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Abstract14

The swift advancements in single-cell DNA sequencing (scDNA-seq) have enabled quantitative15

assessment of genetic content in individual cells, allowing downstream analyses at the single-cell16

resolution. This technology considerably facilitates cancer research, yet its underlying power has17

not been fully exploited. Specifically, computational methods for variant calling and phylogenetic18

tree reconstruction struggle due to high coverage variance and allelic dropout. To address these19

issues, here we present DelSIEVE, a statistical method that directly models the inherent noise20

in scDNA-seq data for the inference of ingle-nucleotide variants (SNVs), somatic deletions, and21

cell phylogeny. In a simulation study DelSIEVE exhibits outstanding performance with respect22

to the identification of somatic deletions and SNVs. We apply DelSIEVE to three real datasets,23

where rare double mutant and somatic deletion genotypes are found in colorectal cancer samples.24

As expected with the more expressive model, for the triple negative breast cancer sample we25

identify several somatic deletions, with less single and double mutant genotypes as compared to26

those reported by our previous method SIEVE.27
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Introduction28

Cancer is a genetic disease driven by somatic mutations in the evolutionary process [1–5], result-29

ing in highly heterogeneous cell populations. One of the somatic mutations is single nucleotide30

variants (SNVs), which, through nucleotide substitutions, can activate oncogenes and thus pro-31

moting tumor proliferation, and can inactivate tumor suppressor genes, resulting in malfunc-32

tioned proteins. Another type of somatic mutations is somatic deletions, which can inactivate33

tumor suppressor genes by reducing the number of genomic copies through point deletions,34

small deletions and copy number aberrations (CNAs) [2, 3, 5–8]. Phylogenetic inference is typ-35

ically used to understand and quantify the underlying complexity, or intra-tumor heterogeneity36

(ITH) [9–11], which has substantial relevance in the clinical therapy and prognosis of cancer,37

especially against acquired resistance and relapse of tumor [11–13].38

Previously, methods have been developed for bulk sequencing data to derive variant allele [14–39

18] and CNA profiles [19–22] of clones, as well as to reconstruct tumor phylogeny [23–27]. Lately,40

the rapid development of single-cell DNA sequencing (scDNA-seq) technologies exhibit great41

potential for the analysis of ITH by profiling genetic materials with fine resolution of individual42

cells [28–31]. However, despite the strengths, scDNA-seq suffers from a low signal-to-noise43

ratio, mainly due to the necessity of performing whole genome amplification (WGA) on the44

limited genetic material present in a single cell [31–35]. A popular WGA method is multiple45

displacement amplification (MDA) [36–40], which can generate a great amount of DNA copies46

efficiently without introducing many errors. However, MDA is prone to biases against genomic47

regions, leading to uneven coverage of the genome. Additionally, it may result in allelic dropout48

(ADO), where one of the two alleles fails to be amplified during the process. In some cases, the49

amplification of both alleles may fail, leading to locus dropout, which is a potential source of50

missing data. Such data is suitable for SNV calling, but not for CNA calling, as it is challenging51

to differentiate true CNA events from amplification biases [31, 32, 35].52

Several methods calling SNVs from scDNA-seq have been proposed, which manage to in-53

crease statistical power in distinct aspects to account for specific errors. For instance, Mono-54

var [41] pools single cells at each site together, while SCcaller [42], LiRA [43] and SCAN-SNV [44]55

leverage information on germline single nucleotide polymorphisms. The called SNVs can be used56

then as input for phylogenetic inference by other methods [45–52], reconstructing the cell phy-57

logeny with existing cells as leaves and extinct cells as internal nodes in the tree. To share more58
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effectively information among individual cells and to reduce uncertainties introduced by variant59

callers in phylogenetic inference [53], SCIPhI [54] and SIEVE (previously developed by us) [55]60

jointly infer SNVs and cell phylogeny. SCIPhI considers a cell phylogeny without branch lengths61

under the infinite-sites assumption (ISA), which is reportedly often violated in reality [56–58]. In62

contrast, SIEVE models a cell phylogeny with branch lengths corrected for acquisition bias [59,63

60] under the finite-sites assumption (FSA) within a statistical phylogenetic model, and models64

the sequencing coverage using a negative binomial distribution. Accounting for more informa-65

tion and providing a more flexible model to share information across cells, SIEVE outperforms66

SCIPhI in both SNV calling and cell phylogeny reconstruction [55].67

One assumption of SIEVE’s statistical phylogenetic model is that the genome remains diploid68

during the evolutionary process of the tumor, overlooking the possible occurrence of somatic dele-69

tions. Indeed, the inclusion and the accurate identification of somatic deletions for scDNA-seq70

remains a challenging problem. This difficulty arises because the sequencing data generated by71

somatic deletions bears a resemblance to and can be mistaken for ADOs or somatic back muta-72

tions. Nevertheless, to address this issue, innovative methods have explored the incorporation73

of a cell phylogeny, leveraging the idea that cells residing closely on the evolutionary tree share74

related information, while ADOs occur independently during the sequencing process. SCAR-75

LET [61] takes the first step in this direction by refining a copy number tree using read counts76

for SNVs with a loss-supported phylogeny model. SCIPhIN [62] considers somatic deletions, and77

allows for mutational losses and recurrent mutations on the cell phylogeny. However, both of78

them relax the ISA to only a limited extent, which might result in them missing other important79

events in the evolutionary process, such as double mutations (mutations affecting both alleles80

at a variant site). In addition, both SCARLET and SCIPhIN ignore the information conveyed81

by sequencing coverage. However, scDNA-seq data, particularly when coupled with MDA am-82

plification method, is highly uneven across the genome. Therefore, deliberately disregarding the83

intricacies of sequencing coverage may result in substantial loss of the information embedded84

within the dataset.85

We reasoned that utilizing the additional signal in coverage, combined with the information86

encoded in the raw read counts and phylogenetic similarities among cells, a model extending87

SIEVE could account for somatic deletions. Building upon this intuition, here we introduce88

DelSIEVE (somatic Deletions enabled SIngle-cell EVolution Explorer), a statistical phylogenetic89

model that includes all features of SIEVE, namely correcting branch lengths of the cell phylogeny90
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for the acquisition bias, incorporating a trunk to model the establishment of the tumor clone,91

employing a Dirichlet-multinomial distribution to model the raw read counts for all nucleotides,92

as well as modeling the sequencing coverage using a negative binomial distribution, and extends93

them with the more versatile capacity of calling somatic deletions. DelSIEVE is capable of94

modeling locus dropout, where both alleles at a site are allowed to be dropped out during95

WGA. Importantly, it is the first model leveraging phylogenetic similarities among cells to tell96

apart the factual deletion genotypes from back mutations or technical artifacts such as ADO97

or locus dropout. By doing so, DelSIEVE is able to discern 28 types of genotype transitions,98

associated with 17 types of mutation events, much more than the 12 types of transitions that99

SIEVE can discern. DelSIEVE is available as a package of BEAST 2 [63] at https://github.100

com/szczurek-lab/DelSIEVE.101

Methods102

In the evolution of tumor, both SNVs and somatic deletions play important roles, leading to103

highly heterogeneous tumor populations. Assuming a diploid genome in a normal cell as the104

origin of tumor evolution, our DelSIEVE model performs joint inference of cell phylogeny from105

scDNA-seq and the resulting SNVs and somatic deletions in single cells.106

DelSIEVE model107

DelSIEVE takes as input raw read counts for all four nucleotides for cell j ∈ {1, . . . , J} at108

candidate site i ∈ {1, . . . , I} in the form of D(1)
ij = (mij , cij), where mij = {mijk | k = 1, 2, 3}109

is the read counts of three alternative nucleotides with values in descending order and cij is the110

sequencing coverage (Figure 1a; see Kang et al. [55] for explanation of how candidate sites are111

identified). DelSIEVE also optionally takes raw read counts data D(2) from I ′ background sites112

for acquisition bias correction. It is important to note that since DelSIEVE requires preselected113

candidate variant sites as input, it can only identify somatic deletions at those candidate sites.114

The model first infers the cell phylogeny, followed by maximum likelihood estimation of the115

genotype state of each node in the tree (Figure 1a). The power of DelSIEVE lies in the elegantly116

devised probabilistic graphical model, where the hidden variable describing the genotype for site117

i in cell j, denoted gij , is used as the bridge between the statistical phylogenetic model and the118

model of raw read counts (Figure 1b).119

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.09.556903doi: bioRxiv preprint 

https://github.com/szczurek-lab/DelSIEVE
https://github.com/szczurek-lab/DelSIEVE
https://github.com/szczurek-lab/DelSIEVE
https://doi.org/10.1101/2023.09.09.556903
http://creativecommons.org/licenses/by-nc-nd/4.0/


Phylogenetic inference

Root MRCA

Variant calling

Cell
1 ...... j J

Site

1
...

...
I

i 1/-

5
0
1
4

D
T
A
C

Cell
1 ...... j J

GSite

Reference

1
...

...
I

i

Input: Raw read counts at
candidate variant sites

DelSIEVE model

a

1/1 d 0.0 02/31/3
1/1' d 01/30 0.1/3

0/1 d/2 01/61/6 d/21/3.
0/0 0 00. d01

0 .00 000-

1/2 d/200 .000/-

1/-

. d/200 1/6001/-

-1/10/0 0/-1/1'0/1c

k = 1, 2, 3

Site 1 i I
Cell 1 j J

cij

mijk

ij

t

v

fwij

gij g′ij

T,M

e

d Q

h
u

ij ij

b

Figure 1: Overview of the DelSIEVE model. a Analysis workflow of DelSIEVE with an
example of input data. At candidate variate site i ∈ {1, . . . , I}, the reference nucleotide is G.
For cell j ∈ {1, . . . , J} at site i, observed are sequencing depth being 5 (marked by D) as well
as read counts for nucleotide C being 4 and A being 1. Inferred first is the cell phylogeny from
the input data by DelSIEVE. Based on the cell phylogeny, determined is the genotype state of
each node in the tree through maximum likelihood estimation. For instance, 1/− is inferred as
the genotype state of cell j at site i. b Probabilistic graphical model of DelSIEVE. The orange
dotted frame shows the part corresponding to the the statistical phylogenetic model, and the
blue dashed frame encloses the part corresponding to the model of raw read counts. Shaded
circle nodes represent observed variables, while unshaded circle nodes represent hidden random
variables. Nodes with double circles are deterministic random variables, meaning that they are
readily fixed once the values of their parents are determined. Small filled circles correspond to
fixed hyper parameters. Arrows denote local conditional probability distributions of child nodes
given parent nodes. c Instantaneous transition rate matrix of the statistical phylogenetic model.
The hidden random variable d is the deletion rate, measured relatively to the mutation rate.
The elements in the diagonal of the matrix are denoted by dots, and have negative values equal
to the sum of the other entries in the same row, ensuring that the sum of each row equals zero.

