
1 
 

Multiplexed single-cell lineage tracing of mitotic kinesin inhibitor resistance in 
glioblastoma 
 
Yim Ling Cheng1, Matei A. Banu2, Wenting Zhao1, Steven S. Rosenfeld3, Peter Canoll4, and 
Peter A. Sims1,5* 

 
1Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 
10032, USA 
2Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, 
10032, USA 
3Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA 
4Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, 
NY, 10032, USA 
5Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical 
Center, New York, NY, USA 
 
*correspondence to: pas2182@columbia.edu 
 
 
SUMMARY 
 
Glioblastoma (GBM) is a deadly brain tumor, and the kinesin motor KIF11 is an attractive 

therapeutic target because of its dual roles in proliferation and invasion. The clinical utility of 

KIF11 inhibitors has been limited by drug resistance, which has mainly been studied in animal 

models.  We used multiplexed lineage tracing barcodes and scRNA-seq to analyze drug 

resistance time courses for patient-derived GBM neurospheres treated with ispinesib, a potent 

KIF11 inhibitor. Similar to GBM progression in patients, untreated cells lost their neural lineage 

identity and transitioned to a mesenchymal phenotype, which is associated with poor prognosis. 

In contrast, cells subjected to long-term ispinesib treatment exhibited a proneural phenotype. 

We generated patient-derived xenografts to show that ispinesib-resistant cells form less 

aggressive tumors in vivo, even in the absence of drug. Finally, we used lineage barcodes to 

nominate drug combination targets by retrospective analysis of ispinesib-resistant clones in the 

drug-naïve setting and identified drugs that are synergistic with ispinesib. 
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INTRODUCTION 
 
Failure of effective cancer treatment is due, in part, to the dynamic and evolving nature of 

tumors. Glioblastoma (GBM) is an incurable malignancy with a 6.9% five-year survival rate1; it is 

a highly heterogeneous and plastic tumor that is able to traverse multiple cell states in response 

to extrinsic and intrinsic cues2–4. Molecular profiling of GBM with single-cell RNA-seq (scRNA-

seq) and other methods have identified co-occurring cellular states that were observed across 

patients along with transitions between them2,5,6. These states are likely differentially sensitive to 

treatment and can result in therapy-resistant populations that give rise to aggressive recurrent 

tumors.  

 

Drug resistance can arise from both genetic selection and both pre-existing or adaptive 

transcriptional states, which lead to an advantageous phenotype7–12. Only limited genetic 

alterations are associated with recurrence in GBM, potentially indicating a larger role of non-

genetic mechanisms in GBM13–15. Devising effective therapies requires tools for characterizing 

and identifying vulnerabilities in drug-resistant states.  

 

Inhibitors of the kinesin-5 (also known as Eg5 and KIF11), a mitotic kinesin, are promising 

candidates for GBM therapy, but can be rendered ineffective due to various mechanisms of 

resistance16. Kinesin-5 is a microtubule-associated motor protein that organizes the bipolar 

mitotic spindle and facilitates cell migration17,18. Its involvement in two hallmarks of cancer, 

proliferation and invasion, makes it a potential therapeutic target. GBM is deadly not only 

because GBM cells proliferate, but also because they invade the brain microenvironment. For 

inhibitors to be suitable for systemic GBM therapy, they also need to exhibit low neurotoxicity 

and high blood brain barrier penetration. Ispinesib is one such potent inhibitor and has been 

shown to prolong the survival of murine GBM models19,20.  Resistance to this class of inhibitors 
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can occur through point mutations that block drug binding21, upregulation of an alternative 

kinesin22, upregulation of drug efflux transporters20, upregulation of EGF to promote cell cycle 

progression23, and activation of STAT3 to inhibit apoptosis24.   

