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Abstract (150 words) 28 

Liquid chromatography (LC) with gradient elution is a routine practice for separating complex 29 

chemical mixtures in mass spectrometry (MS)-based untargeted analysis. Despite its prevalence, 30 

systematic optimization of LC gradients has remained challenging. Here we develop a Bayesian 31 

optimization method, BAGO, for autonomous and efficient LC gradient optimization. BAGO is 32 

an active learning strategy that discovers the optimal gradient using limited experimental data. 33 

From over 100,000 plausible gradients, BAGO locates the optimal LC gradient within ten sample 34 

analyses. We validated BAGO on six biological studies of different sample matrices and LC 35 

columns, showing that BAGO can significantly improve quantitative performance, tandem MS 36 

spectral coverage, and spectral purity. For instance, the optimized gradient increases the count of 37 

annotated compounds meeting quantification criteria by up to 48.5%. Furthermore, applying 38 

BAGO in a Drosophila metabolomics study, an additional 57 metabolites and 126 lipids were 39 

annotated. The BAGO algorithms were implemented into user-friendly software for everyday 40 

laboratory practice and a Python package for its flexible extension.  41 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2023. ; https://doi.org/10.1101/2023.09.08.556930doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.08.556930
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Liquid chromatography-mass spectrometry (LC-MS) is a sensitive and high throughput analytical 42 

solution that has been widely used for untargeted chemical analysis in proteomics1, 2, 43 

metabolomics3, 4, lipidomics5, and exposomics6, demonstrating great performance in explaining 44 

living processes from the chemistry level7, 8. In this technique, LC plays a vital role by separating 45 

compounds in the sample mixture, which significantly benefits the MS measurements by reducing 46 

ion suppression9 and co-fragmentation of isobaric species.10 47 

 48 

Given the diverse chemical composition of samples, LC is usually operated with gradient elution. 49 

This technique facilitates the rapid separation of compounds with varying polarities, resulting in 50 

enhanced chromatographic peak resolution compared to isocratic elution.11, 12 To obtain high-51 

quality MS data, LC gradient needs to be optimized to minimize compound coelution. Traditional 52 

design-of-experiment (DOE) starts with a user-defined satisfactory gradient and explores whether 53 

a similar gradient might be better.13, 14 Due to the substantial search space of potential gradients 54 

(typically exceeding 105, Supplementary Note 1), conventional DOE lacks thorough exploration 55 

and its effectiveness heavily relies on the user's initial gradient input. As such, DOE strategy is not 56 

widely used for LC gradient optimization. In fact, most gradient configurations are often under-57 

optimized in LC-MS-based untargeted chemical analysis. Researchers tend to use a linear gradient 58 

or roughly adjust the gradient based on experience without a comprehensive performance 59 

evaluation. We advocate for the development of an optimization strategy that holistically considers 60 

all viable gradients while upholding efficiency, to systematically enhance LC separation power. 61 

 62 

Bayesian optimization is a promising machine learning strategy for optimizing complex, black-63 

box functions that are expensive and time-consuming to evaluate.15 It has found widespread use in 64 
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hyperparameter optimization in machine learning, where evaluating a single set of 65 

hyperparameters requires significant computational resources for model retraining.16, 17 The 66 

advantage of Bayesian optimization lies in its ability to strike a balance between exploration and 67 

exploitation, focusing on areas with high expected outcomes while simultaneously probing regions 68 

with high uncertainty. This approach helps find the global optimum while minimizing the number 69 

of evaluations required for expensive experiments. In recent years, Bayesian optimization has 70 

found compelling applications in the field of chemistry, showcasing its promising performance in 71 

chemical synthesis, material design, among others.18-23 72 

 73 

Here, we present BAGO, a dedicated Bayesian optimization framework and open-source software 74 

for LC gradient optimization. BAGO evaluates the retention of all detected features in an unbiased 75 

manner regardless of ion abundance and identity, providing a robust index representing global 76 

compound separation. Multiple optimizations of general Bayesian optimization framework were 77 

applied to ensure the high efficiency of BAGO on a diverse range of gradient optimization 78 

problems. As a fully automated approach, we believe it can be seamlessly integrated into routine 79 

analytical workflows requiring no coding experience from users. To ensure versatility and 80 

extensibility, an application programming interface (API) was developed as a Python package 81 

'bago'. 82 

  83 
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Results 84 

Development of BAGO 85 

Bayesian optimization finds the optimal LC gradient through a sequential strategy (Fig. 1a). The 86 

process begins with the initial gradient to be optimized. By analyzing the LC-MS data obtained 87 

from the initial gradient, a new and promising gradient is predicted for validation through next 88 

experiment. If the proposed gradient yields unsatisfactory compound separation, the collected LC-89 

MS data will be combined with previous data to recalibrate the subsequent gradient candidate. 90 

This sequential refinement strategy iterates until the paramount gradient is ascertained (Fig. 1b). 91 