Statistical phylogenetic model120

DelSIEVE expands the genotype state space defined in SIEVE: on top of 0/0 (wildtype), 0/1121

(single mutant), 1/1 (double mutant, where the two alternative nucleotides are the same) and122

1/1′ (double mutant, where the two alternative nucleotides are different), DelSIEVE additionally123

considers 0/- (reference-left single deletion), 1/- (alternative-left single deletion) and - (double124

deletion). Here, 0, 1, 1′ and - represent the reference nucleotide, an alternative nucleotide, a125

second alternative nucleotide different from that denoted by 1, and deletions, respectively. The126

expanded genotype state spaceG = {0/0, 0/1, 1/1, 1/1′, 0/-, 1/-,-} enables the addition of somatic127

deletions as possible events in the statistical phylogenetic model (Figure 1c). Given the genotype128

state space G, DelSIEVE is able to discern 28 types of genotype transitions (16 more than129

SIEVE), which can be categorized into 17 types of mutation events (8 more than SIEVE; see130
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Section Mutation event classification).131

With the genotype state space G specified, we define the instantaneous transition rate matrix132

Q in Figure 1c, which is the key component to the statistical phylogenetic model. We set the133

somatic mutation rate to 1, where the relative measurements for back mutation rate and deletion134

rate are 1/3 and d, respectively. Thus, Q is deterministic and depends on the hidden random135

variable corresponding to the relative deletion rate d:136

P (Q | d) = 1. (1)

Each entry in Q represents the transition rate from the genotype in the row to that in the column137

during an infinitesimal time ∆t. Besides, each row in Q sums up to 0. The continuous-time138

homogeneous Markov chain underlying Q is time non-reversible and reducible. For instance,139

genotypes that have both alleles present can transition to genotypes with one or both alleles140

lost, but not vice versa. To be specific, genotypes {0/0, 0/1, 1/1, 1/1′} and genotypes {0/-, 1/-}141

form two ergodic, transient communicating classes, while genotype {-} forms a closed communi-142

cating class. As a result, the limiting distribution of the Markov chain exists, where the value143

corresponding to genotype - is 1, while the others are 0.144

Based on the well-established theory of statistical phylogenetic models, the joint conditional145

probability of the genotype states of all sequenced cells at site i, namely g
(L)
i , is146

P
(
g
(L)
i

∣∣∣ T ,β, Q, h, η) =
∑

g
(A)
i \{gi(2J)}

P
(
g
(L)
i , g

(A)
i \

{
gi(2J)

} ∣∣∣ T ,β, Q, h, η) . (2)

Intuitively, this means that to compute the likelihood of the genotypes of the variant sites at the147

leaves, we marginalize out the genotypes at the ancestor nodes from the total likelihood. The148

variables in Equation (2) have the same meaning as in SIEVE. Briefly speaking, T is the rooted149

binary tree topology, whose root, representing a normal cell with diploid genome, has only one150

child, the MRCA of all sequenced cells. T has J existing, sequenced cells as leaves, whose151

genotypes are g
(L)
i = (gi1, . . . , gij , . . . , giJ)T , where gij ∈ G. The J extinct, ancestor cells in T as152

internal nodes have genotypes g
(A)
i =

(
gi(J+1), . . . , gij , . . . , gi(2J)

)T
, where gij \

{
gi(2J)

}
∈ G and153

gi(2J) = 0/0. T also has 2J−1 branches, whose lengths β ∈ R2J−1 represent the expected number154

of somatic mutations per site. h and η are the number of rate categories and shape, respectively,155

of a discrete Gamma distribution with mean equal 1 for modeling among-site substitution rate156
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variation. Hidden random variables d in Equation (1) and T ,β, η in Equation (2) are estimated157

using MCMC, while the fixed hyperparameter h takes value 4 by default.158

Given deletion rate d (and thus Q) and branch length β, the seven-by-seven transition159

probability matrix R(β) is computed as R(β) = exp (Qβ) [53].160

Model of raw read counts161

We factorize the probability of observing Dij for cell j at site i into162

P (Dij) = P (mij | cij)P (cij), (3)

where the former corresponds to the model of nucleotide read counts and the latter to the model163

of sequencing coverage.164

Model of sequencing coverage. One of the major, yet often overlooked challenges in scDNA-165

seq is the highly uneven sequencing coverage. This happens because the genetic materials are166

amplified largely unequally during WGA. Similar to SIEVE, we employ a negative binomial167

distribution to capture the overdispersion existing in the sequencing coverage:168

P (c | p, r) =

(
c+ r − 1

r − 1

)
pr(1 − p)c, (4)

where p and r are parameters. To improve interpretability, the distribution is reparameterized169

using mean µ and variance σ2:170 
p =

µ

σ2
,

r =
µ2

σ2 − µ
.

(5)

We assume that µij and σ2ij have the same form as in SIEVE, namely171

µij = αijtsj ,

σ2ij = µij + α2
ijνs

2
j .

(6)

Here, t and ν are the mean and the variance of allelic coverage, respectively. αij ∈ {0, 1, 2}172

represents the number of sequenced alleles. With the extended genotype state space G in the173

DelSIEVE model, the number of alleles possessed by a cell at a site can either be zero (corre-174

sponding to genotype state {-}), one (genotype states {0/-, 1/-}), or two ({0/0, 0/1, 1/1, 1/1′}).175
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On top of that, the possible occurrence of ADOs during scWGA could alter the number of alleles176

possessed by a cell at a site. Here, we model two types of ADOs, single ADO and locus dropout.177

The single ADO mode was previously proposed by us in SIEVE, where at most one ADO is178

allowed to happen to cell j at site i. For DelSIEVE, the corresponding prior distribution of αij ,179

P (αij | gij , θ), is defined in Table 1, where θ denotes the probability of the occurrence of single180

ADO when both alleles exist. One should consider the ”Single ADO occurred” column as value181

of an additional hidden random variable corresponding to an ADO occurrence indicator, which182

will be marginalized out in the model. For example, the probability of an event of single ADO183

occurance when gij = 0/- equals θ/2, because there is only one allele left to be dropped out. For184

genotype -, it is certain that single ADO has not occuredd as there is no allele existing.185

Table 1: Definition of the distribution of αij conditional on gij and θ under single
ADO mode for DelSIEVE.

αij gij Single ADO occurred P (αij | gij , θ)
1 0/0 Yes θ
2 0/0 No 1 − θ
1 0/1 Yes θ
2 0/1 No 1 − θ
1 1/1 Yes θ
2 1/1 No 1 − θ
1 1/1′ Yes θ
2 1/1′ No 1 − θ
0 0/- Yes θ/2
1 0/- No 1 −θ/2
0 1/- Yes θ/2
1 1/- No 1 −θ/2
0 - No 1

Others 0

To generalize DelSIEVE to model both ADO and locus dropout, we allow more than one186

allele to drop out. P (αij | gij , θ) is defined in Table 2, where θ represents the probability of an187

allele dropped out. We assume that the ADOs occur to each allele independently. For instance,188

when gij = 0/0, the probability of αij = 0 is θ2, happening only when both alleles drop out. For189

genotype 0/-, the sole allele drops out with probability θ, resulting in zero sequenced alleles.190

sj in Equation (6) is the size factor of cell j, which is estimated exactly in the same way as191

in SIEVE:192

ŝj = median
i:cij ̸=0

cij(∏J ′
j′=1
cij′ ̸=0

cij′

) 1
J′
, (7)
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Table 2: Definition of the distribution of αij conditional on gij and θ under locus
dropout mode for DelSIEVE.

αij gij Number of alleles dropped out P (αij | gij , θ)
0 0/0 2 θ2

1 0/0 1 2θ(1 − θ)
2 0/0 0 (1 − θ)2

0 0/1 2 θ2

1 0/1 1 2θ(1 − θ)
2 0/1 0 (1 − θ)2

0 1/1 2 θ2

1 1/1 1 2θ(1 − θ)
2 1/1 0 (1 − θ)2

0 1/1′ 2 θ2

1 1/1′ 1 2θ(1 − θ)
2 1/1′ 0 (1 − θ)2

0 0/- 1 θ
1 0/- 0 1 − θ
0 1/- 1 θ
1 1/- 0 1 − θ
0 - 0 1

Others 0

where J ′ is the number of cells with non-zero coverage at a site.193

Model of nucleotide read counts. We showed before that the occurrence of ADOs could194

change the number of alleles possessed by cell j at site i. As a result, the genotype gij could195

change to the ADO-affected genotype, g′ij ∈ G. The probability of g′ij writes P (g′ij | gij , αij),196

which is defined in Table 3 for the single ADO mode and in Table 4 for the locus dropout mode.197

When g′ij ∈ G\{-}, we model mij , the read counts of three alternative nucleotides, conditional198

on the sequencing coverage cij with a Dirichlet-multinomial distribution as199

P (mij | cij ,aij) =
F (cij , aij0)∏3

k=1:mijk>0 F (mijk, aijk)F (cij −
∑3

k=1mijk, aij4)
, (8)

with parameters aij = {aijk | k = 1, . . . , 4} and aij0 =
∑4

k=1 aijk. F is a function defined as200

F (x, y) =


xB(y, x), if x > 0,

1, otherwise,

(9)

where B is the beta function. Note that cij −
∑3

k=1mijk is the read count of the reference201

nucleotide.202

Similar to SIEVE, we reparameterize Equation (8) by letting aij = wijfij . wij is related to203
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Table 3: Definition of the distribution of g′ij conditional on gij and αij under single
ADO mode for DelSIEVE.

g′ij gij αij P (g′ij | gij , αij)

0/0 0/0 2 1
0/- 0/0 1 1
0/1 0/1 2 1
0/- 0/1 1 1/2
1/- 0/1 1 1/2
1/1 1/1 2 1
1/- 1/1 1 1
1/1′ 1/1′ 2 1
1/- 1/1′ 1 1
0/- 0/- 1 1
- 0/- 0 1

1/- 1/- 1 1
- 1/- 0 1
- - 0 1

Others 0

the overdispersion. fij = {fijk | k = 1, . . . , 4},
∑4

k=1 fijk = 1 is a vector of expected frequencies204

of each nucleotide, where the first three elements correspond to the three alternative nucleotides205

ordered decreasingly according to their read counts, and the last to the reference nucleotide.206

Depending on g′ij , fij is given by207

fij =



f1 =

(
1

3
f,

1

3
f,

1

3
f, 1 − f

)
, if g′ij = 0/0 or 0/-,

f2 =

(
1

2
− 1

3
f,

1

3
f,

1

3
f,

1

2
− 1

3
f

)
, if g′ij = 0/1,

f3 =

(
1 − f,

1

3
f,

1

3
f,

1

3
f

)
, if g′ij = 1/1 or 1/-,

f4 =

(
1

2
− 1

3
f,

1

2
− 1

3
f,

1

3
f,

1

3
f

)
, if g′ij = 1/1′,

(10)

where f is the effective sequencing error rate, combining together amplification and sequencing208

errors.209

The parameter wij also depends on g′ij , where210

wij =


w1, if g′ij = 0/0, 0/-, 1/1, or 1/-,

w2, if g′ij = 0/1 or 1/1′,

(11)

and w1 corresponds to wild type overdispersion and w2 to alternative overdispersion.211
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Table 4: Definition of the distribution of g′ij conditional on gij and αij under locus
dropout mode for DelSIEVE.

