bioRxiv preprint doi: https://doi.org/10.1101/2023.09.09.557001; this version posted September 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in
glioblastoma

Yim Ling Cheng', Matei A. Banu?, Wenting Zhao', Steven S. Rosenfeld®, Peter Canoll*, and
Peter A. Sims*¥

'Department of Systems Biology, Columbia University Irving Medical Center, New York, NY,
10032, USA

2Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY,
10032, USA

3Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA

‘Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York,
NY, 10032, USA

SDepartment of Biochemistry and Molecular Biophysics, Columbia University Irving Medical
Center, New York, NY, USA

*correspondence to: pas2182@columbia.edu

SUMMARY

Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive
therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of
KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal
models. We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug
resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent
KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lost their neural lineage
identity and transitioned to a mesenchymal phenotype, which is associated with poor prognosis.
In contrast, cells subjected to long-term ispinesib treatment exhibited a proneural phenotype.
We generated patient-derived xenografts to show that ispinesib-resistant cells form less
aggressive tumors in vivo, even in the absence of drug. Finally, we used lineage barcodes to
nominate drug combination targets by retrospective analysis of ispinesib-resistant clones in the

drug-naive setting and identified drugs that are synergistic with ispinesib.
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INTRODUCTION

Failure of effective cancer treatment is due, in part, to the dynamic and evolving nature of
tumors. Glioblastoma (GBM) is an incurable malignancy with a 6.9% five-year survival rate'; it is
a highly heterogeneous and plastic tumor that is able to traverse multiple cell states in response
to extrinsic and intrinsic cues®*. Molecular profiling of GBM with single-cell RNA-seq (scRNA-
seq) and other methods have identified co-occurring cellular states that were observed across
patients along with transitions between them?°8, These states are likely differentially sensitive to
treatment and can result in therapy-resistant populations that give rise to aggressive recurrent

tumors.

Drug resistance can arise from both genetic selection and both pre-existing or adaptive
transcriptional states, which lead to an advantageous phenotype’'2. Only limited genetic
alterations are associated with recurrence in GBM, potentially indicating a larger role of non-
genetic mechanisms in GBM'3-'5. Devising effective therapies requires tools for characterizing

and identifying vulnerabilities in drug-resistant states.

Inhibitors of the kinesin-5 (also known as Eg5 and KIF11), a mitotic kinesin, are promising
candidates for GBM therapy, but can be rendered ineffective due to various mechanisms of
resistance’®. Kinesin-5 is a microtubule-associated motor protein that organizes the bipolar
mitotic spindle and facilitates cell migration'” '8, Its involvement in two hallmarks of cancer,
proliferation and invasion, makes it a potential therapeutic target. GBM is deadly not only
because GBM cells proliferate, but also because they invade the brain microenvironment. For
inhibitors to be suitable for systemic GBM therapy, they also need to exhibit low neurotoxicity
and high blood brain barrier penetration. Ispinesib is one such potent inhibitor and has been

shown to prolong the survival of murine GBM models'®?°. Resistance to this class of inhibitors
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can occur through point mutations that block drug binding?', upregulation of an alternative
kinesin??, upregulation of drug efflux transporters®, upregulation of EGF to promote cell cycle

progression?, and activation of STAT3 to inhibit apoptosis?*.

To study the dynamics of GBM resistance and identify potential drug combination targets, we
transfected PDGFR-amplified, patient-derived glioma neurospheres (TS5432°%) with a barcoded
lineage tracing library (CellTag®), and treated the neurospheres with ispinesib. These
genetically-modified, patient-derived neurospheres recapitulate key aspects of GBM
heterogeneity and allow for surveillance of resistant phenotypes on multiple timescales. Lineage
tracing barcodes allow us to selectively analyze clones that are destined for resistance in the
drug-naive setting. We analyzed the phenotypes of the glioma cells during the long-term
ispinesib treatment with single-cell RNA-seq (scRNA-seq), assessed the stability and survival
impact of drug-resistant phenotypes in the absence of drug and in orthotopic xenografts, and
identified molecular markers of resistant clones in the drug-naive setting to nominate effective

drug combinations.

