

1
2
3
4 **Bayesian optimization of separation gradients to maximize the performance of untargeted**
5 **LC-MS**
6

7 Huaxu Yu¹, Puja Biswas², Elizabeth Rideout², Yankai Cao³, Tao Huan^{1,*}
8
9

10 ¹Department of Chemistry, Faculty of Science, The University of British Columbia, Vancouver
11 Campus, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
12

13 ²Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of
14 British Columbia, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC Canada V6T
15 1Z3
16

17 ³Department of Chemical and Biological Engineering, The University of British Columbia,
18 Vancouver Campus, 2360 East Mall, Vancouver, BC Canada V6T 1Z3
19

20 * Author to whom correspondence should be addressed:
21

22 Dr. Tao Huan
23 Tel: (+1)-604-822-4891
24 E-mail: thuan@chem.ubc.ca
25 Internet: <https://huan.chem.ubc.ca/>
26
27

28 **Abstract (150 words)**

29 Liquid chromatography (LC) with gradient elution is a routine practice for separating complex
30 chemical mixtures in mass spectrometry (MS)-based untargeted analysis. Despite its prevalence,
31 systematic optimization of LC gradients has remained challenging. Here we develop a Bayesian
32 optimization method, BAGO, for autonomous and efficient LC gradient optimization. BAGO is
33 an active learning strategy that discovers the optimal gradient using limited experimental data.
34 From over 100,000 plausible gradients, BAGO locates the optimal LC gradient within ten sample
35 analyses. We validated BAGO on six biological studies of different sample matrices and LC
36 columns, showing that BAGO can significantly improve quantitative performance, tandem MS
37 spectral coverage, and spectral purity. For instance, the optimized gradient increases the count of
38 annotated compounds meeting quantification criteria by up to 48.5%. Furthermore, applying
39 BAGO in a *Drosophila* metabolomics study, an additional 57 metabolites and 126 lipids were
40 annotated. The BAGO algorithms were implemented into user-friendly software for everyday
41 laboratory practice and a Python package for its flexible extension.

42 Liquid chromatography-mass spectrometry (LC-MS) is a sensitive and high throughput analytical
43 solution that has been widely used for untargeted chemical analysis in proteomics^{1, 2},
44 metabolomics^{3, 4}, lipidomics⁵, and exposomics⁶, demonstrating great performance in explaining
45 living processes from the chemistry level^{7, 8}. In this technique, LC plays a vital role by separating
46 compounds in the sample mixture, which significantly benefits the MS measurements by reducing
47 ion suppression⁹ and co-fragmentation of isobaric species.¹⁰

48

49 Given the diverse chemical composition of samples, LC is usually operated with gradient elution.
50 This technique facilitates the rapid separation of compounds with varying polarities, resulting in
51 enhanced chromatographic peak resolution compared to isocratic elution.^{11, 12} To obtain high-
52 quality MS data, LC gradient needs to be optimized to minimize compound coelution. Traditional
53 design-of-experiment (DOE) starts with a user-defined satisfactory gradient and explores whether
54 a similar gradient might be better.^{13, 14} Due to the substantial search space of potential gradients
55 (typically exceeding 10^5 , **Supplementary Note 1**), conventional DOE lacks thorough exploration
56 and its effectiveness heavily relies on the user's initial gradient input. As such, DOE strategy is not
57 widely used for LC gradient optimization. In fact, most gradient configurations are often under-
58 optimized in LC-MS-based untargeted chemical analysis. Researchers tend to use a linear gradient
59 or roughly adjust the gradient based on experience without a comprehensive performance
60 evaluation. We advocate for the development of an optimization strategy that holistically considers
61 all viable gradients while upholding efficiency, to systematically enhance LC separation power.

62

63 Bayesian optimization is a promising machine learning strategy for optimizing complex, black-
64 box functions that are expensive and time-consuming to evaluate.¹⁵ It has found widespread use in

65 hyperparameter optimization in machine learning, where evaluating a single set of
66 hyperparameters requires significant computational resources for model retraining.^{16, 17} The
67 advantage of Bayesian optimization lies in its ability to strike a balance between exploration and
68 exploitation, focusing on areas with high expected outcomes while simultaneously probing regions
69 with high uncertainty. This approach helps find the global optimum while minimizing the number
70 of evaluations required for expensive experiments. In recent years, Bayesian optimization has
71 found compelling applications in the field of chemistry, showcasing its promising performance in
72 chemical synthesis, material design, among others.¹⁸⁻²³

73

74 Here, we present BAGO, a dedicated Bayesian optimization framework and open-source software
75 for LC gradient optimization. BAGO evaluates the retention of all detected features in an unbiased
76 manner regardless of ion abundance and identity, providing a robust index representing global
77 compound separation. Multiple optimizations of general Bayesian optimization framework were
78 applied to ensure the high efficiency of BAGO on a diverse range of gradient optimization
79 problems. As a fully automated approach, we believe it can be seamlessly integrated into routine
80 analytical workflows requiring no coding experience from users. To ensure versatility and
81 extensibility, an application programming interface (API) was developed as a Python package
82 '*bago*'.

83

84 **Results**

85 **Development of BAGO**

86 Bayesian optimization finds the optimal LC gradient through a sequential strategy (**Fig. 1a**). The
87 process begins with the initial gradient to be optimized. By analyzing the LC-MS data obtained
88 from the initial gradient, a new and promising gradient is predicted for validation through next
89 experiment. If the proposed gradient yields unsatisfactory compound separation, the collected LC-
90 MS data will be combined with previous data to recalibrate the subsequent gradient candidate.
91 This sequential refinement strategy iterates until the paramount gradient is ascertained (**Fig. 1b**).
92

93 The key step in Bayesian optimization is to predict the most promising gradient from observed
94 data, which is achieved by “model” as shown in **Fig 1a**. In this step, a surrogate model is first
95 constructed to approximate the unknown functional relationship between compound separation
96 and LC gradient (i.e., unknown objective function). Gaussian process regression (GPR)²⁴, a
97 powerful surrogate model, is typically utilized in Bayesian optimization. Importantly, GPR
98 predicts the unknown objective function with quantified uncertainty (**Fig. 1c**). A region of high
99 uncertainty means it lacks observed data and has limited knowledge. To efficiently find the global
100 maximum of the unknown objective function, a typical dilemma is to decide whether to explore
101 the regions with high uncertainty (i.e., exploration) or to exploit the regions around the best
102 observation (i.e., exploitation). Exploration maximizes the knowledge that can be gained in the
103 next experiment regarding the unknown objective function, but it may also result in unnecessary
104 effort spent on querying low-yield regions. On the other hand, exploitation typically ensures a
105 promising outcome, but it risks getting trapped at a local maximum.