 

To study the dynamics of GBM resistance and identify potential drug combination targets, we 

transfected PDGFR-amplified, patient-derived glioma neurospheres (TS54325) with a barcoded 

lineage tracing library (CellTag26), and treated the neurospheres with ispinesib. These 

genetically-modified, patient-derived neurospheres recapitulate key aspects of GBM 

heterogeneity and allow for surveillance of resistant phenotypes on multiple timescales. Lineage 

tracing barcodes allow us to selectively analyze clones that are destined for resistance in the 

drug-naïve setting. We analyzed the phenotypes of the glioma cells during the long-term 

ispinesib treatment with single-cell RNA-seq (scRNA-seq), assessed the stability and survival 

impact of drug-resistant phenotypes in the absence of drug and in orthotopic xenografts, and 

identified molecular markers of resistant clones in the drug-naïve setting to nominate effective 

drug combinations. 

  

RESULTS 
 
The kinesin-5 inhibitor, ispinesib, prevents mesenchymal transformation, resulting in a 

proneural resistant population 

We first sought to compare the phenotypes of glioma cells after long-term treatment with 

ispinesib and DMSO (vehicle). We performed long-term treatment experiments (Figure 1A) as 

follows: 1) small replicate populations of TS543 were seeded and either transfected with 

CellTag27, a lentivirus barcode library, (celltag1 and celltag2) or not (control1 and control2); 2) 

the cells were expanded prior to treatment; 3) scRNA-seq was performed on the drug naïve 

cells; 4) after drug treatment started, scRNA-seq was initially performed at three-day intervals, 
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and later at two- and four-week intervals; 5) viability of cells was monitored (Figure 1B) during 

this period to monitor drug resistance. 

 

To identify cellular states and temporal patterns in the resulting dataset, we first pooled scRNA-

seq data from all four replicates (control1, control2, celltag1, celltag2) and all time points to 

construct a factor model using single-cell hierarchical Poisson factorization (scHPF)28, a 

probabilistic algorithm for identifying co-expression signatures from scRNA-seq. scHPF 

computed scores that rank the association of each gene (Figure S1A, Supplementary Table 1) 

and cell with each identified co-expression signature or factor.  We noticed that the highly 

ranked genes in many of the factors correspond to gene signatures reported in previous single-

cell studies of GBM2. Thus, we systematically identified factors with high gene-scores for the 

cellular subtype gene sets from Neftel et al (Figure S1B). These gene sets were derived from 

the integration of scRNA-seq from 28 GBM and 401 bulk RNA-seq profiles from The Cancer 

Genome Atlas (TCGA)2 and correspond to cell cycle (G1/S, G2/M), hypoxic and non-hypoxic 

mesenchymal-like (MES1 , MES2 respectively), astrocytic-like (AC), oligodendrocyte precursor-

like geneset (OPC), and neural-progenitor-like (NPC1, NPC2)2. For factors with a clear temporal 

pattern, we appended the term “early” to the factor annotation, if the factor has high expression 

mainly before day 42, or “late”, if the factor has high expression mainly after day 42. In total, we 

annotated 11 factors: Cell-Cycle-1, Cell-Cycle-2, NPC-late, NPC-OPC-late, NPC-OPC-early, 

OPC-early, OPC, MES-early, MES-1, MES-2, MES-late, MES-AC (Figure S1B, Figure 1C-1E); 

top-ranked genes of Cell-Cycle-1 and Cell-Cycle-2 were combined into a single cell cycle factor.  

 

Across our time course, we observed a clear enrichment of MES-associated factors in the 

DMSO samples (Figure 1D) and NPC-/OPC-associated (proneural) factors in the ispinesib-

treated samples (Figure 1E).  Specifically, we observed emergence of the MES-early cell state 

followed by a gradual increase in the MES-late cell state in the DMSO time course (Figure 1D, 
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1F, 1G). In contrast, we observed an early emergence in NPC-OPC-early and OPC-early cell 

states followed by an increase of NPC-late and NPC-OPC-late cell states for ispinesib-treated 

samples (Figure 1E, 1H, 1I). These results were reproducible among the four replicates (Figure 

S2A-S2B). To visualize the similarity of the four replicates, we also embedded the DMSO and 

ispinesib samples separately into a low-dimensional space with PHATE29. PHATE embeddings 

for the DMSO and ispinesib datasets were also reproducible across the four replicates (Figure 

S3A-S3D). The dominant temporal patterns are drift of the DMSO- and ispinesib-treated cells 

towards MES and NPC states, respectively.  