RESULTS

The kinesin-5 inhibitor, ispinesib, prevents mesenchymal transformation, resulting in a
proneural resistant population

We first sought to compare the phenotypes of glioma cells after long-term treatment with
ispinesib and DMSO (vehicle). We performed long-term treatment experiments (Figure 1A) as
follows: 1) small replicate populations of TS543 were seeded and either transfected with
CellTag?, a lentivirus barcode library, (celltag1 and celltag2) or not (control1 and control2); 2)
the cells were expanded prior to treatment; 3) scRNA-seq was performed on the drug naive

cells; 4) after drug treatment started, scRNA-seq was initially performed at three-day intervals,
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and later at two- and four-week intervals; 5) viability of cells was monitored (Figure 1B) during

this period to monitor drug resistance.

To identify cellular states and temporal patterns in the resulting dataset, we first pooled scRNA-
seq data from all four replicates (control1, control2, celltag1, celltag2) and all time points to
construct a factor model using single-cell hierarchical Poisson factorization (scHPF)%, a
probabilistic algorithm for identifying co-expression signatures from scRNA-seq. scHPF
computed scores that rank the association of each gene (Figure S1A, Supplementary Table 1)
and cell with each identified co-expression signature or factor. We noticed that the highly
ranked genes in many of the factors correspond to gene signatures reported in previous single-
cell studies of GBM?. Thus, we systematically identified factors with high gene-scores for the
cellular subtype gene sets from Neftel et al (Figure S1B). These gene sets were derived from
the integration of scRNA-seq from 28 GBM and 401 bulk RNA-seq profiles from The Cancer
Genome Atlas (TCGA)? and correspond to cell cycle (G1/S, G2/M), hypoxic and non-hypoxic
mesenchymal-like (MES1 , MES2 respectively), astrocytic-like (AC), oligodendrocyte precursor-
like geneset (OPC), and neural-progenitor-like (NPC1, NPC2)2. For factors with a clear temporal
pattern, we appended the term “early” to the factor annotation, if the factor has high expression
mainly before day 42, or “late”, if the factor has high expression mainly after day 42. In total, we
annotated 11 factors: Cell-Cycle-1, Cell-Cycle-2, NPC-late, NPC-OPC-late, NPC-OPC-early,
OPC-early, OPC, MES-early, MES-1, MES-2, MES-late, MES-AC (Figure S1B, Figure 1C-1E);

top-ranked genes of Cell-Cycle-1 and Cell-Cycle-2 were combined into a single cell cycle factor.

Across our time course, we observed a clear enrichment of MES-associated factors in the
DMSO samples (Figure 1D) and NPC-/OPC-associated (proneural) factors in the ispinesib-
treated samples (Figure 1E). Specifically, we observed emergence of the MES-early cell state

followed by a gradual increase in the MES-late cell state in the DMSO time course (Figure 1D,
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1F, 1G). In contrast, we observed an early emergence in NPC-OPC-early and OPC-early cell
states followed by an increase of NPC-late and NPC-OPC-late cell states for ispinesib-treated
samples (Figure 1E, 1H, 11). These results were reproducible among the four replicates (Figure
S2A-S2B). To visualize the similarity of the four replicates, we also embedded the DMSO and
ispinesib samples separately into a low-dimensional space with PHATE?®. PHATE embeddings
for the DMSO and ispinesib datasets were also reproducible across the four replicates (Figure
S3A-S3D). The dominant temporal patterns are drift of the DMSO- and ispinesib-treated cells

towards MES and NPC states, respectively.

The drift toward a mesenchymal phenotype is common phenomenon in solid tumors including
GBM3%-34 where it is associated with recurrence, drug resistance, and poor prognosis®. While it
is unsurprising to observe mesenchymal drift in the DMSO time course as described above, this
does not occur in the ispinesib-treated populations. Thus, although glioma cells develop
resistance to ispinesib, the resistant cells resemble the proneural glioma phenotype, which is

associated with improved survival®®.