106

107 To balance exploration and exploitation, an acquisition function is created based on the result of
108 GPR. **Fig. 1d** shows a common acquisition function termed expected improvement (EI). It
109 comprehensively considers the GPR-predicted mean and uncertainty, balancing exploration and
110 exploitation. The gradient with the highest value in the acquisition function will be tested in the
111 next LC-MS experiment. As more data are collected and fed into the model, knowledge regarding
112 the objective function accumulates, increasing the chance of finding the optimal gradient.

113

114 To apply Bayesian optimization on LC gradient, the first critical step is encoding, which
115 transforms gradient configurations and compound separation performance into numerical values
116 for downstream computation. In this study, a gradient configuration is represented as a p -
117 dimensional vector, with each element denoting the mobile phase percentage at a specific time
118 point (**Methods**). To assess separation performance, we proposed the global separation index
119 (GSI), which is a singular value that evaluates the global compound separation (**Fig. 2a**). To
120 compute GSI, all MS signals are first inspected, and then the peak apexes from unique compounds
121 are selected as top signals (**Methods**). Next, a sequence of retention time intervals between
122 adjacent top signals is squared and summed, defined as SQRTI (sum of the squared retention time
123 intervals). SQRTI is a bounded value (**Supplementary Note 2**) that reaches the maximum with no
124 separation and the minimum with perfect separation (i.e., all compounds are equally spaced). GSI
125 is then derived by normalizing SQRTI to a fixed range from 0 to 1, where a higher GSI means
126 better separation (**Fig. 2b**). Importantly, the scale of GSI is independent of the number of selected
127 MS signals and total elution time, making GSI a universal metric for global separation performance.

128

129 We verified GSI as a reliable metric of LC separation performance by analyzing a human urine
130 sample using 142 unique plausible gradient configurations (**Supplementary Note 3**). Among all
131 tested configurations, GSI ranged from 0.0146 to 0.142, indicating that modifying gradient
132 configurations can significantly change the global separation performance. In addition, high
133 Spearman correlations of 0.75 and 0.91 were noted between the number of detected metabolic
134 features (**Fig. 2c**) and unique MS/MS spectra (**Fig. 2d**), respectively, when compared against GSI.
135 Optimizing the LC gradient based on GSI is demonstrated as a promising strategy for improving
136 chemical detection and annotation with MS.

137
138 Following encoding of LC-MS experiment, we further refined the Bayesian optimization
139 algorithm to maximize its efficiency for optimizing LC gradient. The algorithm efficiency is
140 determined by acquisition function. Various acquisition functions have been proposed to balance
141 data exploration and exploitation in different ways (**Supplementary Note 4**). Benchmarked on the
142 total optimization steps, EI outperforms four popular acquisition functions to show the highest
143 efficiency (**Extended Fig 1.** and **Supplementary Note 5**). Therefore, EI is used by default in
144 BAGO, while other acquisition functions were also included in the *bago* Python package for
145 implementation.

146
147 With the prepared encodings and algorithms, we present a comprehensive Bayesian optimization
148 framework consisting of three stages: search space generation, initialization, and gradient
149 optimization (**Fig. 3**). In the first stage, a search space is defined as a collection of plausible
150 gradient configurations for an LC-MS experiment. These configurations adhere to two main
151 primary constraints: (1) the percentage of the strong mobile phase should monotonically increase,

152 following gradient design principles, and (2) the eluting power of a gradient, estimated by the total
153 strong mobile phase used during the run, should remain within a reasonable range. By applying
154 these constraints, gradients with poor separation or carryover issues are avoided. In the second
155 stage, a Bayesian optimization model is initiated with two gradients specified by the user or
156 selected by the algorithm. It is recommended to choose gradients with low correlation to emphasize
157 initial data exploration. In the third stage, a GPR model is constructed based on the obtained data.
158 Using the GPR model, an acquisition function is computed to identify a promising gradient (x_{next})
159 for the next evaluation, resulting in a new GSI value (y_{next}). This iterative process allows the GPR
160 model to continually refine itself and eventually converge to the global optimal gradient. In
161 practice, the rounds of optimization depend on the budget of time and resources. Our results,
162 derived from four different gradient optimization problems, suggest that conducting ten rounds of
163 optimization is sufficient to identify a satisfactory gradient (**Fig. 4, Supplementary Notes 6-8**).
164

165 The entire data processing workflow was streamlined into user-friendly software with a graphical
166 user interface (**Extended Fig. 2**). We also developed a Python API to support the proposed
167 Bayesian optimization framework for customization, extension, and flexible implementation into
168 other analytical pipelines. Besides, a YouTube video was created for its quick start guide
169 (<https://youtu.be/btNblKBXxk8>)

170

171 **Performance**

172 To validate the benefit of BAGO on improving LC-MS data quality, we performed an in-depth
173 investigation using the mouse cecum metabolomics samples analyzed on a hydrophilic interaction
174 chromatography (HILIC) column (**Fig. 4**). We began the optimization by defining a large search

175 space that contains 261,484 plausible gradients. A ten-round optimization was carried out, starting
176 from a simple linear gradient. We observed the best gradient in the eighth experiment. The
177 optimized gradient reduced the climbing of the strong mobile phase from 0 to 6 minutes and
178 dramatically increased it after. The strong mobile phase percentage was kept at 95% after 7 minutes
179 until the end at 9 minutes to ensure sufficient elution (**Fig. 4a**). The density distribution of
180 metabolic features on a two-dimensional graph (*m/z* versus retention time, **Fig. 4b**) visualizes the
181 improvements in compound separation. In the original gradient, the high density of the region from
182 2 to 4 minutes indicates the gradient was increasing too fast, which was corrected in the optimized
183 gradient. The optimized gradient improves the GSI from 0.0345 to 0.171 (**Fig. 4c**), leading to 11.0%
184 more metabolic features (from 1660 to 1894, **Fig. 4d**). Our workflow increases the high-quality
185 metabolic features by 26.0% (from 1000 to 1260) with satisfactory quantitative performance (**Fig.**
186 **4e**); these features were selected by applying multiple criteria²⁵ to remove background ions, check
187 analytical accuracy and reproducibility (see **Methods**).