 

The drift toward a mesenchymal phenotype is common phenomenon in solid tumors including 

GBM30–34 where it is associated with recurrence, drug resistance, and poor prognosis35. While it 

is unsurprising to observe mesenchymal drift in the DMSO time course as described above, this 

does not occur in the ispinesib-treated populations.  Thus, although glioma cells develop 

resistance to ispinesib, the resistant cells resemble the proneural glioma phenotype, which is 

associated with improved survival36.   

 

The proneural phenotype of ispinesib-resistant clones is preserved in drug-free 

xenograft and associated with better survival 

Our scRNA-seq time course revealed that ispinesib-resistant cells become increasingly 

proneural over time, whereas DMSO cells drift towards a mesenchymal phenotype associated 

with recurrence and poor survival37,38. Thus, we hypothesized that, unlike drug-resistant cells in 

many other settings, ispinesib-resistant cells might form less aggressive tumors than the 

untreated population. To test this hypothesis, we generated xenograft models by orthotopic 

transplantation of ispinesib-resistant and DMSO-natural-drift cells from last in vitro time point 

(day 125 control1 samples) (Figure 2A). Importantly, these xenografts were formed in the 

absence of drug.  As expected, xenografted mice derived from ispinesib-resistant cells have a 
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significant survival advantage (median survival 33 and 47 days for xenografts from DMSO- and 

ispinesib-treated cells, respectively; p = 8x10-6, log-rank test; Figure 2B), with no mice injected 

with ispinesib-resistant cells dying before any of the mice injected with DMSO-natural-drift cells. 

 

Given that these xenografts formed over the course of several weeks in the brain 

microenvironment and in the absence of drug, we next asked whether the phenotypic 

differences between the DMSO-natural-drift and ispinesib-resistant cells were preserved in end-

stage tumors. We performed scRNA-seq on end-stage tumors from each population. To 

compare the phenotypes between the end-stage tumors of xenografts and the last in vitro time 

point which these xenografts were derived, we projected the scRNA-seq data from xenografts 

into the scHPF model of the original in vitro time course and visualized the xenograft projection 

along with the last in vitro time point with UMAP embedding (Figure 2C).  The ispinesib-resistant 

and DMSO xenograft profiles project onto the in vitro ispinesib-resistant and DMSO-natural-drift 

populations, respectively, suggesting that key aspects of the ispinesib-resistant and DMSO-

natural-drift phenotypes are preserved in vivo in the absence of treatment (Figure 2C).  

 

To confirm that the mesenchymal phenotype of DMSO-natural-drift cells and proneural 

phenotype of ispinesib-resistant cells were maintained in the xenograft, we compared the two 

populations using differential expression analysis. We then used GSEA to identify scHPF 

signatures that are statistically enriched among the differentially expressed genes (Figure 2D). 

NPC-OPC-early and NPC-late signatures of ispinesib-resistant cells and MES-2 and MES-late 

signatures of DMSO-natural-drift cells are maintained in the xenograft (Figure 2D).  Thus, 

despite growing in the absence of ispinesib for more than a month, ispinesib-resistant cells 

maintain their mesenchymal-depleted, proneural-enriched phenotype, consistent with the 

observed enhanced survival. 
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Ispinesib-resistant clones are phenotypically diverse in the drug-naïve setting 

The CellTag barcodes allow us to retrospectively analyze the phenotype of the resistant clones 

in the drug-naïve setting and determine whether they have unique properties relative to the 

remaining cells. To characterize the cell-states of clones that would become resistant, we 

partitioned the naïve samples into detected-future-resistant clones and remaining clones by 

matching the cloneIDs (assigned IDs of the multiplexed CellTag barcodes in clones) in the naïve 

samples with the cloneIDs in the ispinesib-exposed samples (Figure 3A). We used the term 

“remaining” instead of the term “sensitive” to name the naïve clones that did not have matched 

cloneIDs in ispinesib-exposed samples because of the possibility that not all ispinesib-exposed 

resistant clones were sequenced due to limited cell sampling.  We embedded the scHPF factors 

of naïve samples in two-dimensions with UMAP to visualize any bias in the cell states occupied 

by the detected-future-resistant clones. In the UMAP embedding, we have the proliferating cells 

on the left side (Figure 3B). The quiescent population on the right side includes cells enriched in 

the OPC- and NPC-like signatures (Figure 3E-3G) with more mesenchymal (MES-early) cells on 

the far right (Figure 3C-3D).   The detected-future-resistant clones are distributed throughout the 

