-021-00843-1>.

933