 92 

The key step in Bayesian optimization is to predict the most promising gradient from observed 93 

data, which is achieved by “model” as shown in Fig 1a. In this step, a surrogate model is first 94 

constructed to approximate the unknown functional relationship between compound separation 95 

and LC gradient (i.e., unknown objective function). Gaussian process regression (GPR)24, a 96 

powerful surrogate model, is typically utilized in Bayesian optimization. Importantly, GPR 97 

predicts the unknown objective function with quantified uncertainty (Fig. 1c). A region of high 98 

uncertainty means it lacks observed data and has limited knowledge. To efficiently find the global 99 

maximum of the unknown objective function, a typical dilemma is to decide whether to explore 100 

the regions with high uncertainty (i.e., exploration) or to exploit the regions around the best 101 

observation (i.e., exploitation). Exploration maximizes the knowledge that can be gained in the 102 

next experiment regarding the unknown objective function, but it may also result in unnecessary 103 

effort spent on querying low-yield regions. On the other hand, exploitation typically ensures a 104 

promising outcome, but it risks getting trapped at a local maximum.  105 

 106 
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To balance exploration and exploitation, an acquisition function is created based on the result of 107 

GPR. Fig. 1d shows a common acquisition function termed expected improvement (EI). It 108 

comprehensively considers the GPR-predicted mean and uncertainty, balancing exploration and 109 

exploitation. The gradient with the highest value in the acquisition function will be tested in the 110 

next LC-MS experiment. As more data are collected and fed into the model, knowledge regarding 111 

the objective function accumulates, increasing the chance of finding the optimal gradient. 112 

 113 

To apply Bayesian optimization on LC gradient, the first critical step is encoding, which 114 

transforms gradient configurations and compound separation performance into numerical values 115 

for downstream computation. In this study, a gradient configuration is represented as a p-116 

dimensional vector, with each element denoting the mobile phase percentage at a specific time 117 

point (Methods). To assess separation performance, we proposed the global separation index 118 

(GSI), which is a singular value that evaluates the global compound separation (Fig. 2a). To 119 

compute GSI, all MS signals are first inspected, and then the peak apexes from unique compounds 120 

are selected as top signals (Methods). Next, a sequence of retention time intervals between 121 

adjacent top signals is squared and summed, defined as SQRTI (sum of the squared retention time 122 

intervals). SQRTI is a bounded value (Supplementary Note 2) that reaches the maximum with no 123 

separation and the minimum with perfect separation (i.e., all compounds are equally spaced). GSI 124 

is then derived by normalizing SQRTI to a fixed range from 0 to 1, where a higher GSI means 125 

better separation (Fig. 2b). Importantly, the scale of GSI is independent of the number of selected 126 

MS signals and total elution time, making GSI a universal metric for global separation performance.  127 

 128 
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We verified GSI as a reliable metric of LC separation performance by analyzing a human urine 129 

sample using 142 unique plausible gradient configurations (Supplementary Note 3). Among all 130 

tested configurations, GSI ranged from 0.0146 to 0.142, indicating that modifying gradient 131 

configurations can significantly change the global separation performance. In addition, high 132 

Spearman correlations of 0.75 and 0.91 were noted between the number of detected metabolic 133 

features (Fig. 2c) and unique MS/MS spectra (Fig. 2d), respectively, when compared against GSI. 134 

Optimizing the LC gradient based on GSI is demonstrated as a promising strategy for improving 135 

chemical detection and annotation with MS. 136 

 137 

Following encoding of LC-MS experiment, we further refined the Bayesian optimization 138 

algorithm to maximize its efficiency for optimizing LC gradient. The algorithm efficiency is 139 

determined by acquisition function. Various acquisition functions have been proposed to balance 140 

data exploration and exploitation in different ways (Supplementary Note 4). Benchmarked on the 141 

total optimization steps, EI outperforms four popular acquisition functions to show the highest 142 

efficiency (Extended Fig 1. and Supplementary Note 5). Therefore, EI is used by default in 143 

BAGO, while other acquisition functions were also included in the bago Python package for 144 

implementation.  145 

 146 

With the prepared encodings and algorithms, we present a comprehensive Bayesian optimization 147 

framework consisting of three stages: search space generation, initialization, and gradient 148 

optimization (Fig. 3). In the first stage, a search space is defined as a collection of plausible 149 

gradient configurations for an LC-MS experiment. These configurations adhere to two main 150 

primary constraints: (1) the percentage of the strong mobile phase should monotonically increase, 151 
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following gradient design principles, and (2) the eluting power of a gradient, estimated by the total 152 

strong mobile phase used during the run, should remain within a reasonable range. By applying 153 

these constraints, gradients with poor separation or carryover issues are avoided. In the second 154 

stage, a Bayesian optimization model is initiated with two gradients specified by the user or 155 

selected by the algorithm. It is recommended to choose gradients with low correlation to emphasize 156 

initial data exploration. In the third stage, a GPR model is constructed based on the obtained data. 157 

Using the GPR model, an acquisition function is computed to identify a promising gradient (xnext) 158 

for the next evaluation, resulting in a new GSI value (ynext). This iterative process allows the GPR 159 

model to continually refine itself and eventually converge to the global optimal gradient. In 160 

practice, the rounds of optimization depend on the budget of time and resources. Our results, 161 

derived from four different gradient optimization problems, suggest that conducting ten rounds of 162 

optimization is sufficient to identify a satisfactory gradient (Fig. 4, Supplementary Notes 6-8).  163 

 164 

The entire data processing workflow was streamlined into user-friendly software with a graphical 165 

user interface (Extended Fig. 2). We also developed a Python API to support the proposed 166 