UMAP with no visually obvious bias in the distribution of cell states for the detected-future-

resistant clones (Figure 3H, 3I). To analyze this more quantitatively and determine if there are 

any significant cell-state differences between detected-future-resistant clones and remaining 

clones, we used GSEA to identify scHPF factors with enrichment among the genes that were 

differentially expressed between the detected-future-resistant clones and remaining clones 

(Figure 3J). Depletion of MES-early factor is significant for both replicates (celltag1, celltag2) 

(Figure 3J). While the other factors do not exhibit significant enrichment or depletion in the 

resistant clones, many of them have reproducible patterns such as enrichment of NPC-late, 

NPC-OPC-early and Cell-Cycle factors and depletion of MES-late and MES-1 factors (Figure 

3J).  
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While the cells exhibit a strong phenotype after long-term treatment, there is no dominant 

phenotype for the detected-future-resistant clones in the naïve setting, and only subtle 

phenotypic differences between detected-future-resistant and remaining clones.  This could be 

because the treatment-naïve cells are highly plastic with cells transitioning between these states 

on relatively short timescales or because acquisition of ispinesib-resistance states is stochastic. 

Nonetheless, the significant and reproducible depletion of the early mesenchymal (MES-early) 

state in the resistant clones is consistent with the depletion of mesenchymal expression 

signatures in the resistant cells observed at later time points.   

 

Identification of synergistic drug targets from gene expression analysis of ispinesib-

resistant clones in the drug-naïve setting 

We next sought to use our clonal lineage tracing data to identify druggable markers of resistant 

clones found in drug-naïve cells. By targeting druggable markers of clones that become 

resistant to ispinesib, we might identify effective therapies to be used in combination with 

ispinesib.  Treatment time was divided into three periods: early (6 days and earlier), middle (21 

to 42 days), and late (69 days or later) (Figure 4A). CloneIDs of each period were used to 

identify clones in naïve cells (Figure 4A). For each time period, we performed differential 

expression analysis between detected-future-resistant clones and remaining clones among 

drug-naïve cells (Figure 4B). Differentially expressed genes were ranked by fold-change and 

consistency between replicates (Figure 4C). Genes were removed if they were: 1) also 

differentially expressed in clones that were selected by DMSO or 2) encoding a protein for 

which a commercial inhibitor was unavailable (Figure 4C). We further identified genes with 

increasing expression during our time course (Figure 4D). Ultimately, we identified nine gene 

targets with available inhibitors that we could test in combination with ispinesib. 
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We performed a drug interaction experiment with the “checkerboard” assay and analyzed the 

results with MuSyc (multi-dimensional synergy of combinations)39,  a recently reported multi-

drug synergy framework. MuSyc is a two-dimensional extension of the traditional single drug Hill 

equation and has five additional parameters that quantify drug interactions: efficacy (β), potency 

(⍺12, ⍺21), and cooperativity (ɣ12, ɣ21). The intention of drug combination treatment is to reduce 

toxicity by minimizing dose, to improve survival by increasing efficacy, or both. The parameter ⍺ 

quantifies the change in effective dose (EC50) of the first drug in the presence of the second 

drug. For synergistic potency (⍺ > 1 or log(⍺) > 0), EC50 of the first drug decreases in the 

presence of the second drug, which corresponds to increase of potency. ⍺21 is the fold change 

in potency of drug1, which was ispinesib in our case, induced by the presence of drug2, and 

vice versa. The parameter β quantifies the change in the maximal effect of the two drugs in 

combination compared to the maximal effect of the most efficacious single drug. For synergistic 

efficacy (β > 0), the combined effect at the maximum concentration tested for both drugs is 

greater than the maximum effect of either drug alone.  

