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Abstract

The swift advancements in single-cell DNA sequencing (scDNA-seq) have enabled quantitative
assessment of genetic content in individual cells, allowing downstream analyses at the single-cell
resolution. This technology considerably facilitates cancer research, yet its underlying power has
not been fully exploited. Specifically, computational methods for variant calling and phylogenetic
tree reconstruction struggle due to high coverage variance and allelic dropout. To address these
issues, here we present DelSIEVE, a statistical method that directly models the inherent noise
in scDNA-seq data for the inference of ingle-nucleotide variants (SNVs), somatic deletions, and
cell phylogeny. In a simulation study DelSIEVE exhibits outstanding performance with respect
to the identification of somatic deletions and SNVs. We apply DelSIEVE to three real datasets,
where rare double mutant and somatic deletion genotypes are found in colorectal cancer samples.
As expected with the more expressive model, for the triple negative breast cancer sample we
identify several somatic deletions, with less single and double mutant genotypes as compared to

those reported by our previous method SIEVE.
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Introduction

Cancer is a genetic disease driven by somatic mutations in the evolutionary process [1-5], result-
ing in highly heterogeneous cell populations. One of the somatic mutations is single nucleotide
variants (SNVs), which, through nucleotide substitutions, can activate oncogenes and thus pro-
moting tumor proliferation, and can inactivate tumor suppressor genes, resulting in malfunc-
tioned proteins. Another type of somatic mutations is somatic deletions, which can inactivate
tumor suppressor genes by reducing the number of genomic copies through point deletions,
small deletions and copy number aberrations (CNAs) [2, 3, 5-8]. Phylogenetic inference is typ-
ically used to understand and quantify the underlying complexity, or intra-tumor heterogeneity
(ITH) [9-11], which has substantial relevance in the clinical therapy and prognosis of cancer,
especially against acquired resistance and relapse of tumor [11-13].

Previously, methods have been developed for bulk sequencing data to derive variant allele [14—
18] and CNA profiles [19-22] of clones, as well as to reconstruct tumor phylogeny [23-27]. Lately,
the rapid development of single-cell DNA sequencing (scDNA-seq) technologies exhibit great
potential for the analysis of ITH by profiling genetic materials with fine resolution of individual
cells [28-31]. However, despite the strengths, scDNA-seq suffers from a low signal-to-noise
ratio, mainly due to the necessity of performing whole genome amplification (WGA) on the
limited genetic material present in a single cell [31-35]. A popular WGA method is multiple
displacement amplification (MDA) [36-40], which can generate a great amount of DNA copies
efficiently without introducing many errors. However, MDA is prone to biases against genomic
regions, leading to uneven coverage of the genome. Additionally, it may result in allelic dropout
(ADO), where one of the two alleles fails to be amplified during the process. In some cases, the
amplification of both alleles may fail, leading to locus dropout, which is a potential source of
missing data. Such data is suitable for SNV calling, but not for CNA calling, as it is challenging
to differentiate true CNA events from amplification biases [31, 32, 35].

Several methods calling SNVs from scDNA-seq have been proposed, which manage to in-
crease statistical power in distinct aspects to account for specific errors. For instance, Mono-
var [41] pools single cells at each site together, while SCcaller [42], LiRA [43] and SCAN-SNV [44]
leverage information on germline single nucleotide polymorphisms. The called SNV can be used
then as input for phylogenetic inference by other methods [45-52], reconstructing the cell phy-

logeny with existing cells as leaves and extinct cells as internal nodes in the tree. To share more
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effectively information among individual cells and to reduce uncertainties introduced by variant
callers in phylogenetic inference [53], SCIPhI [54] and SIEVE (previously developed by us) [55]
jointly infer SN'Vs and cell phylogeny. SCIPhI considers a cell phylogeny without branch lengths
under the infinite-sites assumption (ISA), which is reportedly often violated in reality [56-58]. In
contrast, SIEVE models a cell phylogeny with branch lengths corrected for acquisition bias [59,
60] under the finite-sites assumption (FSA) within a statistical phylogenetic model, and models
the sequencing coverage using a negative binomial distribution. Accounting for more informa-
tion and providing a more flexible model to share information across cells, SIEVE outperforms
SCIPhI in both SNV calling and cell phylogeny reconstruction [55].

One assumption of SIEVE’s statistical phylogenetic model is that the genome remains diploid
during the evolutionary process of the tumor, overlooking the possible occurrence of somatic dele-
tions. Indeed, the inclusion and the accurate identification of somatic deletions for scDNA-seq
remains a challenging problem. This difficulty arises because the sequencing data generated by
somatic deletions bears a resemblance to and can be mistaken for ADOs or somatic back muta-
tions. Nevertheless, to address this issue, innovative methods have explored the incorporation
of a cell phylogeny, leveraging the idea that cells residing closely on the evolutionary tree share
related information, while ADOs occur independently during the sequencing process. SCAR-
LET [61] takes the first step in this direction by refining a copy number tree using read counts
for SN'Vs with a loss-supported phylogeny model. SCIPhIN [62] considers somatic deletions, and
allows for mutational losses and recurrent mutations on the cell phylogeny. However, both of
them relax the ISA to only a limited extent, which might result in them missing other important
events in the evolutionary process, such as double mutations (mutations affecting both alleles
at a variant site). In addition, both SCARLET and SCIPhIN ignore the information conveyed
by sequencing coverage. However, scDNA-seq data, particularly when coupled with MDA am-
plification method, is highly uneven across the genome. Therefore, deliberately disregarding the
intricacies of sequencing coverage may result in substantial loss of the information embedded
within the dataset.

We reasoned that utilizing the additional signal in coverage, combined with the information
encoded in the raw read counts and phylogenetic similarities among cells, a model extending
SIEVE could account for somatic deletions. Building upon this intuition, here we introduce
DelSIEVE (somatic Deletions enabled SIngle-cell EVolution Explorer), a statistical phylogenetic

model that includes all features of SIEVE, namely correcting branch lengths of the cell phylogeny
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for the acquisition bias, incorporating a trunk to model the establishment of the tumor clone,
employing a Dirichlet-multinomial distribution to model the raw read counts for all nucleotides,
as well as modeling the sequencing coverage using a negative binomial distribution, and extends
them with the more versatile capacity of calling somatic deletions. DelSIEVE is capable of
modeling locus dropout, where both alleles at a site are allowed to be dropped out during
WGA. Importantly, it is the first model leveraging phylogenetic similarities among cells to tell
apart the factual deletion genotypes from back mutations or technical artifacts such as ADO
or locus dropout. By doing so, DelSIEVE is able to discern 28 types of genotype transitions,
associated with 17 types of mutation events, much more than the 12 types of transitions that
SIEVE can discern. DelSIEVE is available as a package of BEAST 2 [63] at https://github.

com/szczurek-lab/DelSIEVE.

Methods

In the evolution of tumor, both SNVs and somatic deletions play important roles, leading to
highly heterogeneous tumor populations. Assuming a diploid genome in a normal cell as the
origin of tumor evolution, our DelSIEVE model performs joint inference of cell phylogeny from

scDNA-seq and the resulting SNVs and somatic deletions in single cells.

DelSIEVE model

DelSIEVE takes as input raw read counts for all four nucleotides for cell j € {1,...,J} at

D _

candidate site ¢ € {1,...,I} in the form of P = (myj, cij), where my; = {my, |k = 1,2,3}

(%]
is the read counts of three alternative nucleotides with values in descending order and c;; is the
sequencing coverage (Figure la; see Kang et al. [55] for explanation of how candidate sites are
identified). DelSIEVE also optionally takes raw read counts data DA from I’ background sites
for acquisition bias correction. It is important to note that since DelSIEVE requires preselected
candidate variant sites as input, it can only identify somatic deletions at those candidate sites.

The model first infers the cell phylogeny, followed by maximum likelihood estimation of the
genotype state of each node in the tree (Figure 1a). The power of DelSIEVE lies in the elegantly
devised probabilistic graphical model, where the hidden variable describing the genotype for site
i in cell j, denoted g;;, is used as the bridge between the statistical phylogenetic model and the

model of raw read counts (Figure 1b).
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Figure 1: Overview of the DelSTEVE model. a Analysis workflow of DelSIEVE with an
example of input data. At candidate variate site i € {1,..., 1}, the reference nucleotide is G.
For cell j € {1,...,J} at site i, observed are sequencing depth being 5 (marked by D) as well
as read counts for nucleotide C' being 4 and A being 1. Inferred first is the cell phylogeny from
the input data by DelSIEVE. Based on the cell phylogeny, determined is the genotype state of
each node in the tree through maximum likelihood estimation. For instance, 1/— is inferred as
the genotype state of cell j at site i. b Probabilistic graphical model of DelSIEVE. The orange
dotted frame shows the part corresponding to the the statistical phylogenetic model, and the
blue dashed frame encloses the part corresponding to the model of raw read counts. Shaded
circle nodes represent observed variables, while unshaded circle nodes represent hidden random
variables. Nodes with double circles are deterministic random variables, meaning that they are
readily fixed once the values of their parents are determined. Small filled circles correspond to
fixed hyper parameters. Arrows denote local conditional probability distributions of child nodes
given parent nodes. c Instantaneous transition rate matrix of the statistical phylogenetic model.
The hidden random variable d is the deletion rate, measured relatively to the mutation rate.
The elements in the diagonal of the matrix are denoted by dots, and have negative values equal
to the sum of the other entries in the same row, ensuring that the sum of each row equals zero.

Statistical phylogenetic model

DelSIEVE expands the genotype state space defined in SIEVE: on top of 0/0 (wildtype), 0/1
(single mutant), 1/1 (double mutant, where the two alternative nucleotides are the same) and
1/ (double mutant, where the two alternative nucleotides are different), DelSIEVE additionally
considers 0/- (reference-left single deletion), 1/- (alternative-left single deletion) and - (double
deletion). Here, 0,1,1 and - represent the reference nucleotide, an alternative nucleotide, a
second alternative nucleotide different from that denoted by 1, and deletions, respectively. The
expanded genotype state space G = {0/0,0/1,1/1,1/1,0/-,1/-,-} enables the addition of somatic
deletions as possible events in the statistical phylogenetic model (Figure 1c). Given the genotype
state space G, DelSIEVE is able to discern 28 types of genotype transitions (16 more than

SIEVE), which can be categorized into 17 types of mutation events (8 more than SIEVE; see
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Section Mutation event classification).