The proneural phenotype of ispinesib-resistant clones is preserved in drug-free
xenograft and associated with better survival

Our scRNA-seq time course revealed that ispinesib-resistant cells become increasingly
proneural over time, whereas DMSO cells drift towards a mesenchymal phenotype associated
with recurrence and poor survival®’:38, Thus, we hypothesized that, unlike drug-resistant cells in
many other settings, ispinesib-resistant cells might form less aggressive tumors than the
untreated population. To test this hypothesis, we generated xenograft models by orthotopic
transplantation of ispinesib-resistant and DMSO-natural-drift cells from last in vitro time point
(day 125 control1 samples) (Figure 2A). Importantly, these xenografts were formed in the

absence of drug. As expected, xenografted mice derived from ispinesib-resistant cells have a
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significant survival advantage (median survival 33 and 47 days for xenografts from DMSO- and
ispinesib-treated cells, respectively; p = 8x10°, log-rank test; Figure 2B), with no mice injected

with ispinesib-resistant cells dying before any of the mice injected with DMSO-natural-drift cells.

Given that these xenografts formed over the course of several weeks in the brain
microenvironment and in the absence of drug, we next asked whether the phenotypic
differences between the DMSO-natural-drift and ispinesib-resistant cells were preserved in end-
stage tumors. We performed scRNA-seq on end-stage tumors from each population. To
compare the phenotypes between the end-stage tumors of xenografts and the last in vitro time
point which these xenografts were derived, we projected the scRNA-seq data from xenografts
into the scHPF model of the original in vitro time course and visualized the xenograft projection
along with the last in vitro time point with UMAP embedding (Figure 2C). The ispinesib-resistant
and DMSO xenograft profiles project onto the in vitro ispinesib-resistant and DMSO-natural-drift
populations, respectively, suggesting that key aspects of the ispinesib-resistant and DMSO-

natural-drift phenotypes are preserved in vivo in the absence of treatment (Figure 2C).

To confirm that the mesenchymal phenotype of DMSO-natural-drift cells and proneural
phenotype of ispinesib-resistant cells were maintained in the xenograft, we compared the two
populations using differential expression analysis. We then used GSEA to identify scHPF
signatures that are statistically enriched among the differentially expressed genes (Figure 2D).
NPC-OPC-early and NPC-late signatures of ispinesib-resistant cells and MES-2 and MES-late
signatures of DMSO-natural-drift cells are maintained in the xenograft (Figure 2D). Thus,
despite growing in the absence of ispinesib for more than a month, ispinesib-resistant cells
maintain their mesenchymal-depleted, proneural-enriched phenotype, consistent with the

observed enhanced survival.
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Ispinesib-resistant clones are phenotypically diverse in the drug-naive setting

The CellTag barcodes allow us to retrospectively analyze the phenotype of the resistant clones
in the drug-naive setting and determine whether they have unique properties relative to the
remaining cells. To characterize the cell-states of clones that would become resistant, we
partitioned the naive samples into detected-future-resistant clones and remaining clones by
matching the clonelDs (assigned IDs of the multiplexed CellTag barcodes in clones) in the naive
samples with the clonelDs in the ispinesib-exposed samples (Figure 3A). We used the term
‘remaining” instead of the term “sensitive” to name the naive clones that did not have matched
clonelDs in ispinesib-exposed samples because of the possibility that not all ispinesib-exposed
resistant clones were sequenced due to limited cell sampling. We embedded the scHPF factors
of naive samples in two-dimensions with UMAP to visualize any bias in the cell states occupied
by the detected-future-resistant clones. In the UMAP embedding, we have the proliferating cells
on the left side (Figure 3B). The quiescent population on the right side includes cells enriched in
the OPC- and NPC-like signatures (Figure 3E-3G) with more mesenchymal (MES-early) cells on
the far right (Figure 3C-3D). The detected-future-resistant clones are distributed throughout the
UMAP with no visually obvious bias in the distribution of cell states for the detected-future-
resistant clones (Figure 3H, 3I). To analyze this more quantitatively and determine if there are
any significant cell-state differences between detected-future-resistant clones and remaining
clones, we used GSEA to identify scHPF factors with enrichment among the genes that were
differentially expressed between the detected-future-resistant clones and remaining clones
(Figure 3J). Depletion of MES-early factor is significant for both replicates (celltag1, celltag2)
(Figure 3J). While the other factors do not exhibit significant enrichment or depletion in the
resistant clones, many of them have reproducible patterns such as enrichment of NPC-late,
NPC-OPC-early and Cell-Cycle factors and depletion of MES-late and MES-1 factors (Figure