g′ij gij αij P (g′ij | gij , αij)

0/0 0/0 2 1
0/- 0/0 1 1
- 0/0 0 1

0/1 0/1 2 1
0/- 0/1 1 1/2
1/- 0/1 1 1/2
- 0/1 0 1

1/1 1/1 2 1
1/- 1/1 1 1
- 1/1 0 1

1/1′ 1/1′ 2 1
1/- 1/1′ 1 1
- 1/1′ 0 1

0/- 0/- 1 1
- 0/- 0 1

1/- 1/- 1 1
- 1/- 0 1
- - 0 1

Others 0

By plugging Equations (10) and (11) into Equation (8), we have212

P (mij |cij , g′ij , f, wij) =



P0/0 = P
(
mij

∣∣ cij , g′ij = 0/0,f1, w1

)
,

P0/- = P
(
mij

∣∣ cij , g′ij = 0/-,f1, w1

)
,

P0/1 = P
(
mij

∣∣ cij , g′ij = 0/1,f2, w2

)
,

P1/1 = P
(
mij

∣∣ cij , g′ij = 1/1,f3, w1

)
,

P1/- = P
(
mij

∣∣ cij , g′ij = 1/-,f3, w1

)
,

P1/1′ = P
(
mij

∣∣ cij , g′ij = 1/1′,f4, w2

)
,

P- = P (mij |cij , g′ij =-, f, wij) = 1,

(12)

where we additionally define P (mij |cij , g′ij =-, f, wij) = 1.213

Although gij and g′ij share the same genotype state space, it’s important to note that some214

genotype states can arise from distinct evolutionary or technical events. For instance, genotype215

1/- could be the outcome of evolutionary processes, where one allele was deleted while the216

other remained intact. Alternatively, it could also be a result of technical artifacts, where217

both alleles were initially present before scWGA, but one allele experienced dropout during218

the amplification process. The presence of multiple potential causes for genotypes, such as219
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the genotype 1/-, introduces a significant challenge in disentangling their origins compared220

to methods like SIEVE, which predominantly attribute such genotypes to technical artifacts.221

However, an encouraging development is the integration of the statistical phylogenetic model222

and the model of sequencing coverage. This integration allows for a comprehensive analysis223

from both evolutionary and technical perspectives, thereby facilitating the disentanglement. By224

incorporating the statistical phylogenetic model, we gain insights into the evolutionary dynamics225

underlying genotype development, while the model of sequencing coverage provides valuable226

information about the technical nuances of the sequencing technique employed. This combined227

approach offers a more robust framework for disentangling the complex factors contributing to228

genotypic variations and enhancing our understanding of the underlying biological and technical229

processes involved.230

DelSIEVE likelihood231

Combining the statistical phylogenetic model and the model of raw read counts described above,232

we acquire the likelihood of DelSIEVE, denoted by233

P
(
D(1),D(2)

∣∣∣ T ,β, Q, h, η, t, v, θ, f, w1, w2

)
. (13)

To simplify notation, we denote some variables in the statistical phylogenetic model as234

Θ = {T ,β, Q, h, η} and some in the model of raw read counts as Φ = {t, v, θ, f, w1, w2}. By235

taking the logarithm, Equation (13) is further writes236

logL(Θ,Φ) = logL(1)(Θ,Φ) + logL(2)(Θ,Φ), (14)

where L(1) is the tree likelihood corrected for acquisition bias computed for candidate SNV sites237

in D(1), while L(2) is the likelihood computed for background sites in D(2), referred to as the238

background likelihood.239

Acquisition bias refers to the cases where the branch lengths of cell phylogenies are overes-240

timated when only using data from SNV sites as input [59, 60]. Here, it is corrected similarly241

to SIEVE, following [64]:242

logL(1) = logP
(
D(1)

∣∣∣Θ,Φ)+ I ′ log

(
1

I

I∑
i=1

Ci

)
, (15)
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where the first component is the uncorrected tree log-likelihood for SNV sites, and Ci in the243

second component is the likelihood of SNV site i being invariant (see below).244

To compute logP
(
D(1)

∣∣Θ,Φ) in Equation (15), we decompose it according to the proba-245

bilistic graphical model in Figure 1b. Assuming independent and identical evolution of each246

candidate variant site, logP
(
D(1)

∣∣Θ,Φ) writes247

logP
(
D(1)

∣∣∣Θ,Φ) =
I∑

i=1

log
∑

g
(L)
i ,g

(A)
i \{gi(2J)}

[
P
(
D(1)

i

∣∣∣ g(L)i ,Φ)

× P
(
g
(L)
i , g

(A)
i \

{
gi(2J)

} ∣∣∣Θ)]
=

I∑
i=1

log
∑

g
(L)
i ,g

(A)
i \{gi(2J)}

[
J∏

j=1

P (mij , cij | gij ,Φ)

× P
(
g
(L)
i , g

(A)
i \

{
gi(2J)

} ∣∣∣Θ)]

=
I∑

i=1

J∑
j=1

log
∑

g
(L)
i ,g

(A)
i \{gi(2J)}

[
P (mij , cij | gij ,Φ)

× P
(
g
(L)
i , g

(A)
i \

{
gi(2J)

} ∣∣∣Θ)],

(16)

where P (mij , cij | gij ,Φ), representing the model of raw read counts applied on the leaves of the248

phylogenetic tree, is similarly decomposed into249

P (mij , cij | gij ,Φ) = P (mij , cij | gij , f, wij , t, v, θ)

=
∑

αij ,g′ij

P
(
mij , cij , αij , g

′
ij

∣∣ gij , f, wij , t, v, θ
)

=
∑

αij ,g′ij

[
P
(
mij

∣∣ cij , g′ij , f, wij

)
P
(
g′ij
∣∣ gij , αij

)
× P (cij |αij , t, v)P (αij | gij , θ)

]
.

(17)

P (cij |αij , t, v) in the above equation is defined through Equations (4) to (6), and P (mij | cij , g′ij , f, wij)250

is defined in Equation (12). Under the single ADO mode, P (αij | gij , θ) and P (g′ij | gij , αij) are251

defined as shown in Table 1 and Table 3, respectively, while under the locus dropout mode in252

Table 2 and Table 4, respectively. As a result, Equation (17) takes distinct forms under different253

modes of modeling ADOs.254
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For the single ADO mode, Equation (17) is further represented as255

P (mij , cij | gij ,Φ) =



P0/0 · P (cij |αij = 2, t, v) · (1 − θ)

+ P0/- · P (cij |αij = 1, t, v) · θ, if gij = 0/0,

P0/1 · P (cij |αij = 2, t, v) · (1 − θ)

+
1

2
(P0/- + P1/-) · P (cij |αij = 1, t, v) · θ, if gij = 0/1,

P1/1 · P (cij |αij = 2, t, v) · (1 − θ)

+ P1/- · P (cij |αij = 1, t, v) · θ, if gij = 1/1,

P1/1′ · P (cij |αij = 2, t, v) · (1 − θ)

+ P1/- · P (cij |αij = 1, t, v) · θ, if gij = 1/1′,

P0/- · P (cij |αij = 1, t, v) · (1 − θ

2
)

+ P- · P (cij |αij = 0, t, v) · θ
2
, if gij = 0/-,

P1/- · P (cij |αij = 1, t, v) · (1 − θ

2
)

+ P- · P (cij |αij = 0, t, v) · θ
2
, if gij = 1/-,

P- · P (cij |αij = 0, t, v), if gij =- .

(18)
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For the locus dropout mode, Equation (17) writes256

P (mij , cij | gij ,Φ) =



P0/0 · P (cij |αij = 2, t, v) · (1 − θ)2

+ P0/- · P (cij |αij = 1, t, v) · 2 · θ · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ2, if gij = 0/0,

P0/1 · P (cij |αij = 2, t, v) · (1 − θ)2

+ (P0/- + P1/-) · P (cij |αij = 1, t, v) · θ · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ2, if gij = 0/1,

P1/1 · P (cij |αij = 2, t, v) · (1 − θ)2

+ P1/- · P (cij |αij = 1, t, v) · 2 · θ · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ2, if gij = 1/1,

P1/1′ · P (cij |αij = 2, t, v) · (1 − θ)2

+ P1/- · P (cij |αij = 1, t, v) · 2 · θ · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ2, if gij = 1/1′,

P0/- · P (cij |αij = 1, t, v) · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ, if gij = 0/-,

P1/- · P (cij |αij = 1, t, v) · (1 − θ)

+ P- · P (cij |αij = 0, t, v) · θ, if gij = 1/-,

P- · P (cij |αij = 0, t, v), if gij =- .

(19)

Equation (16) is computed efficiently using the Felsenstein’s pruning algorithm [65]. For257

I candidate SNV sites, J cells and K genotype states in G (for DelSIEVE K = 7), the time258

complexity of the Felsenstein’s pruning algorithm is O(IJK2).259

Since in the second component of Equation (15), Ci corresponds to the likelihood of candidate260

SNV site i being invariant, it is computed as the joint probability of Di and g
(L)
i = 0/0, writing261

Ci = P
(
D(1)

i , g
(L)
i = 0/0

∣∣∣Θ,Φ)
= P

(
D(1)

i

∣∣∣ g(L)i = 0/0,Φ
) ∑

g
(A)
i \{gi(2J)}

P
(
g
(L)
i = 0/0, g

(A)
i \

{
gi(2J)

} ∣∣∣Θ)

=

J∏
j=1

P (mij , cij | gij = 0/0,Φ)
∑

g
(A)
i \{gi(2J)}

P
(
g
(L)
i = 0/0, g

(A)
i \

{
gi(2J)

} ∣∣∣Θ) ,
(20)

15

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.09.556903doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.09.556903
http://creativecommons.org/licenses/by-nc-nd/4.0/


which is computed similarly to Equation (16), but with gij for j = 1, . . . J fixed to 0/0. In fact,262

Ci and logP
(
D(1)

i

∣∣∣Θ,Φ) are computed simultaneously in the implementation for optimized263

efficiency.264

To efficiently compute logL(2), the background likelihood in Equation (14), we make sev-265

eral simplifications similar to SIEVE. Specifically, we assume that each cell at each background266

site has the wildtype genotype with both alleles covered during scWGA. We also assume that267

P (cij |αij , t, v) = 1 and P
(
g
(L)
i = 0/0, g

(A)
i \

{
gi(2J)