With the genotype state space G specified, we define the instantaneous transition rate matrix
@ in Figure lc, which is the key component to the statistical phylogenetic model. We set the
somatic mutation rate to 1, where the relative measurements for back mutation rate and deletion
rate are 1/3 and d, respectively. Thus, @Q is deterministic and depends on the hidden random

variable corresponding to the relative deletion rate d:

P(@ld) =1. (1)

Each entry in ) represents the transition rate from the genotype in the row to that in the column
during an infinitesimal time At. Besides, each row in ) sums up to 0. The continuous-time
homogeneous Markov chain underlying () is time non-reversible and reducible. For instance,
genotypes that have both alleles present can transition to genotypes with one or both alleles
lost, but not vice versa. To be specific, genotypes {0/0,0/1,1/1,1/1'} and genotypes {0/-,1/-}
form two ergodic, transient communicating classes, while genotype {} forms a closed communi-
cating class. As a result, the limiting distribution of the Markov chain exists, where the value
corresponding to genotype- is 1, while the others are 0.

Based on the well-established theory of statistical phylogenetic models, the joint conditional

probability of the genotype states of all sequenced cells at site ¢, namely g(iL), is

P(dP|T.B.Qnn)= > P(d.d"\{gen}t|T.8.Q.hn). @)

9({4)\{91'(2J)}

Intuitively, this means that to compute the likelihood of the genotypes of the variant sites at the
leaves, we marginalize out the genotypes at the ancestor nodes from the total likelihood. The
variables in Equation (2) have the same meaning as in SIEVE. Briefly speaking, 7 is the rooted
binary tree topology, whose root, representing a normal cell with diploid genome, has only one
child, the MRCA of all sequenced cells. T has J existing, sequenced cells as leaves, whose

genotypes are g(iL) = (gity- -+ Gijs---»gis)T, where g;; € G. The J extinct, ancestor cells in T as

(iA) = (gi(J+1)> ey Gigs e ,gi(w))T, where g;; \ {gi(ZJ)} € G and

internal nodes have genotypes
gii2y) =0 /0. T also has 2.J—1 branches, whose lengths 3 € R?/~1 represent the expected number
of somatic mutations per site. h and n are the number of rate categories and shape, respectively,

of a discrete Gamma distribution with mean equal 1 for modeling among-site substitution rate
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variation. Hidden random variables d in Equation (1) and T, 3,7 in Equation (2) are estimated
using MCMC, while the fixed hyperparameter h takes value 4 by default.
Given deletion rate d (and thus @) and branch length 3, the seven-by-seven transition

probability matrix R(8) is computed as R(83) = exp (Qf) [53].

Model of raw read counts

We factorize the probability of observing D;; for cell j at site ¢ into
P(Dyj) = P(mij | cij) P(cy), 3)

where the former corresponds to the model of nucleotide read counts and the latter to the model

of sequencing coverage.

Model of sequencing coverage. One of the major, yet often overlooked challenges in scDNA-
seq is the highly uneven sequencing coverage. This happens because the genetic materials are
amplified largely unequally during WGA. Similar to SIEVE, we employ a negative binomial

distribution to capture the overdispersion existing in the sequencing coverage:

Plelpr) = (T ra-pr (W

where p and r are parameters. To improve interpretability, the distribution is reparameterized

using mean y and variance o2:

p=L1
o2’

y )

o2 —pu

We assume that p;; and a% have the same form as in SIEVE, namely

pij = Qijts;,
(6)

2 . 2 2
U’L] = Hij + OdijVSj.

Here, t and v are the mean and the variance of allelic coverage, respectively. «;; € {0,1,2}
represents the number of sequenced alleles. With the extended genotype state space G in the
DelSIEVE model, the number of alleles possessed by a cell at a site can either be zero (corre-

sponding to genotype state {}), one (genotype states {0/-,1/-}), or two ({0/0,0/1,1/1,1/1}).
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On top of that, the possible occurrence of ADOs during scWGA could alter the number of alleles
possessed by a cell at a site. Here, we model two types of ADOs, single ADO and locus dropout.

The single ADO mode was previously proposed by us in SIEVE, where at most one ADO is
allowed to happen to cell j at site 7. For DelSIEVE, the corresponding prior distribution of a;,
P(cij|gij,0), is defined in Table 1, where 6 denotes the probability of the occurrence of single
ADO when both alleles exist. One should consider the ”Single ADO occurred” column as value
of an additional hidden random variable corresponding to an ADO occurrence indicator, which
will be marginalized out in the model. For example, the probability of an event of single ADO
occurance when g;; = 0/- equals 9/,, because there is only one allele left to be dropped out. For

genotype-, it is certain that single ADO has not occuredd as there is no allele existing.

Table 1: Definition of the distribution of «;; conditional on g;; and ¢ under single
ADO mode for DelSIEVE.

a;j  gij Single ADO occurred P(aj | gij,6)

1 0/0 Yes 0

2 0/0 No 1-0

1 0/1 Yes 0

2 0/1 No 1-0

1 1/1 Yes 0

2 1)1 No 1-0

1 17 Yes 0

2 17 No 1-0

0 0/- Yes 0/,

1 0/- No 19

0o 1/- Yes 0/,

1 1/- No 19

0 - No 1
Others 0

To generalize DelSIEVE to model both ADO and locus dropout, we allow more than one
allele to drop out. P(a;|gij,0) is defined in Table 2, where 0 represents the probability of an
allele dropped out. We assume that the ADOs occur to each allele independently. For instance,
when g;; = 0/0, the probability of a;; = 0 is 62, happening only when both alleles drop out. For
genotype 0/-, the sole allele drops out with probability 0, resulting in zero sequenced alleles.

s; in Equation (6) is the size factor of cell j, which is estimated exactly in the same way as
in SIEVE:

§; = median G , (7)

i:¢;; 70
J/
11 /=1 Cij’
cij/;éO

o=
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Table 2: Definition of the distribution of «;; conditional on g;; and 6 under locus
dropout mode for DelSIEVE.

a;;  gij Number of alleles dropped out  P(w; | gij,0)

0 0/0 2 62

1 0/0 1 20(1 — 0)

2 0/0 0 (1—6)?

0 0/1 2 62

1 0/1 1 20(1 — 0)

2 0/1 0 (1-6)*

0 1/1 2 62

1 1/1 1 20(1 — )

2 1/1 0 (1—6)?

0 1/v 2 62

1 1/v 1 20(1 — 6)

2 1/7 0 (1—6)?

0 0/- 1 0

1 0/- 0 1-6

0 1/- 1 0

1 1/- 0 1-6

0o - 0 1
Others 0

where J' is the number of cells with non-zero coverage at a site.

Model of nucleotide read counts. We showed before that the occurrence of ADOs could
change the number of alleles possessed by cell j at site i. As a result, the genotype g;; could
change to the ADO-affected genotype, g;; € G. The probability of g;; writes P(g;; | gij, cvij),
which is defined in Table 3 for the single ADO mode and in Table 4 for the locus dropout mode.

When ¢! ;€ G\{}, we model m;;, the read counts of three alternative nucleotides, conditional

on the sequencing coverage c¢;; with a Dirichlet-multinomial distribution as

F(Q’j» aijo)

3 3 3
[le=1m,; 50 F' (Mg, aije) F(cij = 32—y Mgk, @ija)

P(mij| ey, aij) =

(8)

with parameters a;; = {a;ji |k =1,...,4} and a0 = Zi:l a;ji- F'is a function defined as

xB(y,x), if z > 0,
F(z,y) = 9)
1, otherwise,

where B is the beta function. Note that ¢;; — Z%zl myjk is the read count of the reference
nucleotide.

Similar to SIEVE, we reparameterize Equation (8) by letting a;; = w;; fij. w;; is related to
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Table 3: Definition of the distribution of ggj conditional on g;; and «;; under single
ADO mode for DelSIEVE.

9 9y oy Plgi;]9i, )

0/0 0/0 2 1
0/- 0/0 1 1
0/1 0/1 2 1
0/- 0/1 1 s
-0 1 i,
11 11 2 1
- 1/1 1 1
/1 1/ 2 1
1- 1)1 1 1
0/~ 0/~ 1 1
YA 1
1/- 1/~ 1 1
- 10 1
- -0 1

Others 0

the overdispersion. fi; = {fiju |k =1,...,4}, Zé:l fijk = 1 is a vector of expected frequencies

of each nucleotide, where the first three elements correspond to the three alternative nucleotides
ordered decreasingly according to their read counts, and the last to the reference nucleotide.

Depending on gl’-j, fij is given by

1.1.1 ,
f1:(3f73f73f71 f),lng:O/OOI'O/—,
1 1,1,1,1 1 e 1
f2:<2—3f>3f73f,2—3f)71f9¢j—0/17
Jij = 1 1 1 (10)
f5:<1_f73f)3fa3f>’lfg;jzl/lorl/_’
1 ]. 1 1 ]. 1 . ! !/
\f4=(2 §f72 3f73f73f>71fgij_1/17

where f is the effective sequencing error rate, combining together amplification and sequencing
errors.

The parameter w;; also depends on ggj, where

W1, if g;j = 0/070/'7 1/17 or 1/_7
wij = (11)
wa, if gz'-j =0/1lor1/7,

and w; corresponds to wild type overdispersion and ws to alternative overdispersion.

10
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Table 4: Definition of the distribution of gl’-j conditional on g;; and «;; under locus
dropout mode for DelSIEVE.

9 9y oy Plgi;]9i, )

0/0 0/0 2 1
0/- 0/0 1 1
- 0/0 0 1
0/1 0/1 2 1
0/- 0/1 1 s
/- 0/1 1 Yy
- 0/1 0 1
1/1 1/1 2 1
/- 1/1 1 1
- 1/1 0 1
/1 17 2 1
1/- 1/7 1 1
- 1r o 1
0/- 0/~ 1 1
-0/~ 0 1
/- 1/- 1 1
- 10 1
- -0 1

Others 0

By plugging Equations (10) and (11) into Equation (8), we have

Pyjo = P (my; | cij, gi; = 0/0, fi,w1),

Py = P (myj | cij, gij = 0/-, fr,w1)

Pyj1 = P (myj | cij, gij = 0/1, fo,w2)
P(mgjleij, gz, frwij) = Py =P (my; | cij, gi; = 1/1, f3,w1), (12)

Pl/_ = P(mz] ‘ czjagflbj = 1/'a.f37w1) )

Py = P (myj | cij, gi; = 1/1, fa,wa),

P = P(mz]|cljag;] :_’fv wl]) = 17

where we additionally define P(myj|cij, gi; =-, f,wij) = 1.

