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Abstract (150 words)

Liquid chromatography (LC) with gradient elution is a routine practice for separating complex
chemical mixtures in mass spectrometry (MS)-based untargeted analysis. Despite its prevalence,
systematic optimization of LC gradients has remained challenging. Here we develop a Bayesian
optimization method, BAGO, for autonomous and efficient LC gradient optimization. BAGO is
an active learning strategy that discovers the optimal gradient using limited experimental data.
From over 100,000 plausible gradients, BAGO locates the optimal LC gradient within ten sample
analyses. We validated BAGO on six biological studies of different sample matrices and LC
columns, showing that BAGO can significantly improve quantitative performance, tandem MS
spectral coverage, and spectral purity. For instance, the optimized gradient increases the count of
annotated compounds meeting quantification criteria by up to 48.5%. Furthermore, applying
BAGO in a Drosophila metabolomics study, an additional 57 metabolites and 126 lipids were
annotated. The BAGO algorithms were implemented into user-friendly software for everyday

laboratory practice and a Python package for its flexible extension.
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Liquid chromatography-mass spectrometry (LC-MS) is a sensitive and high throughput analytical
solution that has been widely used for untargeted chemical analysis in proteomics’ 2,
metabolomics™ 4, lipidomics®, and exposomics®, demonstrating great performance in explaining
living processes from the chemistry level” 8. In this technique, LC plays a vital role by separating

compounds in the sample mixture, which significantly benefits the MS measurements by reducing

ion suppression’ and co-fragmentation of isobaric species. !’

Given the diverse chemical composition of samples, LC is usually operated with gradient elution.
This technique facilitates the rapid separation of compounds with varying polarities, resulting in
enhanced chromatographic peak resolution compared to isocratic elution.!"> ' To obtain high-
quality MS data, LC gradient needs to be optimized to minimize compound coelution. Traditional
design-of-experiment (DOE) starts with a user-defined satisfactory gradient and explores whether
a similar gradient might be better.!> '* Due to the substantial search space of potential gradients
(typically exceeding 10°, Supplementary Note 1), conventional DOE lacks thorough exploration
and its effectiveness heavily relies on the user's initial gradient input. As such, DOE strategy is not
widely used for LC gradient optimization. In fact, most gradient configurations are often under-
optimized in LC-MS-based untargeted chemical analysis. Researchers tend to use a linear gradient
or roughly adjust the gradient based on experience without a comprehensive performance
evaluation. We advocate for the development of an optimization strategy that holistically considers

all viable gradients while upholding efficiency, to systematically enhance LC separation power.

Bayesian optimization is a promising machine learning strategy for optimizing complex, black-

box functions that are expensive and time-consuming to evaluate.' It has found widespread use in
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hyperparameter optimization in machine learning, where evaluating a single set of
hyperparameters requires significant computational resources for model retraining.'® !” The
advantage of Bayesian optimization lies in its ability to strike a balance between exploration and
exploitation, focusing on areas with high expected outcomes while simultaneously probing regions
with high uncertainty. This approach helps find the global optimum while minimizing the number
of evaluations required for expensive experiments. In recent years, Bayesian optimization has
found compelling applications in the field of chemistry, showcasing its promising performance in

chemical synthesis, material design, among others. '3}

Here, we present BAGO, a dedicated Bayesian optimization framework and open-source software
for LC gradient optimization. BAGO evaluates the retention of all detected features in an unbiased
manner regardless of ion abundance and identity, providing a robust index representing global
compound separation. Multiple optimizations of general Bayesian optimization framework were
applied to ensure the high efficiency of BAGO on a diverse range of gradient optimization
problems. As a fully automated approach, we believe it can be seamlessly integrated into routine
analytical workflows requiring no coding experience from users. To ensure versatility and
extensibility, an application programming interface (API) was developed as a Python package

'bago'.
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84  Results
85  Development of BAGO
86  Bayesian optimization finds the optimal LC gradient through a sequential strategy (Fig. 1a). The
87  process begins with the initial gradient to be optimized. By analyzing the LC-MS data obtained
88  from the initial gradient, a new and promising gradient is predicted for validation through next
89  experiment. If the proposed gradient yields unsatisfactory compound separation, the collected LC-
90 MS data will be combined with previous data to recalibrate the subsequent gradient candidate.
91  This sequential refinement strategy iterates until the paramount gradient is ascertained (Fig. 1b).
92
93  The key step in Bayesian optimization is to predict the most promising gradient from observed
94  data, which is achieved by “model” as shown in Fig 1a. In this step, a surrogate model is first
95  constructed to approximate the unknown functional relationship between compound separation
96 and LC gradient (i.e., unknown objective function). Gaussian process regression (GPR)*, a
97  powerful surrogate model, is typically utilized in Bayesian optimization. Importantly, GPR
98  predicts the unknown objective function with quantified uncertainty (Fig. 1c). A region of high
99  uncertainty means it lacks observed data and has limited knowledge. To efficiently find the global
100  maximum of the unknown objective function, a typical dilemma is to decide whether to explore
101  the regions with high uncertainty (i.e., exploration) or to exploit the regions around the best
102 observation (i.e., exploitation). Exploration maximizes the knowledge that can be gained in the
103 next experiment regarding the unknown objective function, but it may also result in unnecessary
104  effort spent on querying low-yield regions. On the other hand, exploitation typically ensures a
105  promising outcome, but it risks getting trapped at a local maximum.