} ∣∣∣Θ) = 1, thereby ignoring the model of268

sequencing coverage and the tree log-likelihood for the background sites i for i = 1, . . . I ′. With269

an alternative form of the Dirichlet-multinomial distribution, logL(2) is approximately and effi-270

ciently computed by271

logL(2)(f, w1) =
I′∑
i=1

J∑
j=1

logP0/0

=
I′∑
i=1

J∑
j=1

log

[
Γ(w1)Γ(cij + 1)

Γ(cij + w1)

3∏
k=1

Γ
(
mijk + 1

3fw1

)
Γ
(
1
3fw1

)
Γ(mijk + 1)

×
Γ
(
cij −

∑3
k=1mijk + (1 − f)w1

)
Γ((1 − f)w1)Γ

(
cij −

∑3
k=1mijk + 1

)]

= I ′J

[
log Γ(w1) − 3 log Γ

(
1

3
fw1

)
− log Γ((1 − f)w1)

]

+

max(cij)∑
c=1

Nc(log Γ(c+ 1) − log Γ(c+ w1))

+
3∑

k=1

max(mijk)∑
mk=1

Nmk

(
log Γ

(
mk +

1

3
fw1

)
− log Γ(mk + 1)

)

+

max(cij−
∑3

k=1 mijk)∑
c−

∑3
k=1 mk=1

Nc−
∑3

k=1 mk

(
log Γ

(
c−

3∑
k=1

mk + (1 − f)w1

)

− log Γ

(
c−

3∑
k=1

mk + 1

))
,

(21)

where P0/0 is defined in Equation (12). Across I ′ background sites and J cells, Nc, Nmk
for k =272

1, 2, 3, and Nc−
∑3

k=1 mk
represent the unique occurrences of sequencing coverage c, of alternative273

nucleotide read counts mk for k = 1, 2, 3, and of reference nucleotide read counts c−
∑3

k=1mk,274

respectively. Some terms, namely log Γ(c + 1), − log Γ(mk + 1) for k = 1, 2, 3, and − log Γ
(
c −275 ∑3

k=1mk + 1
)
, are constants, and thus they are not updated in the MCMC iterations.276

The time complexity of Equation (21) is O(c), where c is the number of unique values in277

the set of values representing sequencing coverage and read counts for all four nucleotides across278
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I ′ background sites and J cells. Since generally IJK2 ≫ c, the overall time complexity of279

model likelihood is O(IJK2). It is worth noting that given I candidate variant sites and J cells,280

the time complexity of DelSIEVE is around 1.8 times greater than that of SIEVE due to the281

expanded genotype state space.282

Priors283

Similar to SIEVE, we use prior distributions predefined and implemented in BEAST 2 for hidden284

random variables in the DelSIEVE model. For the cell phylogeny given by T and β, we set a prior285

following the Kingman coalescent process with an exponentially growing population, denoted286

P (T ,β |M, e), (22)

where M and e are hidden random variables, representing the scaled population size and the287

exponential growth rate, respectively. The analytical form of Equation (22) is defined at length288

in [66].289

The default prior for M in BEAST 2 is290

P (M | δ) =
1

δ
, (23)

where δ is the current proposed value of M .291

As for e, the default prior is292

e |λ, ϵ ∼ Laplace(λ, ϵ), (24)

where the default values of the fixed parameters are mean λ = 10−3 and scale ϵ = 30.7.293

For η in Equation (2), an exponential prior distribution is chosen:294

η | γ ∼ exp(γ), (25)

where γ = 1.295

For the relative deletion rate d in Equation (1), a uniform prior distribution is used:296

d |φ ∼ Uniform(0, φ), (26)
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where φ = 1.297

For the hidden random variables in the model of sequencing coverage in Equations (4) to (6),298

a weak prior is set for t:299

t | ρ ∼ Uniform(0, ρ), (27)

where ρ = 1000, while the prior for v is300

v | ζ ∼ exp(ζ), (28)

where ζ = 25.301

For the ADO rate θ defined either under the single ADO (Table 1) or under the locus dropout302

mode (Table 2), we use an uninformative prior:303

θ |u ∼ Uniform(0, u), (29)

where u = 1.304

Regarding the hidden random variables in the model of nucleotide read counts in Equa-305

tions (8), (10) and (11), an exponential prior is set for f :306

f | τ ∼ exp(τ), (30)

where τ = 0.025, and a log normal prior for both w1 and w2:307

w1 | ξ1, ψ1 ∼ Log-Normal(ξ1, ψ1),

w2 | ξ2, ψ2 ∼ Log-Normal(ξ2, ψ2),

(31)

where we choose for w1 the log-transformed mean ξ1 = 3.9 (150 for untransformed) and the stan-

dard deviation ψ1 = 1.5, and for w2 the log-transformed mean ξ2 = 0.9 (10 for untransformed)

and the standard deviation ψ2 = 1.7. The mean is log-transformed using

ξtransformed = log(ξuntransformed) − ψ2

2
.

These values of the fixed parameters in Equation (31) are chosen to cover a wide range of possible308

values for w1 and w2.309
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Posterior and MCMC310

The posterior distribution of the hidden random variables writes311

P
(
T ,β,M, e, η, d, t, v, θ, f, w1, w2

∣∣∣D(1),D(2)
)

=
1

Z
P
(
D(1),D(2)

∣∣∣ T ,β, Q, η, t, v, θ, f, w1, w2

)
× P (T ,β |M, e)P (M | δ)P (e |λ, ϵ)

× P (η | γ)P (Q | d)P (d |φ)

× P (t | ρ)P (v | ζ)P (θ |u)P (f | τ)

× P (w1 | ξ1, ψ1)P (w2 | ξ2, ψ2),

(32)

where Z = P (D(1),D(2)) is a normalization constant, and the likelihood of the model and priors312

for hidden random variables are defined in Section DelSIEVE likelihood and Section Priors,313

respectively. To simplify the notation, we denote the hidden random variables in Equation (32)314

as Λ = {T ,β,M, e, η, d, t, v, θ, f, w1, w2}.315

Since Z in Equation (32) is intractable to calculate, we employ the MCMC algorithm with316

Metropolis-Hastings kernel to sample from the posterior distribution. In this algorithm, a new317

state of the hidden random variables Λ∗ is proposed based on its current state Λ following a318

proposal distribution q(Λ∗ |Λ). q(Λ∗ |Λ) is designed to ensure the reversibility and ergodicity319

of the underlying Markov chain. For DelSIEVE, in each iteration, a new state of a randomly320

selected hidden variable is accepted with probability321

min

{
1,
P
(
Λ∗ ∣∣D(1),D(2)

)
q(Λ |Λ∗)

P
(
Λ
∣∣D(1),D(2)

)
q(Λ∗ |Λ)

}
. (33)

We employ exactly the same proposal distributions as we used in SIEVE, which are defined322

in BEAST 2. Briefly, regarding the branch lengths of the tree, the heights of the internal nodes323

are adjusted. For the tree topology, we use multiple moves, including subtree swapping, Wilson-324

Balding, and subtree sliding, where the last two moves also change branch lengths as a side325

effect. With respect to unknown parameters, scaling and random Gaussian walks are used. For326

detailed description of the aforementioned moves, refer to Drummond et al. [66] and Kang et327

al. [55].328

To achieve accurate parameter and tree estimates, DelSIEVE employs a two stage sampling329

strategy, similarly to SIEVE.330
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Variant calling, ADO calling and maximum likelihood gene annotation331

In the efficient computation of model likelihood using Equations (16) and (17), we marginal-332

ize out some hidden random variables: g
(L)
i , g

(A)
i , g′ij and αij . Hence, the direct results from333

the MCMC sampling process are the posterior distributions of cell phylogeny and other un-334

known hidden random variables. We obtain the estimates of those marginalized hidden random335

variables as a post processing step, similarly to SIEVE. Specifically, we use the max-sum al-336

gorithm [67], by fixing the maximum clade credibility tree [68] and parameters estimated from337

the MCMC posterior samples. As a result, the variants, ADO states, as well as the locations338

of mutated genes on the inferred cell phylogeny are determined by identifying the maximum339

likelihood states of g
(L)
i , g′ij and αij , as well as g

(A)
i , respectively.340

Mutation event classification341

DelSIEVE is able to discern 28 types of genotype transitions, which are classified into 17 types of342

mutation events (Table 5). Each genotype transition is a combinatorial result of single mutations,343

single back mutations and single deletions. Single mutations happen when 0 mutates to 1, or344

1 and 1′ mutate to each other. Single back mutations occur when 1 or 1′ mutates to 0. Single345

deletions happen when an existing allele is lost during evolution, namely 0 or 1 deleted.346

Since DelSIEVE encompasses the genotype state space modeled by SIEVE, it is capable of347

discerning all genotype transitions that SIEVE can handle, namely the first 12 rows in Table 5348

(for detailed explaination see Kang et al. [55]). Those mutation events that only DelSIEVE is349

able to discern are explained as follows.350

The single deletion which is not loss of heterozygosity (LOH; related to genotype transitions351

0/0 → 0/- and 1/1 → 1/-) takes place when one allele is deleted from genotypes in which352

both alleles originally contained the same nucleotide, while the single deletion which is LOH353

(0/1 → 0/-, 0/1 → 1/- and 1/1′ → 1/-) happens when one allele is deleted from genotypes in354

which both alleles originally had different nucleotides. The coincident deletion and mutation355

(0/0 → 1/-) refers to the case when one allele is deleted, and the other is mutated of the356

wildtype, while the coincident deletion and back mutation (1/1 → 0/- and 1/1′ → 0/-) happens357

when one allele is deleted, and the other is mutated back to the reference nucleotide. The358

single deletion mutation addition (0/- → 1/-) takes place when the only allele of the reference-359

left single deletion genotype is mutated to an alternative nucleotide, while the single deletion360

back mutation addition happens when the mutated allele of the alternative-left single deletion361
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Table 5: 28 types of genotype transitions that DelSIEVE is able to identify, with
their interpretation as mutation events. The genotype transitions correspond to possible
changes of genotypes on a branch from the parent node to the child node. If any of these events
occurs on independent branches of the phylogenetic tree, it is also considered as a parallel
evolution event. The first 12 genotype transitions are also identifiable with SIEVE. LOH in the
table represents loss of heterozygosity.