Although g;; and gz’j share the same genotype state space, it’s important to note that some
genotype states can arise from distinct evolutionary or technical events. For instance, genotype
1/- could be the outcome of evolutionary processes, where one allele was deleted while the
other remained intact. Alternatively, it could also be a result of technical artifacts, where
both alleles were initially present before scWGA, but one allele experienced dropout during

the amplification process. The presence of multiple potential causes for genotypes, such as

11
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the genotype 1/-, introduces a significant challenge in disentangling their origins compared
to methods like SIEVE, which predominantly attribute such genotypes to technical artifacts.
However, an encouraging development is the integration of the statistical phylogenetic model
and the model of sequencing coverage. This integration allows for a comprehensive analysis
from both evolutionary and technical perspectives, thereby facilitating the disentanglement. By
incorporating the statistical phylogenetic model, we gain insights into the evolutionary dynamics
underlying genotype development, while the model of sequencing coverage provides valuable
information about the technical nuances of the sequencing technique employed. This combined
approach offers a more robust framework for disentangling the complex factors contributing to
genotypic variations and enhancing our understanding of the underlying biological and technical

processes involved.

DelSIEVE likelihood

Combining the statistical phylogenetic model and the model of raw read counts described above,

we acquire the likelihood of DelSIEVE, denoted by
P<D(1)7D(2) ‘7—7/67Q7h7777t7v707 f)wlva) . (13)

To simplify notation, we denote some variables in the statistical phylogenetic model as
© = {T,8,Q,h,n} and some in the model of raw read counts as ® = {t,v,0, f,w;,wa}. By

taking the logarithm, Equation (13) is further writes
log £(©, ®) = log L1 (0, ®) + log L2 (0, ®), (14)

where £ is the tree likelihood corrected for acquisition bias computed for candidate SNV sites
in DM, while £® is the likelihood computed for background sites in D®), referred to as the
background likelihood.

Acquisition bias refers to the cases where the branch lengths of cell phylogenies are overes-
timated when only using data from SNV sites as input [59, 60]. Here, it is corrected similarly

to SIEVE, following [64]:

I
log L) = log P (D<1> ‘ @,cp) + I'log GZ(J) (15)

12
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23 where the first component is the uncorrected tree log-likelihood for SNV sites, and C; in the
214 second component is the likelihood of SNV site ¢ being invariant (see below).

25 To compute log P (D(l) ‘ o, <I>) in Equation (15), we decompose it according to the proba-
26 bilistic graphical model in Figure 1b. Assuming independent and identical evolution of each

27 candidate variant site, log P (D(l) | o, <I>) writes

log P (D<1> ‘ o, c1>) - ZI:log 3 [P (Dg” ’99, @)

=1 gD g\ {gi00}
XP<gz ,gz)\{gz2J})®>:|
; J
=>log > H (M, cij | 9ij, @)
i=1 (L) g )\{gz(2J)} = (16)
% P (g(f),g(f) \{gien} ‘ @)

I J
= Z Zlog Z {P (mj, cij | 9ij, @)

i=15=1 gD g\ Lo

%< P (g6 \ {92} ‘ o) ]

us  where P(myj, ¢ij | gij, ), representing the model of raw read counts applied on the leaves of the

20 phylogenetic tree, is similarly decomposed into

P (mgj, cij | gij, ®) = P (myj, ¢ij | gij, f,wij, t,v,0)
= Z P (mZ]ch]ual])g;] ’gij7f7wij7t>vae)
Oéz‘yg;j (17)
= Z {P (mij | cij» g5y frwiz) P (93| 9ig» i)
Oéijﬂ{'j
X P (cij | aij, t,0) P (v Igz’jﬁ)]
250 P(cij | aj, t,v) in the above equation is defined through Equations (4) to (6), and P(m; | ¢ij, gij, f, wi)
21 is defined in Equation (12). Under the single ADO mode, P(wj|gij,0) and P(g}; | gij, cvij) are
252 defined as shown in Table 1 and Table 3, respectively, while under the locus dropout mode in
53 Table 2 and Table 4, respectively. As a result, Equation (17) takes distinct forms under different

25 modes of modeling ADOs.

13
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255 For the single ADO mode, Equation (17) is further represented as

(Pojo- Plesj sy = 2.t,0) - (1— 0)
+ Py Pleij| iy = 1,t,0) - 0, if g;; = 0/0,
Py - P(cij|aij =2,t,v)- (1 —0)
+ %(Po/- + Py - Plegloy; = 1,8,0) - 0, if gij = 0/1,
Py - Pleijleuj = 2,t,0) - (1= 0)
+ Py Pleij |y = 1,t,0) - 0, if gy = 1/1,
P (mij, cij | gij, ®) = { Pryv - Pleij|aij = 2,t,0) - (1 —0) (18)

+P1/_-P(cl-j|aij = 1,t,v) '9, ifgl'j = 1/1/,

By - P(cij|ag = 1,t,0) - (1 — g)

+ P - P(cij |y = 0,t,0) - g, if g;; =0/-,
Py Pleij |y = 1,t,v0) - (1 — g)

+ P - P(cij | oy =0,t,v) - g, if gi; =1/,

R . P(cij\aij = O,t,v), lf gij =-.

14
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256 For the locus dropout mode, Equation (17) writes

Pyjo - Pleij | oy = 2,t,0) - (1 — 6)?

+ Py - Peij| iy = 1,t,0) - 2-6- (1 —0)

+ P P(cij | aij = 0,t,0) - 62, if g;; = 0/0,
Poj1 - Peij | aij = 2,t,0) - (1 — (9)2

+ (Pys. + P1j) - Pleijlag = 1,t,0) -0 - (1 = 6)

+ P - P(cij | =0,t,0) - 02, if gi; = 0/1,
Pyjy - Pleij|ouy = 2,t,0) - (1 —0)?

+ Py Pleij|aig = 1,t,0)-2-6- (1 —0)
P (mgj, cij | gij, ®) = + P - P(eij|aig = 0,t,0) - 62, if gij = 1/1, (19)
Py - Peij|agg = 2,t,0) - (1 60)°

+ Py Pleijlag = 1,t,0)-2-0- (1 - 0)

+ P P(cij | aij = 0,t,0) - 62, if g;j = 1/,
Py - P(cij |y = 1,t,v) - (1 - 0)

+ P - P(cij | =0,t,0) - 0, if g;j =0/-,
Py P(eij |y = 1,t,v) - (1 - 0)

+R-P(cij|ozij :O,t,v)-e, ifgij = 1/—,

kR . P(Cij|aij = O,t,’U)7 ifgij =-.

257 Equation (16) is computed efficiently using the Felsenstein’s pruning algorithm [65]. For
s I candidate SNV sites, J cells and K genotype states in G (for DelSIEVE K = 7), the time

2

a1

250 complexity of the Felsenstein’s pruning algorithm is O(I.JK?).
260 Since in the second component of Equation (15), C; corresponds to the likelihood of candidate

261 SNV site ¢ being invariant, it is computed as the joint probability of D; and ggL) = 0/0, writing

C;=P (Dg”,g@ ~0/0 ) o, <I>)

—p (p§1> ‘ g =00, @) > P (gﬁL) =0/0.4" \ {gi2)} ‘ ®>

9%4)\{91‘(2J)} (20)
J
A
=1 Ptmicislas =0/0,@) > P (g =0/0,6"\{gi00)}|©).
J=1 g(f)\{gi(zJ)}

15
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which is computed similarly to Equation (16), but with g;; for j = 1,...J fixed to 0/0. In fact,
C; and log P ( pM

© <I>> are computed simultaneously in the implementation for optimized
efficiency.

To efficiently compute log £(?), the background likelihood in Equation (14), we make sev-
eral simplifications similar to SIEVE. Specifically, we assume that each cell at each background
site has the wildtype genotype with both alleles covered during scWGA. We also assume that
P(cij | agj,t,v) = 1 and P( =0/0, g(l ) \ {gl 2.7) } ‘ @) = 1, thereby ignoring the model of
sequencing coverage and the tree log-likelihood for the background sites ¢ for i = 1,...1". With
an alternative form of the Dirichlet-multinomial distribution, log £(?) is approximately and effi-

ciently computed by

log 5(2) (f,wy) Z Z log Py /o

=1 j=1
r o J

_ Z Zlog F( Cl] + 1 f[ m”k + %f’l,Ul)
=1 j=1 I( CU +wi) 2 T(gfw)T(mig + 1)

T(cij — Sp_y mije + (1 — flwy)
D((1 = fJwn)T(eij — Ygey mijk + 1)

=TI'J |logT'(wy) — 3logT (;fuq) —logT((1 — f)wl)}

ax(cij) (21)
+ Z Nc(logT'(c+1) —logI'(c 4+ w1))
c=1

3 max(mg;i)

+ Z Z N, <logF <m;g + fw1> —log I'(my + 1)>

k=1 mkl

max(cij—3 o _, Mijk) 3
+ > Nc—zi_lmk<10gr (C_ka+ (1_f)w1>

5722=1 mp=1 k=1

3
—logT (c—ka+1> ),
k=1

where P g is defined in Equation (12). Across I' background sites and J cells, N, Ny, for k =
1,2,3,and N =33 my represent the unique occurrences of sequencing coverage c, of alternative
nucleotide read counts my for k£ = 1,2, 3, and of reference nucleotide read counts ¢ — Zi:l mg,
respectively. Some terms, namely logI'(c + 1), —log'(my + 1) for k = 1,2,3, and —logT'(c —
22:1 mp + 1), are constants, and thus they are not updated in the MCMC iterations.

The time complexity of Equation (21) is O(c), where ¢ is the number of unique values in

the set of values representing sequencing coverage and read counts for all four nucleotides across

16
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29 I’ background sites and J cells. Since generally IJK? > ¢, the overall time complexity of
20 model likelihood is O(IJK?). Tt is worth noting that given I candidate variant sites and J cells,
251 the time complexity of DelSIEVE is around 1.8 times greater than that of SIEVE due to the

282 expanded genotype state space.

283 Priors

284 Similar to SIEVE, we use prior distributions predefined and implemented in BEAST 2 for hidden
g5 random variables in the DelSTEVE model. For the cell phylogeny given by 7 and 3, we set a prior

26 following the Kingman coalescent process with an exponentially growing population, denoted

P(T.B|M,e), (22)

27 where M and e are hidden random variables, representing the scaled population size and the
28 exponential growth rate, respectively. The analytical form of Equation (22) is defined at length
289 in [66].