106
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107  To balance exploration and exploitation, an acquisition function is created based on the result of
108  GPR. Fig. 1d shows a common acquisition function termed expected improvement (EI). It
109  comprehensively considers the GPR-predicted mean and uncertainty, balancing exploration and
110  exploitation. The gradient with the highest value in the acquisition function will be tested in the
111 next LC-MS experiment. As more data are collected and fed into the model, knowledge regarding
112 the objective function accumulates, increasing the chance of finding the optimal gradient.

113

114  To apply Bayesian optimization on LC gradient, the first critical step is encoding, which
115  transforms gradient configurations and compound separation performance into numerical values
116  for downstream computation. In this study, a gradient configuration is represented as a p-
117  dimensional vector, with each element denoting the mobile phase percentage at a specific time
118  point (Methods). To assess separation performance, we proposed the global separation index
119  (GSI), which is a singular value that evaluates the global compound separation (Fig. 2a). To
120  compute GSI, all MS signals are first inspected, and then the peak apexes from unique compounds
121  are selected as top signals (Methods). Next, a sequence of retention time intervals between
122 adjacent top signals is squared and summed, defined as SQRTI (sum of the squared retention time
123 intervals). SQRTI is a bounded value (Supplementary Note 2) that reaches the maximum with no
124 separation and the minimum with perfect separation (i.e., all compounds are equally spaced). GSI
125  is then derived by normalizing SQRTI to a fixed range from 0 to 1, where a higher GSI means
126  better separation (Fig. 2b). Importantly, the scale of GSI is independent of the number of selected
127  MS signals and total elution time, making GSI a universal metric for global separation performance.

128
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129  We verified GSI as a reliable metric of LC separation performance by analyzing a human urine
130  sample using 142 unique plausible gradient configurations (Supplementary Note 3). Among all
131  tested configurations, GSI ranged from 0.0146 to 0.142, indicating that modifying gradient
132 configurations can significantly change the global separation performance. In addition, high
133  Spearman correlations of 0.75 and 0.91 were noted between the number of detected metabolic
134  features (Fig. 2¢) and unique MS/MS spectra (Fig. 2d), respectively, when compared against GSI.
135  Optimizing the LC gradient based on GSI is demonstrated as a promising strategy for improving
136  chemical detection and annotation with MS.

137

138  Following encoding of LC-MS experiment, we further refined the Bayesian optimization
139  algorithm to maximize its efficiency for optimizing LC gradient. The algorithm efficiency is
140  determined by acquisition function. Various acquisition functions have been proposed to balance
141  data exploration and exploitation in different ways (Supplementary Note 4). Benchmarked on the
142 total optimization steps, EI outperforms four popular acquisition functions to show the highest
143 efficiency (Extended Fig 1. and Supplementary Note 5). Therefore, EI is used by default in
144  BAGO, while other acquisition functions were also included in the bago Python package for
145  implementation.

146

147  With the prepared encodings and algorithms, we present a comprehensive Bayesian optimization
148  framework consisting of three stages: search space generation, initialization, and gradient
149  optimization (Fig. 3). In the first stage, a search space is defined as a collection of plausible
150  gradient configurations for an LC-MS experiment. These configurations adhere to two main

151  primary constraints: (1) the percentage of the strong mobile phase should monotonically increase,
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152 following gradient design principles, and (2) the eluting power of a gradient, estimated by the total
153  strong mobile phase used during the run, should remain within a reasonable range. By applying
154  these constraints, gradients with poor separation or carryover issues are avoided. In the second
155 stage, a Bayesian optimization model is initiated with two gradients specified by the user or
156  selected by the algorithm. It is recommended to choose gradients with low correlation to emphasize
157 initial data exploration. In the third stage, a GPR model is constructed based on the obtained data.
158  Using the GPR model, an acquisition function is computed to identify a promising gradient (Xnext)
159  for the next evaluation, resulting in a new GSI value (ynext). This iterative process allows the GPR
160  model to continually refine itself and eventually converge to the global optimal gradient. In
161  practice, the rounds of optimization depend on the budget of time and resources. Our results,
162  derived from four different gradient optimization problems, suggest that conducting ten rounds of
163  optimization is sufficient to identify a satisfactory gradient (Fig. 4, Supplementary Notes 6-8).
164