Genotype transition Mutation event
Identifiable solely

by DelSIEVE

0/0 → 0/1 Single mutation No
0/0 → 1/1 Coincident homozygous double mutation No
0/0 → 1/1′ Coincident heterozygous double mutation No
0/1 → 0/0 Single back mutation No
1/1 → 0/1 Single back mutation No
1/1′ → 0/1 Single back mutation No
1/1 → 0/0 Coincident double back mutation No
1/1′ → 0/0 Coincident double back mutation No
0/1 → 1/1 Homozygous single mutation addition No
0/1 → 1/1′ Heterozygous single mutation addition No
1/1′ → 1/1 Homozygous substitute single mutation No
1/1 → 1/1′ Heterozygous substitute single mutation No
0/0 → 0/- Single deletion (not LOH) Yes
1/1 → 1/- Single deletion (not LOH) Yes
0/1 → 0/- Single deletion (LOH) Yes
0/1 → 1/- Single deletion (LOH) Yes
1/1′ → 1/- Single deletion (LOH) Yes
0/0 → 1/- Coincident deletion and mutation Yes
1/1 → 0/- Coincident deletion and back mutation Yes
1/1′ → 0/- Coincident deletion and back mutation Yes
0/- → 1/- Single deletion mutation addition Yes
1/- → 0/- Single deletion back mutation addition Yes

0/- → - Single deletion addition Yes
1/- → - Single deletion addition Yes
0/0 → - Coincident double deletion Yes
0/1 → - Coincident double deletion Yes
1/1 → - Coincident double deletion Yes
1/1′ → - Coincident double deletion Yes

genotype is mutated back to the reference nucleotide. The single deletion addition (0/- → - and362

1/- → -) refers to the case when the only allele is deleted of the reference- and alternative-left363

single deletion genotypes. Finally, for the coincident double deletion (0/0 → -, 0/1 → -, 1/1 → -364

and 1/1′ → -) both of the alleles existing before are deleted.365

ScDNA-seq data simulator366

We generated simulated data by modifying the simulator we had used in SIEVE. The first367

change we made was to expand the rate matrix, according to which each genomic site evolved368
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along the tree (Additional file 1: Table S1). The rate matrix contains 14 genotypes encoded369

with nucleotides, allowing for mutations, back mutations, and deletions. It has one parameter,370

deletion rate, which is measured relatively to the mutation rate. Another change was that we371

implemented the locus dropout mode to allow more than one ADO to occur at each site for each372

cell. The simulator takes the same input configuration as SIEVE does.373

The simulation process was similar to that in SIEVE. Briefly, with a given number of cells,374

a binary cell lineage tree was first simulated following the coalescent process under the strict375

molecular clock. For a given number of genomic sites, each site was initialized by randomly376

selecting one of four nucleotides to have a reference genotype. Next, with a given mutation rate377

and a relative deletion rate, each site was evolved independently along the tree following the378

rate matrix defined in Additional file 1: Table S1. A genomic site is considered as a true SNV379

site if at least one cell has a genotype that is not wildtype. ADOs were then added on top380

of the simulated genotypes under either single ADO or locus dropout mode, as long as there381

were existing alleles. We recorded the true ADO states for all cells at the true SNV sites. Size382

factors in Equation (7) were generated from a normal distribution with the mean = 1.2 and the383

variance = 0.2. The sequencing coverage was simulated using a negative binomial distribution384

following Equations (4) to (6). The read counts of each nucleotide were then generated following385

a multinomial distribution.386

Simulation design387

We designed a series of simulations to benchmark the performance of DelSIEVE. We reused and388

modified the benchmarking framework in SIEVE.389

We assumed that 40 tumor cells were sampled from an exponentially growing population,390

whose growth rate and effective population size are 10−4 and 104, respectively. We used the391

same mutation rates as in SIEVE, namely 10−6, 8 × 10−6 and 3 × 10−5. We selected two levels392

of deletion rate relative to the mutation rate: 0.1 and 0.25.393

For each mutation rate, we chose such number of genomic sites that DataFilter would produce394

a certain amount of candidate variant sites or background sites. For mutation rate 10−6, we395

evolved 104 genomic sites to have around 400 ∼ 700 candidate variant sites. For mutation rate396

8× 10−6, 104 genomic sites were chosen to have around 4× 103 background sites. For mutation397

rate 3 × 10−5, 1.2 × 105 genomic sites were chosen to have at least 2.5 × 103 background sites.398

For the higher mutation rates of 8 × 10−6 and 3 × 10−5, the chosen numbers of genomic sites399
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resulted in > 5 × 103 and > 1.1 × 105 true SNV sites, respectively. Due to the consideration of400

runtime efficiency, they were subsetted before piping to downstream methods.401

To this end, we first computed a targeted number of true SNV sites ntarget using

ntarget = min(700,
n′

5
),

where n′ is the number of background sites. Next, we randomly selected ntarget sites out of402

the true SNV sites. Together with the n′ background sites, the selected ntarget true SNV sites403

formed the new simulated data. This ensured that the number of true SNV sites in the final404

simulated data for different mutation rates were within the same range, and the ratio between405

the number of background sites and the true SNV sites was at least 5 for mutation rates being406

8 × 10−6 and 3 × 10−5.407

We considered both single ADO and locus dropout mode. The ADO rate for the former was408

θ = 0.163, and for the latter θ = 0.3.409

Similar to SIEVE, we had different combinations of t and v in Equations (4) to (6) for various410

coverage qualities. For simulated data referred to as high coverage quality, we used high mean411

(t = 20) and low variance (v = 2) of allelic coverage. For medium coverage quality data, we412

used high mean (t = 20) and medium variance (v = 10). For low coverage quality data, we fixed413

low mean (t = 5) and high variance (v = 20).414

Other parameters were fixed when simulating the data. We set w1 and w2 in Equation (11)415

to 100 and 2.5, respectively. Moreover, we set both the amplification and sequencing error rate416

to 10−3, and thus the effective sequencing error rate in Equation (10) was f ≈ 2 × 10−3.417

Overall, we designed 36 simulation scenarios, each repeated 10 times.418

Furthermore, for each of those genotypes related to somatic deletions, we filtered out results419

if the proportion of simulated ground truth was less than 0.1%. We also excluded results from420

mutation rate being 10−6 as too few somatic deletions were generated (less than 0.3%, 0.7%421

and 0.005% for alternative-left single deletion, reference-left single deletion and double deletion,422

respectively). For the same reason, results were also excluded from double deletion for mutation423

rate being 8 × 10−6 (less than 0.2% generated).424

For double mutant genotype, we excluded results when mutation rate was 10−6 as less than425

0.2% of such genotype was generated.426
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Measurement of the quality of variant calling and cell phylogeny accuracy427

For assessing the results of variant and ADO calling, standard performance measures such428

as precision, recall, F1 score, and false positive rate (FPR) were used. DelSIEVE, SIEVE,429

SCIPhIN and Monovar were evaluated using these measures in the task of single and double430

mutant genotype calling.431

Both DelSIEVE and SCIPhIN identify somatic deletions at preselected candidate sites.432

Hence, we subsetted the true somatic deletions to those at the candidate variant sites when433

computing the metrics. This barely influenced the recall and F1 score for alternative-left single434

deletion, as majority of the sites containing such genotype were captured in the selection of the435

candidate variant sites. For reference-left single deletion and double deletion genotype, however,436

restricting to candidate sites would inevitably decrease recall and F1 score, as sites having solely437

those genotypes would be missed in the preselection.438

To assess the accuracy of cell phylogeny reconstruction, we used the same measurements as439

in SIEVE, namely the BS distance [69] for both the tree topology and branch lengths, as well as440

the normalized RF distance [70] for the tree topology only (see Kang et al. [55]). For DelSIEVE,441

SIEVE and SiFit, we computed both the BS and the normalized RF distance in the rooted tree442

mode. For SCIPhIN, we only computed the normalized RF distance as it only infers a rooted443

tree without branch lengths. We used R package phangorn to compute BS and normalized RF444

distance [71].445

Configurations of methods446

For Monovar (commit 68fbb68), we used the true values of θ and f as priors for false negative447

rate and false positive rate and default values for other options.448

For SCIPhIN (commit 27e5ca6), we gave it the true value of f to avoid estimating its mean449

error rate (option ”wildMean”), and ran it with 106 iterations with zygosity learned (option ”lz”450

set to 1). We also set the penalty of computing the loss (option ”llp”) and parallel score (option451

”lpp”) to 30. The command line is as follows:452

sciphin -l 1000000 --lz 1 --ll 1 --lp 1 --llp 30 --lpp 30 --ese 0 \453

--wildMean 0.002454

To run SiFit (commit 9dc3774), we fed the required data with variants called by Monovar455

as a ternary matrix. We used the true values of θ and f as the prior for false negative rate and456
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the estimated false positive rate, respectively. We ran it with 2 × 105 iterations.457

For SIEVE, originally it only supported single ADO mode. In this contribution, we addi-458

tionally equipped it with the locus dropout mode, which is now available along with DelSIEVE.459

On the simulated data, we configured a strict molecular clock model for DelSIEVE and460

SIEVE, both of which was then run for 2 × 106 and 1.5 × 106 iterations for the first and461

the second sampling stages, respectively. The deletion rate was also inferred in the second462

sampling stage as it is related to the branch lengths of the cell phylogeny. Both DelSIEVE and463

SIEVE were configured to match the ADO type employed during the simulation process. This464

ensured consistency between the simulation and analysis, allowing for accurate comparisons and465

evaluations of the methods’ performance.466

On the real datasets, we instead used a log-normal relaxed molecular clock model to account467

for branch-wise substitution rate variation for DelSIEVE. To obtain better mixed Markov chains,468

we used an optimized relaxed clock model [72] rather than the default one in BEAST 2. We469

increased the number of iterations for both stages to 4 × 106 and 3.5 × 106, respectively. Both470

the deletion rate and parameters introduced by the relaxed molecular clock model were explored471

in the second sampling stage. To reduce the uncertainties introduced by the model, DelSIEVE472

was run in single ADO mode.473

To run Sequenza on the real datasets, we used the bam2seqz command in the sequenza-utils474

package to convert bam files for normal and tumor cells to the Sequenza file format, which was475

subsequently binned with the seqz binning command, using a window size of 50. With this file476

as input, we used the sequneza.fit command from Sequenza v3.0.0 to estimate the ploidy.477

The SNVs were annotated using Annovar (version 2020 Jun. 08) [73]. The cell phylogeny was478

plotted in R (version 4.2.3) [74] using ggtree [75], and the genotype heatmap was plotted using479

ComplexHeatmap [76]. Besides, the comparison of sequencing coverages reported by DelSIEVE480

and Sequenza was performed and plotted using ggstatsplot [77].481

Results482

DelSIEVE accurately called somatic deletions483

First, we used simulated data to benchmark one of DelSIEVE’s asset functionalities, namely484

calling somatic deletions (Methods; Section Simulation design). DelSIEVE’s performance was485

benchmarked against SCIPhIN [62] (Figure 2, Additional file 1: Figure S1, S2). Here, SCIPhIN486
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was given an advantage by fixing its mean error rate to the true effective sequencing error rate487

used in the simulation. DelSIEVE and SCIPhIN were evaluated in the task of calling alternative-488

and reference-left deletions, while only DelSIEVE was evaluated in the task of calling double489

deletion genotype, as it is the only method to call such genotype.490

For calling alternative- and reference-left single deletion, DelSIEVE overall outperformed491

SCIPhIN, regardless of the type of ADOs (single or locus dropout) used in the simulated data492