200 The default prior for M in BEAST 2 is

1
P(M|8) = 5, (23)
201 where ¢ is the current proposed value of M.
202 As for e, the default prior is
e| A, e ~ Laplace(\,e€), (24)

203 where the default values of the fixed parameters are mean A = 1072 and scale € = 30.7.

204 For 7 in Equation (2), an exponential prior distribution is chosen:

nlvy ~ exp(v), (25)

205 where v = 1.

296 For the relative deletion rate d in Equation (1), a uniform prior distribution is used:

d| ¢ ~ Uniform(0, ¢), (26)

17
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where ¢ = 1.
For the hidden random variables in the model of sequencing coverage in Equations (4) to (6),
a weak prior is set for t:

t|p ~ Uniform(0, p), (27)

where p = 1000, while the prior for v is

v|¢ ~ exp(C), (28)

where ¢ = 25.
For the ADO rate 6 defined either under the single ADO (Table 1) or under the locus dropout

mode (Table 2), we use an uninformative prior:

0 |u ~ Uniform(0,u), (29)

where u = 1.
Regarding the hidden random variables in the model of nucleotide read counts in Equa-

tions (8), (10) and (11), an exponential prior is set for f:

fl7 ~ exp(7), (30)

where 7 = 0.025, and a log normal prior for both w; and ws:

wy | &1,1 ~ Log-Normal(1, 1),
(31)

wa | €2, 12 ~ Log-Normal(&2, 1),

where we choose for w; the log-transformed mean &; = 3.9 (150 for untransformed) and the stan-
dard deviation ¥; = 1.5, and for wy the log-transformed mean £ = 0.9 (10 for untransformed)
and the standard deviation 12 = 1.7. The mean is log-transformed using

¢2

ftransformed = log(funtransformed) - ?

These values of the fixed parameters in Equation (31) are chosen to cover a wide range of possible

values for wy and ws.

18
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310 Posterior and MCMC

siu The posterior distribution of the hidden random variables writes

P (’7'”37 M, e,n,d,t,v,0, f,wi,ws ‘ D(l)’D(2)>
:%P (D(1)7D(2) ’Tjﬁ,an,t,v,Q, 1, wl,w2>

x P(T,B|M,e)P(M|8)P(e]|\e) (32)

x P(n|7)P(Q[d)P(d]yp)

x P(t|p)P(u][ QPO |u)P(f|T)

x P(wy | §1,91)P(w2 | 2, 12),

312 where Z = P(D(l),D(2)) is a normalization constant, and the likelihood of the model and priors
s13 for hidden random variables are defined in Section DelSIEVE likelihood and Section Priors,
sis respectively. To simplify the notation, we denote the hidden random variables in Equation (32)
as as A={T,8,M,e,n,d,t,v,0, f,wy, ws}.

316 Since Z in Equation (32) is intractable to calculate, we employ the MCMC algorithm with
sz Metropolis-Hastings kernel to sample from the posterior distribution. In this algorithm, a new
a8 state of the hidden random variables A* is proposed based on its current state A following a
s10  proposal distribution g(A*|A). g(A*|A) is designed to ensure the reversibility and ergodicity
320 of the underlying Markov chain. For DelSIEVE, in each iteration, a new state of a randomly

sz selected hidden variable is accepted with probability

. P (A*| DN, D) g(A|A¥)
" {1’ P (] D0, D) (A" [4) | )

322 We employ exactly the same proposal distributions as we used in SIEVE, which are defined
323 in BEAST 2. Briefly, regarding the branch lengths of the tree, the heights of the internal nodes
34 are adjusted. For the tree topology, we use multiple moves, including subtree swapping, Wilson-
325 Balding, and subtree sliding, where the last two moves also change branch lengths as a side
36 effect. With respect to unknown parameters, scaling and random Gaussian walks are used. For
;27 detailed description of the aforementioned moves, refer to Drummond et al. [66] and Kang et
28 al. [55].

329 To achieve accurate parameter and tree estimates, DelSIEVE employs a two stage sampling

30 strategy, similarly to SIEVE.

19
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Variant calling, ADO calling and maximum likelihood gene annotation

In the efficient computation of model likelihood using Equations (16) and (17), we marginal-

ize out some hidden random variables: g(Z-L), g(-A), ggj and «;;. Hence, the direct results from

i
the MCMC sampling process are the posterior distributions of cell phylogeny and other un-
known hidden random variables. We obtain the estimates of those marginalized hidden random
variables as a post processing step, similarly to SIEVE. Specifically, we use the max-sum al-
gorithm [67], by fixing the maximum clade credibility tree [68] and parameters estimated from
the MCMC posterior samples. As a result, the variants, ADO states, as well as the locations
of mutated genes on the inferred cell phylogeny are determined by identifying the maximum

) A

likelihood states of g(iL , ggj and «;;, as well as g(i , respectively.

Mutation event classification

DelSIEVE is able to discern 28 types of genotype transitions, which are classified into 17 types of
mutation events (Table 5). Each genotype transition is a combinatorial result of single mutations,
single back mutations and single deletions. Single mutations happen when 0 mutates to 1, or
1 and I mutate to each other. Single back mutations occur when 1 or 1 mutates to 0. Single
deletions happen when an existing allele is lost during evolution, namely 0 or 1 deleted.

Since DelSIEVE encompasses the genotype state space modeled by SIEVE, it is capable of
discerning all genotype transitions that SIEVE can handle, namely the first 12 rows in Table 5
(for detailed explaination see Kang et al. [55]). Those mutation events that only DelSIEVE is
able to discern are explained as follows.

The single deletion which is not loss of heterozygosity (LOH; related to genotype transitions
0/0 — 0/- and 1/1 — 1/-) takes place when one allele is deleted from genotypes in which
both alleles originally contained the same nucleotide, while the single deletion which is LOH
(0/1 - 0/-,0/1 = 1/- and 1/1" — 1/-) happens when one allele is deleted from genotypes in
which both alleles originally had different nucleotides. The coincident deletion and mutation
(0/0 — 1/-) refers to the case when one allele is deleted, and the other is mutated of the
wildtype, while the coincident deletion and back mutation (1/1 — 0/- and 1/1 — 0/-) happens
when one allele is deleted, and the other is mutated back to the reference nucleotide. The
single deletion mutation addition (0/- — 1/-) takes place when the only allele of the reference-
left single deletion genotype is mutated to an alternative nucleotide, while the single deletion

back mutation addition happens when the mutated allele of the alternative-left single deletion

20
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Table 5: 28 types of genotype transitions that DelSIEVE is able to identify, with
their interpretation as mutation events. The genotype transitions correspond to possible
changes of genotypes on a branch from the parent node to the child node. If any of these events
occurs on independent branches of the phylogenetic tree, it is also considered as a parallel
evolution event. The first 12 genotype transitions are also identifiable with SIEVE. LOH in the
table represents loss of heterozygosity.

Identifiable solely

Genotype transition Mutation event by DelSIEVE
0/0 —0/1 Single mutation No
0/0—1/1 Coincident homozygous double mutation No
0/0 —1/7 Coincident heterozygous double mutation No
0/1—0/0 Single back mutation No
1/1—-0/1 Single back mutation No
1/7 —0/1 Single back mutation No
1/1—-0/0 Coincident double back mutation No
1/7 —0/0 Coincident double back mutation No
0/1—=1/1 Homozygous single mutation addition No
0/1—=1/1 Heterozygous single mutation addition No
1/ = 1/1 Homozygous substitute single mutation No
1/1 —1/7 Heterozygous substitute single mutation No
0/0 —0/- Single deletion (not LOH) Yes
1/1—1/- Single deletion (not LOH) Yes
0/1—0/- Single deletion (LOH) Yes
0/1—1/- Single deletion (LOH) Yes
1/7 = 1/- Single deletion (LOH) Yes
0/0—1/- Coincident deletion and mutation Yes
1/1—0/- Coincident deletion and back mutation Yes
1/17 - 0/- Coincident deletion and back mutation Yes
0/-—1/- Single deletion mutation addition Yes
1/-—0/- Single deletion back mutation addition Yes

0/-—- Single deletion addition Yes
1/-—- Single deletion addition Yes
0/0 —- Coincident double deletion Yes
0/1 —- Coincident double deletion Yes
1/1 —- Coincident double deletion Yes
1/17 —- Coincident double deletion Yes

genotype is mutated back to the reference nucleotide. The single deletion addition (0/- —- and
1/- —-) refers to the case when the only allele is deleted of the reference- and alternative-left
single deletion genotypes. Finally, for the coincident double deletion (0/0 —-, 0/1 —-, 1/1 —-

and 1/1 —-) both of the alleles existing before are deleted.

ScDNA-seq data simulator

We generated simulated data by modifying the simulator we had used in SIEVE. The first

change we made was to expand the rate matrix, according to which each genomic site evolved
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along the tree (Additional file 1: Table S1). The rate matrix contains 14 genotypes encoded
with nucleotides, allowing for mutations, back mutations, and deletions. It has one parameter,
deletion rate, which is measured relatively to the mutation rate. Another change was that we
implemented the locus dropout mode to allow more than one ADO to occur at each site for each
cell. The simulator takes the same input configuration as SIEVE does.

The simulation process was similar to that in SIEVE. Briefly, with a given number of cells,
a binary cell lineage tree was first simulated following the coalescent process under the strict
molecular clock. For a given number of genomic sites, each site was initialized by randomly
selecting one of four nucleotides to have a reference genotype. Next, with a given mutation rate
and a relative deletion rate, each site was evolved independently along the tree following the
rate matrix defined in Additional file 1: Table S1. A genomic site is considered as a true SNV
site if at least one cell has a genotype that is not wildtype. ADOs were then added on top
of the simulated genotypes under either single ADO or locus dropout mode, as long as there
were existing alleles. We recorded the true ADO states for all cells at the true SNV sites. Size
factors in Equation (7) were generated from a normal distribution with the mean = 1.2 and the
variance = 0.2. The sequencing coverage was simulated using a negative binomial distribution
following Equations (4) to (6). The read counts of each nucleotide were then generated following

a multinomial distribution.

Simulation design

We designed a series of simulations to benchmark the performance of DelSIEVE. We reused and
modified the benchmarking framework in SIEVE.