3J).
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While the cells exhibit a strong phenotype after long-term treatment, there is no dominant
phenotype for the detected-future-resistant clones in the naive setting, and only subtle
phenotypic differences between detected-future-resistant and remaining clones. This could be
because the treatment-naive cells are highly plastic with cells transitioning between these states
on relatively short timescales or because acquisition of ispinesib-resistance states is stochastic.
Nonetheless, the significant and reproducible depletion of the early mesenchymal (MES-early)
state in the resistant clones is consistent with the depletion of mesenchymal expression

signatures in the resistant cells observed at later time points.

Identification of synergistic drug targets from gene expression analysis of ispinesib-
resistant clones in the drug-naive setting

We next sought to use our clonal lineage tracing data to identify druggable markers of resistant
clones found in drug-naive cells. By targeting druggable markers of clones that become
resistant to ispinesib, we might identify effective therapies to be used in combination with
ispinesib. Treatment time was divided into three periods: early (6 days and earlier), middle (21
to 42 days), and late (69 days or later) (Figure 4A). ClonelDs of each period were used to
identify clones in naive cells (Figure 4A). For each time period, we performed differential
expression analysis between detected-future-resistant clones and remaining clones among
drug-naive cells (Figure 4B). Differentially expressed genes were ranked by fold-change and
consistency between replicates (Figure 4C). Genes were removed if they were: 1) also
differentially expressed in clones that were selected by DMSO or 2) encoding a protein for
which a commercial inhibitor was unavailable (Figure 4C). We further identified genes with
increasing expression during our time course (Figure 4D). Ultimately, we identified nine gene

targets with available inhibitors that we could test in combination with ispinesib.
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We performed a drug interaction experiment with the “checkerboard” assay and analyzed the
results with MuSyc (multi-dimensional synergy of combinations)®®, a recently reported multi-
drug synergy framework. MuSyc is a two-dimensional extension of the traditional single drug Hill
equation and has five additional parameters that quantify drug interactions: efficacy (), potency
(12, a21), and cooperativity (Y12, Y21). The intention of drug combination treatment is to reduce
toxicity by minimizing dose, to improve survival by increasing efficacy, or both. The parameter a
quantifies the change in effective dose (ECso) of the first drug in the presence of the second
drug. For synergistic potency (a > 1 or log(a) > 0), ECs of the first drug decreases in the
presence of the second drug, which corresponds to increase of potency. a1 is the fold change
in potency of drug1, which was ispinesib in our case, induced by the presence of drug2, and
vice versa. The parameter 3 quantifies the change in the maximal effect of the two drugs in
combination compared to the maximal effect of the most efficacious single drug. For synergistic
efficacy (B > 0), the combined effect at the maximum concentration tested for both drugs is

greater than the maximum effect of either drug alone.