188
189 Besides quantification, our method also facilitates compound annotation by improving MS/MS
190 spectral acquisition. Using the same mouse cecum metabolomics data, we showed that the BAGO
191 workflow improved the number of unique MS/MS spectra by 23.1% (from 1148 to 1413, **Fig. 5b**),
192 indicating more metabolites can be annotated. Besides more MS/MS spectra, separating originally
193 coeluted compounds reduces the number of chimeric MS/MS spectra, which were from co-
194 fragmentation of different ion species and decreases the annotation accuracy^{10, 26}. One example is
195 shown in **Fig. 5a**. In the original gradient, two ions (ion 1: *m/z* = 130.0543 and ion 2: *m/z* =
196 132.0811) are highly coeluted with an *m/z* difference of 2.0268 Da. Even though the MS data were
197 collected in data-dependent acquisition mode, the MS/MS spectrum of ion 1 was contributed by

198 both ions. When searched against the MS/MS library, this convoluted spectrum failed to support
199 the correct annotation of phenylacetylglutamine, showing a dot product similarity of 0.560. On the
200 other hand, ion 2 was treated as the isotope of ion 1, excluded from MS/MS spectrum acquisition,
201 and cannot be annotated. In the optimized gradient, these two ions were well separated with a 0.4
202 min retention time difference. Thus, clean MS/MS spectra were collected for both ions, leading to
203 correct identifications and spectral similarities of 0.995 and 0.950 for ion 1 and ion 2, respectively.

204

205 We further evaluated the improved spectral quality at the omics scale. The cleaner MS/MS spectra
206 were evidenced by reduced spectral complexity. As shown in **Fig. 5c**, the optimized gradient
207 showed significantly fewer fragments (median decreased from 1.78 to 1.67, $p = 0.0235$). The
208 optimized gradient also scored a significantly lower spectral entropy, a value to index spectral
209 complexity²⁷, compared to the original gradient (median decreased from 1.78 to 1.67, $p = 0.0235$).

210

211 Of the high-quality metabolic features that fulfill the quantification criteria, the optimized gradient
212 enables the annotation of 48.5% more metabolites compared to the original gradient (**Fig. 5d**). In
213 a comparison of annotated metabolites distributed over retention time, we observed a similar
214 distribution pattern before 3 minutes and a clear increase of annotations after 4 minutes.

215

216 The performance of BAGO was further validated on three more gradient optimization problems,
217 including human urine metabolomics, serum metabolomics, and serum lipidomics
218 (**Supplementary Fig. 2-4**). The robust improvement of compound separation by BAGO is
219 characterized by GSI and visualized by two-dimensional graphs (*m/z* versus retention time). We
220 observed that the number of detected features did not significantly change over 10%, yet a total of

221 13.0%, 10.6%, and 16.3% more unique MS/MS spectra were acquired in these three studies,
222 respectively. Altogether, our results highlight that the proposed Bayesian gradient optimization
223 strategy effectively enhances separation, facilitating untargeted chemical detection, quantification,
224 and annotation.

225

226 **Biological Applications**

227 We next demonstrated the BAGO workflow on *Drosophila* male and female abdominal carcasses
228 using a parallel metabolomics and lipidomics workflow (**Supplementary Note 9**). While prior
229 studies have begun to determine how genetic variation and diet influence *Drosophila* metabolites
230 or lipids using single- or mixed-sex animal groups²⁸⁻³². However, a comprehensive and sex-based
231 analysis of lipids and metabolites has not been completed. Defining sex differences in metabolites
232 and lipids can offer vital insights into the sex-biased risk of developing metabolic dysregulation
233 and disease across multiple animals³³⁻³⁶. In this study, we designed an untargeted metabolomics
234 analysis using HILIC separation with an 8-min gradient and a lipidomics analysis using RP
235 separation with a 25-min gradient (**Fig. 6a**). Ten rounds of Bayesian gradient optimization were
236 applied for each mode. As shown in **Fig. 6b**, we observed that the optimization increased GSI from
237 0.0267 to 0.0990 for metabolomics analysis and 0.105 to 0.197 for lipidomics analysis. Benefiting
238 from the increased compound separation, we obtained 50.1% more (441 to 662) high-quality
239 metabolic features and annotated 34.5% more (57 out of 165) metabolites. For the lipidomics
240 analysis, we acquired 36.9% more (1268 to 1736) high-quality lipidic features and annotated 20.8%
241 more (126 out of 606) lipids.

242

243 With the optimized gradients, we further examined the metabolome and lipidome profiles for
244 differences between males and females. For lipidomics results, we classified the detected lipids
245 into ten main classes based on LIPID MAPS³⁷ (**Fig. 6e**). Of these ten, eight classes show more
246 annotations, such as phosphatidylcholine (PC, 14 more), phosphatidylethanolamine (PE, 11 more)
247 and diglyceride (DG, 11 more). Comparing the males and females, we observed 34 newly
248 annotated lipids with significant differences (*t*-test $p < 0.05$, **Fig. 6f**). Three of the newly annotated
249 lipids, DG (14:0/14:1), PC (O-34:2), and TG (16:1/24:1/18:2), were highlighted through box plots
250 in **Fig. 6g**. For the metabolomics study, we examined a total of 57 newly annotated metabolites
251 and classified them into nine categories based on their main metabolism involvement from the
252 KEGG pathway database (**Fig. 6c**). Eleven high-quality metabolites show a significant difference
253 between males and females, including the Phe-Tyr dipeptide, glutathione oxidized, and guanosine
254 triphosphate (**Fig. 6d**).