Bayesian optimization framework for customization, extension, and flexible implementation into 167 

other analytical pipelines. Besides, a YouTube video was created for its quick start guide 168 

(https://youtu.be/btNblKBXxk8) 169 

 170 

Performance 171 

To validate the benefit of BAGO on improving LC-MS data quality, we performed an in-depth 172 

investigation using the mouse cecum metabolomics samples analyzed on a hydrophilic interaction 173 

chromatography (HILIC) column (Fig. 4). We began the optimization by defining a large search 174 
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space that contains 261,484 plausible gradients. A ten-round optimization was carried out, starting 175 

from a simple linear gradient. We observed the best gradient in the eighth experiment. The 176 

optimized gradient reduced the climbing of the strong mobile phase from 0 to 6 minutes and 177 

dramatically increased it after. The strong mobile phase percentage was kept at 95% after 7 minutes 178 

until the end at 9 minutes to ensure sufficient elution (Fig. 4a). The density distribution of 179 

metabolic features on a two-dimensional graph (m/z versus retention time, Fig. 4b) visualizes the 180 

improvements in compound separation. In the original gradient, the high density of the region from 181 

2 to 4 minutes indicates the gradient was increasing too fast, which was corrected in the optimized 182 

gradient. The optimized gradient improves the GSI from 0.0345 to 0.171 (Fig. 4c), leading to 11.0% 183 

more metabolic features (from 1660 to 1894, Fig. 4d). Our workflow increases the high-quality 184 

metabolic features by 26.0% (from 1000 to 1260) with satisfactory quantitative performance (Fig. 185 

4e); these features were selected by applying multiple criteria25 to remove background ions, check 186 

analytical accuracy and reproducibility (see Methods). 187 

 188 

Besides quantification, our method also facilitates compound annotation by improving MS/MS 189 

spectral acquisition. Using the same mouse cecum metabolomics data, we showed that the BAGO 190 

workflow improved the number of unique MS/MS spectra by 23.1% (from 1148 to 1413, Fig. 5b), 191 

indicating more metabolites can be annotated. Besides more MS/MS spectra, separating originally 192 

coeluted compounds reduces the number of chimeric MS/MS spectra, which were from co-193 

fragmentation of different ion species and decreases the annotation accuracy10, 26. One example is 194 

shown in Fig. 5a. In the original gradient, two ions (ion 1: m/z = 130.0543 and ion 2: m/z = 195 

132.0811) are highly coeluted with an m/z difference of 2.0268 Da. Even though the MS data were 196 

collected in data-dependent acquisition mode, the MS/MS spectrum of ion 1 was contributed by 197 
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both ions. When searched against the MS/MS library, this convoluted spectrum failed to support 198 

the correct annotation of phenylacetylglutamine, showing a dot product similarity of 0.560. On the 199 

other hand, ion 2 was treated as the isotope of ion 1, excluded from MS/MS spectrum acquisition, 200 

and cannot be annotated. In the optimized gradient, these two ions were well separated with a 0.4 201 

min retention time difference. Thus, clean MS/MS spectra were collected for both ions, leading to 202 

correct identifications and spectral similarities of 0.995 and 0.950 for ion 1 and ion 2, respectively. 203 

 204 

We further evaluated the improved spectral quality at the omics scale. The cleaner MS/MS spectra 205 

were evidenced by reduced spectral complexity. As shown in Fig. 5c, the optimized gradient 206 

showed significantly fewer fragments (median decreased from 1.78 to 1.67, p = 0.0235). The 207 

optimized gradient also scored a significantly lower spectral entropy, a value to index spectral 208 

complexity27, compared to the original gradient (median decreased from 1.78 to 1.67, p = 0.0235).  209 

 210 

Of the high-quality metabolic features that fulfill the quantification criteria, the optimized gradient 211 

enables the annotation of 48.5% more metabolites compared to the original gradient (Fig. 5d). In 212 

a comparison of annotated metabolites distributed over retention time, we observed a similar 213 

distribution pattern before 3 minutes and a clear increase of annotations after 4 minutes.  214 

 215 

The performance of BAGO was further validated on three more gradient optimization problems, 216 

including human urine metabolomics, serum metabolomics, and serum lipidomics 217 

(Supplementary Fig. 2-4). The robust improvement of compound separation by BAGO is 218 

characterized by GSI and visualized by two-dimensional graphs (m/z versus retention time). We 219 

observed that the number of detected features did not significantly change over 10%, yet a total of 220 
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13.0%, 10.6%, and 16.3% more unique MS/MS spectra were acquired in these three studies, 221 

respectively. Altogether, our results highlight that the proposed Bayesian gradient optimization 222 

strategy effectively enhances separation, facilitating untargeted chemical detection, quantification, 223 

and annotation. 224 

 225 

Biological Applications 226 

We next demonstrated the BAGO workflow on Drosophila male and female abdominal carcasses 227 

using a parallel metabolomics and lipidomics workflow (Supplementary Note 9). While prior 228 

studies have begun to determine how genetic variation and diet influence Drosophila metabolites 229 

or lipids using single- or mixed-sex animal groups28-32. However, a comprehensive and sex-based 230 

analysis of lipids and metabolites has not been completed. Defining sex differences in metabolites 231 

and lipids can offer vital insights into the sex-biased risk of developing metabolic dysregulation 232 

and disease across multiple animals33-36. In this study, we designed an untargeted metabolomics 233 

analysis using HILIC separation with an 8-min gradient and a lipidomics analysis using RP 234 

separation with a 25-min gradient (Fig. 6a). Ten rounds of Bayesian gradient optimization were 235 

applied for each mode. As shown in Fig. 6b, we observed that the optimization increased GSI from 236 