 

WNK463, toyocamycin, and monensin, which are inhibitors of WNK3 (Lysine-deficient protein 

kinase 3), RIOK1 (RIO kinase 1), and MYB (MYB proto-oncogene transcription factor) 

respectively, have synergistic potencies when combined with ispinesib; log(⍺12) and log(⍺21) are 

above zero (Figure 4E). VBY-825, an inhibitor of CTSF (Cathepsin F), when combined with 

ispinesib has synergistic efficacy; β is greater than zero (Figure 4E). The heatmap of MuSyc 

Delta, which is the difference between the 2D Hill-fitted model of the observed efficacy and the 

null hypothesis, shows regions where combined dosage of two drugs have efficacy greater than 

the null hypothesis (Figure 4F-4I). The side-by-side dose-response curves show the single drug 

response curve (solid curve line, with the other drug concentration at zero) and combined drugs 

response curve (dash curve line, with the other drug concentration at the maximum tested). 

Ispinesib alone reaches maximum efficacy of 25% to 20% viability (red solid curve lines), and 
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the viability is further decreased with addition of the second drug (blue dash curve lines) (Figure 

4F-4I).  WNK340–42, RIOK143–45, MYB46,47 and CTSF48 may protect ispinesib-resistant cells from 

apoptosis or help ispinesib resistant cells progress through cell cycle. Overall, these results 

demonstrate how lineage tracing analysis by scRNA-seq can be used to identify novel drug 

combinations by identifying markers of resistant clones in the drug-naïve setting. 

 

DISCUSSION 
 

GBM often contains cells with a mesenchymal phenotype that is associated with poor survival 

and drug resistance and becomes more pronounced upon recurrence. Similarly, the glioma 

neurosphere model used here drifts towards a mesenchymal phenotype in the absence of 

treatment. We found that the kinesin-5 inhibitor, ispinesib, effectively prevents this mesenchymal 

transition, and the resistant population that emerges instead harbors a proneural phenotype. 

Thus, we reasoned that the ispinesib-resistant cells would form less aggressive tumors than the 

more mesenchymal cells observed in the absence of drug. While targeted therapies often select 

for more aggressive phenotypes, we found that the ispinesib-resistant clones formed 

significantly less aggressive orthotopic xenografts, even in the absence of drug. Subsequent 

scRNA-seq analysis confirmed that the phenotypic differences between the ispinesib-resistant 

and DMSO-treated cells were largely preserved in the animal model. These findings raise the 

exciting possibility that ispinesib could not only serve as an effective targeted therapy in GBM, 

but that the ispinesib-resistant clones that arise may be less aggressive than the mesenchymal 

cells typically found after standard treatment. 

 

Despite the less aggressive phenotype of ispinesib-resistant cells, it remains desirable to 

identify drug combinations with the potential to minimize resistance. The single-cell lineage 

tracing approach used here provides the unique ability to retrospectively analyze the phenotype 
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of ispinesib-resistant clones in a treatment-naïve population. This analysis identified genes that 

were enriched in drug-naïve clones that would become resistant to ispinesib, some of which 

encoded druggable protein targets. Perhaps not surprisingly, subsequent validation experiments 

showed that targets associated with cell survival and apoptosis such as WNK3, RIOK1, MYB, 

and CTSF were synergistic with ispinesib. Previous studies of ispinesib resistance by 

Kenchappa et al24 also concluded that glioma cells activate anti-apoptotic mechanisms to 

survive the prolonged G2M block produced by ispinesib, whereas normal cells apoptose under 

these conditions due to “mitotic catastrophe”.  This phenomenon was shown to be mediated by 

STAT3 through its transcriptional activity and effects on mitochondrial membrane permeability 

and oxidative metabolism. Taken together, these studies show that multiple mediators of 

apoptosis could potentially be exploited by glioma cells to resist anti-mitotic drugs. Further 

efforts with long-term treatment and survival studies in animal models will be required to 

establish the pre-clinical efficacy of these interesting new drug combinations. Nonetheless, the 

strategy employed here for discovering these drug combinations has significant advantages 

over conventional combinatorial screening in rapidly narrowing the scope of potential candidates 

targeted to drug-resistant clones. 