165  The entire data processing workflow was streamlined into user-friendly software with a graphical
166  user interface (Extended Fig. 2). We also developed a Python API to support the proposed
167  Bayesian optimization framework for customization, extension, and flexible implementation into
168  other analytical pipelines. Besides, a YouTube video was created for its quick start guide

169  (https://youtu.be/btNbIKBXxk8)

170

171  Performance

172 To validate the benefit of BAGO on improving LC-MS data quality, we performed an in-depth
173 investigation using the mouse cecum metabolomics samples analyzed on a hydrophilic interaction

174 chromatography (HILIC) column (Fig. 4). We began the optimization by defining a large search
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175  space that contains 261,484 plausible gradients. A ten-round optimization was carried out, starting
176  from a simple linear gradient. We observed the best gradient in the eighth experiment. The
177  optimized gradient reduced the climbing of the strong mobile phase from 0 to 6 minutes and
178  dramatically increased it after. The strong mobile phase percentage was kept at 95% after 7 minutes
179  until the end at 9 minutes to ensure sufficient elution (Fig. 4a). The density distribution of
180  metabolic features on a two-dimensional graph (m/z versus retention time, Fig. 4b) visualizes the
181  improvements in compound separation. In the original gradient, the high density of the region from
182 2 to 4 minutes indicates the gradient was increasing too fast, which was corrected in the optimized
183  gradient. The optimized gradient improves the GSI from 0.0345 to 0.171 (Fig. 4¢), leading to 11.0%
184  more metabolic features (from 1660 to 1894, Fig. 4d). Our workflow increases the high-quality
185  metabolic features by 26.0% (from 1000 to 1260) with satisfactory quantitative performance (Fig.
186  4e); these features were selected by applying multiple criteria® to remove background ions, check
187  analytical accuracy and reproducibility (see Methods).

188

189  Besides quantification, our method also facilitates compound annotation by improving MS/MS
190  spectral acquisition. Using the same mouse cecum metabolomics data, we showed that the BAGO
191  workflow improved the number of unique MS/MS spectra by 23.1% (from 1148 to 1413, Fig. Sb),
192  indicating more metabolites can be annotated. Besides more MS/MS spectra, separating originally
193  coeluted compounds reduces the number of chimeric MS/MS spectra, which were from co-
194  fragmentation of different ion species and decreases the annotation accuracy'® 6. One example is
195  shown in Fig. 5a. In the original gradient, two ions (ion 1: m/z = 130.0543 and ion 2: m/z =
196  132.0811) are highly coeluted with an m/z difference of 2.0268 Da. Even though the MS data were

197  collected in data-dependent acquisition mode, the MS/MS spectrum of ion 1 was contributed by
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198  both ions. When searched against the MS/MS library, this convoluted spectrum failed to support
199  the correct annotation of phenylacetylglutamine, showing a dot product similarity of 0.560. On the
200  other hand, ion 2 was treated as the isotope of ion 1, excluded from MS/MS spectrum acquisition,
201  and cannot be annotated. In the optimized gradient, these two ions were well separated with a 0.4
202  min retention time difference. Thus, clean MS/MS spectra were collected for both ions, leading to
203  correct identifications and spectral similarities of 0.995 and 0.950 for ion 1 and ion 2, respectively.
204

205  We further evaluated the improved spectral quality at the omics scale. The cleaner MS/MS spectra
206  were evidenced by reduced spectral complexity. As shown in Fig. Sc, the optimized gradient
207  showed significantly fewer fragments (median decreased from 1.78 to 1.67, p = 0.0235). The
208  optimized gradient also scored a significantly lower spectral entropy, a value to index spectral
209  complexity?’, compared to the original gradient (median decreased from 1.78 to 1.67, p = 0.0235).
210

211 Of the high-quality metabolic features that fulfill the quantification criteria, the optimized gradient
212 enables the annotation of 48.5% more metabolites compared to the original gradient (Fig. 5d). In
213 a comparison of annotated metabolites distributed over retention time, we observed a similar
214  distribution pattern before 3 minutes and a clear increase of annotations after 4 minutes.

215

216  The performance of BAGO was further validated on three more gradient optimization problems,
217  including human wurine metabolomics, serum metabolomics, and serum lipidomics
218  (Supplementary Fig. 2-4). The robust improvement of compound separation by BAGO is
219  characterized by GSI and visualized by two-dimensional graphs (m/z versus retention time). We

220  observed that the number of detected features did not significantly change over 10%, yet a total of
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221 13.0%, 10.6%, and 16.3% more unique MS/MS spectra were acquired in these three studies,
222 respectively. Altogether, our results highlight that the proposed Bayesian gradient optimization
223 strategy effectively enhances separation, facilitating untargeted chemical detection, quantification,
224  and annotation.