We assumed that 40 tumor cells were sampled from an exponentially growing population,
whose growth rate and effective population size are 10~* and 10%, respectively. We used the
same mutation rates as in SIEVE, namely 1075, 8 x 1076 and 3 x 1075. We selected two levels
of deletion rate relative to the mutation rate: 0.1 and 0.25.

For each mutation rate, we chose such number of genomic sites that DataFilter would produce
a certain amount of candidate variant sites or background sites. For mutation rate 1079, we
evolved 10% genomic sites to have around 400 ~ 700 candidate variant sites. For mutation rate
8 x 1079, 10* genomic sites were chosen to have around 4 x 103 background sites. For mutation
rate 3 x 107°, 1.2 x 10° genomic sites were chosen to have at least 2.5 x 103 background sites.

For the higher mutation rates of 8 x 107% and 3 x 107>, the chosen numbers of genomic sites
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resulted in > 5 x 10% and > 1.1 x 10° true SNV sites, respectively. Due to the consideration of
runtime efficiency, they were subsetted before piping to downstream methods.

To this end, we first computed a targeted number of true SNV sites niarget using

n/
Ntarget = Min(700, g),

where n’ is the number of background sites. Next, we randomly selected Ntarget Sites out of
the true SNV sites. Together with the n’ background sites, the selected Ntarget tTue SNV sites
formed the new simulated data. This ensured that the number of true SNV sites in the final
simulated data for different mutation rates were within the same range, and the ratio between
the number of background sites and the true SNV sites was at least 5 for mutation rates being
8 x 107% and 3 x 107°.

We considered both single ADO and locus dropout mode. The ADO rate for the former was
0 = 0.163, and for the latter § = 0.3.

Similar to SIEVE, we had different combinations of ¢ and v in Equations (4) to (6) for various
coverage qualities. For simulated data referred to as high coverage quality, we used high mean
(t = 20) and low variance (v = 2) of allelic coverage. For medium coverage quality data, we
used high mean (¢ = 20) and medium variance (v = 10). For low coverage quality data, we fixed
low mean (¢ = 5) and high variance (v = 20).

Other parameters were fixed when simulating the data. We set w; and ws in Equation (11)
to 100 and 2.5, respectively. Moreover, we set both the amplification and sequencing error rate
to 1073, and thus the effective sequencing error rate in Equation (10) was f ~ 2 x 1073,

Overall, we designed 36 simulation scenarios, each repeated 10 times.

Furthermore, for each of those genotypes related to somatic deletions, we filtered out results
if the proportion of simulated ground truth was less than 0.1%. We also excluded results from
mutation rate being 107¢ as too few somatic deletions were generated (less than 0.3%, 0.7%
and 0.005% for alternative-left single deletion, reference-left single deletion and double deletion,
respectively). For the same reason, results were also excluded from double deletion for mutation
rate being 8 x 107¢ (less than 0.2% generated).

For double mutant genotype, we excluded results when mutation rate was 1075 as less than

0.2% of such genotype was generated.
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w27 Measurement of the quality of variant calling and cell phylogeny accuracy

28 For assessing the results of variant and ADO calling, standard performance measures such
20 as precision, recall, F1 score, and false positive rate (FPR) were used. DelSIEVE, SIEVE,
s30  SCIPhIN and Monovar were evaluated using these measures in the task of single and double
431 mutant genotype calling.

432 Both DelSIEVE and SCIPhIN identify somatic deletions at preselected candidate sites.
133 Hence, we subsetted the true somatic deletions to those at the candidate variant sites when
43¢ computing the metrics. This barely influenced the recall and F1 score for alternative-left single
435 deletion, as majority of the sites containing such genotype were captured in the selection of the
a6 candidate variant sites. For reference-left single deletion and double deletion genotype, however,
a37  restricting to candidate sites would inevitably decrease recall and F1 score, as sites having solely
438 those genotypes would be missed in the preselection.

439 To assess the accuracy of cell phylogeny reconstruction, we used the same measurements as
uo in SIEVE, namely the BS distance [69] for both the tree topology and branch lengths, as well as
a1 the normalized RF distance [70] for the tree topology only (see Kang et al. [55]). For DelSIEVE,
a2 SIEVE and SiFit, we computed both the BS and the normalized RF distance in the rooted tree
a3 mode. For SCIPhIN, we only computed the normalized RF distance as it only infers a rooted
aa  tree without branch lengths. We used R package phangorn to compute BS and normalized RF

ws  distance [71].

us Configurations of methods

a7 For Monovar (commit 68fbb68), we used the true values of 6 and f as priors for false negative
ws  rate and false positive rate and default values for other options.

449 For SCIPhIN (commit 27e5ca6), we gave it the true value of f to avoid estimating its mean
w0 error rate (option "wildMean”), and ran it with 108 iterations with zygosity learned (option ”1z”
i1 set to 1). We also set the penalty of computing the loss (option ”1lp”) and parallel score (option

s2 "1lpp”) to 30. The command line is as follows:

45 sciphin -1 1000000 --1z 1 --11 1 --1p 1 --11p 30 —--1lpp 30 —-ese 0 \

454 —--wildMean 0.002

455 To run SiFit (commit 9dc3774), we fed the required data with variants called by Monovar

156 as a ternary matrix. We used the true values of § and f as the prior for false negative rate and

I
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the estimated false positive rate, respectively. We ran it with 2 x 10° iterations.

For SIEVE, originally it only supported single ADO mode. In this contribution, we addi-
tionally equipped it with the locus dropout mode, which is now available along with DelSIEVE.

On the simulated data, we configured a strict molecular clock model for DelSIEVE and
SIEVE, both of which was then run for 2 x 10% and 1.5 x 10° iterations for the first and
the second sampling stages, respectively. The deletion rate was also inferred in the second
sampling stage as it is related to the branch lengths of the cell phylogeny. Both DelSIEVE and
SIEVE were configured to match the ADO type employed during the simulation process. This
ensured consistency between the simulation and analysis, allowing for accurate comparisons and
evaluations of the methods’ performance.

On the real datasets, we instead used a log-normal relaxed molecular clock model to account
for branch-wise substitution rate variation for DelSTEVE. To obtain better mixed Markov chains,
we used an optimized relaxed clock model [72] rather than the default one in BEAST 2. We
increased the number of iterations for both stages to 4 x 10% and 3.5 x 109, respectively. Both
the deletion rate and parameters introduced by the relaxed molecular clock model were explored
in the second sampling stage. To reduce the uncertainties introduced by the model, DelSIEVE
was run in single ADO mode.

To run Sequenza on the real datasets, we used the bam2seqz command in the sequenza-utils
package to convert bam files for normal and tumor cells to the Sequenza file format, which was
subsequently binned with the seqz_binning command, using a window size of 50. With this file
as input, we used the sequneza.fit command from Sequenza v3.0.0 to estimate the ploidy.

The SNVs were annotated using Annovar (version 2020 Jun. 08) [73]. The cell phylogeny was
plotted in R (version 4.2.3) [74] using ggtree [75], and the genotype heatmap was plotted using
ComplexHeatmap [76]. Besides, the comparison of sequencing coverages reported by DelSIEVE

and Sequenza was performed and plotted using ggstatsplot [77].

Results

DelSIEVE accurately called somatic deletions

First, we used simulated data to benchmark one of DelSIEVE’s asset functionalities, namely
calling somatic deletions (Methods; Section Simulation design). DelSIEVE’s performance was

benchmarked against SCIPhIN [62] (Figure 2, Additional file 1: Figure S1, S2). Here, SCIPhIN
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was given an advantage by fixing its mean error rate to the true effective sequencing error rate
used in the simulation. DelSIEVE and SCIPhIN were evaluated in the task of calling alternative-
and reference-left deletions, while only DelSIEVE was evaluated in the task of calling double
deletion genotype, as it is the only method to call such genotype.

For calling alternative- and reference-left single deletion, DelSIEVE overall outperformed
SCIPhIN, regardless of the type of ADOs (single or locus dropout) used in the simulated data
(Figure 2a, b, Additional file 1: Figure Sla-d, Additional file 1: Figure S2a, b). When the
data was of medium or high coverage quality (with high mean and low or medium variance
of coverage), DelSIEVE achieved F1 scores with medians > 0.87 and > 0.76 for alternative-
and reference-left single deletions, respectively (Figure 2a, b). In contrast, SCIPhIN had F1
scores with medians < 0.28 for alternative-left single deletion and < 0.01 for reference-left single
deletion. The related recall (Additional file 1: Figure Sla, ¢) and precision (Additional file
1: Figure S1b, d) also showed DelSIEVE’s superiority. In particular, the high precision (~ 1)
and negligible FPR (= 0, see Additional file 1: Figure S2a, b) of DelSIEVE indicate its high
reliability in calling alternative- and reference-left single deletion genotypes.

When the data was of low coverage quality (low mean and high variance of coverage), the
medians of F1 scores of DelSIEVE dropped to > 0.55 and > 0.29 for calling alternative- and
reference-left single deletion genotypes, respectively, but still largely exceeded those of SCIPhIN
(Figure 2a, b). The low quality of the data seemed to affect more the performance of DelSTEVE
in calling reference-left single deletion compared to that in calling alternative-left single deletion
(Additional file 1: Figure Sla-d). This was expected since such low coverage provided very little
information for calling reference-left single deletion. Furthermore, the FPR of DelSIEVE was
still ~ 0 for the low quality data.

We observed that the performance of DelSIEVE only slightly decreased when applied to
data simulated under locus dropout mode, in comparison to the results obtained when it was
applied to data simulated under single ADO mode. Given that DelSIEVE explicitly modeled the
sequencing coverage, it was anticipated that data simulated under locus dropout mode would
introduce additional uncertainties to the model.

DelSIEVE was the only method designed for explicitly calling double deletion genotype.
Overall, in evaluation on simulated data, DelSIEVE obtained high medians of F1 scores > 0.75
(Figure 2¢). Its performance decreased as the relative deletion rate increased or the coverage

quality of the data decreased (Figure 2¢, Additional file 1: Figure Sle, f), but the FPR kept at
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Figure 2: F1 score for the benchmark of calling somatic deletions. Varying are the
mutation rate (the horizontal axis), the relative deletion rate (the vertical strip), the coverage
quality (the horizontal strip) and the simulated ADO type (the shaded or blank boxes). Each
simulation is repeated n = 10 times with each repetition denoted by colored dots. The gray
dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes
covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and
above the box. Data points were removed if the proportion of simulated ground truth was
less than 0.1%. a-c, Box plots of the F1 score for calling alternative-left single deletion (a),
reference-left single deletion (b), and double deletion (c). The results in ¢ when mutation rate
was 8 x 1075 were omitted as very few double deletion were generated (less than 0.2%; see
Section Simulation design).
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a negligible level (= 0; see Additional file 1: Figure S2c¢).