255

256 **Discussion**

257 This work presents a Bayesian optimization framework that automates the optimization of LC
258 gradients. We aim to transition the conventional experience-based LC experimental design to a
259 data-driven approach, making the entire optimization workflow more automatic, reproducible, and
260 feasible. Unlike conventional human decision-making strategies, our approach eliminates the need
261 for manual interpretation of large, high-dimensional LC-MS data and does not rely on prior
262 knowledge of analytes' chemical structures. The proposed approach significantly improves the
263 efficiency and robustness of global compound separation, leading to better GSIs ranging from 81.2%
264 to 396% across six scenarios, each differing in biological sample type and LC column. Better
265 chromatographic separation further benefits compound annotation with more and cleaner MS/MS
266 spectra acquired. It also improves compound quantification by minimizing the MS signal
267 interference among coeluted compounds. Its application to a *Drosophila* abdomen metabolomics
268 study on both sexes demonstrated a noticeable increase in high-quality metabolic and lipidic
269 features of 50.1% and 36.9%, respectively. This substantial increase leads to broader biological
270 knowledge, acquired by using the BAGO workflow for gradient optimization. We implemented
271 BAGO into a desktop application that requires no coding experience or chemistry knowledge for
272 optimizing a gradient. We also provide a Python API for programming usage and to encourage
273 contributions from the community for further development.

274

275 A fundamental challenge of gradient optimization in untargeted chemical analysis is the lack of a
276 global compound separation metric. The previous work GOAT is a computational tool that
277 optimizes LC gradients in proteomics. It aims to equally distribute the MS/MS spectra with the
278 top 50% total intensities.¹¹ However, the improved peptide separation was only visually supported

279 by the base peak chromatogram and indirectly verified by the improved peptide and protein
280 identification. Also, the gradient can be optimized based on retention time prediction given a set
281 of known compounds. Hence, an *in silico* gradient optimization method was proposed for reverse
282 phase separation in proteomics research.³⁸ It relies on the prediction of compounds' retention times
283 using a specific gradient. Nevertheless, retention time prediction relies on prior knowledge of the
284 molecular structures and is not suitable for untargeted analysis where a majority of chemicals are
285 unknown³⁹. Therefore, a metric considering all MS signals and independent of ion identity is
286 highly desired.

287

288 Therefore, we proposed GSI as a robust metric of compound separation performance. GSI is
289 calculated based on observed MS signals rather than only known chemicals, making it better suited
290 for handling the numerous unidentified molecules in MS analysis (e.g., metabolomics). In addition,
291 GSI is computed solely based on MS1 spectra; therefore it is independent from MS/MS acquisition
292 and applicable to MS data acquired under full-scan, data-dependent, and data-independent
293 acquisition modes⁴⁰. Notably, the proposed GSI concept can be extended to other chemical
294 analysis platforms coupled to LC such as ultraviolet-visible spectroscopy⁴¹ and electrochemical
295 detection⁴², where the data structure of the chromatographic peaks is the same as MS.

296

297 Bayesian optimization is an active learning approach that searches for the most promising gradient
298 by balancing data exploitation and exploration via an acquisition function. The success of a
299 Bayesian optimization model thus relies on the performance of the acquisition function. In our
300 strategy, expected improvement (EI) was selected as the default acquisition function with the
301 smallest variance and worst-case loss and the fewest optimization steps (**Extended Fig. 1**,

302 **Supplementary Note 5).** EI queries the chance of obtaining a higher outcome in the entire search
303 space by considering the predicted mean and variance in the Gaussian process regression (GPR).
304 As a robust acquisition function, EI was also used as the default in other Bayesian optimization
305 frameworks such as EDBO for chemical synthesis²². In our study, EI outperforms the pure
306 exploitation and exploration algorithms that only consider the predicted mean and variance,
307 respectively (**Extended Fig. 1**). Notably, a hyperparameter δ in EI can be further tuned to
308 emphasize exploration or exploitation. In our method, $\delta = 0.01$ was set as default since it has been
309 proven to deliver great optimization performance in a broad range of optimization scenarios²⁴. We
310 also confirmed that $\delta = 0.01$ provides the highest optimization efficiency by testing it on a urine
311 metabolomics data set.

312
313 The benefit of optimizing LC gradients is profound and can substantially improve the performance
314 of LC-MS analysis beyond just resolving the closely eluting compounds. By reducing coelution,
315 higher ionization efficiency is achieved, leading to more metabolic features that can be detected.
316 This phenomenon has also been observed in proteomics; improving compound separation has been
317 evidenced in identifying more proteins.^{11, 43} Moreover, the coelution of compounds with small *m/z*
318 differences at the level of Daltons can be minimized with an optimized LC gradient. Less coelution
319 benefits two aspects of the downstream metabolite annotation. First, the coverage of MS/MS
320 acquisition was improved (**Fig. 5b**), leading to more unique MS/MS spectra available for
321 compound annotation. Secondly, the chimeric MS/MS spectra are reduced (**Fig. 5c**), improving
322 the spectral similarity of true identification when matching against an MS/MS spectral library.
323 Even though bioinformatic strategies have been developed to deconvolute the chimeric spectra for
324 improving identification accuracy^{10, 44, 45}, we believe that reducing the acquisition of chimeric

325 MS/MS spectra in the first place avoids the risk of false deconvolution and simplifies the entire
326 process. With the enhanced quantification and identification, we achieved 48.5% more annotated
327 metabolites that have high confidence in the mouse gut metabolomics study for further statistical
328 analysis.

329

330 The proposed Bayesian workflow for gradient optimization works for a wide range of biological
331 applications with different LC columns and sample types. Demonstrated on a comprehensive
332 metabolomics and lipidomics study of *Drosophila* abdominal carcasses, BAGO shows it can boost
333 the detection and quantification of both polar and nonpolar chemical compounds with different
334 separation mechanisms. Therefore, it may serve as a useful tool for routine multi-modal untargeted
335 analyses of small molecules. Overall, the development of this Bayesian optimization strategy
336 enables highly efficient optimization of LC gradients for enhanced compound profiling in MS
337 analysis. This approach has the potential to be seamlessly integrated into the control systems of
338 LC-MS platforms, enabling fully automated gradient optimization without the need for human
339 intervention⁴⁶. By leveraging this proposed Bayesian optimization framework, we believed that
340 rapid method development for omics-level biological and pharmaceutical research can be achieved,
341 thereby expanding the scope of small molecule discovery and exploration.

342

343 **Methods**

344 **Encoding LC gradient and separation performance**

345 We consider the gradient optimization problem as finding the LC gradient setting (input) to
346 achieve the best compound separation (output). LC gradient setting and global separation index
347 are encoded. For each LC gradient, we used a linear vector to specify the mobile phase percentages
348 at different time points. Here, the mobile phase with a monotonically increasing percentage (i.e.,
349 strong mobile phase) during an experiment was encoded, while the percentage of weak mobile
350 phase can be inferred. Suppose that during the experiment, the encoded mobile phase ratio can be
351 tuned at n time points. We defined an LC gradient setting \mathbf{x} as

352
$$\mathbf{x} = (x_1, \dots, x_n)$$

353 *eq. 1*

354 where x_i represents the mobile phase ratio at the i th time point.