0.0267 to 0.0990 for metabolomics analysis and 0.105 to 0.197 for lipidomics analysis. Benefiting 237 

from the increased compound separation, we obtained 50.1% more (441 to 662) high-quality 238 

metabolic features and annotated 34.5% more (57 out of 165) metabolites. For the lipidomics 239 

analysis, we acquired 36.9% more (1268 to 1736) high-quality lipidic features and annotated 20.8% 240 

more (126 out of 606) lipids. 241 

 242 
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With the optimized gradients, we further examined the metabolome and lipidome profiles for 243 

differences between males and females. For lipidomics results, we classified the detected lipids 244 

into ten main classes based on LIPID MAPS37 (Fig. 6e). Of these ten, eight classes show more 245 

annotations, such as phosphatidylcholine (PC, 14 more), phosphatidylethanolamine (PE, 11 more) 246 

and diglyceride (DG, 11 more). Comparing the males and females, we observed 34 newly 247 

annotated lipids with significant differences (t-test p < 0.05, Fig. 6f). Three of the newly annotated 248 

lipids, DG (14:0/14:1), PC (O-34:2), and TG (16:1/24:1/18:2), were highlighted through box plots 249 

in Fig. 6g. For the metabolomics study, we examined a total of 57 newly annotated metabolites 250 

and classified them into nine categories based on their main metabolism involvement from the 251 

KEGG pathway database (Fig. 6c). Eleven high-quality metabolites show a significant difference 252 

between males and females, including the Phe-Tyr dipeptide, glutathione oxidized, and guanosine 253 

triphosphate (Fig. 6d). 254 

  255 
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Discussion 256 

This work presents a Bayesian optimization framework that automates the optimization of LC 257 

gradients. We aim to transition the conventional experience-based LC experimental design to a 258 

data-driven approach, making the entire optimization workflow more automatic, reproducible, and 259 

feasible. Unlike conventional human decision-making strategies, our approach eliminates the need 260 

for manual interpretation of large, high-dimensional LC-MS data and does not rely on prior 261 

knowledge of analytes' chemical structures. The proposed approach significantly improves the 262 

efficiency and robustness of global compound separation, leading to better GSIs ranging from 81.2% 263 

to 396% across six scenarios, each differing in biological sample type and LC column. Better 264 

chromatographic separation further benefits compound annotation with more and cleaner MS/MS 265 

spectra acquired. It also improves compound quantification by minimizing the MS signal 266 

interference among coeluted compounds. Its application to a Drosophila abdomen metabolomics 267 

study on both sexes demonstrated a noticeable increase in high-quality metabolic and lipidic 268 

features of 50.1% and 36.9%, respectively. This substantial increase leads to broader biological 269 

knowledge, acquired by using the BAGO workflow for gradient optimization. We implemented 270 

BAGO into a desktop application that requires no coding experience or chemistry knowledge for 271 

optimizing a gradient. We also provide a Python API for programming usage and to encourage 272 

contributions from the community for further development. 273 

 274 

A fundamental challenge of gradient optimization in untargeted chemical analysis is the lack of a 275 

global compound separation metric. The previous work GOAT is a computational tool that 276 

optimizes LC gradients in proteomics. It aims to equally distribute the MS/MS spectra with the 277 

top 50% total intensities.11 However, the improved peptide separation was only visually supported 278 
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by the base peak chromatogram and indirectly verified by the improved peptide and protein 279 

identification. Also, the gradient can be optimized based on retention time prediction given a set 280 

of known compounds. Hence, an in silico gradient optimization method was proposed for reverse 281 

phase separation in proteomics research.38 It relies on the prediction of compounds’ retention times 282 

using a specific gradient. Nevertheless, retention time prediction relies on prior knowledge of the 283 

molecular structures and is not suitable for untargeted analysis where a majority of chemicals are 284 

unknown39. Therefore, a metric considering all MS signals and independent of ion identity is 285 

highly desired. 286 

 287 

Therefore, we proposed GSI as a robust metric of compound separation performance. GSI is 288 

calculated based on observed MS signals rather than only known chemicals, making it better suited 289 

for handling the numerous unidentified molecules in MS analysis (e.g., metabolomics). In addition, 290 

GSI is computed solely based on MS1 spectra; therefore it is independent from MS/MS acquisition 291 

and applicable to MS data acquired under full-scan, data-dependent, and data-independent 292 

acquisition modes40. Notably, the proposed GSI concept can be extended to other chemical 293 

analysis platforms coupled to LC such as ultraviolet–visible spectroscopy41 and electrochemical 294 

detection42, where the data structure of the chromatographic peaks is the same as MS. 295 

 296 

Bayesian optimization is an active learning approach that searches for the most promising gradient 297 

by balancing data exploitation and exploration via an acquisition function. The success of a 298 