(Figure 2a, b, Additional file 1: Figure S1a-d, Additional file 1: Figure S2a, b). When the493

data was of medium or high coverage quality (with high mean and low or medium variance494

of coverage), DelSIEVE achieved F1 scores with medians ≥ 0.87 and ≥ 0.76 for alternative-495

and reference-left single deletions, respectively (Figure 2a, b). In contrast, SCIPhIN had F1496

scores with medians ≤ 0.28 for alternative-left single deletion and ≤ 0.01 for reference-left single497

deletion. The related recall (Additional file 1: Figure S1a, c) and precision (Additional file498

1: Figure S1b, d) also showed DelSIEVE’s superiority. In particular, the high precision (≈ 1)499

and negligible FPR (≈ 0, see Additional file 1: Figure S2a, b) of DelSIEVE indicate its high500

reliability in calling alternative- and reference-left single deletion genotypes.501

When the data was of low coverage quality (low mean and high variance of coverage), the502

medians of F1 scores of DelSIEVE dropped to ≥ 0.55 and ≥ 0.29 for calling alternative- and503

reference-left single deletion genotypes, respectively, but still largely exceeded those of SCIPhIN504

(Figure 2a, b). The low quality of the data seemed to affect more the performance of DelSIEVE505

in calling reference-left single deletion compared to that in calling alternative-left single deletion506

(Additional file 1: Figure S1a-d). This was expected since such low coverage provided very little507

information for calling reference-left single deletion. Furthermore, the FPR of DelSIEVE was508

still ≈ 0 for the low quality data.509

We observed that the performance of DelSIEVE only slightly decreased when applied to510

data simulated under locus dropout mode, in comparison to the results obtained when it was511

applied to data simulated under single ADO mode. Given that DelSIEVE explicitly modeled the512

sequencing coverage, it was anticipated that data simulated under locus dropout mode would513

introduce additional uncertainties to the model.514

DelSIEVE was the only method designed for explicitly calling double deletion genotype.515

Overall, in evaluation on simulated data, DelSIEVE obtained high medians of F1 scores ≥ 0.75516

(Figure 2c). Its performance decreased as the relative deletion rate increased or the coverage517

quality of the data decreased (Figure 2c, Additional file 1: Figure S1e, f), but the FPR kept at518
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Figure 2: F1 score for the benchmark of calling somatic deletions. Varying are the
mutation rate (the horizontal axis), the relative deletion rate (the vertical strip), the coverage
quality (the horizontal strip) and the simulated ADO type (the shaded or blank boxes). Each
simulation is repeated n = 10 times with each repetition denoted by colored dots. The gray
dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes
covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and
above the box. Data points were removed if the proportion of simulated ground truth was
less than 0.1%. a-c, Box plots of the F1 score for calling alternative-left single deletion (a),
reference-left single deletion (b), and double deletion (c). The results in c when mutation rate
was 8 × 10−6 were omitted as very few double deletion were generated (less than 0.2%; see
Section Simulation design).
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a negligible level (≈ 0; see Additional file 1: Figure S2c).519

DelSIEVE showed boosted performance in calling double mutant genotypes520

compared to SIEVE in the presence of somatic deletions.521

We next assessed DelSIEVE’s performance in calling single and double mutant genotypes against522

Monovar, SCIPhIN and SIEVE (Figure 3, Additional file 1: Figure S3, S4). Regarding calling523

single mutant genotype, DelSIEVE and SIEVE performed comparatively well (minimum median524

F1 score of 0.9), and outperformed Monovar and SCIPhIN (minimum median F1 score 0.58 and525

0.6, respectively; see Figure 3a). As mutation rate increased, the recall of both DelSIEVE and526

SIEVE slightly increased (Additional file 1: Figure S3a), while the precision slightly decreased527

(Additional file 1: Figure S3b), resulting in relatively constant F1 scores. In contrast, both528

Monovar and SCIPhIN experienced a decrease in both recall and precision as the mutation529

rate increased (Additional file 1: Figure S3a, b). Consequently, their F1 scores declined, with530

SCIPhIN being more adversely affected compared to Monovar. Moreover, DelSIEVE and SIEVE531

had comparable recall (Additional file 1: Figure S3a), while DelSIEVE showed higher precision532

(Additional file 1: Figure S3b) and lower FPR (Additional file 1: Figure S4a) than SIEVE did,533

especially when the mutation rate was high (≥ 3× 10−5). We speculate that this might because534

SIEVE has to model the evident signal of somatic deletions as ADOs on top of single mutant535

genotype.536

Additionally, as the mutation rate increased, the FPR of all methods also increased, with537

SCIPhIN exhibiting the most significant FPR increase (Additional file 1: Figure S4a). It was538

noteworthy that, when the mutation rate was high (≥ 3×10−5), methods that incorporated cell539

phylogeny in variant calling, such as DelSIEVE, SIEVE and SCIPhIN, had slightly higher FPR540

in calling single mutant genotype compared to other methods, such as Monovar (Additional file541

1: Figure S4a). However, this loss was negligible compared to the advantage that SIEVE and542

DelSIEVE had over Monovar when precision, recall, and F1 were evaluated.543

In the task of calling double mutant genotypes, SCIPhIN and Monovar obtained minimum544

median F1 scores 0.04 and 0.21, respectively, while SIEVE and DelSIEVE exhibited much higher545

performance with minimum median F1 scores 0.65 and 0.93, respectively (Figure 3b). More546

specifically, DelSIEVE and SIEVE had comparable recall (Additional file 1: Figure S3c), but547

the former reached much higher precision than the latter (minimum medians 0.75 and 0.61,548

respectively; see Additional file 1: Figure S3d). Again, this discrepancy in performance could549
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Figure 3: F1 score for the benchmark of calling single and double mutant. Varying
are the mutation rate (the horizontal axis), the relative deletion rate (the vertical strip), the
coverage quality (the horizontal strip) and the simulated ADO type (the shaded or blank boxes).
Each simulation is repeated n = 10 times with each repetition denoted by colored dots. The gray
dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes
covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and
above the box. a-b, Box plots of the F1 score for calling single mutant (a) and double mutant
(b). The results in b for mutation rate was 10−6 were omitted as too few double mutant were
generated (less than 0.2%; see Section Simulation design).

be due to SIEVE’s inclination to explain somatic deletions by modeling them as ADO events550

occurring within double mutant genotypes.551

Besides, DelSIEVE had the lowest FPR (≈ 0) compared to other methods (Additional file552

1: Figure S4b). These findings highlighted the superior capability of DelSIEVE in accurately553

identifying double mutant genotypes in the presence of somatic deletions. On top of that, the554

slight advantage of Monovar over methods incorporating phylogeny observed for single mutant555

calling was not observed for double mutant calling. In contrast, in this task, Monovar had556

significantly elevated FPR compared to all other methods.557

DelSIEVE outperformed SIEVE in calling ADOs on data with adequate cov-558

erage quality.559

We then evaluated DelSIEVE’s performance in calling single ADO and locus dropout against560

SIEVE (Figure 4, Additional file 1: Figure S5, S6), which are the only two methods that561

can conduct these tasks. Though unsupported originally in SIEVE, locus dropout mode was562

implemented by us for the comparison (see Section Configurations of methods). The ADO563
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type used during the simulation process was taken into consideration when configuring both564

DelSIEVE and SIEVE for analysis. As a result, the results of calling single ADO were accessible565

for data simulated under both single ADO and locus dropout modes. However, the results of566

calling locus dropout were only available for data simulated specifically under the locus dropout567

mode.568
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Figure 4: F1 score for the benchmark of calling single ADO and locus dropout.
Varying are the mutation rate (the horizontal axis), the relative deletion rate (the vertical
strip), the coverage quality (the horizontal strip) and the simulated ADO type (the shaded or
blank boxes). Each simulation is repeated n = 10 times with each repetition denoted by colored
dots. The gray dashed lines represent the optimal values of each metric. Box plots comprise
medians, boxes covering the interquartile range (IQR), and whiskers extending to 1.5 times the
IQR below and above the box. a-b, Box plots of the F1 score for calling single ADO (a) and
locus dropout (b). The F1 score were unavailable in b when data was of low coverage quality
due to unavailable precision.

For calling single ADO, the performance of DelSIEVE and SIEVE were affected by the cov-569

erage quality of the data. When the data was of medium or high coverage quality, DelSIEVE570

reached a minimum median F1 score 0.9, higher than SIEVE (0.77; see Figure 4a). The perfor-571

mance of DelSIEVE remained consistent regardless of changes in the mutation rate and relative572

deletion rate, in contrast to SIEVE. This was anticipated because higher mutation and deletion573

rates resulted in an increased number of somatic deletions being generated. DelSIEVE was574

capable of differentiating somatic deletions from ADOs by incorporating them into the model.575

In contrast, SIEVE wrongly accounted for somatic deletions as ADOs occurring within single576

or double mutant genotypes. This behavior of SIEVE reduced the recall and precision, and577

increased FPR (Additional file 1: Figure S5a, b, Additional file 1: Figure S6a), similarly to its578

inferior performance in calling single and double mutant genotypes compared to DelSIEVE (see579

the previous section).580
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The performance of both DelSIEVE and SIEVE in calling single ADO declined when the581

data had low coverage quality (Figure 4a, Additional file 1: Figure S5a, b, Additional file 1:582

Figure S6a). This decrease in performance was further exacerbated when the data was simulated583

under the locus dropout mode, as compared to when it was simulated under the single ADO584

mode. The decrease in performance can be attributed to two primary factors. Firstly, data585

of low coverage quality contained more noise compared to that of higher coverage quality. The586

locus dropouts added even more noise on top of that. Secondly, the more complex model versions587

operating under the locus dropout mode inherently introduced more uncertainty to the results.588

For calling locus dropout from data of medium or high coverage quality, DelSIEVE showed589

a minimum median F1 score of 0.91, higher than SIEVE did (0.68; see Figure 4b). Specifically,590

DelSIEVE and SIEVE were comparable in terms of recall (Additional file 1: Figure S5c), but the591

former had a higher precision and lower FPR than the latter as the mutation rate and relative592

deletion rate increased (Additional file 1: Figure S5d, Additional file 1: Figure S6b). However,593

when the data was of low coverage quality, both methods reported no locus dropout, resulting594

in zero recall and FPR as well as unavailable precision and F1 score.595

Since the quality of the real data resembles more that of low coverage quality, we decided596

to configure DelSIEVE under the single ADO mode to reduce the amount of uncertainties597

introduced.598

DelSIEVE estimated cell phylogeny with comparable accuracy to SIEVE.599

We further benchmarked DelSIEVE’s performance in reconstructing the cell phylogeny against600

SiFit, SCIPhIN and SIEVE (Additional file 1: Figure S7). To account for both tree structure601

and branch lengths in the evaluation, we used branch score (BS) distance as the metric. The602

results of SCIPhIN were excluded in the computation of BS score as it only reported the tree603

structure. Both DelSIEVE and SIEVE outperformed SiFit, showing the advantage of correcting604

the acquisition bias (Additional file 1: Figure S7a). When the mutation rate was higher (≥605