225

226  Biological Applications

227  We next demonstrated the BAGO workflow on Drosophila male and female abdominal carcasses
228  using a parallel metabolomics and lipidomics workflow (Supplementary Note 9). While prior
229  studies have begun to determine how genetic variation and diet influence Drosophila metabolites
230  or lipids using single- or mixed-sex animal groups?®*~*?. However, a comprehensive and sex-based
231  analysis of lipids and metabolites has not been completed. Defining sex differences in metabolites
232 and lipids can offer vital insights into the sex-biased risk of developing metabolic dysregulation
233 and disease across multiple animals**-*. In this study, we designed an untargeted metabolomics
234 analysis using HILIC separation with an 8-min gradient and a lipidomics analysis using RP
235  separation with a 25-min gradient (Fig. 6a). Ten rounds of Bayesian gradient optimization were
236  applied for each mode. As shown in Fig. 6b, we observed that the optimization increased GSI from
237 0.0267 to 0.0990 for metabolomics analysis and 0.105 to 0.197 for lipidomics analysis. Benefiting
238  from the increased compound separation, we obtained 50.1% more (441 to 662) high-quality
239  metabolic features and annotated 34.5% more (57 out of 165) metabolites. For the lipidomics
240  analysis, we acquired 36.9% more (1268 to 1736) high-quality lipidic features and annotated 20.8%
241 more (126 out of 606) lipids.

242

10
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243 With the optimized gradients, we further examined the metabolome and lipidome profiles for
244  differences between males and females. For lipidomics results, we classified the detected lipids
245  into ten main classes based on LIPID MAPS?’ (Fig. 6e). Of these ten, eight classes show more
246  annotations, such as phosphatidylcholine (PC, 14 more), phosphatidylethanolamine (PE, 11 more)
247  and diglyceride (DG, 11 more). Comparing the males and females, we observed 34 newly
248  annotated lipids with significant differences (z-test p < 0.05, Fig. 6f). Three of the newly annotated
249  lipids, DG (14:0/14:1), PC (0-34:2), and TG (16:1/24:1/18:2), were highlighted through box plots
250  in Fig. 6g. For the metabolomics study, we examined a total of 57 newly annotated metabolites
251  and classified them into nine categories based on their main metabolism involvement from the
252  KEGG pathway database (Fig. 6¢). Eleven high-quality metabolites show a significant difference
253  between males and females, including the Phe-Tyr dipeptide, glutathione oxidized, and guanosine
254 triphosphate (Fig. 6d).

255

11
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256  Discussion

257  This work presents a Bayesian optimization framework that automates the optimization of LC
258  gradients. We aim to transition the conventional experience-based LC experimental design to a
259  data-driven approach, making the entire optimization workflow more automatic, reproducible, and
260  feasible. Unlike conventional human decision-making strategies, our approach eliminates the need
261  for manual interpretation of large, high-dimensional LC-MS data and does not rely on prior
262  knowledge of analytes' chemical structures. The proposed approach significantly improves the
263  efficiency and robustness of global compound separation, leading to better GSIs ranging from 81.2%
264  to 396% across six scenarios, each differing in biological sample type and LC column. Better
265  chromatographic separation further benefits compound annotation with more and cleaner MS/MS
266  spectra acquired. It also improves compound quantification by minimizing the MS signal
267  interference among coeluted compounds. Its application to a Drosophila abdomen metabolomics
268  study on both sexes demonstrated a noticeable increase in high-quality metabolic and lipidic
269  features of 50.1% and 36.9%, respectively. This substantial increase leads to broader biological
270  knowledge, acquired by using the BAGO workflow for gradient optimization. We implemented
271  BAGO into a desktop application that requires no coding experience or chemistry knowledge for
272 optimizing a gradient. We also provide a Python API for programming usage and to encourage
273  contributions from the community for further development.

274

275 A fundamental challenge of gradient optimization in untargeted chemical analysis is the lack of a
276  global compound separation metric. The previous work GOAT is a computational tool that
277  optimizes LC gradients in proteomics. It aims to equally distribute the MS/MS spectra with the

278  top 50% total intensities.!! However, the improved peptide separation was only visually supported

12
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279 by the base peak chromatogram and indirectly verified by the improved peptide and protein
280  identification. Also, the gradient can be optimized based on retention time prediction given a set
281  of known compounds. Hence, an in silico gradient optimization method was proposed for reverse
282  phase separation in proteomics research.’® It relies on the prediction of compounds’ retention times
283  using a specific gradient. Nevertheless, retention time prediction relies on prior knowledge of the
284  molecular structures and is not suitable for untargeted analysis where a majority of chemicals are
285  unknown®. Therefore, a metric considering all MS signals and independent of ion identity is
286  highly desired.