 

 
METHODS 
 

Cell lines and cultures 

PDGFRA-amplified, patient-derived glioblastoma neurospheres, TS54325, were cultured with 

NeuroCultTM NS-A Proliferation Kit Human from STEMCELL Technologies. HEK293T were 

cultured with DMEM containing 10% FBS and 2 mM L-glutamine. 

 

CellTag barcode lentivirus transduction and long-term ispinesib treatment 
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TS543 cells were seeded at ~1000 cells and were transduced with Celltag27 virus-laden media 

at MOI of around 8-10 and 5 ug/ml protamine sulfate or normal media and 5 ug/ml protamine 

sulfate. TS543 were propagated for three weeks before start of treatment. scRNA-seq was 

performed on drug-naïve TS543.  TS543 were treated with 75 nM ispinesib or with vehicle 

DMSO; media with ispinesib or DMSO were replenished every two or three days. Viability was 

monitored as guidepost for resistance. Dead cells were removed with Dead Cell Removal Kit 

from Miltenyi Biotec; scRNA-seq was initially performed at three-day interval, and later at two- 

and four-week intervals during treatment. 

 

CellTag barcode lentivirus packaging 

CellTag barcode lentivirus was packaged according to the online protocol on protocols.io27. 

Briefly, lentiviral pSMAL-CellTag-V1 pooled library and its associated packing plasmids pCMV-

dR8.2 dvpr and pCMV-VSV-G were obtained from Addgene, lentiviruses were produced by 

transfecting with HEK293T cells using X-tremeGENETM 9 DNA Transfection Reagent from 

Sigma-Aldrich, and virus was collected 48 hours after transfection. Virus was concentrated with 

Lenti-XTM Concentrator from Takara and re-suspended in NeuroCultTM NS-A Complete Media. 

 

Animals 

All procedures were reviewed and approved by the Columbia University Institutional Animal 

Care and Use committee (IACUC). Nude CrTac:NCr-Foxn1nu female mice (Taconic Biosciences) 

were used as background for in vivo orthotopic cell injection experiments. Mice were housed in 

pathogen-free facilities at Columbia University Irving Medical Center. Mice were ordered and 

housed under standard conditions after arrival. 

 

Murine glioma models and survival analysis 
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For orthotopic cell transplantation experiments, six-week-old CrTac:NCr-Foxn1nu female mice 

were injected with 5 x 104 cells of last in vitro time point of TS543 treated with ispinesib or 

vehicle DMSO (day 125 control1 samples); ten mice were used per cohort. Mice were clinically 

monitored daily and sacrificed once end-stage criteria were met, including severe weight loss, 

seizures, and evidence of motor deficit. Tissues of one mouse from each cohort were harvested 

and processed for scRNA-seq. Survival curves were modeled by Kaplan-Meier method. 

 

Tissue dissociation 

Mouse brain tumor resections were dissociated using Adult Brain Dissociation kit on 

gentleMACSTM Octo Dissociator with Heaters (Miltenyi Biotec) according to manufacturer's 

instructions. 

 

Microwell scRNA-seq 

Microwell 3' scRNA-seq was performed as described49. Briefly, individual cells were co-

encapsulated with a barcoded mRNA capture bead50 (MACOSKO-2011-10, ChemGenes) and 

lysed in microwell-based platform, mRNA transcripts were captured and reverse transcribed on 

the bead, cDNA-coated beads were pooled for PCR amplification, and Illumina Nextera libraries 

were constructed for each sample.  Gene expression libraries were sequenced on an Illumina 

NovaSeq 6000 with 51 cycles or 26 cycles for read 1 and 151 cycles for read 2. 

 

To sequence the CellTag library separately from the gene expression library at greater 

sequencing depth, CellTag libraries were constructed with custom P5_TSO_hybrid primer50 and 

custom P7_TruSeq-6bp-Unique-Index_EGFP primer 

(CAAGCAGAAGACGGCATACGAGAT[6bp-

RPI]GTGACTGGAGTTCCTTGGCACCCGAGAATTCCAGGCATGGACGAGCTGTACAAGT*A*A
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) from the barcoded cDNA libraries. CellTag libraries were sequenced on NextSeq 550 (Illumina) 

with 26 cycles for read 1 and 58 cycles for read 2. 