WNK463, toyocamycin, and monensin, which are inhibitors of WNK3 (Lysine-deficient protein
kinase 3), RIOK1 (RIO kinase 1), and MYB (MYB proto-oncogene transcription factor)
respectively, have synergistic potencies when combined with ispinesib; log(a12) and log(az1) are
above zero (Figure 4E). VBY-825, an inhibitor of CTSF (Cathepsin F), when combined with
ispinesib has synergistic efficacy; B is greater than zero (Figure 4E). The heatmap of MuSyc
Delta, which is the difference between the 2D Hill-fitted model of the observed efficacy and the
null hypothesis, shows regions where combined dosage of two drugs have efficacy greater than
the null hypothesis (Figure 4F-41). The side-by-side dose-response curves show the single drug
response curve (solid curve line, with the other drug concentration at zero) and combined drugs
response curve (dash curve line, with the other drug concentration at the maximum tested).

Ispinesib alone reaches maximum efficacy of 25% to 20% viability (red solid curve lines), and
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the viability is further decreased with addition of the second drug (blue dash curve lines) (Figure
4F-41). WNK3%0-42 RIOK14-45, MYB*®4” and CTSF*® may protect ispinesib-resistant cells from
apoptosis or help ispinesib resistant cells progress through cell cycle. Overall, these results
demonstrate how lineage tracing analysis by scRNA-seq can be used to identify novel drug

combinations by identifying markers of resistant clones in the drug-naive setting.

DISCUSSION

GBM often contains cells with a mesenchymal phenotype that is associated with poor survival
and drug resistance and becomes more pronounced upon recurrence. Similarly, the glioma
neurosphere model used here drifts towards a mesenchymal phenotype in the absence of
treatment. We found that the kinesin-5 inhibitor, ispinesib, effectively prevents this mesenchymal
transition, and the resistant population that emerges instead harbors a proneural phenotype.
Thus, we reasoned that the ispinesib-resistant cells would form less aggressive tumors than the
more mesenchymal cells observed in the absence of drug. While targeted therapies often select
for more aggressive phenotypes, we found that the ispinesib-resistant clones formed
significantly less aggressive orthotopic xenografts, even in the absence of drug. Subsequent
scRNA-seq analysis confirmed that the phenotypic differences between the ispinesib-resistant
and DMSO-treated cells were largely preserved in the animal model. These findings raise the
exciting possibility that ispinesib could not only serve as an effective targeted therapy in GBM,
but that the ispinesib-resistant clones that arise may be less aggressive than the mesenchymal

cells typically found after standard treatment.

Despite the less aggressive phenotype of ispinesib-resistant cells, it remains desirable to
identify drug combinations with the potential to minimize resistance. The single-cell lineage

tracing approach used here provides the unique ability to retrospectively analyze the phenotype

10


https://doi.org/10.1101/2023.09.09.557001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.09.557001; this version posted September 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

of ispinesib-resistant clones in a treatment-naive population. This analysis identified genes that
were enriched in drug-naive clones that would become resistant to ispinesib, some of which
encoded druggable protein targets. Perhaps not surprisingly, subsequent validation experiments
showed that targets associated with cell survival and apoptosis such as WNK3, RIOK1, MYB,
and CTSF were synergistic with ispinesib. Previous studies of ispinesib resistance by
Kenchappa et al** also concluded that glioma cells activate anti-apoptotic mechanisms to
survive the prolonged G2M block produced by ispinesib, whereas normal cells apoptose under
these conditions due to “mitotic catastrophe”. This phenomenon was shown to be mediated by
STAT3 through its transcriptional activity and effects on mitochondrial membrane permeability
and oxidative metabolism. Taken together, these studies show that multiple mediators of
apoptosis could potentially be exploited by glioma cells to resist anti-mitotic drugs. Further
efforts with long-term treatment and survival studies in animal models will be required to
establish the pre-clinical efficacy of these interesting new drug combinations. Nonetheless, the
strategy employed here for discovering these drug combinations has significant advantages
over conventional combinatorial screening in rapidly narrowing the scope of potential candidates

targeted to drug-resistant clones.