355

356 With the vector descriptor of LC gradient settings in hand, a search space consisting of all gradient
357 settings to be tested was generated. To begin, a set of evenly spaced mobile phase percentages
358 were created by defining the lowest and highest percentage and gradient step size. For instance, to
359 find the best gradient of a strong mobile phase ranging from 30% to 70%, researchers may set the
360 step size as 10% to obtain an array of five elements (30%, 40%, 50%, 60%, and 70%). Then, each
361 x_i in \mathbf{x} is randomly selected from the array to form a gradient. Notably, two restrictions were applied
362 to the search space generation. First, elements in each \mathbf{x} are monotonically increasing to meet the
363 empirical requirement of LC gradient design (**eq. 2**).

364
$$x_a \leq x_b, \quad \text{if } a < b, \text{ for } \forall a, b \text{ in } \langle 1, \dots, n \rangle$$

365 *eq. 2*

366 Second, we considered the overall portion of the strong mobile phase. It was restricted to a user-
367 defined range to ensure the gradient is fast enough for all metabolites to elute and slow enough to
368 avoid evaluating gradients with inadequate expected compound separation.

369

370 To encode the compound separation as the model output, we defined a global separation index
371 (GSI). First, a certain number (500 by default) of MS signals with the top ion intensities, termed
372 top signals, were selected. Isotopic ions were excluded. To avoid background ions as top signals,
373 we compared the apex of the chromatographic peak (i.e., peak height) with the average intensity
374 of the peak. We required top signals to have a peak height that is more than double the average
375 intensity by default. The detailed algorithm for selecting top signals is described in
376 **Supplementary Note 10**. With the top signals, we further computed the sum of squared retention
377 time intervals (SQRTI). Suppose that m top signals were selected. Their retention times were
378 ranked and concatenated with the boundary of data acquisition time, denoted as $T =$
379 $\langle t_0, t_1, \dots, t_{m+2} \rangle$, where t_0 represents the start of data acquisition (0 min in most cases), and t_{m+2}
380 represents the end of data acquisition. The retention time intervals were then defined as the
381 differences between two adjacent elements in T , denoted as $V = \langle v_1, \dots, v_{m+1} \rangle$. The SQRTI is
382 given by $SQRTI = \sum_{i=1}^{m+1} v_i^2$. Then, the GSI is given by

383
$$\text{global separation index} = \frac{1}{m} \times \left(\frac{t_{m+2}^2}{SQRTI} - 1 \right)$$

384

eq. 3

385 which is a singular value ranging from 0 to 1. The deduction of scaling SQRTI to GSI is detailed
386 in **Supplementary Note 2**.

387

388 **Surrogate model**

389 The surrogate model constructs the statistical relationship between the input (i.e., LC gradient) and
390 output data (i.e., GSI) across the entire search space. Gaussian process regression (GPR) was
391 employed to construct the surrogate model for Bayesian optimization, which was implemented in
392 Python using *scikit-learn* package (ver. 1.0.2). The covariance function (i.e., kernel function) in
393 the Gaussian process determines the overall structure of the function distribution, which is a critical
394 hyperparameter in GPR. Here, we utilized Matérn32 kernel to allow for highly flexible
395 experimental data modelling. The covariance function of Matérn32 kernel is given by

$$396 \quad k(\mathbf{x}_i, \mathbf{x}_j) = \left(1 + \frac{\sqrt{3}}{l} d(\mathbf{x}_i, \mathbf{x}_j)\right) \exp\left(-\frac{\sqrt{3}}{l} d(\mathbf{x}_i, \mathbf{x}_j)\right)$$

397 *eq. 4*
398 where $d(\mathbf{x}_i, \mathbf{x}_j)$ is the Euclidean distance between two data points, and l is a length-scale
399 parameter ($l > 0$). The Matérn32 kernel allows high flexibility to model the unknown function
400 between the LC gradient and GSI, providing the mean and variance of the posterior distribution in
401 the GPR model. The kernel hyperparameters (e.g., l) control the function distribution
402 characteristics, such as smoothness and noise level. When training a GPR model, the kernel
403 hyperparameters are optimized during the fitting process by maximizing the log marginal
404 likelihood, as implemented in *scikit-learn*.

405

406 **Acquisition function**

407 The acquisition function determines the LC gradient to be experimentally tested next
408 (**Supplementary Note 4**) for a better experimental outcome. We found that EI demonstrates the
409 best performance as an acquisition function in the gradient optimization problem. With a GPR
410 surrogate model, the improvement function is given by

$$411 \quad I(\mathbf{x}) = \max\{0, f(\mathbf{x}) - f(\mathbf{x}^+)\}$$

412 When conditioned in the gradient optimization problem, $f(\mathbf{x})$ is the predicted GSI for a given
413 gradient setting \mathbf{x} by GPR, and $f(\mathbf{x}^+)$ is the best GSI observed in the LC experiment so far.
414 Evaluation of $I(\mathbf{x})$ on a Gaussian posterior distribution yields the expected improvement

415
$$EI(\mathbf{x}) = \begin{cases} (\mu(\mathbf{x}) - f(\mathbf{x}^+) - \delta)\Phi(Z) + \sigma(\mathbf{x})\phi(Z) & \text{if } \sigma(\mathbf{x}) > 0 \\ 0 & \text{if } \sigma(\mathbf{x}) = 0 \end{cases}$$

416
$$Z = \frac{\mu(\mathbf{x}) - f(\mathbf{x}^+)}{\sigma(\mathbf{x})}$$

417 where $\mu(\mathbf{x})$ and $\sigma(\mathbf{x})$ denote the mean and standard deviation of the posterior distribution at \mathbf{x}
418 respectively, and $\Phi(\cdot)$ and $\phi(\cdot)$ denote the cumulative distribution function (CDF) and probability
419 density function (PDF) of the standard normal distribution, respectively. The empirical parameter
420 δ was set to 0.01 to balance data exploration and exploitation according to Lizotte's experiments²⁴.
421 The LC gradient to be experimentally tested next is found by searching a gradient setting \mathbf{x} in a
422 finite search space that can achieve the largest $EI(\mathbf{x})$. EI was benchmarked with four other
423 acquisition functions, detailed in **Supplementary Note 5**.