 

scRNA-seq preprocessing and quality control 

Raw data obtained from NovaSeq was corrected for index swapping according to the 

BarcodeSwapping method51. Raw reads were preprocessed as described5, with a brief 

description as follows. Raw reads were subjected to polyA trimming and aligned with STAR. An 

address comprised of cell-barcode, UMI, and gene identifier was constructed for each read with 

a unique, strand-specific alignment to exonic sequence. Reads with same address were 

collapsed and sequencing errors in cell-barcodes and UMI were corrected. Cell-barcodes of 

empty microwell or low quality cells were removed. Empty cell-barcodes were identified with 

EmptyDrops algorithm52. Cells were filtered as low-quality if they meet any of the following 

criteria:  1) fractional alignment to the mitochondrial genome per cell-barcode is greater than 

10%, 2) the ratio of molecules aligning to whole gene bodies (including introns) to molecules 

aligning exclusively to exons is greater than 1.96 standard deviations above the mean, 3) 

average number of reads per molecule or average number of molecules per gene is greater 

than 2.5 standard deviations above the mean, or 4) more than 40% of UMI bases are T or 

where the average number of T-bases per UMI is at least 4. 

 

CellTag processing and clone calling 

CellTag binary count matrices were generated and clone callings were performed with the 

CellTagWorkflow algorithm (https://github.com/morris-lab/CellTagWorkflow), with an additional 

preprocessing step of removing UMI with less than three raw reads. 

 

Single-cell hierarchical Poisson factorization (scHPF) 
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Single-cell RNA-seq data from all four replicates (control1, control2, celltag1, celltag2) and all 

time points were pooled to construct a factor model using single-cell hierarchical Poisson 

factorization (scHPF)28. scHPF outputted a list of factors and factor-associated gene-scores for 

each gene (Figure S1A, Supplementary Table 1) and cell-scores for each cell of that factor, with 

higher score being more associated with the factor. Based on the top ranked genes in each 

factor, we removed factors with high gene-scores for ribosomal genes, which represented 

sequencing coverage, and high gene-scores for interferon genes, which was associated with 

lentivirus transfection, from downstream analysis. To annotate the factors, we looked for factors 

with high gene-scores for Neftel-glioblastoma gene sets2 (Figure S1B).  

 

Differential expression and GSEA 

Count matrices for the two conditions were subsampled to give the same cell numbers and 

same average number of unique transcripts per cell. The resulting count matrix was normalized 

by the scran deconvolution approach53. Differential expression analysis between two conditions 

was performed using the Mann-Whitney U-test (scipy.mannwhitneyu). The p-values were 

adjusted for false discovery with Benjamini-Hochberg procedure (statsmodels.multipletests). 

Genes were ranked by log2(fold change) × -log10(FDR adjusted p-value). Preranked GSEA was 

performed on the ranked genes from differential expression analysis with gene sets created 

from the top scoring genes of scHPF factors. 

 

Dose response assay and drug synergy analysis 

Single drug dose response assays were performed on each inhibitor to determine their IC50. 

TS543 cells were seeded in 96 wells plate at concentration of 1 x 104 cells/cm2 and grown for 

four days and treated with inhibitor for three days. Cell viability was assessed with PrestoBlueTM 

Cell Viability Reagent from ThermoFisher. Single drug dose response curves were fitted with the 

Hill model (synergy.single.Hill), and IC50 was determined for each inhibitor. With IC50 as the 
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mid-range concentration, two-drug eight-by-eight dose response checkerboard assays were 

performed with ispinesib and a candidate inhibitor. TS543 cells were seeded in 384 wells plate 

at concentration of 1 x 104 cells/cm2, grown for four days and treated with ispinesib, and 

candidate inhibitor for three days. Cell viability was assessed with PrestoBlueTM Cell Viability 

Reagent from Thermo Fisher. Two-drug dose response surfaces were fit with the MuSyc 

model39 (synergy.combination.MySyc,  https://github.com/djwooten/synergy), and synergistic 

parameters were determined for each drug combination. Ispinesib, URMC-099, WNK463, 

tomocamycin, NVP231, LMK-235, pentostatin, and monensin sodium salt were purchased from 