METHODS

Cell lines and cultures
PDGFRA-amplified, patient-derived glioblastoma neurospheres, TS543%°, were cultured with
NeuroCult™ NS-A Proliferation Kit Human from STEMCELL Technologies. HEK293T were

cultured with DMEM containing 10% FBS and 2 mM L-glutamine.

CellTag barcode lentivirus transduction and long-term ispinesib treatment
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TS543 cells were seeded at ~1000 cells and were transduced with Celltag?’ virus-laden media
at MOI of around 8-10 and 5 ug/ml protamine sulfate or normal media and 5 ug/ml protamine
sulfate. TS543 were propagated for three weeks before start of treatment. scRNA-seq was
performed on drug-naive TS543. TS543 were treated with 75 nM ispinesib or with vehicle
DMSO; media with ispinesib or DMSO were replenished every two or three days. Viability was
monitored as guidepost for resistance. Dead cells were removed with Dead Cell Removal Kit
from Miltenyi Biotec; scRNA-seq was initially performed at three-day interval, and later at two-

and four-week intervals during treatment.

CellTag barcode lentivirus packaging

CellTag barcode lentivirus was packaged according to the online protocol on protocols.io?”.
Briefly, lentiviral pPSMAL-CellTag-V1 pooled library and its associated packing plasmids pCMV-
dR8.2 dvpr and pCMV-VSV-G were obtained from Addgene, lentiviruses were produced by
transfecting with HEK293T cells using X-tremeGENE™ 9 DNA Transfection Reagent from
Sigma-Aldrich, and virus was collected 48 hours after transfection. Virus was concentrated with

Lenti-X™ Concentrator from Takara and re-suspended in NeuroCult™ NS-A Complete Media.

Animals

All procedures were reviewed and approved by the Columbia University Institutional Animal
Care and Use committee (IACUC). Nude CrTac:NCr-Foxn1™ female mice (Taconic Biosciences)
were used as background for in vivo orthotopic cell injection experiments. Mice were housed in
pathogen-free facilities at Columbia University Irving Medical Center. Mice were ordered and

housed under standard conditions after arrival.

Murine glioma models and survival analysis
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For orthotopic cell transplantation experiments, six-week-old CrTac:NCr-Foxn1™ female mice
were injected with 5 x 10* cells of last in vitro time point of TS543 treated with ispinesib or
vehicle DMSO (day 125 control1 samples); ten mice were used per cohort. Mice were clinically
monitored daily and sacrificed once end-stage criteria were met, including severe weight loss,
seizures, and evidence of motor deficit. Tissues of one mouse from each cohort were harvested

and processed for scRNA-seq. Survival curves were modeled by Kaplan-Meier method.

Tissue dissociation
Mouse brain tumor resections were dissociated using Adult Brain Dissociation kit on
gentleMACS™ Octo Dissociator with Heaters (Miltenyi Biotec) according to manufacturer's

instructions.

Microwell scRNA-seq

Microwell 3' scRNA-seq was performed as described*. Briefly, individual cells were co-
encapsulated with a barcoded mRNA capture bead®® (MACOSKO-2011-10, ChemGenes) and
lysed in microwell-based platform, mRNA transcripts were captured and reverse transcribed on
the bead, cDNA-coated beads were pooled for PCR amplification, and lllumina Nextera libraries
were constructed for each sample. Gene expression libraries were sequenced on an Illumina

NovaSeq 6000 with 51 cycles or 26 cycles for read 1 and 151 cycles for read 2.