287

288  Therefore, we proposed GSI as a robust metric of compound separation performance. GSI is
289  calculated based on observed MS signals rather than only known chemicals, making it better suited
290  for handling the numerous unidentified molecules in MS analysis (e.g., metabolomics). In addition,
291  GSlis computed solely based on MS1 spectra; therefore it is independent from MS/MS acquisition
292  and applicable to MS data acquired under full-scan, data-dependent, and data-independent
293  acquisition modes*’. Notably, the proposed GSI concept can be extended to other chemical
294  analysis platforms coupled to LC such as ultraviolet-visible spectroscopy*! and electrochemical
295  detection*?, where the data structure of the chromatographic peaks is the same as MS.

296

297  Bayesian optimization is an active learning approach that searches for the most promising gradient
298 by balancing data exploitation and exploration via an acquisition function. The success of a
299  Bayesian optimization model thus relies on the performance of the acquisition function. In our
300 strategy, expected improvement (EI) was selected as the default acquisition function with the

301  smallest variance and worst-case loss and the fewest optimization steps (Extended Fig. 1,

13
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302  Supplementary Note 5). EI queries the chance of obtaining a higher outcome in the entire search
303  space by considering the predicted mean and variance in the Gaussian process regression (GPR).
304  As a robust acquisition function, EI was also used as the default in other Bayesian optimization
305 frameworks such as EDBO for chemical synthesis®’. In our study, EI outperforms the pure
306 exploitation and exploration algorithms that only consider the predicted mean and variance,
307 respectively (Extended Fig. 1). Notably, a hyperparameter § in EI can be further tuned to
308  emphasize exploration or exploitation. In our method, § = 0.01 was set as default since it has been
309  proven to deliver great optimization performance in a broad range of optimization scenarios®*. We
310  also confirmed that 6 = 0.01 provides the highest optimization efficiency by testing it on a urine
311  metabolomics data set.

312

313 The benefit of optimizing LC gradients is profound and can substantially improve the performance
314 of LC-MS analysis beyond just resolving the closely eluting compounds. By reducing coelution,
315  higher ionization efficiency is achieved, leading to more metabolic features that can be detected.
316  This phenomenon has also been observed in proteomics; improving compound separation has been
317  evidenced in identifying more proteins.'!** Moreover, the coelution of compounds with small m/z
318  differences at the level of Daltons can be minimized with an optimized LC gradient. Less coelution
319  benefits two aspects of the downstream metabolite annotation. First, the coverage of MS/MS
320  acquisition was improved (Fig. 5b), leading to more unique MS/MS spectra available for
321  compound annotation. Secondly, the chimeric MS/MS spectra are reduced (Fig. 5¢), improving
322 the spectral similarity of true identification when matching against an MS/MS spectral library.
323 Even though bioinformatic strategies have been developed to deconvolute the chimeric spectra for

10, 44, 45

324  improving identification accuracy , we believe that reducing the acquisition of chimeric
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325  MS/MS spectra in the first place avoids the risk of false deconvolution and simplifies the entire
326  process. With the enhanced quantification and identification, we achieved 48.5% more annotated
327  metabolites that have high confidence in the mouse gut metabolomics study for further statistical
328  analysis.

329

330 The proposed Bayesian workflow for gradient optimization works for a wide range of biological
331 applications with different LC columns and sample types. Demonstrated on a comprehensive
332 metabolomics and lipidomics study of Drosophila abdominal carcasses, BAGO shows it can boost
333 the detection and quantification of both polar and nonpolar chemical compounds with different
334  separation mechanisms. Therefore, it may serve as a useful tool for routine multi-modal untargeted
335 analyses of small molecules. Overall, the development of this Bayesian optimization strategy
336  enables highly efficient optimization of LC gradients for enhanced compound profiling in MS
337 analysis. This approach has the potential to be seamlessly integrated into the control systems of
338 LC-MS platforms, enabling fully automated gradient optimization without the need for human
339 intervention*®. By leveraging this proposed Bayesian optimization framework, we believed that
340  rapid method development for omics-level biological and pharmaceutical research can be achieved,
341  thereby expanding the scope of small molecule discovery and exploration.

342
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343 Methods

344  Encoding LC gradient and separation performance

345  We consider the gradient optimization problem as finding the LC gradient setting (input) to
346  achieve the best compound separation (output). LC gradient setting and global separation index
347  areencoded. For each LC gradient, we used a linear vector to specify the mobile phase percentages
348 at different time points. Here, the mobile phase with a monotonically increasing percentage (i.e.,
349  strong mobile phase) during an experiment was encoded, while the percentage of weak mobile
350  phase can be inferred. Suppose that during the experiment, the encoded mobile phase ratio can be
351  tuned at n time points. We defined an LC gradient setting x as

352 X = (X1, ) Xp)

353 eq. 1

354  where x; represents the mobile phase ratio at the ith time point.