424

425 ***D. melanogaster* strains and sample collection**

426 The strain used in this study was w^{1118} (BDSC 3605), obtained from the Bloomington Stock Center
427 (Bloomington, IN, USA). *Drosophila* stocks were maintained on yeast-sugar-cornmeal food at
428 25°C in a 12:12 hour light:dark cycle.⁴⁷ Adult w^{1118} laid eggs onto grape plates; after 24 hr newly-
429 hatched larvae were transferred to food vials at a density of 50 larvae per 10 mL food (diet consists
430 of 20.5 g sucrose, 70.9 g D-glucose, 48.5 g cornmeal, 45.3 g yeast, 4.55 g agar, 0.5g $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$,
431 0.5 g $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, and 11.77 mL acid mix (propionic acid/phosphoric acid)). Males and females
432 were separated as late pupae by the presence (males) or absence (females) of sex combs. Pupae
433 were kept in single-sex groups of 20 flies per vial until five days post-eclosion; flies were

434 transferred onto fresh food every two days. Abdomen carcasses were isolated from unmated 5-
435 day-old male and female flies. Each carcass was snap frozen after dissection on dry ice in a 2 mL
436 microcentrifuge tube, and stored at -80°C until metabolome and lipidome extraction. Each
437 biological replicate consisted of abdominal carcasses isolated from 30 flies. A total of 9 biological
438 replicates were collected for each sex.

439

440 **Sample preparation and untargeted metabolomics**

441 A total of seven data sets were utilized in this work: human urine metabolomics data with 142
442 gradient settings, mouse cecum metabolomics data, human urine metabolomics data, human serum
443 metabolomics data, human serum lipidomics data, *Drosophila* abdomen metabolomics data, and
444 *Drosophila* abdomen lipidomics data. Their sample preparation procedures, LC-MS/MS
445 experimental settings, and data processing steps are detailed in **Supplementary Notes 3 and 6-9**.
446 LC-MS analysis was performed on an Impact II ultra-high resolution Qq-time-of-flight mass
447 spectrometer (Bruker Daltonics, Bremen, Germany) coupled with a 1290 Infinity II UHPLC
448 system (Agilent Technologies, Palo Alto, CA, USA). Hydrophilic interaction chromatography
449 (HILIC) separation was performed on a SeQuant ZIC-pHILIC column (150 mm × 2.1 mm, 5 µm,
450 200 Å) and a SeQuant ZIC-HILIC column (50 mm × 2.1 mm, 5 µm, 200 Å) (MilliporeSigma,
451 Burlington, MA, USA). Reversed phase (RP) separation was achieved on a Waters UPLC Acuity
452 BEH C18 Column (1.0 mm × 100 mm, 1.7 µm, 130 Å, Milford, MA, USA).

453

454 **LC-MS data processing**

455 The raw MS data were converted to ABF format in Reifycs Abf Converter (ver. 4.0.0). Then, the
456 converted data were processed in MS-DIAL (ver. 4.90) for chromatographic peak detection,

457 feature alignment, and compound annotation. Only the MS data acquired under the same gradient
458 setting were aligned using MS-DIAL. NIST 20 Tandem Mass Spectral Library
459 (<https://www.nist.gov>) and the MS/MS database from the MS-DIAL website (ver. 15) were used
460 for compound annotation. The data processing parameters in MS-DIAL were set as follows: MS1
461 tolerance, 0.01 Da; MS/MS tolerance, 0.05 Da; mass slice width, 0.05 Da; smoothing method,
462 linear weighted moving average; smoothing level, 3 scans; minimum peak width, 5 scans;
463 alignment retention time tolerance, 0.2; alignment *m/z* tolerance, 0.015. The high-quality features
464 were selected according to the previously reported criteria²⁵: the average intensity in QC samples
465 is more than twice the intensity of the method blank sample; feature retention time is within the
466 gradient elution time; the relative standard deviation of QC samples intensities is lower than 25%;
467 and the Pearson correlation between MS signal intensities and loading amounts of QC sample is
468 higher than 0.9. The unique MS/MS spectra were selected by grouping MS/MS spectra with a dot
469 product similarity threshold of 0.95. Spectral entropy²⁷ values were computed to evaluate the
470 complexity of MS/MS spectra. Alignment of the high-quality metabolic features from original and
471 optimized LC gradient settings was achieved in R.

472

473 **Statistical analysis and visualization**

474 Spearman correlation was computed using the R package *stats* (ver. 4.2.0) to explore the
475 relationship between GSI and other properties of metabolic features. Spline fitting was performed
476 in GraphPad Prism 8. The two-dimensional kernel density was calculated in Python using the
477 *seaborn* package (ver. 0.11.2). The two-sided paired Mann-Whitney *U* test was performed in R
478 using the *stats* package (ver. 4.2.1) to obtain *p* values. UMAP was computed using Hiplot
479 (<https://hiplot-academic.com/basic/umap>). Spectral entropy was computed in R according to the

480 definition by Li's work²⁷. Model fitting results including R^2 and median absolute error were
481 calculated in Python using the *scikit-learn* package (ver. 1.0.2).

482 **Data availability**

483 The datasets in this work are summarized in **Supplementary Information**. Raw MS data are
484 available on demand. Source data are provided with this paper (**Supplementary File**).

485

486 **Code availability**

487 Code for performing data analysis, Python package, and Windows software is available at
488 <https://github.com/HuanLab/bago>. Accessibility is declared in **Supplementary Note 11**.

489

490 **Acknowledgments**

491 This study was funded by University of British Columbia Start-up Grant (F18-03001), Canada
492 Foundation for Innovation (CFI 38159), and Natural Sciences and Engineering Research Council
493 (NSERC) Discovery Grant (RGPIN-2020-04895). EJR/PB are funded by the Canadian Institutes
494 for Health Research (PJT-153072). Stocks were used from the Bloomington *Drosophila* Stock
495 Center (NIH P40OD018537) and Vienna *Drosophila* Resource Center (VDRC). We also thank
496 Alisa Hui for proofreading this manuscript.