Bayesian optimization model thus relies on the performance of the acquisition function. In our 299 

strategy, expected improvement (EI) was selected as the default acquisition function with the 300 

smallest variance and worst-case loss and the fewest optimization steps (Extended Fig. 1, 301 
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Supplementary Note 5). EI queries the chance of obtaining a higher outcome in the entire search 302 

space by considering the predicted mean and variance in the Gaussian process regression (GPR). 303 

As a robust acquisition function, EI was also used as the default in other Bayesian optimization 304 

frameworks such as EDBO for chemical synthesis22. In our study, EI outperforms the pure 305 

exploitation and exploration algorithms that only consider the predicted mean and variance, 306 

respectively (Extended Fig. 1). Notably, a hyperparameter 𝛿𝛿  in EI can be further tuned to 307 

emphasize exploration or exploitation. In our method, 𝛿𝛿 = 0.01 was set as default since it has been 308 

proven to deliver great optimization performance in a broad range of optimization scenarios24. We 309 

also confirmed that 𝛿𝛿 = 0.01 provides the highest optimization efficiency by testing it on a urine 310 

metabolomics data set.  311 

 312 

The benefit of optimizing LC gradients is profound and can substantially improve the performance 313 

of LC-MS analysis beyond just resolving the closely eluting compounds. By reducing coelution, 314 

higher ionization efficiency is achieved, leading to more metabolic features that can be detected. 315 

This phenomenon has also been observed in proteomics; improving compound separation has been 316 

evidenced in identifying more proteins.11, 43 Moreover, the coelution of compounds with small m/z 317 

differences at the level of Daltons can be minimized with an optimized LC gradient. Less coelution 318 

benefits two aspects of the downstream metabolite annotation. First, the coverage of MS/MS 319 

acquisition was improved (Fig. 5b), leading to more unique MS/MS spectra available for 320 

compound annotation. Secondly, the chimeric MS/MS spectra are reduced (Fig. 5c), improving 321 

the spectral similarity of true identification when matching against an MS/MS spectral library. 322 

Even though bioinformatic strategies have been developed to deconvolute the chimeric spectra for 323 

improving identification accuracy10, 44, 45, we believe that reducing the acquisition of chimeric 324 
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MS/MS spectra in the first place avoids the risk of false deconvolution and simplifies the entire 325 

process. With the enhanced quantification and identification, we achieved 48.5% more annotated 326 

metabolites that have high confidence in the mouse gut metabolomics study for further statistical 327 

analysis. 328 

 329 

The proposed Bayesian workflow for gradient optimization works for a wide range of biological 330 

applications with different LC columns and sample types. Demonstrated on a comprehensive 331 

metabolomics and lipidomics study of Drosophila abdominal carcasses, BAGO shows it can boost 332 

the detection and quantification of both polar and nonpolar chemical compounds with different 333 

separation mechanisms. Therefore, it may serve as a useful tool for routine multi-modal untargeted 334 

analyses of small molecules. Overall, the development of this Bayesian optimization strategy 335 

enables highly efficient optimization of LC gradients for enhanced compound profiling in MS 336 

analysis. This approach has the potential to be seamlessly integrated into the control systems of 337 

LC-MS platforms, enabling fully automated gradient optimization without the need for human 338 

intervention46. By leveraging this proposed Bayesian optimization framework, we believed that 339 

rapid method development for omics-level biological and pharmaceutical research can be achieved, 340 

thereby expanding the scope of small molecule discovery and exploration. 341 

  342 
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Methods 343 

Encoding LC gradient and separation performance 344 

We consider the gradient optimization problem as finding the LC gradient setting (input) to 345 

achieve the best compound separation (output). LC gradient setting and global separation index 346 

are encoded. For each LC gradient, we used a linear vector to specify the mobile phase percentages 347 

at different time points. Here, the mobile phase with a monotonically increasing percentage (i.e., 348 

strong mobile phase) during an experiment was encoded, while the percentage of weak mobile 349 

phase can be inferred. Suppose that during the experiment, the encoded mobile phase ratio can be 350 

tuned at n time points. We defined an LC gradient setting x as 351 

𝐱𝐱 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 352 

eq. 1 353 

where xi represents the mobile phase ratio at the ith time point.  354 

 355 

With the vector descriptor of LC gradient settings in hand, a search space consisting of all gradient 356 

settings to be tested was generated. To begin, a set of evenly spaced mobile phase percentages 357 

were created by defining the lowest and highest percentage and gradient step size. For instance, to 358 

find the best gradient of a strong mobile phase ranging from 30% to 70%, researchers may set the 359 

step size as 10% to obtain an array of five elements (30%, 40%, 50%, 60%, and 70%). Then, each 360 

xi in x is randomly selected from the array to form a gradient. Notably, two restrictions were applied 361 

to the search space generation. First, elements in each x are monotonically increasing to meet the 362 

empirical requirement of LC gradient design (eq. 2). 363 

𝑥𝑥𝑎𝑎 ≤ 𝑥𝑥𝑏𝑏, if 𝑎𝑎 < 𝑏𝑏, for ∀a, b in 〈1, … , n〉 364 

eq. 2 365 
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Second, we considered the overall portion of the strong mobile phase. It was restricted to a user-366 

defined range to ensure the gradient is fast enough for all metabolites to elute and slow enough to 367 

avoid evaluating gradients with inadequate expected compound separation. 368 

 369 

To encode the compound separation as the model output, we defined a global separation index 370 