355

356  With the vector descriptor of LC gradient settings in hand, a search space consisting of all gradient
357  settings to be tested was generated. To begin, a set of evenly spaced mobile phase percentages
358  were created by defining the lowest and highest percentage and gradient step size. For instance, to
359  find the best gradient of a strong mobile phase ranging from 30% to 70%, researchers may set the
360  step size as 10% to obtain an array of five elements (30%, 40%, 50%, 60%, and 70%). Then, each
361  x;inxis randomly selected from the array to form a gradient. Notably, two restrictions were applied
362  to the search space generation. First, elements in each x are monotonically increasing to meet the
363  empirical requirement of LC gradient design (eq. 2).

364 Xg < Xp, ifa < b,forva,bin(1,...,n)

365 eq. 2
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366  Second, we considered the overall portion of the strong mobile phase. It was restricted to a user-
367  defined range to ensure the gradient is fast enough for all metabolites to elute and slow enough to
368 avoid evaluating gradients with inadequate expected compound separation.

369

370  To encode the compound separation as the model output, we defined a global separation index
371 (GSI). First, a certain number (500 by default) of MS signals with the top ion intensities, termed
372  top signals, were selected. Isotopic ions were excluded. To avoid background ions as top signals,
373  we compared the apex of the chromatographic peak (i.e., peak height) with the average intensity
374  of the peak. We required top signals to have a peak height that is more than double the average
375 intensity by default. The detailed algorithm for selecting top signals is described in
376  Supplementary Note 10. With the top signals, we further computed the sum of squared retention
377  time intervals (SQRTI). Suppose that m top signals were selected. Their retention times were
378 ranked and concatenated with the boundary of data acquisition time, denoted as T =
379 (to, t1, ..., tm+2), Where t, represents the start of data acquisition (0 min in most cases), and t,,,,
380 represents the end of data acquisition. The retention time intervals were then defined as the
381 differences between two adjacent elements in 7, denoted as V = (v, ..., Um41). The SQRTI is

382  given by SQRTI = Y"1 ;2. Then, the GSI is given by

383 lobal tion ind —1><t’“+22 1
g ona separa on inaex —m SQRTI

384 eq. 3
385  which is a singular value ranging from 0 to 1. The deduction of scaling SQRTI to GSI is detailed
386  in Supplementary Note 2.

387

388  Surrogate model
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389  The surrogate model constructs the statistical relationship between the input (i.e., LC gradient) and
390  output data (i.e., GSI) across the entire search space. Gaussian process regression (GPR) was
391  employed to construct the surrogate model for Bayesian optimization, which was implemented in
392  Python using scikit-learn package (ver. 1.0.2). The covariance function (i.e., kernel function) in
393  the Gaussian process determines the overall structure of the function distribution, which is a critical
394  hyperparameter in GPR. Here, we utilized Matérn32 kernel to allow for highly flexible

395  experimental data modelling. The covariance function of Matérn32 kernel is given by

396 k(Xi,Xj) = (1 + ?d(xi,x]-)> exp <—?d(xi,x]-)>

397 eq. 4

398  where d(X;,X;) is the Euclidean distance between two data points, and [ is a length-scale

399  parameter (I > 0). The Matérn32 kernel allows high flexibility to model the unknown function
400  between the LC gradient and GSI, providing the mean and variance of the posterior distribution in
401 the GPR model. The kernel hyperparameters (e.g., [ ) control the function distribution
402  characteristics, such as smoothness and noise level. When training a GPR model, the kernel
403  hyperparameters are optimized during the fitting process by maximizing the log marginal
404  likelihood, as implemented in scikit-learn.

405

406  Acquisition function

407  The acquisition function determines the LC gradient to be experimentally tested next
408  (Supplementary Note 4) for a better experimental outcome. We found that EI demonstrates the
409  best performance as an acquisition function in the gradient optimization problem. With a GPR

410  surrogate model, the improvement function is given by
411 I(x) = max{0, f(x) — f(x*)}
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412  When conditioned in the gradient optimization problem, f(x) is the predicted GSI for a given
413  gradient setting X by GPR, and f(x*) is the best GSI observed in the LC experiment so far.

414  Evaluation of I(x) on a Gaussian posterior distribution yields the expected improvement

() = fxT) = HPZ) +o(X)Pp(Z) if o(x) >0
415 EI(x) _{0 o0
16 7 =H(X)—f(x+)
o(x)

417  where u(x) and o(x) denote the mean and standard deviation of the posterior distribution at x
418  respectively, and ®(+) and ¢ () denote the cumulative distribution function (CDF) and probability
419  density function (PDF) of the standard normal distribution, respectively. The empirical parameter
420 & was setto 0.01 to balance data exploration and exploitation according to Lizotte’s experiments*.
421  The LC gradient to be experimentally tested next is found by searching a gradient setting X in a
422  finite search space that can achieve the largest EI(x). EI was benchmarked with four other
423  acquisition functions, detailed in Supplementary Note 5.