To sequence the CellTag library separately from the gene expression library at greater
sequencing depth, CellTag libraries were constructed with custom P5_TSO_hybrid primer®® and
custom P7_TruSeq-6bp-Unique-Index EGFP primer
(CAAGCAGAAGACGGCATACGAGAT[6bp-

RPIIGTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGGCATGGACGAGCTGTACAAGT*A*A
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) from the barcoded cDNA libraries. CellTag libraries were sequenced on NextSeq 550 (lllumina)

with 26 cycles for read 1 and 58 cycles for read 2.

scRNA-seq preprocessing and quality control

Raw data obtained from NovaSeq was corrected for index swapping according to the
BarcodeSwapping method®'. Raw reads were preprocessed as described®, with a brief
description as follows. Raw reads were subjected to polyA trimming and aligned with STAR. An
address comprised of cell-barcode, UMI, and gene identifier was constructed for each read with
a unique, strand-specific alignment to exonic sequence. Reads with same address were
collapsed and sequencing errors in cell-barcodes and UMI were corrected. Cell-barcodes of
empty microwell or low quality cells were removed. Empty cell-barcodes were identified with
EmptyDrops algorithm?>2. Cells were filtered as low-quality if they meet any of the following
criteria: 1) fractional alignment to the mitochondrial genome per cell-barcode is greater than
10%, 2) the ratio of molecules aligning to whole gene bodies (including introns) to molecules
aligning exclusively to exons is greater than 1.96 standard deviations above the mean, 3)
average number of reads per molecule or average number of molecules per gene is greater
than 2.5 standard deviations above the mean, or 4) more than 40% of UMI bases are T or

where the average number of T-bases per UMl is at least 4.

CellTag processing and clone calling
CellTag binary count matrices were generated and clone callings were performed with the
CellTagWorkflow algorithm (https://github.com/morris-lab/CellTagWorkflow), with an additional

preprocessing step of removing UMI with less than three raw reads.

Single-cell hierarchical Poisson factorization (scHPF)
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Single-cell RNA-seq data from all four replicates (control1, control2, celltag1, celltag2) and all
time points were pooled to construct a factor model using single-cell hierarchical Poisson
factorization (scHPF)?. scHPF outputted a list of factors and factor-associated gene-scores for
each gene (Figure S1A, Supplementary Table 1) and cell-scores for each cell of that factor, with
higher score being more associated with the factor. Based on the top ranked genes in each
factor, we removed factors with high gene-scores for ribosomal genes, which represented
sequencing coverage, and high gene-scores for interferon genes, which was associated with
lentivirus transfection, from downstream analysis. To annotate the factors, we looked for factors

with high gene-scores for Neftel-glioblastoma gene sets? (Figure S1B).

Differential expression and GSEA

Count matrices for the two conditions were subsampled to give the same cell numbers and
same average number of unique transcripts per cell. The resulting count matrix was normalized
by the scran deconvolution approach®?. Differential expression analysis between two conditions
was performed using the Mann-Whitney U-test (scipy.mannwhitneyu). The p-values were
adjusted for false discovery with Benjamini-Hochberg procedure (statsmodels.multipletests).
Genes were ranked by logz(fold change) x -log1o(FDR adjusted p-value). Preranked GSEA was
performed on the ranked genes from differential expression analysis with gene sets created

from the top scoring genes of scHPF factors.

Dose response assay and drug synergy analysis

Single drug dose response assays were performed on each inhibitor to determine their IC50.
TS543 cells were seeded in 96 wells plate at concentration of 1 x 10* cells/cm? and grown for
four days and treated with inhibitor for three days. Cell viability was assessed with PrestoBlue™
Cell Viability Reagent from ThermoFisher. Single drug dose response curves were fitted with the

Hill model (synergy.single.Hill), and IC50 was determined for each inhibitor. With IC50 as the
15


https://doi.org/10.1101/2023.09.09.557001
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.09.557001; this version posted September 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

mid-range concentration, two-drug eight-by-eight dose response checkerboard assays were
performed with ispinesib and a candidate inhibitor. TS543 cells were seeded in 384 wells plate
at concentration of 1 x 10* cells/cm?, grown for four days and treated with ispinesib, and
candidate inhibitor for three days. Cell viability was assessed with PrestoBlue™ Cell Viability
Reagent from Thermo Fisher. Two-drug dose response surfaces were fit with the MuSyc
model®® (synergy.combination.MySyc, https://github.com/djwooten/synergy), and synergistic
parameters were determined for each drug combination. Ispinesib, URMC-099, WNK463,
tomocamycin, NVP231, LMK-235, pentostatin, and monensin sodium salt were purchased from
MedChemExpress. VBY-825 and V-11-0711 were purchased from AdooQ Bioscience and