(GSI). First, a certain number (500 by default) of MS signals with the top ion intensities, termed 371 

top signals, were selected. Isotopic ions were excluded. To avoid background ions as top signals, 372 

we compared the apex of the chromatographic peak (i.e., peak height) with the average intensity 373 

of the peak. We required top signals to have a peak height that is more than double the average 374 

intensity by default. The detailed algorithm for selecting top signals is described in 375 

Supplementary Note 10. With the top signals, we further computed the sum of squared retention 376 

time intervals (SQRTI). Suppose that m top signals were selected. Their retention times were 377 

ranked and concatenated with the boundary of data acquisition time, denoted as 𝑇𝑇 =378 

〈𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑚𝑚+2〉, where 𝑡𝑡0 represents the start of data acquisition (0 min in most cases), and 𝑡𝑡𝑚𝑚+2 379 

represents the end of data acquisition. The retention time intervals were then defined as the 380 

differences between two adjacent elements in T, denoted as 𝑉𝑉 = 〈𝑣𝑣1, … , 𝑣𝑣𝑚𝑚+1〉. The SQRTI is 381 

given by 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑣𝑣𝑖𝑖2𝑚𝑚+1
𝑖𝑖=1 . Then, the GSI is given by  382 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1
𝑚𝑚

× �
𝑡𝑡𝑚𝑚+2

2

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
− 1� 383 

eq. 3 384 

which is a singular value ranging from 0 to 1. The deduction of scaling SQRTI to GSI is detailed 385 

in Supplementary Note 2. 386 

 387 

Surrogate model 388 
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The surrogate model constructs the statistical relationship between the input (i.e., LC gradient) and 389 

output data (i.e., GSI) across the entire search space. Gaussian process regression (GPR) was 390 

employed to construct the surrogate model for Bayesian optimization, which was implemented in 391 

Python using scikit-learn package (ver. 1.0.2). The covariance function (i.e., kernel function) in 392 

the Gaussian process determines the overall structure of the function distribution, which is a critical 393 

hyperparameter in GPR. Here, we utilized Matérn32 kernel to allow for highly flexible 394 

experimental data modelling. The covariance function of Matérn32 kernel is given by 395 

𝑘𝑘(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗) = �1 +
√3
𝑙𝑙
𝑑𝑑(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗)� 𝑒𝑒𝑒𝑒𝑒𝑒 �−

√3
𝑙𝑙
𝑑𝑑(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗)� 396 

eq. 4 397 

where 𝑑𝑑(𝐱𝐱𝑖𝑖, 𝐱𝐱𝑗𝑗)  is the Euclidean distance between two data points, and 𝑙𝑙  is a length-scale 398 

parameter (𝑙𝑙 > 0). The Matérn32 kernel allows high flexibility to model the unknown function 399 

between the LC gradient and GSI, providing the mean and variance of the posterior distribution in 400 

the GPR model. The kernel hyperparameters (e.g., 𝑙𝑙 ) control the function distribution 401 

characteristics, such as smoothness and noise level. When training a GPR model, the kernel 402 

hyperparameters are optimized during the fitting process by maximizing the log marginal 403 

likelihood, as implemented in scikit-learn.  404 

 405 

Acquisition function 406 

The acquisition function determines the LC gradient to be experimentally tested next 407 

(Supplementary Note 4) for a better experimental outcome. We found that EI demonstrates the 408 

best performance as an acquisition function in the gradient optimization problem. With a GPR 409 

surrogate model, the improvement function is given by 410 

𝐼𝐼(𝒙𝒙) = 𝑚𝑚𝑚𝑚𝑚𝑚{0, 𝑓𝑓(𝒙𝒙) − 𝑓𝑓(𝒙𝒙+)} 411 
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When conditioned in the gradient optimization problem, 𝑓𝑓(𝐱𝐱) is the predicted GSI for a given 412 

gradient setting 𝐱𝐱 by GPR, and 𝑓𝑓(𝐱𝐱+) is the best GSI observed in the LC experiment so far. 413 

Evaluation of I(𝐱𝐱) on a Gaussian posterior distribution yields the expected improvement 414 

EI(𝐱𝐱) = �
(𝜇𝜇(𝐱𝐱) − 𝑓𝑓(𝐱𝐱+) − 𝛿𝛿)Ф(𝑍𝑍) + 𝜎𝜎(𝐱𝐱)𝜙𝜙(𝑍𝑍)    𝑖𝑖𝑖𝑖 𝜎𝜎(𝐱𝐱) > 0
 0                                                                        𝑖𝑖𝑖𝑖 𝜎𝜎(𝐱𝐱) = 0 415 

𝑍𝑍 =
𝜇𝜇(𝐱𝐱) − 𝑓𝑓(𝐱𝐱+)

𝜎𝜎(𝐱𝐱)  416 

where 𝜇𝜇(𝐱𝐱) and 𝜎𝜎(𝐱𝐱) denote the mean and standard deviation of the posterior distribution at 𝐱𝐱 417 

respectively, and Ф(∙) and 𝜙𝜙(∙) denote the cumulative distribution function (CDF) and probability 418 

density function (PDF) of the standard normal distribution, respectively. The empirical parameter 419 

𝛿𝛿 was set to 0.01 to balance data exploration and exploitation according to Lizotte’s experiments24. 420 