424

425  D. melanogaster strains and sample collection

426  The strain used in this study was w’//¥ (BDSC 3605), obtained from the Bloomington Stock Center
427  (Bloomington, IN, USA). Drosophila stocks were maintained on yeast-sugar-cornmeal food at
428  25°Cina 12:12 hour light:dark cycle.*” Adult w///% laid eggs onto grape plates; after 24 hr newly-
429  hatched larvae were transferred to food vials at a density of 50 larvae per 10 mL food (diet consists
430  of 20.5 g sucrose, 70.9 g D-glucose, 48.5 g cornmeal, 45.3 g yeast, 4.55 g agar, 0.5g CaCl,*2H,0,
431 0.5 g MgS047H>0, and 11.77 mL acid mix (propionic acid/phosphoric acid)). Males and females
432  were separated as late pupae by the presence (males) or absence (females) of sex combs. Pupae

433  were kept in single-sex groups of 20 flies per vial until five days post-eclosion; flies were
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434  transferred onto fresh food every two days. Abdomen carcasses were isolated from unmated 5-
435  day-old male and female flies. Each carcass was snap frozen after dissection on dry ice in a 2 mL
436  microcentrifuge tube, and stored at —80°C until metabolome and lipidome extraction. Each
437  biological replicate consisted of abdominal carcasses isolated from 30 flies. A total of 9 biological

438  replicates were collected for each sex.

439

440  Sample preparation and untargeted metabolomics

441 A total of seven data sets were utilized in this work: human urine metabolomics data with 142
442  gradient settings, mouse cecum metabolomics data, human urine metabolomics data, human serum
443  metabolomics data, human serum lipidomics data, Drosophila abdomen metabolomics data, and
444 Drosophila abdomen lipidomics data. Their sample preparation procedures, LC-MS/MS
445  experimental settings, and data processing steps are detailed in Supplementary Notes 3 and 6-9.
446  LC-MS analysis was performed on an Impact II ultra-high resolution Qqg-time-of-flight mass
447  spectrometer (Bruker Daltonics, Bremen, Germany) coupled with a 1290 Infinity II UHPLC
448  system (Agilent Technologies, Palo Alto, CA, USA). Hydrophilic interaction chromatography
449  (HILIC) separation was performed on a SeQuant ZIC-pHILIC column (150 mm % 2.1 mm, 5 pm,
450 200 A) and a SeQuant ZIC-HILIC column (50 mm x 2.1 mm, 5 um, 200 A) (MilliporeSigma,
451  Burlington, MA, USA). Reversed phase (RP) separation was achieved on a Waters UPLC Acquity
452  BEH C18 Column (1.0 mm x 100 mm, 1.7 um, 130 A, Milford, MA, USA).

453

454  LC-MS data processing

455  The raw MS data were converted to ABF format in Reifycs Abf Converter (ver. 4.0.0). Then, the

456  converted data were processed in MS-DIAL (ver. 4.90) for chromatographic peak detection,
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457  feature alignment, and compound annotation. Only the MS data acquired under the same gradient
458  setting were aligned using MS-DIAL. NIST 20 Tandem Mass Spectral Library

459  (https://www.nist.gov) and the MS/MS database from the MS-DIAL website (ver. 15) were used

460  for compound annotation. The data processing parameters in MS-DIAL were set as follows: MS1
461  tolerance, 0.01 Da; MS/MS tolerance, 0.05 Da; mass slice width, 0.05 Da; smoothing method,
462  linear weighted moving average; smoothing level, 3 scans; minimum peak width, 5 scans;
463  alignment retention time tolerance, 0.2; alignment m/z tolerance, 0.015. The high-quality features
464  were selected according to the previously reported criteria®: the average intensity in QC samples
465  is more than twice the intensity of the method blank sample; feature retention time is within the
466  gradient elution time; the relative standard deviation of QC samples intensities is lower than 25%;
467  and the Pearson correlation between MS signal intensities and loading amounts of QC sample is
468  higher than 0.9. The unique MS/MS spectra were selected by grouping MS/MS spectra with a dot
469  product similarity threshold of 0.95. Spectral entropy?’ values were computed to evaluate the
470  complexity of MS/MS spectra. Alignment of the high-quality metabolic features from original and
471  optimized LC gradient settings was achieved in R.

472

473  Statistical analysis and visualization

474  Spearman correlation was computed using the R package stats (ver. 4.2.0) to explore the
475  relationship between GSI and other properties of metabolic features. Spline fitting was performed
476  in GraphPad Prism 8. The two-dimensional kernel density was calculated in Python using the
477  seaborn package (ver. 0.11.2). The two-sided paired Mann-Whitney U test was performed in R
478  using the stats package (ver. 4.2.1) to obtain p values. UMAP was computed using Hiplot

479  (https://hiplot-academic.com/basic/umap). Spectral entropy was computed in R according to the
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480  definition by Li’s work?’. Model fitting results including R? and median absolute error were

481  calculated in Python using the scikit-learn package (ver. 1.0.2).
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432  Data availability

483  The datasets in this work are summarized in Supplementary Information. Raw MS data are
484  available on demand. Source data are provided with this paper (Supplementary File).