MedChemExpress. VBY-825 and V-11-0711 were purchased from AdooQ Bioscience and 

MedKoo Bioscience respectively.  
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FIGURES 
 

 
 
Figure 1. Ispinesib prevents mesenchymal transformation, and resistant population 
harbors proneural phenotype. A) Experimental schematic of single-cell lineage tracing and 
ispinesib-resistance time course in TS543 glioma neurospheres. B) Viability of TS543 during 
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treatment. C-E) Dot plots of cell cycle factor (C), MES/AC associated factors (D), and NPC/OPC 
associated factors (E), with size indicating the percentage of cells with high cell-scores for the 
factor and color gradient indicating the mean log-normalized gene expression of top-ranked 
genes of the factor. F-I) Line plots of mean log-normalized gene expression of top-ranked genes 
in MES-early factor (F), MES-late factor (G), NPC-OPC-early factor (H), and NPC-late factor (I). 
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Figure 2. Proneural phenotype of ispinesib-resistant clones is preserved in drug-free 
xenograft and provides survival advantage. A) Experimental schematic of scRNA-seq of 
xenografts derived from DMSO-treated and ispinesib-resistant clones of last in vitro time point 
(day 125 control1 samples). B) Kaplan-Meier survival curves of ispinesib-resistant and DMSO-
natural-drift clones derived xenograft models (p = 8x10-6, log-rank test). C) UMAP embeddings 
of last in vitro time point scHPF factors and xenograft dataset projection onto the scHPF model 
of the in vitro time course, color-coded by cell-states and treatments. D) Preranked GSEA 
normalized enrichment score (NES) of gene sets created from scHPF top-ranked genes and 
pre-ranked gene lists generated from differential expression analysis results between ispinesib 
and DMSO samples.  
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Figure 3. Ispinesib-resistant clones are phenotypically diverse in the naïve setting. A) 
Definitions of detected-future-resistant clones and remaining clones. CloneIDs are the assigned 
IDs of the multiplexed CellTag barcodes in clones. B-G) UMAP embedding of scHPF factors of 
naïve cells, colored by the cell-scores of cell-cycle factor (B), MES-early factor (C), MES-late 
factor (D), OPC factor (E), NPC-OPC-early factor (F), and NPC-late factor (G). H-I) Detected-
future-resistant clones in celltag1 and celltag2 naïve cells on the UMAP embedding. J) 
Preranked GSEA normalized enrichment score (NES) of gene sets created from scHPF top-
ranked genes and pre-ranked gene lists generated from differential expression analysis results 
between detected-future-resistant clones and remaining clones.  
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Figure 4. Identification of synergistic drug targets from gene expression analysis of 
ispinesib-resistant clones in the drug-naïve setting. A) Analysis scheme for identifying 
potential drug combinations with ispinesib. B) MA plots of log2(fold change) and sample mean 
from the differential expression analysis between detected-future-resistant clones and remaining 
clones of naïve cells. Genes with fold changes that were significantly high (>95 percentile) given 
their sample means were colored as red. C) Heatmaps of log2(fold change) from the differential 
expression analysis between detected clones and remaining clones of naïve cells. Boolean 
heatmaps of whether the log2(fold change) was significantly high (>95 percentile) given the 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.09.557001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.09.557001
http://creativecommons.org/licenses/by-nc/4.0/


27 
 

genes' sample means. In the x-axis labels of heatmaps, 1 is celltag1 sample, 2 is celltag2 
sample, detected-resistant is the alias for detected-future-resistant clones, and detected-drift is 
the alias for detected-future-natural-drift clones. D) Mean log-normalized gene expression of the 
druggable target genes of detected-future-resistant and remaining clones of naïve cells. E) 
Boxplots of synergistic parameters of MuSyC models.  F-I) Heatmaps of MuSyc Delta, which is 
difference between the 2D Hill-fitted model of the observed efficacy and the null hypothesis. 
Side-by-side single drug response curve (solid curve line, with the other drug concentration at 
zero) and combined drugs response curve (dash curve line, with the other drug concentration at 
the maximum tested). 
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