The LC gradient to be experimentally tested next is found by searching a gradient setting 𝐱𝐱 in a 421 

finite search space that can achieve the largest EI(𝐱𝐱) . EI was benchmarked with four other 422 

acquisition functions, detailed in Supplementary Note 5. 423 

 424 

D. melanogaster strains and sample collection 425 

The strain used in this study was w1118 (BDSC 3605), obtained from the Bloomington Stock Center 426 

(Bloomington, IN, USA). Drosophila stocks were maintained on yeast-sugar-cornmeal food at 427 

25°C in a 12:12 hour light:dark cycle.47 Adult w1118 laid eggs onto grape plates; after 24 hr newly-428 

hatched larvae were transferred to food vials at a density of 50 larvae per 10 mL food (diet consists 429 

of 20.5 g sucrose, 70.9 g D-glucose, 48.5 g cornmeal, 45.3 g yeast, 4.55 g agar, 0.5g CaCl2•2H2O, 430 

0.5 g MgSO4•7H2O, and 11.77 mL acid mix (propionic acid/phosphoric acid)). Males and females 431 

were separated as late pupae by the presence (males) or absence (females) of sex combs. Pupae 432 

were kept in single-sex groups of 20 flies per vial until five days post-eclosion; flies were 433 
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transferred onto fresh food every two days. Abdomen carcasses were isolated from unmated 5-434 

day-old male and female flies. Each carcass was snap frozen after dissection on dry ice in a 2 mL 435 

microcentrifuge tube, and stored at –80˚C until metabolome and lipidome extraction. Each 436 

biological replicate consisted of abdominal carcasses isolated from 30 flies. A total of 9 biological 437 

replicates were collected for each sex.  438 

 439 

Sample preparation and untargeted metabolomics 440 

A total of seven data sets were utilized in this work: human urine metabolomics data with 142 441 

gradient settings, mouse cecum metabolomics data, human urine metabolomics data, human serum 442 

metabolomics data, human serum lipidomics data, Drosophila abdomen metabolomics data, and 443 

Drosophila abdomen lipidomics data. Their sample preparation procedures, LC-MS/MS 444 

experimental settings, and data processing steps are detailed in Supplementary Notes 3 and 6-9. 445 

LC-MS analysis was performed on an Impact II ultra-high resolution Qq-time-of-flight mass 446 

spectrometer (Bruker Daltonics, Bremen, Germany) coupled with a 1290 Infinity II UHPLC 447 

system (Agilent Technologies, Palo Alto, CA, USA). Hydrophilic interaction chromatography 448 

(HILIC) separation was performed on a SeQuant ZIC-pHILIC column (150 mm × 2.1 mm, 5 μm, 449 

200 Å) and a SeQuant ZIC-HILIC column (50 mm × 2.1 mm, 5 μm, 200 Å) (MilliporeSigma, 450 

Burlington, MA, USA). Reversed phase (RP) separation was achieved on a Waters UPLC Acquity 451 

BEH C18 Column (1.0 mm × 100 mm, 1.7 µm, 130 Å, Milford, MA, USA). 452 

 453 

LC-MS data processing 454 

The raw MS data were converted to ABF format in Reifycs Abf Converter (ver. 4.0.0). Then, the 455 

converted data were processed in MS-DIAL (ver. 4.90) for chromatographic peak detection, 456 
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feature alignment, and compound annotation. Only the MS data acquired under the same gradient 457 

setting were aligned using MS-DIAL. NIST 20 Tandem Mass Spectral Library 458 

(https://www.nist.gov) and the MS/MS database from the MS-DIAL website (ver. 15) were used 459 

for compound annotation. The data processing parameters in MS-DIAL were set as follows: MS1 460 

tolerance, 0.01 Da; MS/MS tolerance, 0.05 Da; mass slice width, 0.05 Da; smoothing method, 461 

linear weighted moving average; smoothing level, 3 scans; minimum peak width, 5 scans; 462 

alignment retention time tolerance, 0.2; alignment m/z tolerance, 0.015. The high-quality features 463 

were selected according to the previously reported criteria25: the average intensity in QC samples 464 

is more than twice the intensity of the method blank sample; feature retention time is within the 465 

gradient elution time; the relative standard deviation of QC samples intensities is lower than 25%; 466 

and the Pearson correlation between MS signal intensities and loading amounts of QC sample is 467 

higher than 0.9. The unique MS/MS spectra were selected by grouping MS/MS spectra with a dot 468 

product similarity threshold of 0.95. Spectral entropy27 values were computed to evaluate the 469 

complexity of MS/MS spectra. Alignment of the high-quality metabolic features from original and 470 

optimized LC gradient settings was achieved in R. 471 

 472 

Statistical analysis and visualization 473 

Spearman correlation was computed using the R package stats (ver. 4.2.0) to explore the 474 

relationship between GSI and other properties of metabolic features. Spline fitting was performed 475 

in GraphPad Prism 8. The two-dimensional kernel density was calculated in Python using the 476 

seaborn package (ver. 0.11.2). The two-sided paired Mann-Whitney U test was performed in R 477 

using the stats package (ver. 4.2.1) to obtain p values. UMAP was computed using Hiplot 478 