497

498 **Author contributions**

499 H.Y. and T.H. designed the study and wrote the manuscript. H.Y. developed the algorithm, Python
500 package, and Windows software. H.Y. performed the LC-MS experiments and data analysis. P. B.
501 and E. J. R. designed the *Drosophila* experiment. P. B. performed animal experiment. All authors
502 discussed the results and contributed to the final manuscript.

503

504 **Competing interests**

505 There are no competing interests.

506

507 **Additional information**

508 **Supplementary information.** The online version contains supplementary material available at

509 **Correspondence and requests for materials** should be addressed to Tao Huan.

510 **Peer review information**

511 **Reprints and permissions information**

512 **References**

- 513 1. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. *Nature*
514 *biotechnology* **21**, 921-926 (2003).
- 515 2. Wu, C.C. & Yates III, J.R. The application of mass spectrometry to membrane proteomics. *Nature*
516 *biotechnology* **21**, 262-267 (2003).
- 517 3. Alseekh, S. et al. Mass spectrometry-based metabolomics: a guide for annotation, quantification
518 and best reporting practices. *Nature Methods* **18**, 747-756 (2021).
- 519 4. Patti, G.J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. *Nature Reviews*
520 *Molecular Cell Biology* **13**, 263-269 (2012).
- 521 5. Yang, K. & Han, X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical
522 Sciences. *Trends in Biochemical Sciences* **41**, 954-969 (2016).
- 523 6. Preindl, K. et al. A Generic Liquid Chromatography-Tandem Mass Spectrometry Exposome
524 Method for the Determination of Xenoestrogens in Biological Matrices. *Analytical Chemistry* **91**,
525 11334-11342 (2019).
- 526 7. Perez de Souza, L., Alseekh, S., Scossa, F. & Fernie, A.R. Ultra-high-performance liquid
527 chromatography high-resolution mass spectrometry variants for metabolomics research. *Nature*
528 *Methods* **18**, 733-746 (2021).
- 529 8. Aksenov, A.A., da Silva, R., Knight, R., Lopes, N.P. & Dorrestein, P.C. Global chemical analysis of
530 biology by mass spectrometry. *Nature Reviews Chemistry* **1**, 0054 (2017).
- 531 9. Furey, A., Moriarty, M., Bane, V., Kinsella, B. & Lehane, M. Ion suppression; A critical review on
532 causes, evaluation, prevention and applications. *Talanta* **115**, 104-122 (2013).
- 533 10. Stancliffe, E., Schwaiger-Haber, M., Sindelar, M. & Patti, G.J. DecoID improves identification rates
534 in metabolomics through database-assisted MS/MS deconvolution. *Nature Methods* **18**, 779-787
535 (2021).
- 536 11. Trudgian, D.C., Fischer, R., Guo, X., Kessler, B.M. & Mirzaei, H. GOAT—A simple LC-MS/MS gradient
537 optimization tool. *PROTEOMICS* **14**, 1467-1471 (2014).
- 538 12. Snyder, L., Dolan, J. & Gant, J. Gradient elution in high-performance liquid chromatography: I.
539 Theoretical basis for reversed-phase systems. *Journal of Chromatography A* **165**, 3-30 (1979).
- 540 13. Box, G.E.P. & Draper, N.R. A Basis for the Selection of a Response Surface Design. *Journal of the*
541 *American Statistical Association* **54**, 622-654 (1959).
- 542 14. Rhoades, S.D. & Weljie, A.M. Comprehensive optimization of LC-MS metabolomics methods using
543 design of experiments (COLMeD). *Metabolomics* **12**, 1-12 (2016).
- 544 15. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. & Freitas, N.d. Taking the Human Out of the Loop:
545 A Review of Bayesian Optimization. *Proceedings of the IEEE* **104**, 148-175 (2016).
- 546 16. Snoek, J., Larochelle, H. & Adams, R.P. Practical bayesian optimization of machine learning
547 algorithms. *Advances in neural information processing systems* **25** (2012).
- 548 17. Springenberg, J.T., Klein, A., Falkner, S. & Hutter, F. Bayesian optimization with robust Bayesian
549 neural networks. *Advances in neural information processing systems* **29** (2016).
- 550 18. Wang, Y., Chen, T.-Y. & Vlachos, D.G. NEXTorch: a design and Bayesian optimization toolkit for
551 chemical sciences and engineering. *Journal of Chemical Information and Modeling* **61**, 5312-5319
552 (2021).
- 553 19. Wang, K. & Dowling, A.W. Bayesian optimization for chemical products and functional materials.
554 *Current Opinion in Chemical Engineering* **36**, 100728 (2022).
- 555 20. Agarwal, G., Doan, H.A., Robertson, L.A., Zhang, L. & Assary, R.S. Discovery of energy storage
556 molecular materials using quantum chemistry-guided multiobjective bayesian optimization.
557 *Chemistry of Materials* **33**, 8133-8144 (2021).

558 21. Deshwal, A., Simon, C.M. & Doppa, J.R. Bayesian optimization of nanoporous materials. *Molecular*
559 *Systems Design & Engineering* **6**, 1066-1086 (2021).

560 22. Shields, B.J. et al. Bayesian reaction optimization as a tool for chemical synthesis. *Nature* **590**, 89-
561 96 (2021).

562 23. Wang, X. et al. Bayesian-optimization-assisted discovery of stereoselective aluminum complexes
563 for ring-opening polymerization of racemic lactide. *Nature Communications* **14**, 3647 (2023).

564 24. Brochu, E., Cora, V.M. & de Freitas, N. arXiv:1012.2599 (2010).

565 25. Yu, H. & Huan, T. MAFFIN: metabolomics sample normalization using maximal density fold change
566 with high-quality metabolic features and corrected signal intensities. *Bioinformatics* **38**, 3429-
567 3437 (2022).

568 26. Xing, S. et al. Recognizing contamination fragment ions in liquid chromatography–tandem mass
569 spectrometry data. *Journal of the American Society for Mass Spectrometry* **32**, 2296-2305 (2021).

570 27. Li, Y. et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule
571 compound identification. *Nature Methods* **18**, 1524-1531 (2021).

572 28. Nazario-Yepiz, N.O. et al. Physiological and metabolomic consequences of reduced expression of
573 the Drosophila brummer triglyceride Lipase. *PLOS ONE* **16**, e0255198 (2021).

574 29. Hoffman, J.M. et al. Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in
575 the fruit fly, *Drosophila melanogaster*. **13**, 596-604 (2014).