8 × 10−6), DelSIEVE reported cell phylogenies with longer branch lengths than SIEVE and606

showed a bit larger BS score. This may be due to the fact that DelSIEVE, as a more complex607

model, with more considered genotypes, allowed more genotype transitions on the branches.608

We then used the normalized RF distance as the metric, which only considered the tree609

structure. The performance of DelSIEVE and SIEVE in tree reconstruction was comparable610

in estimating the tree structure (maximum medium normalized RF distance 0.29 and 0.28,611
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respectively), and was lower compared to SiFit (maximum median normalized RF distance612

0.37) and SCIPhIN (0.33; see Additional file 1: Figure S7b), especially when the mutation rate613

increased.614

DelSIEVE reliably identified several somatic deletions in TNBC cells.615

We applied DelSIEVE to real world scDNA-seq datasets analyzed previously in SIEVE with ex-616

actly the same input, configuring similarly a relaxed molecular clock model to account for branch-617

wise rate variation (see Section Configurations of methods). For scWES dataset TNBC16 [78],618

DelSIEVE reported a maximum clade credibility (MCC) cell phylogeny with a visually long619

trunk, supported by high posterior probabilities (Figure 5, Additional file 1: Figure S8). The620

cell phylogeny was similar to that reported by SIEVE, with the normalized RF and the BS621

distances being 0.07 and 3.88 × 10−6, respectively.622

DelSIEVE identified the same types of mutation events reported by SIEVE, except for single623

back mutation. In terms of numbers, DelSIEVE explained the same data with less single muta-624

tions. Specifically, DelSIEVE identified 31 coincident homozygous double mutations (transitions625

from 0/0 to 1/1; 44 for SIEVE), eight homozygous single mutation additions (from 0/1 to 1/1;626

nine for SIEVE) and two parallel single mutations (from 0/0 to 0/1 that occurred more than627

once in the tree; same for SIEVE). SIEVE identified seven single back mutations (from 0/1 to628

0/0; BRD8, COL6A5, GRB14, MYRF, RHOJ, SEMA3A, TMX4 ), narrating an evolutionary629

story of acquiring single mutations in these genes on the trunk of the tree, followed by losing630

them through single back mutations, resulting in these mutations possessed by only a subgroup631

of cells (a2, a3, a5 and a7). Reporting the same mutations in the same group of cells, DelSIEVE,632

however, narrated a more straightforward, parsimonious alternative, where cell a2, a3, a5 and633

a7 acquired these mutations directly from their most recent common ancestor.634

In addition, DelSIEVE identified mutation events where somatic deletions were involved,635

including a large number of 245 coincident deletions and mutations (from 0/0 to 1/-), three636

single deletions which could be categorized as LOH (from 0/1 to 0/- or 1/-, or from 1/1′ to 1/-),637

ten single deletions which were not LOH (from 0/0 to 0/-, or from 1/1 to 1/-), and finally ten638

single deletion mutation additions (from 0/- to 1/-). For instance, DelSIEVE inferred that gene639

NEK1 and NEK5, which had been reported to be related to breast tumors [79], experienced640

both a deletion and a mutation on the trunk, resulting in all sequenced cells having genotype641

1/-. Another gene, LIMCH1, known to be related to TNBC [80], had an allele deleted first on642
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Figure 5: Results of phylogenetic inference for the TNBC16 dataset. Shown is
DelSIEVE’s maximum clade credibility tree. Tumor cell names are annotated to the leaves
of the tree. The numbers at each node represent the posterior probabilities (threshold p > 0.5).
At each branch, depicted in different colors are non-synonymous genes that are either TNBC-
related single mutations (in blue) or other mutation events (in other colors).
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the trunk (genotype changed from 0/0 to 0/-), and then the left allele mutated for a subgroup of643

cells (genotype changed from 0/- to 1/-). The substantial amount of evolutionary events related644

to deletions highlights the importance of the extended functionality of DelSIEVE as compared645

to SIEVE.646

In total, DelSIEVE identified 5,893 variant sites, close to 5,895 variant sites reported by647

SIEVE (Figure 6). Among the 683 sites inferred by DelSIEVE that contain somatic deletions648

(mostly 1/-; 11.6% of all variant sites), 377 were previously determined according to SIEVE to649

have double mutant genotypes and the remaining 306 to have single mutant genotype. This650

observation was in accordance with the simulation results, where SIEVE inclined to explaining651

somatic deletions as ADO events within single and double mutant genotyps to accommodate to652

the characteristics of the data, showing reliability to the results of DelSIEVE. The proportion653

of genotypes called by DelSIEVE and SIEVE were summarized in Additional file 1: Table S2654

(same for the following datasets).655

SNV sites

C
e

lls

1 2,000 4,000 5,893

Genotype

1/-

0/-

0/0

0/1

1/1

1/1'

Figure 6: Results of variant calling for the TNBC16 dataset. Cells in the row are in
the same order as that of leaves in the phylogenetic tree in Figure 5.

To further validate the ability of DelSIEVE to reliably call deletions, we inspected whether656

the sites identified as deleted displayed also a lower coverage than sites with neutral copy number.657

We next compared the strength of the coverage reduction effect on deleted sites to a dedicated658

copy number calling method, Sequenza [22] (Figure 7). The comparison was performed only659

for the sites shared between the input data of both methods, which, in this case, were all 5,912660

candidate variant sites. Since Sequenza was designed to apply to bulk-seq data and only reported661

copy number (CN) at the clone (or subclone) level, we harmonized the resolution of DelSIEVE’s662

results with Sequenza to ensure a fair comparison. To this end, we adjusted DelSIEVE to663

operate at the clone level as well. In other words, for this comparison, we considered all cells at664

a given site to contain somatic deletions if at least one cell indicated the presence of a deletion.665

As expected, we observed that for DelSIEVE the mean value of sequencing coverages (de-666
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Figure 7: Results of clone-wise sequencing coverage comparison for TNBC16 be-
tween DelSIEVE and Sequenza [22]. Compared were the sites shared between the input
data of both methods. The resolution of variant calling was clone-wise in order to conduct a
fair comparison. For Sequenza, sites were divided into two groups with copy number (CN) < 2
and ≥ 2, respectively. For DelSIEVE, sites were also divided into two groups, one with somatic
deletions, the other copy neutral. Sequencing coverage across all cells at all sites were plotted
for reference. In each group, the violin and the box plots matched the color of the method and
showed the distribution of the sequencing coverage, while the burgundy dot denoted its mean
value µ̂. The total number of dots in each group, which was the product of the number of cells
(16) and the number of sites in each group, was marked with n on the horizontal axis. Box
plots comprise medians, boxes covering the interquartile range (IQR), and whiskers extending
to 1.5 times the IQR below and above the box. Within- and between-group comparisons were
conducted between CN < 2 and ≥ 2 of Sequenza, between somatic deletions and copy neutral
of DelSIEVE, and between CN < 2 of Sequenza and somatic deletions of DelSIEVE. For each
comparison, shown were the p-value corrected by Holm–Bonferroni method and the absolute
value of the effect size (Cohen’s d).

noted by µ̂ in Figure 7) in the group of sites with somatic deletions (3.95) was significantly lower667

compared to the mean for sites without somatic deletions (24.01, respectively), with effect size668

Cohen’s d = 0.61. In contrast, the mean coverage for 44 sites identified as containing somatic669

deletions by Sequenza was 39.58, significantly larger than 21.56, the mean coverage for sites with670

amplifications (Cohen’s d = 0.54), controverting Sequenza’s copy number calls. Furthermore,671

a direct comparison revealed that sites identified as deleted by DelSIEVE showed much lower672
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coverage levels than those identified as deleted by Sequenza (Cohen’s d = 2.82). This indicates673

that DelSIEVE calls deletions more reliably than Sequenza.674

DelSIEVE identified rare somatic mutations in CRC cells.675

We then applied DelSIEVE to a scWGS dataset, CRC28 [55]. The estimated cell phylogeny was676

supported by high posterior probabilities with a long trunk (Additional file 1: Figure S9, S10),677

which was similar to that reported by SIEVE (the normalized RF and the BS distances were678

0.08 and 8.03 × 10−7, respectively). In particular, tumor proximal (TP) and tumor distal (TD)679

cells also formed a closer clade compared to tumor central (TC) cells in the tree reported by680

DelSIEVE. This suggested that, like SIEVE, DelSIEVE also inferred regular tumor growth and681

limited cell migration.682

Similar to SIEVE, DelSIEVE annotated mutations of known CRC driver genes, for instance,683

APC, and of genes related to the metastatic progression of CRC, such as ASAP1 and RGL2 on684

the trunk of the tree. However, DelSIEVE identified more mutation events than SIEVE, includ-685

ing two coincident deletions and mutations, one single deletion which was not LOH, and one686

single deletion mutation addition. For example, DelSIEVE identified that ACSL5, potentially687

related to intestinal carcinogenesis [81], underwent a somatic deletion of one allele (genotype688

changed from 0/0 to 0/-) on the trunk and a mutation to the left allele (genotype changed689

from 0/- to 1/-) for the most recent common ancestor of TP and TD cells. Overall, DelSIEVE690

found very few mutation events that were not single mutations, indicating that single mutations691

dominated the evolutionary process of this sample.692

DelSIEVE identified the same number of variant sites as SIEVE (8,029; see Additional file 1:693

Figure S11), in which 13 sites contained somatic deletions (mostly 1/-; 0.16% of all variant sites).694

According to SIEVE, nine of those sites were inferred to have double mutant genotypes and four695

to have single mutant genotype. The contrasting results obtained by DelSIEVE, with multiple696

somatic deletions identified in TNBC16 but only few in CRC28, underscored an important697

feature of the method. While DelSIEVE employs a sophisticated modeling approach, it primarily698

relies on the data for the inference. In other words, the detection of somatic deletions was driven699

solely by the characteristics of the data itself and is not enforced by the model when the deletions700

are not there.701

We further conducted a comparative analysis of the sequencing coverage between sites that702

were identified to contain somatic deletions and those that did not, using both DelSIEVE and703
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Sequenza (Additional file 1: Figure S12-S14). Specifically, as CRC28 comprised tumor cells704

originating from distinct anatomical locations (denoted TP, TC, and TD cells), our comparison705

was conducted at the subclone resolution. This resolution represented the highest achievable706

level of detail that Sequenza could provide for this specific dataset, and we adjusted the resolution707

of DelSIEVE accordingly.708

For TP cells (cancer tissue 1 in Additional file 1: Figure S9; with nine cells) and TC cells709

(cancer tissue 3; with 12 cells), we could only inspect the results of DelSIEVE as there is710

no corresponding bulk sample for Sequenza. We observed noticeable differences of coverage711

between sites with and without somatic deletions called by DelSIEVE: for TP cells, the mean712

coverage µ̂ = 1.54 for sites with somatic deletions was significantly lower than µ̂ = 6.37 for sites713

without deletions Cohen’s d = 0.59; Additional file 1: Figure S12, S14). This difference was714

also significant for the TC cells (µ̂ = 2.9 for sites with somatic deletions, 10.26 for sites without,715