(https://hiplot-academic.com/basic/umap). Spectral entropy was computed in R according to the 479 
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definition by Li’s work27. Model fitting results including R2 and median absolute error were 480 

calculated in Python using the scikit-learn package (ver. 1.0.2).  481 
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Data availability 482 

The datasets in this work are summarized in Supplementary Information. Raw MS data are 483 

available on demand. Source data are provided with this paper (Supplementary File). 484 

 485 

Code availability 486 

Code for performing data analysis, Python package, and Windows software is available at 487 

https://github.com/HuanLab/bago. Accessibility is declared in Supplementary Note 11. 488 
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 617 

Fig 1. a, Flowchart shows general architecture of Bayesian optimization of LC gradients. b, 618 
Improved compound separation after optimizing LC gradient is visualized by base peak 619 
chromatograms. Data were collected from a human serum lipidomics sample separated on a 620 
reverse phase column in 31 minutes. The black circles represent the percentages of mobile phase 621 
B. c, One-dimensional visualization of the Bayesian optimization of an LC gradient. A Gaussian 622 
process regression (GPR) model predicts the unknown objective function with uncertainty. d, An 623 
acquisition function generated from GPR determines the next LC gradient to run. 624 
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 626 

Fig. 2. a, Encoding of omics-scale compound separation using a global separation index (GSI). 627 
SQRTI: sum of the squared retention time intervals. Perfect separation is defined as all compounds 628 
are equally spaced during the acquisition window; no separation is defined as all compounds eluted 629 
together at the beginning of gradient. b, Calculated GSIs of three visually different degrees of 630 
compound separation. c, d, GSI is highly correlated with the number of metabolic features (c) and 631 
number of unique MS/MS spectra (d). Grey circles represent 142 individual LC-MS/MS 632 
experiments with different gradient settings. Black lines were computed by fitting spline curves to 633 
show the general trend of data. cor: Spearman correlation. 634 
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 636 

 637 

Fig. 3. Schematic workflow of the Bayesian optimization of LC gradients that includes three stages: 638 
search space generation, initialization, and gradient optimization. The last stage, gradient 639 
optimization, is repeated by continuously taking new LC-MS data, updating the model, and 640 
providing a promising gradient for the next experiment. GSI, global separation index. EI, expected 641 
improvement. 642 
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 644 

Fig. 4. a, The optimized LC gradient vs. the original gradient. b, Improvement of compound 645 
separation visualized by a two-dimensional density plot of m/z to retention time. c, d, Improved 646 
global separation index (GSI) (c) and total number of metabolic features (d) during the 10-647 
experiment optimization. The optimal gradient was found at the eighth experiment. Cumulative 648 
values were shown as solid curves. e, Improved number of high-quality features after gradient 649 
optimization. High-quality features represent the true metabolites with high quantitative accuracy 650 
and reproducibility, selected by applying multiple orthogonal criteria. 651 
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 653 

Fig. 5. a, An example of gradient optimization facilitating compound identification by improving 654 
the coverage and quality of MS/MS spectra. b, Increase of unique MS/MS spectra during gradient 655 
optimization. c, Reduced spectra complexity by gradient optimization, characterized by number of 656 
fragments and spectral entropy. d, Increase of annotated metabolites after gradient optimization. 657 
Histogram shows the distribution of annotated metabolites over the 9 minutes of elution. 658 
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 660 

Fig. 6. a, Experimental design of a parallel metabolomic and lipidomics study of Drosophila. b, 661 
Increase of global separation index, number of high-quality features, and number of annotated 662 
compounds after gradient optimization. c, Newly-annotated metabolites using optimized gradient. 663 
d, Box plots shows three newly confirmed significant metabolites between females (left) and males 664 
(right). GTP, guanosine triphosphate. e, Newly-annotated lipids classified into 11 classes. The 665 
numbers in brackets represent the increase from optimization. f, Newly-annotated significant lipids 666 
in six classes. g, Box plots shows three newly confirmed significant lipids between females (left) 667 
and males (right). DG, diglyceride; PC, phosphatidylcholine; TG, triglycerides. **: t-test p < 0.01, 668 
***: t-test p < 0.001 669 
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 671 

Extended Fig. 1. a. Three gradient optimization routes differing by acquisition function visualized 672 
by uniform manifold approximation and projection (UMAP) plots. The entire search space 673 
contains 142 different gradients. Grey dots represent individual LC-MS/MS experiments with 674 
unique gradients, and colored dots represent the conducted LC-MS experiment in sequence. Red 675 
diamonds represent the initial gradient. b, c, d, Comparison of expected improvement (EI), pure 676 
exploration, and pure exploitation on data fitting characterized by R2 (b), median absolute error 677 
(c), and improvement of global separation index (d). e, Histograms to compare the steps required 678 
by the five acquisition functions to find an optimal gradient. PI: probability of improvement. Eps: 679 
epsilon-greedy. 680 
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 682 

Extended Fig. 2. Graphical user interface of BAGO software, including four major panels to 683 
manipulate MS data (top left), manipulate LC gradient configurations (bottom left), visualize 684 
compound separation by base peak chromatogram (top right), and visualize gradient 685 
configurations (bottom right). The entire optimization process has three major steps: create a new 686 
project, set parameters, and compute next gradient, as shown on the left column of windows. The 687 
windows on the right show the results of each step. 688 
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