DelSIEVE showed boosted performance in calling double mutant genotypes

compared to SIEVE in the presence of somatic deletions.

We next assessed DelSIEVE’s performance in calling single and double mutant genotypes against
Monovar, SCIPhIN and SIEVE (Figure 3, Additional file 1: Figure S3, S4). Regarding calling
single mutant genotype, DelSIEVE and SIEVE performed comparatively well (minimum median
F1 score of 0.9), and outperformed Monovar and SCIPhIN (minimum median F1 score 0.58 and
0.6, respectively; see Figure 3a). As mutation rate increased, the recall of both DelSIEVE and
SIEVE slightly increased (Additional file 1: Figure S3a), while the precision slightly decreased
(Additional file 1: Figure S3b), resulting in relatively constant F1 scores. In contrast, both
Monovar and SCIPhIN experienced a decrease in both recall and precision as the mutation
rate increased (Additional file 1: Figure S3a, b). Consequently, their F1 scores declined, with
SCIPhIN being more adversely affected compared to Monovar. Moreover, DelSIEVE and SIEVE
had comparable recall (Additional file 1: Figure S3a), while DelSIEVE showed higher precision
(Additional file 1: Figure S3b) and lower FPR (Additional file 1: Figure S4a) than SIEVE did,
especially when the mutation rate was high (> 3 x 107°). We speculate that this might because
SIEVE has to model the evident signal of somatic deletions as ADOs on top of single mutant
genotype.

Additionally, as the mutation rate increased, the FPR of all methods also increased, with
SCIPhIN exhibiting the most significant FPR increase (Additional file 1: Figure S4a). It was
noteworthy that, when the mutation rate was high (> 3 x 107°), methods that incorporated cell
phylogeny in variant calling, such as DelSIEVE, SIEVE and SCIPhIN, had slightly higher FPR
in calling single mutant genotype compared to other methods, such as Monovar (Additional file
1: Figure S4a). However, this loss was negligible compared to the advantage that SIEVE and
DelSIEVE had over Monovar when precision, recall, and F1 were evaluated.

In the task of calling double mutant genotypes, SCIPhIN and Monovar obtained minimum
median F1 scores 0.04 and 0.21, respectively, while SIEVE and DelSIEVE exhibited much higher
performance with minimum median F1 scores 0.65 and 0.93, respectively (Figure 3b). More
specifically, DelSIEVE and SIEVE had comparable recall (Additional file 1: Figure S3c), but
the former reached much higher precision than the latter (minimum medians 0.75 and 0.61,

respectively; see Additional file 1: Figure S3d). Again, this discrepancy in performance could

28


https://doi.org/10.1101/2023.09.09.556903
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.09.556903; this version posted September 12, 2023. The copyright holder for this

550

551

552

553

554

555

556

557

558

559

560

561

562

563

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Single mutant b Double mutant

0.1 0.25 0.1 0.25
1-00""' R [[ = “pon T T T e T T Taees | e e e T T T T e = T T T T
| B el o - P aad L W #..- : L T
0.75 - " : B c&
0.50 1 : =3
o D
0.251 5%‘ ) ~ 28
0.00 4 o 'ﬁ' -
1.00"'W"'“"'w' [~ agesnd — ~ ST T T et | [ T T T T o T T T T T T Tame | T T T T el T T T T T Tate
o i w 4 w '-'*’;- 1* ‘._d T
®0.75 . £z
g s ] . ==
® 0507 . : 53
T 0.25 Eﬁ ) . 58
0.00 4 - = e
LO0F = oo =~ o e | [ e R A |
754 -l:#ﬁ' oy 5
0.75 - » e . ﬁ@ w2
0.50 e
0.25 - E$ sé 58
. i . 53
0.00 +— : : : : : : #' : &
10° 8x107° 3x107° 10° 8x107° 3x107° 8x107° 3x107° 8x107° 3x107°

Mutation rate Mutation rate

Simulated ADO type BE Locus dropout B3 Single ADO Method Monovar F SCIPhIN B9 SIEVE E5 DelSIEVE

Figure 3: F1 score for the benchmark of calling single and double mutant. Varying
are the mutation rate (the horizontal axis), the relative deletion rate (the vertical strip), the
coverage quality (the horizontal strip) and the simulated ADO type (the shaded or blank boxes).
Each simulation is repeated n = 10 times with each repetition denoted by colored dots. The gray
dashed lines represent the optimal values of each metric. Box plots comprise medians, boxes
covering the interquartile range (IQR), and whiskers extending to 1.5 times the IQR below and
above the box. a-b, Box plots of the F1 score for calling single mutant (a) and double mutant
(b). The results in b for mutation rate was 10~¢ were omitted as too few double mutant were
generated (less than 0.2%; see Section Simulation design).

be due to SIEVE’s inclination to explain somatic deletions by modeling them as ADO events
occurring within double mutant genotypes.

Besides, DelSIEVE had the lowest FPR (/= 0) compared to other methods (Additional file
1: Figure S4b). These findings highlighted the superior capability of DelSIEVE in accurately
identifying double mutant genotypes in the presence of somatic deletions. On top of that, the
slight advantage of Monovar over methods incorporating phylogeny observed for single mutant
calling was not observed for double mutant calling. In contrast, in this task, Monovar had

significantly elevated FPR compared to all other methods.

DelSIEVE outperformed SIEVE in calling ADOs on data with adequate cov-

erage quality.

We then evaluated DelSIEVE’s performance in calling single ADO and locus dropout against
SIEVE (Figure 4, Additional file 1: Figure S5, S6), which are the only two methods that
can conduct these tasks. Though unsupported originally in SIEVE, locus dropout mode was

implemented by us for the comparison (see Section Configurations of methods). The ADO
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type used during the simulation process was taken into consideration when configuring both
DelSIEVE and SIEVE for analysis. As a result, the results of calling single ADO were accessible
for data simulated under both single ADO and locus dropout modes. However, the results of

calling locus dropout were only available for data simulated specifically under the locus dropout

mode.
a Single ADO b | ocus dropout
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Figure 4: F1 score for the benchmark of calling single ADO and locus dropout.
Varying are the mutation rate (the horizontal axis), the relative deletion rate (the vertical
strip), the coverage quality (the horizontal strip) and the simulated ADO type (the shaded or
blank boxes). Each simulation is repeated n = 10 times with each repetition denoted by colored
dots. The gray dashed lines represent the optimal values of each metric. Box plots comprise
medians, boxes covering the interquartile range (IQR), and whiskers extending to 1.5 times the
IQR below and above the box. a-b, Box plots of the F1 score for calling single ADO (a) and
locus dropout (b). The F1 score were unavailable in b when data was of low coverage quality
due to unavailable precision.

For calling single ADO, the performance of DelSIEVE and SIEVE were affected by the cov-
erage quality of the data. When the data was of medium or high coverage quality, DelSIEVE
reached a minimum median F1 score 0.9, higher than SIEVE (0.77; see Figure 4a). The perfor-
mance of DelSIEVE remained consistent regardless of changes in the mutation rate and relative
deletion rate, in contrast to SIEVE. This was anticipated because higher mutation and deletion
rates resulted in an increased number of somatic deletions being generated. DelSIEVE was
capable of differentiating somatic deletions from ADOs by incorporating them into the model.
In contrast, SIEVE wrongly accounted for somatic deletions as ADOs occurring within single
or double mutant genotypes. This behavior of SIEVE reduced the recall and precision, and
increased FPR (Additional file 1: Figure Sba, b, Additional file 1: Figure S6a), similarly to its
inferior performance in calling single and double mutant genotypes compared to DelSIEVE (see

the previous section).
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581 The performance of both DelSIEVE and SIEVE in calling single ADO declined when the
ss2  data had low coverage quality (Figure 4a, Additional file 1: Figure SHa, b, Additional file 1:
ss3 Figure S6a). This decrease in performance was further exacerbated when the data was simulated
s« under the locus dropout mode, as compared to when it was simulated under the single ADO
sss mode. The decrease in performance can be attributed to two primary factors. Firstly, data
ss6  of low coverage quality contained more noise compared to that of higher coverage quality. The
ss7  locus dropouts added even more noise on top of that. Secondly, the more complex model versions
sss operating under the locus dropout mode inherently introduced more uncertainty to the results.
589 For calling locus dropout from data of medium or high coverage quality, DelSIEVE showed
so a minimum median F1 score of 0.91, higher than SIEVE did (0.68; see Figure 4b). Specifically,
s DelSIEVE and SIEVE were comparable in terms of recall (Additional file 1: Figure S5¢), but the
s2  former had a higher precision and lower FPR than the latter as the mutation rate and relative
so3  deletion rate increased (Additional file 1: Figure S5d, Additional file 1: Figure S6b). However,
s04  when the data was of low coverage quality, both methods reported no locus dropout, resulting
so5 in zero recall and FPR as well as unavailable precision and F1 score.

506 Since the quality of the real data resembles more that of low coverage quality, we decided
s07 to configure DelSIEVE under the single ADO mode to reduce the amount of uncertainties

so8  introduced.

s00 DelSIEVE estimated cell phylogeny with comparable accuracy to SIEVE.

60 We further benchmarked DelSIEVE’s performance in reconstructing the cell phylogeny against
o1 SiFit, SCIPhIN and SIEVE (Additional file 1: Figure S7). To account for both tree structure
2 and branch lengths in the evaluation, we used branch score (BS) distance as the metric. The
603 results of SCIPhIN were excluded in the computation of BS score as it only reported the tree
604 structure. Both DelSIEVE and SIEVE outperformed SiFit, showing the advantage of correcting
s the acquisition bias (Additional file 1: Figure S7a). When the mutation rate was higher (>
06 8 x 107%), DelSIEVE reported cell phylogenies with longer branch lengths than SIEVE and
607 showed a bit larger BS score. This may be due to the fact that DelSIEVE, as a more complex
60s model, with more considered genotypes, allowed more genotype transitions on the branches.