Cohen’s d = 0.63; Additional file 1: Figure S14).716

For TD cells (cancer tissue 2; with seven cells), both DelSIEVE and Sequenza had lower µ̂ for717

sites containing somatic deletions compared to sites without deletions (Additional file 1: Figure718

S13a). DelSIEVE exhibited a clear distinction, with a significantly lower µ̂ of 1.76 for sites with719

somatic deletions compared to 7.41 for sites without, resulting in Cohen’s d = 0.5. Conversely,720

the difference in µ̂ was negligible for Sequenza, with values of 6.85 and 7.97 for sites with and721

without somatic deletions, respectively, resulting in Cohen’s d = 0.1. Additionally, there was722

an evident difference in µ̂ between sites with somatic deletions identified by DelSIEVE and723

Sequenza, as indicated by a Cohen’s d effect size of 0.5. These findings highlighted the divergent724

performance of DelSIEVE and Sequenza in calling somatic deletions for TD cells, where the725

results of the latter might not be reliable from the viewpoint of the conducted comparisons.726

To further inspect the results from Sequenza, we visualized its reported CNs in TD cells727

across the entire genome (Additional file 1: Figure S13b). The visualization clearly revealed that728

Sequenza inferred a substantial number of CNs other than 2 for each chromosome. Moreover,729

these CNs frequently exhibited fluctuations in their values, indicating that the method might730

be fitting to the noise rather than accurately capturing true CN states. These findings indicate731

that a significant portion of the CNs inferred from Sequenza could potentially be false positives.732
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DelSIEVE identified rare somatic mutations in CRC samples mixed with nor-733

mal cells.734

We finally analyzed another scWES dataset, CRC48 (CRC0827 in [82]). DelSIEVE pinpointed735

two tumor subclones, associated with their anatomical locations, each subclone containing ex-736

actly the same cells as in SIEVE (Additional file 1: Figure S15, S16). The rest of the cells737

collected from tumor biopsies were clustered together with cells from adenomatous polyps, sug-738

gesting that they might be normal cells residing inside cancer tissues, as pointed out by both739

the original study [82] and SIEVE. There were some distinctions between the cell phyloge-740

nies reported by DelSIEVE and SIEVE, with normalized RF and BS distances being 0.33 and741

1.99 × 10−6, respectively. This discrepancy is higher than observed for previous datasets, and742

might be due to the overall lower signal level in the data. Indeed, the CRC48 dataset has a743

substantially lower ratio between the number of candidate variant sites and the number of cells744

(707/48 ≈ 14.7) compared to TNBC16 (5912/16 = 369.5) and CRC28 (8470/28 = 302.5).745

DelSIEVE identified many single mutations on the branch leading to two tumor subclones,746

including a reported CRC driver mutation in gene SYNE1 [83], as well as a mutation related747

to DNA mismatch repair, in gene MLH3 [84], both of which were also identified on the same748

branch by SIEVE. Moreover, DelSIEVE found two parallel single mutations (CHD3 and PLD2 ),749

which were also reported by SIEVE for the same cells. Furthermore, DelSIEVE identified only750

one site containing somatic deletions (among 679 variant sites, and only 0/-; see Additional file751

1: Figure S17), which was previously inferred by SIEVE to have single mutant genotype.752

We conducted a comparative analysis of the site-wise sequencing coverage between sites753

that were identified to contain somatic deletions and those that did not, for cancer tissue 1754

(Additional file 1: Figure S18; with 17 cells) as well as cancer tissue 2 (Additional file 1: Figure755

S19; with 18 cells). The comparisons were performed at the subclone resolution associated756

with the anatomic locations. Sites identified by DelSIEVE as containing somatic deletions757

showed much more pronounced mean coverage differences compared to sites without deletions,758

both for cancer tissue 1 (Cohen’s d = 0.4) and for cancer tissue 2 (d = 0.47). These mean759

coverage differences between sites identified as deleted or not by Sequenza were negligible for760

both subclones (Cohen’s d = 0.06 for cancer tissue 1; d = 0.09 for cancer tissue 2). Moreover,761

mean coverage was much lower for sites identified to carry somatic deletions by DelSIEVE than762

for sites identified as such by Sequenza (Cohen’s d = 0.46 for cancer tissue 1; d = 0.5 for763

cancer tissue 2). For adenomatous polyps, DelSIEVE reported no somatic deletions, so we only764
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compared the results of Sequenza (Additional file 1: Figure S20). Countering the expected effect765

of deletions, we observed a higher mean coverage for the sites identified by Sequenza to have766

CN < 2 (37.97) than sites with CN ≥ 2 (35.76), though the difference was negligible (Cohen’s d767

= 0.03). These findings again validated the deletion calls made by DelSIEVE and raised doubts768

about the CNs called by Sequenza in the context of the comparisons we performed regarding769

the sequencing coverages.770

Discussion771

We present DelSIEVE, a statistical method designed to jointly infer somatic deletions, SNVs,772

and the cell phylogeny from scDNA-seq data. Built upon SIEVE, which combines inference773

of SNVs and cell phylogeny, DelSIEVE takes a step forward by allowing for the occurrence774

of somatic deletions during the evolution of the tumor. In a nutshell, DelSIEVE features a775

statistical phylogenetic model with genotypes relating both to somatic deletions and to single776

and double mutants, a model of raw read counts allowing for both single ADO and locus dropout,777

a mechanism for acquisition bias correction for the branch lengths, and a trunk in the cell778

phylogeny for clonal mutations.779

Somatic deletions often play an essential role in tumor evolution. Although our previous780

work, SIEVE, does account for the FSA in the statistical phylogenetic model, it only considers781

somatic mutations with nucleotide substitutions. Thus, it is not versatile enough to apply to782

data where somatic deletions are present. We have shown that for such data SIEVE tends783

to explain somatic deletions as a result of ADOs, with an inflated amount of single and double784

mutant genotypes inferred. The inclusion of somatic deletions in DelSIEVE fills this missing part785

in the puzzle. In particular, compared to SIEVE, DelSIEVE exhibits boosted performance in786

terms of calling double mutant genotypes, while performs similarly in estimating cell phylogeny787

and calling single mutant genotype.788

The difficulty of identifying somatic deletions is mainly due to the similarity between the789

sequencing data resulting from somatic deletions and ADOs, as well as the uneven coverage790

inherent in scDNA-seq. Both DelSIEVE and SCIPhIN deconvolve somatic deletions from ADOs791

with the help of cell phylogeny. However, unlike SCIPhIN, DelSIEVE explicitly employs a792

statistical phylogenetic model allowing for both somatic deletions and double mutant genotypes,793

as well as a model of sequencing coverage using a negative binomial distribution. We have shown794

that DelSIEVE outperforms SCIPhIN in identifying somatic deletions, including alternative-795
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(1/-) and reference-left single deletion (0/-), as well as in calling single and double mutant796

genotypes. Furthermore, DelSIEVE is the only method able to explicitly call double deletion797

genotype.798

DelSIEVE and SIEVE are the only two methods being able to explicitly call ADOs, working799

under either single ADO or locus dropout mode. This task is daunting in a similar sense to800

calling somatic deletions. We have proved that DelSIEVE outperforms SIEVE regarding calling801

ADOs. However, the results are only reliable when the data is of adequate coverage quality,802

which is not given for real data yet. We anticipate that the coverage quality of future scDNA-seq803

data would be suitable for DelSIEVE to make reliable ADO inference.804

Estimating cell phylogeny from scDNA-seq data is a crucial step as it lays the foundation805

for downstream analyses. Our previous research demonstrated the superiority of SIEVE over806

other methods, particularly in accurately estimating branch lengths. Building upon the success807

of SIEVE, our more sophisticated model, DelSIEVE, exhibits comparable performance in the808

precise estimation of cell phylogeny. Moreover, DelSIEVE surpasses SIEVE’s functionality by809

discerning 17 types of mutation events, corresponding to 28 distinct types of genotype transi-810

tions. This expanded capability of mutation event identification makes DelSIEVE a valuable811

asset in unraveling complex genomic dynamics and understanding evolutionary relationships812

among cells. We believe that DelSIEVE will greatly benefit researchers in deciphering intricate813

cellular processes and furthering our understanding of genetic evolution.814

For now, DelSIEVE demonstrates its proficiency in identifying somatic deletions, SNVs and815

ADO. One potential improvement would be to add the identification of small insertions and816

CNAs with CNs greater than two. Another limitation of DelSIEVE lies in the requirement for817

preselected input data using DataFilter. This step is limited to identifying candidate variant818

sites that specifically contain nucleotide substitutions. To address this limitation, a possible819

enhancement would be to enable DataFilter to preselect sites of tumor suppressor genes that820

are solely associated with somatic deletions. The inclusion of these sites, which are known to821

elevate the risk of tumor development, could further refine DelSIEVE’s precision and clinical822

relevance in understanding tumorigenesis and potential therapeutic targets.823

Despite these limitations, DelSIEVE proves to be already now one of the most sophisticated824

statistical phylogenetics models of its kind and extracts an unprecedented wealth of information825

on evolution of tumors from scDNA-data. We apply DelSIEVE to three real scDNA-seq datasets826

from TNBC and CRC samples, which were previously analyzed using SIEVE. DelSIEVE identi-827
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fies rare somatic deletions and double mutant genotypes in the CRC samples, akin to the results828

of SIEVE. However, for the TNBC sample, DelSIEVE identifies multiple somatic deletions while829

revealing fewer single and double mutant genotypes compared to SIEVE, consistent with the830

benchmarking results. Additionally, we demonstrate the higher reliability of somatic deletions831

called by DelSIEVE than those by Sequenza. These results highlight the precision of DelSIEVE832

in reconstruction of the phylogenetic tree, as well its enhanced accuracy and effectiveness in833

identifying genotypes, which holds great potential for advancing our understanding of cancer834

biology and facilitating precision medicine approaches.835

Supplementary Materials836

Supplementary Material 1.837

Supplementary Figs. S1-S20 and Tables S1-S2.838

Data availability839

We analyzed three published single-cell datasets ([55, 78, 82]). Raw sequencing data for these840

datasets are available from the BioProject database under accession code PRJNA896550 (CRC28),841

as well as SRA database under accession codes SRA053195 (TNBC16) and SRP067815 (CRC48).842

Code availability843

DelSIEVE is implemented in Java and is accessible at https://github.com/szczurek-lab/844

DelSIEVE. The simulator is hosted at https://github.com/szczurek-lab/DelSIEVE_simulator,845

and the reproducible benchmarking framework is available at https://github.com/szczurek-846

lab/DelSIEVE_benchmark_pipeline. The scripts for generating all figures in this paper are847

hosted at https://github.com/szczurek-lab/DelSIEVE_analysis. All aforementioned code848

are freely accessible under a GNU General Public License v3.0 license.849
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