MedKoo Bioscience respectively.
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Figure 1. Ispinesib prevents mesenchymal transformation, and resistant population
harbors proneural phenotype. A) Experimental schematic of single-cell lineage tracing and
ispinesib-resistance time course in TS543 glioma neurospheres. B) Viability of TS543 during
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treatment. C-E) Dot plots of cell cycle factor (C), MES/AC associated factors (D), and NPC/OPC
associated factors (E), with size indicating the percentage of cells with high cell-scores for the
factor and color gradient indicating the mean log-normalized gene expression of top-ranked
genes of the factor. F-I) Line plots of mean log-normalized gene expression of top-ranked genes
in MES-early factor (F), MES-late factor (G), NPC-OPC-early factor (H), and NPC-late factor (I).
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Figure 2. Proneural phenotype of ispinesib-resistant clones is preserved in drug-free
xenograft and provides survival advantage. A) Experimental schematic of scRNA-seq of
xenografts derived from DMSO-treated and ispinesib-resistant clones of last in vitro time point
(day 125 control1 samples). B) Kaplan-Meier survival curves of ispinesib-resistant and DMSO-
natural-drift clones derived xenograft models (p = 8x10%, log-rank test). C) UMAP embeddings
of last in vitro time point scHPF factors and xenograft dataset projection onto the scHPF model
of the in vitro time course, color-coded by cell-states and treatments. D) Preranked GSEA
normalized enrichment score (NES) of gene sets created from scHPF top-ranked genes and
pre-ranked gene lists generated from differential expression analysis results between ispinesib
and DMSO samples.
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Figure 3. Ispinesib-resistant clones are phenotypically diverse in the naive setting. A)
Definitions of detected-future-resistant clones and remaining clones. ClonelDs are the assigned
IDs of the multiplexed CellTag barcodes in clones. B-G) UMAP embedding of scHPF factors of
naive cells, colored by the cell-scores of cell-cycle factor (B), MES-early factor (C), MES-late
factor (D), OPC factor (E), NPC-OPC-early factor (F), and NPC-late factor (G). H-I) Detected-
future-resistant clones in celltag1 and celltag2 naive cells on the UMAP embedding. J)
Preranked GSEA normalized enrichment score (NES) of gene sets created from scHPF top-
ranked genes and pre-ranked gene lists generated from differential expression analysis results
between detected-future-resistant clones and remaining clones.
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Figure 4. Identification of synergistic drug targets from gene expression analysis of
ispinesib-resistant clones in the drug-naive setting. A) Analysis scheme for identifying
potential drug combinations with ispinesib. B) MA plots of log»(fold change) and sample mean
from the differential expression analysis between detected-future-resistant clones and remaining
clones of naive cells. Genes with fold changes that were significantly high (>95 percentile) given
their sample means were colored as red. C) Heatmaps of logz(fold change) from the differential
expression analysis between detected clones and remaining clones of naive cells. Boolean
heatmaps of whether the logz(fold change) was significantly high (>95 percentile) given the
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genes' sample means. In the x-axis labels of heatmaps, 1 is celltag1 sample, 2 is celltag2
sample, detected-resistant is the alias for detected-future-resistant clones, and detected-drift is
the alias for detected-future-natural-drift clones. D) Mean log-normalized gene expression of the
druggable target genes of detected-future-resistant and remaining clones of naive cells. E)
Boxplots of synergistic parameters of MuSyC models. F-1) Heatmaps of MuSyc Delta, which is
difference between the 2D Hill-fitted model of the observed efficacy and the null hypothesis.
Side-by-side single drug response curve (solid curve line, with the other drug concentration at
zero) and combined drugs response curve (dash curve line, with the other drug concentration at
the maximum tested).
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