609 We then used the normalized RF distance as the metric, which only considered the tree
610 structure. The performance of DelSIEVE and SIEVE in tree reconstruction was comparable

611 in estimating the tree structure (maximum medium normalized RF distance 0.29 and 0.28,
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respectively), and was lower compared to SiFit (maximum median normalized RF distance
0.37) and SCIPhIN (0.33; see Additional file 1: Figure S7b), especially when the mutation rate

increased.

DelSIEVE reliably identified several somatic deletions in TNBC cells.

We applied DelSIEVE to real world scDNA-seq datasets analyzed previously in SIEVE with ex-
actly the same input, configuring similarly a relaxed molecular clock model to account for branch-
wise rate variation (see Section Configurations of methods). For scWES dataset TNBC16 [78],
DelSIEVE reported a maximum clade credibility (MCC) cell phylogeny with a visually long
trunk, supported by high posterior probabilities (Figure 5, Additional file 1: Figure S8). The
cell phylogeny was similar to that reported by SIEVE, with the normalized RF and the BS
distances being 0.07 and 3.88 x 107°, respectively.

DelSIEVE identified the same types of mutation events reported by SIEVE, except for single
back mutation. In terms of numbers, DelSIEVE explained the same data with less single muta-
tions. Specifically, DelSIEVE identified 31 coincident homozygous double mutations (transitions
from 0/0 to 1/1; 44 for SIEVE), eight homozygous single mutation additions (from 0/1 to 1/1;
nine for SIEVE) and two parallel single mutations (from 0/0 to 0/1 that occurred more than
once in the tree; same for SIEVE). SIEVE identified seven single back mutations (from 0/1 to
0/0; BRDS8, COL6A5, GRB14, MYRF, RHOJ, SEMA3A, TMX}), narrating an evolutionary
story of acquiring single mutations in these genes on the trunk of the tree, followed by losing
them through single back mutations, resulting in these mutations possessed by only a subgroup
of cells (a2, a3, ab and a7). Reporting the same mutations in the same group of cells, DelSIEVE,
however, narrated a more straightforward, parsimonious alternative, where cell a2, a3, a5 and
a7 acquired these mutations directly from their most recent common ancestor.

In addition, DelSIEVE identified mutation events where somatic deletions were involved,
including a large number of 245 coincident deletions and mutations (from 0/0 to 1/-), three
single deletions which could be categorized as LOH (from 0/1 to 0/- or 1/-, or from 1/1 to 1/-),
ten single deletions which were not LOH (from 0/0 to 0/-, or from 1/1 to 1/-), and finally ten
single deletion mutation additions (from 0/- to 1/-). For instance, DelSIEVE inferred that gene
NEK1 and NEK5, which had been reported to be related to breast tumors [79], experienced
both a deletion and a mutation on the trunk, resulting in all sequenced cells having genotype

1/-. Another gene, LIMCH1, known to be related to TNBC [80], had an allele deleted first on
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Figure 5: Results of phylogenetic inference for the TNBC16 dataset. Shown is
DelSIEVE’s maximum clade credibility tree. Tumor cell names are annotated to the leaves
of the tree. The numbers at each node represent the posterior probabilities (threshold p > 0.5).
At each branch, depicted in different colors are non-synonymous genes that are either TNBC-
related single mutations (in blue) or other mutation events (in other colors).
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63 the trunk (genotype changed from 0/0 to 0/-), and then the left allele mutated for a subgroup of
eaa  cells (genotype changed from 0/- to 1/-). The substantial amount of evolutionary events related
ess to deletions highlights the importance of the extended functionality of DelSIEVE as compared
s6 to SIEVE.

647 In total, DelSIEVE identified 5,893 variant sites, close to 5,895 variant sites reported by
ss SIEVE (Figure 6). Among the 683 sites inferred by DelSIEVE that contain somatic deletions
ss0  (mostly 1/-; 11.6% of all variant sites), 377 were previously determined according to SIEVE to
eso  have double mutant genotypes and the remaining 306 to have single mutant genotype. This
es1  observation was in accordance with the simulation results, where SIEVE inclined to explaining
652 somatic deletions as ADO events within single and double mutant genotyps to accommodate to
653 the characteristics of the data, showing reliability to the results of DelSIEVE. The proportion
es¢ of genotypes called by DelSIEVE and SIEVE were summarized in Additional file 1: Table S2

s (same for the following datasets).

SNV sites
1 2,000 4,000 5,893

Genotype

Cells
o
IS]

Figure 6: Results of variant calling for the TNBC16 dataset. Cells in the row are in
the same order as that of leaves in the phylogenetic tree in Figure 5.

656 To further validate the ability of DelSIEVE to reliably call deletions, we inspected whether
657 the sites identified as deleted displayed also a lower coverage than sites with neutral copy number.
68 We next compared the strength of the coverage reduction effect on deleted sites to a dedicated
650 copy number calling method, Sequenza [22] (Figure 7). The comparison was performed only
60 for the sites shared between the input data of both methods, which, in this case, were all 5,912
661 candidate variant sites. Since Sequenza was designed to apply to bulk-seq data and only reported
62 copy number (CN) at the clone (or subclone) level, we harmonized the resolution of DelSIEVE’s
663 results with Sequenza to ensure a fair comparison. To this end, we adjusted DelSIEVE to
e6s operate at the clone level as well. In other words, for this comparison, we considered all cells at
665 a given site to contain somatic deletions if at least one cell indicated the presence of a deletion.

666 As expected, we observed that for DelSIEVE the mean value of sequencing coverages (de-
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Figure 7: Results of clone-wise sequencing coverage comparison for TNBC16 be-
tween DelSIEVE and Sequenza [22]. Compared were the sites shared between the input
data of both methods. The resolution of variant calling was clone-wise in order to conduct a
fair comparison. For Sequenza, sites were divided into two groups with copy number (CN) < 2
and > 2, respectively. For DelSIEVE, sites were also divided into two groups, one with somatic
deletions, the other copy neutral. Sequencing coverage across all cells at all sites were plotted
for reference. In each group, the violin and the box plots matched the color of the method and
showed the distribution of the sequencing coverage, while the burgundy dot denoted its mean
value fi. The total number of dots in each group, which was the product of the number of cells
(16) and the number of sites in each group, was marked with n on the horizontal axis. Box
plots comprise medians, boxes covering the interquartile range (IQR), and whiskers extending
to 1.5 times the IQR below and above the box. Within- and between-group comparisons were
conducted between CN < 2 and > 2 of Sequenza, between somatic deletions and copy neutral
of DelSIEVE, and between CN < 2 of Sequenza and somatic deletions of DelSIEVE. For each
comparison, shown were the p-value corrected by Holm—Bonferroni method and the absolute
value of the effect size (Cohen’s d).

noted by /i in Figure 7) in the group of sites with somatic deletions (3.95) was significantly lower
compared to the mean for sites without somatic deletions (24.01, respectively), with effect size
Cohen’s d = 0.61. In contrast, the mean coverage for 44 sites identified as containing somatic
deletions by Sequenza was 39.58, significantly larger than 21.56, the mean coverage for sites with
amplifications (Cohen’s d = 0.54), controverting Sequenza’s copy number calls. Furthermore,

a direct comparison revealed that sites identified as deleted by DelSIEVE showed much lower
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coverage levels than those identified as deleted by Sequenza (Cohen’s d = 2.82). This indicates

that DelSIEVE calls deletions more reliably than Sequenza.

DelSIEVE identified rare somatic mutations in CRC cells.

We then applied DelSIEVE to a scWGS dataset, CRC28 [55]. The estimated cell phylogeny was
supported by high posterior probabilities with a long trunk (Additional file 1: Figure S9, S10),
which was similar to that reported by SIEVE (the normalized RF and the BS distances were
0.08 and 8.03 x 10~ 7, respectively). In particular, tumor proximal (TP) and tumor distal (TD)
cells also formed a closer clade compared to tumor central (TC) cells in the tree reported by
DelSIEVE. This suggested that, like SIEVE, DelSIEVE also inferred regular tumor growth and
limited cell migration.

Similar to SIEVE, DelSIEVE annotated mutations of known CRC driver genes, for instance,
APC, and of genes related to the metastatic progression of CRC, such as ASAP1 and RGL2 on
the trunk of the tree. However, DelSIEVE identified more mutation events than SIEVE, includ-
ing two coincident deletions and mutations, one single deletion which was not LOH, and one
single deletion mutation addition. For example, DelSIEVE identified that ACSLS, potentially
related to intestinal carcinogenesis [81], underwent a somatic deletion of one allele (genotype
changed from 0/0 to 0/-) on the trunk and a mutation to the left allele (genotype changed
from 0/- to 1/-) for the most recent common ancestor of TP and TD cells. Overall, DelSIEVE
found very few mutation events that were not single mutations, indicating that single mutations
dominated the evolutionary process of this sample.

DelSIEVE identified the same number of variant sites as SIEVE (8,029; see Additional file 1:
Figure S11), in which 13 sites contained somatic deletions (mostly 1/-; 0.16% of all variant sites).
According to SIEVE, nine of those sites were inferred to have double mutant genotypes and four
to have single mutant genotype. The contrasting results obtained by DelSIEVE, with multiple
somatic deletions identified in TNBC16 but only few in CRC28, underscored an important
feature of the method. While DelSIEVE employs a sophisticated modeling approach, it primarily
relies on the data for the inference. In other words, the detection of somatic deletions was driven
solely by the characteristics of the data itself and is not enforced by the model when the deletions
are not there.

We further conducted a comparative analysis of the sequencing coverage between sites that

were identified to contain somatic deletions and those that did not, using both DelSIEVE and
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Sequenza (Additional file 1: Figure S12-S14). Specifically, as CRC28 comprised tumor cells
originating from distinct anatomical locations (denoted TP, TC, and TD cells), our comparison
was conducted at the subclone resolution. This resolution represented the highest achievable
level of detail that Sequenza could provide for this specific dataset, and we adjusted the resolution
of DelSIEVE accordingly.

For TP cells (cancer tissue 1 in Additional file 1: Figure S9; with nine cells) and TC cells
(cancer tissue 3; with 12 cells), we could only inspect the results of DelSIEVE as there is
no corresponding bulk sample for Sequenza. We observed noticeable differences of coverage
between sites with and without somatic deletions called by DelSIEVE: for TP cells, the mean
coverage [i = 1.54 for sites with somatic deletions was significantly lower than fi = 6.37 for sites
without deletions Cohen’s d = 0.59; Additional file 1: Figure S12, S14). This difference was
also significant for the TC cells (i = 2.9 for sites with somatic deletions, 10.26 for sites without,
Cohen’s d = 0.63; Additional file 1: Figure S14).