485

486  Code availability

487  Code for performing data analysis, Python package, and Windows software is available at

488  https://github.com/HuanLab/bago. Accessibility is declared in Supplementary Note 11.
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618  Fig 1. a, Flowchart shows general architecture of Bayesian optimization of LC gradients. b,
619 Improved compound separation after optimizing LC gradient is visualized by base peak
620  chromatograms. Data were collected from a human serum lipidomics sample separated on a
621  reverse phase column in 31 minutes. The black circles represent the percentages of mobile phase
622  B. ¢, One-dimensional visualization of the Bayesian optimization of an LC gradient. A Gaussian
623  process regression (GPR) model predicts the unknown objective function with uncertainty. d, An
624  acquisition function generated from GPR determines the next LC gradient to run.
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627  Fig. 2. a, Encoding of omics-scale compound separation using a global separation index (GSI).
628  SQRTI: sum of the squared retention time intervals. Perfect separation is defined as all compounds
629  are equally spaced during the acquisition window; no separation is defined as all compounds eluted
630  together at the beginning of gradient. b, Calculated GSIs of three visually different degrees of
631  compound separation. ¢, d, GSI is highly correlated with the number of metabolic features (c¢) and
632  number of unique MS/MS spectra (d). Grey circles represent 142 individual LC-MS/MS
633  experiments with different gradient settings. Black lines were computed by fitting spline curves to
634  show the general trend of data. cor: Spearman correlation.
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638  Fig. 3. Schematic workflow of the Bayesian optimization of LC gradients that includes three stages:
639  search space generation, initialization, and gradient optimization. The last stage, gradient
640  optimization, is repeated by continuously taking new LC-MS data, updating the model, and
641  providing a promising gradient for the next experiment. GSI, global separation index. EI, expected
642  improvement.
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Fig. 4. a, The optimized LC gradient vs. the original gradient. b, Improvement of compound
separation visualized by a two-dimensional density plot of m/z to retention time. ¢, d, Improved
global separation index (GSI) (¢) and total number of metabolic features (d) during the 10-
experiment optimization. The optimal gradient was found at the eighth experiment. Cumulative
values were shown as solid curves. e, Improved number of high-quality features after gradient
optimization. High-quality features represent the true metabolites with high quantitative accuracy
and reproducibility, selected by applying multiple orthogonal criteria.
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Fig. 5. a, An example of gradient optimization facilitating compound identification by improving
the coverage and quality of MS/MS spectra. b, Increase of unique MS/MS spectra during gradient
optimization. ¢, Reduced spectra complexity by gradient optimization, characterized by number of
fragments and spectral entropy. d, Increase of annotated metabolites after gradient optimization.
Histogram shows the distribution of annotated metabolites over the 9 minutes of elution.
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661  Fig. 6. a, Experimental design of a parallel metabolomic and lipidomics study of Drosophila. b,
662  Increase of global separation index, number of high-quality features, and number of annotated
663  compounds after gradient optimization. ¢, Newly-annotated metabolites using optimized gradient.
664  d, Box plots shows three newly confirmed significant metabolites between females (left) and males
665  (right). GTP, guanosine triphosphate. e, Newly-annotated lipids classified into 11 classes. The
666  numbers in brackets represent the increase from optimization. f, Newly-annotated significant lipids
667  in six classes. g, Box plots shows three newly confirmed significant lipids between females (left)
668  and males (right). DG, diglyceride; PC, phosphatidylcholine; TG, triglycerides. **: t-test p < 0.01,
669  *F*: ptest p <0.001
670
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Extended Fig. 1. a. Three gradient optimization routes differing by acquisition function visualized
by uniform manifold approximation and projection (UMAP) plots. The entire search space
contains 142 different gradients. Grey dots represent individual LC-MS/MS experiments with
unique gradients, and colored dots represent the conducted LC-MS experiment in sequence. Red
diamonds represent the initial gradient. b, ¢, d, Comparison of expected improvement (EI), pure
exploration, and pure exploitation on data fitting characterized by R? (b), median absolute error
(¢), and improvement of global separation index (d). e, Histograms to compare the steps required
by the five acquisition functions to find an optimal gradient. PI: probability of improvement. Eps:

epsilon-greedy.
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683  Extended Fig. 2. Graphical user interface of BAGO software, including four major panels to
684  manipulate MS data (top left), manipulate LC gradient configurations (bottom left), visualize
685 compound separation by base peak chromatogram (top right), and visualize gradient
686  configurations (bottom right). The entire optimization process has three major steps: create a new
687  project, set parameters, and compute next gradient, as shown on the left column of windows. The
688  windows on the right show the results of each step.
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