For TD cells (cancer tissue 2; with seven cells), both DelSIEVE and Sequenza had lower j for
sites containing somatic deletions compared to sites without deletions (Additional file 1: Figure
S13a). DelSIEVE exhibited a clear distinction, with a significantly lower ji of 1.76 for sites with
somatic deletions compared to 7.41 for sites without, resulting in Cohen’s d = 0.5. Conversely,
the difference in i was negligible for Sequenza, with values of 6.85 and 7.97 for sites with and
without somatic deletions, respectively, resulting in Cohen’s d = 0.1. Additionally, there was
an evident difference in i between sites with somatic deletions identified by DelSIEVE and
Sequenza, as indicated by a Cohen’s d effect size of 0.5. These findings highlighted the divergent
performance of DelSIEVE and Sequenza in calling somatic deletions for TD cells, where the
results of the latter might not be reliable from the viewpoint of the conducted comparisons.

To further inspect the results from Sequenza, we visualized its reported CNs in TD cells
across the entire genome (Additional file 1: Figure S13b). The visualization clearly revealed that
Sequenza inferred a substantial number of CNs other than 2 for each chromosome. Moreover,
these CNs frequently exhibited fluctuations in their values, indicating that the method might
be fitting to the noise rather than accurately capturing true CN states. These findings indicate

that a significant portion of the CNs inferred from Sequenza could potentially be false positives.
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DelSIEVE identified rare somatic mutations in CRC samples mixed with nor-

mal cells.

We finally analyzed another scWES dataset, CRC48 (CRC0827 in [82]). DelSIEVE pinpointed
two tumor subclones, associated with their anatomical locations, each subclone containing ex-
actly the same cells as in SIEVE (Additional file 1: Figure S15, S16). The rest of the cells
collected from tumor biopsies were clustered together with cells from adenomatous polyps, sug-
gesting that they might be normal cells residing inside cancer tissues, as pointed out by both
the original study [82] and SIEVE. There were some distinctions between the cell phyloge-
nies reported by DelSIEVE and SIEVE, with normalized RF and BS distances being 0.33 and
1.99 x 1079, respectively. This discrepancy is higher than observed for previous datasets, and
might be due to the overall lower signal level in the data. Indeed, the CRC48 dataset has a
substantially lower ratio between the number of candidate variant sites and the number of cells
(707/48 ~ 14.7) compared to TNBC16 (5912/16 = 369.5) and CRC28 (8470/28 = 302.5).

DelSIEVE identified many single mutations on the branch leading to two tumor subclones,
including a reported CRC driver mutation in gene SYNFEI [83], as well as a mutation related
to DNA mismatch repair, in gene MLH3 [84], both of which were also identified on the same
branch by SIEVE. Moreover, DelSIEVE found two parallel single mutations (CHDS3 and PLD2),
which were also reported by SIEVE for the same cells. Furthermore, DelSIEVE identified only
one site containing somatic deletions (among 679 variant sites, and only 0/-; see Additional file
1: Figure S17), which was previously inferred by SIEVE to have single mutant genotype.

We conducted a comparative analysis of the site-wise sequencing coverage between sites
that were identified to contain somatic deletions and those that did not, for cancer tissue 1
(Additional file 1: Figure S18; with 17 cells) as well as cancer tissue 2 (Additional file 1: Figure
S19; with 18 cells). The comparisons were performed at the subclone resolution associated
with the anatomic locations. Sites identified by DelSIEVE as containing somatic deletions
showed much more pronounced mean coverage differences compared to sites without deletions,
both for cancer tissue 1 (Cohen’s d = 0.4) and for cancer tissue 2 (d = 0.47). These mean
coverage differences between sites identified as deleted or not by Sequenza were negligible for
both subclones (Cohen’s d = 0.06 for cancer tissue 1; d = 0.09 for cancer tissue 2). Moreover,
mean coverage was much lower for sites identified to carry somatic deletions by DelSIEVE than
for sites identified as such by Sequenza (Cohen’s d = 0.46 for cancer tissue 1; d = 0.5 for

cancer tissue 2). For adenomatous polyps, DelSIEVE reported no somatic deletions, so we only
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compared the results of Sequenza (Additional file 1: Figure S20). Countering the expected effect
of deletions, we observed a higher mean coverage for the sites identified by Sequenza to have
CN < 2 (37.97) than sites with CN > 2 (35.76), though the difference was negligible (Cohen’s d
= 0.03). These findings again validated the deletion calls made by DelSIEVE and raised doubts
about the CNs called by Sequenza in the context of the comparisons we performed regarding

the sequencing coverages.

Discussion

We present DelSIEVE, a statistical method designed to jointly infer somatic deletions, SN'Vs,
and the cell phylogeny from scDNA-seq data. Built upon SIEVE, which combines inference
of SNVs and cell phylogeny, DelSIEVE takes a step forward by allowing for the occurrence
of somatic deletions during the evolution of the tumor. In a nutshell, DelSIEVE features a
statistical phylogenetic model with genotypes relating both to somatic deletions and to single
and double mutants, a model of raw read counts allowing for both single ADO and locus dropout,
a mechanism for acquisition bias correction for the branch lengths, and a trunk in the cell
phylogeny for clonal mutations.

Somatic deletions often play an essential role in tumor evolution. Although our previous
work, SIEVE, does account for the FSA in the statistical phylogenetic model, it only considers
somatic mutations with nucleotide substitutions. Thus, it is not versatile enough to apply to
data where somatic deletions are present. We have shown that for such data SIEVE tends
to explain somatic deletions as a result of ADOs, with an inflated amount of single and double
mutant genotypes inferred. The inclusion of somatic deletions in DelSTEVE fills this missing part
in the puzzle. In particular, compared to SIEVE, DelSIEVE exhibits boosted performance in
terms of calling double mutant genotypes, while performs similarly in estimating cell phylogeny
and calling single mutant genotype.

The difficulty of identifying somatic deletions is mainly due to the similarity between the
sequencing data resulting from somatic deletions and ADOs, as well as the uneven coverage
inherent in sScDNA-seq. Both DelSIEVE and SCIPhIN deconvolve somatic deletions from ADOs
with the help of cell phylogeny. However, unlike SCIPhIN, DelSIEVE explicitly employs a
statistical phylogenetic model allowing for both somatic deletions and double mutant genotypes,
as well as a model of sequencing coverage using a negative binomial distribution. We have shown

that DelSIEVE outperforms SCIPhIN in identifying somatic deletions, including alternative-
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(1/-) and reference-left single deletion (0/-), as well as in calling single and double mutant
genotypes. Furthermore, DelSIEVE is the only method able to explicitly call double deletion
genotype.

DelSIEVE and SIEVE are the only two methods being able to explicitly call ADOs, working
under either single ADO or locus dropout mode. This task is daunting in a similar sense to
calling somatic deletions. We have proved that DelSIEVE outperforms SIEVE regarding calling
ADOs. However, the results are only reliable when the data is of adequate coverage quality,
which is not given for real data yet. We anticipate that the coverage quality of future scDNA-seq
data would be suitable for DelSIEVE to make reliable ADO inference.

Estimating cell phylogeny from scDNA-seq data is a crucial step as it lays the foundation
for downstream analyses. Our previous research demonstrated the superiority of SIEVE over
other methods, particularly in accurately estimating branch lengths. Building upon the success
of SIEVE, our more sophisticated model, DelSIEVE, exhibits comparable performance in the
precise estimation of cell phylogeny. Moreover, DelSIEVE surpasses SIEVE’s functionality by
discerning 17 types of mutation events, corresponding to 28 distinct types of genotype transi-
tions. This expanded capability of mutation event identification makes DelSIEVE a valuable
asset in unraveling complex genomic dynamics and understanding evolutionary relationships
among cells. We believe that DelSIEVE will greatly benefit researchers in deciphering intricate
cellular processes and furthering our understanding of genetic evolution.

For now, DelSIEVE demonstrates its proficiency in identifying somatic deletions, SNVs and
ADO. One potential improvement would be to add the identification of small insertions and
CNAs with CNs greater than two. Another limitation of DelSIEVE lies in the requirement for
preselected input data using DataFilter. This step is limited to identifying candidate variant
sites that specifically contain nucleotide substitutions. To address this limitation, a possible
enhancement would be to enable DataFilter to preselect sites of tumor suppressor genes that
are solely associated with somatic deletions. The inclusion of these sites, which are known to
elevate the risk of tumor development, could further refine DelSIEVE’s precision and clinical
relevance in understanding tumorigenesis and potential therapeutic targets.

Despite these limitations, DelSIEVE proves to be already now one of the most sophisticated
statistical phylogenetics models of its kind and extracts an unprecedented wealth of information
on evolution of tumors from scDNA-data. We apply DelSIEVE to three real scDNA-seq datasets
from TNBC and CRC samples, which were previously analyzed using SIEVE. DelSIEVE identi-
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fies rare somatic deletions and double mutant genotypes in the CRC samples, akin to the results
of SIEVE. However, for the TNBC sample, DelSIEVE identifies multiple somatic deletions while
revealing fewer single and double mutant genotypes compared to SIEVE, consistent with the
benchmarking results. Additionally, we demonstrate the higher reliability of somatic deletions
called by DelSIEVE than those by Sequenza. These results highlight the precision of DelSIEVE
in reconstruction of the phylogenetic tree, as well its enhanced accuracy and effectiveness in
identifying genotypes, which holds great potential for advancing our understanding of cancer

biology and facilitating precision medicine approaches.

Supplementary Materials

Supplementary Material 1.

Supplementary Figs. S1-S20 and Tables S1-S2.

Data availability

We analyzed three published single-cell datasets ([55, 78, 82]). Raw sequencing data for these
datasets are available from the BioProject database under accession code PRINA896550 (CRC28),
as well as SRA database under accession codes SRA053195 (TNBC16) and SRP067815 (CRC48).

Code availability

DelSIEVE is implemented in Java and is accessible at https://github.com/szczurek-lab/
DelSIEVE. The simulator is hosted at https://github.com/szczurek-1ab/DelSIEVE_simulator,
and the reproducible benchmarking framework is available at https://github.com/szczurek-
lab/DelSIEVE_benchmark_pipeline. The scripts for generating all figures in this paper are
hosted at https://github.com/szczurek-1lab/DelSIEVE_analysis. All aforementioned code

are freely accessible under a GNU General Public License v3.0 license.
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