576 30. Laye, M.J., Tran, V., Jones, D.P., Kapahi, P. & Promislow, D.E.L. The effects of age and dietary
577 restriction on the tissue-specific metabolome of *Drosophila*. **14**, 797-808 (2015).

578 31. Zhao, X. et al. The metabolome as a biomarker of aging in *Drosophila melanogaster*. **21**, e13548
579 (2022).

580 32. Tuthill, B.F., II, Searcy, L.A., Yost, R.A. & Musselman, L.P. Tissue-specific analysis of lipid species in
581 Drosophila during overnutrition by UHPLC-MS/MS and MALDI-MSI [S]. *Journal of Lipid*
582 *Research* **61**, 275-290 (2020).

583 33. Geer, E.B. & Shen, W. Gender differences in insulin resistance, body composition, and energy
584 balance. *Gender Medicine* **6**, 60-75 (2009).

585 34. Gannon, M., Kulkarni, R.N., Tse, H.M. & Mauvais-Jarvis, F. Sex differences underlying pancreatic
586 islet biology and its dysfunction. *Molecular Metabolism* **15**, 82-91 (2018).

587 35. Wild, S., Roglic, G., Green, A., Sicree, R. & King, H. Global Prevalence of Diabetes: Estimates for
588 the year 2000 and projections for 2030. *Diabetes Care* **27**, 1047-1053 (2004).

589 36. Mauvais-Jarvis, F. Sex differences in metabolic homeostasis, diabetes, and obesity. *Biology of Sex*
590 *Differences* **6**, 14 (2015).

591 37. Fahy, E. et al. Update of the LIPID MAPS comprehensive classification system for
592 lipids¹. *Journal of Lipid Research* **50**, S9-S14 (2009).

593 38. Moruz, L., Pichler, P., Stranzl, T., Mechtler, K. & Käll, L. Optimized Nonlinear Gradients for
594 Reversed-Phase Liquid Chromatography in Shotgun Proteomics. *Analytical Chemistry* **85**, 7777-
595 7785 (2013).

596 39. da Silva, R.R., Dorrestein, P.C. & Quinn, R.A. Illuminating the dark matter in metabolomics.
597 *Proceedings of the National Academy of Sciences* **112**, 12549-12550 (2015).

598 40. Guo, J. & Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition
599 Modes in Liquid Chromatography–Mass Spectrometry Based Untargeted Metabolomics.
600 *Analytical Chemistry* **92**, 8072-8080 (2020).

601 41. Wu, Y. & Li, L. Determination of Total Concentration of Chemically Labeled Metabolites as a Means
602 of Metabolome Sample Normalization and Sample Loading Optimization in Mass Spectrometry-
603 Based Metabolomics. *Analytical Chemistry* **84**, 10723-10731 (2012).

604 42. Ozcelikay, G. et al. Sensor-based MIP technologies for targeted metabolomics analysis. *TrAC*
605 *Trends in Analytical Chemistry* **146**, 116487 (2022).

606 43. Wang, H. et al. Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for
607 Deep Analysis of Brain Proteome. *Journal of Proteome Research* **14**, 829-838 (2015).

608 44. Xing, S. et al. Recognizing Contamination Fragment Ions in Liquid Chromatography–Tandem Mass
609 Spectrometry Data. *Journal of the American Society for Mass Spectrometry* (2021).

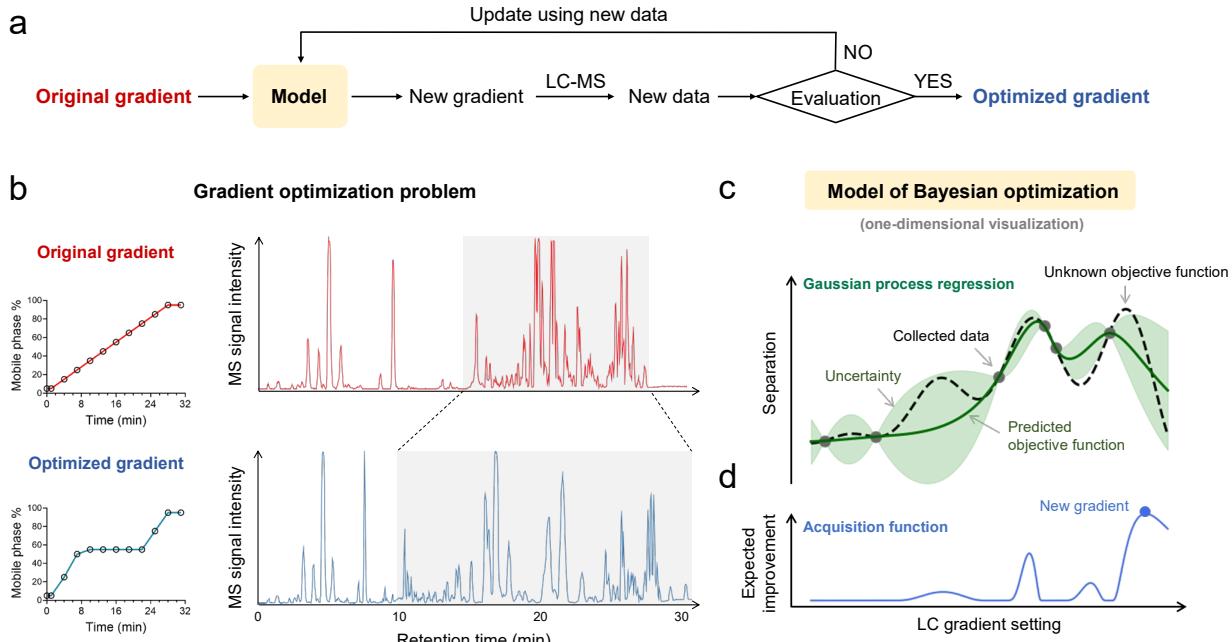
610 45. Houel, S. et al. Quantifying the Impact of Chimera MS/MS Spectra on Peptide Identification in
611 Large-Scale Proteomics Studies. *Journal of Proteome Research* **9**, 4152-4160 (2010).

612 46. Rinehart, D. et al. Metabolomic data streaming for biology-dependent data acquisition. *Nature
613 biotechnology* **32**, 524-527 (2014).

614 47. Lewis, E.B. A new standard food medium. *Drosophila information service* **34**, 1-55 (1960).

615

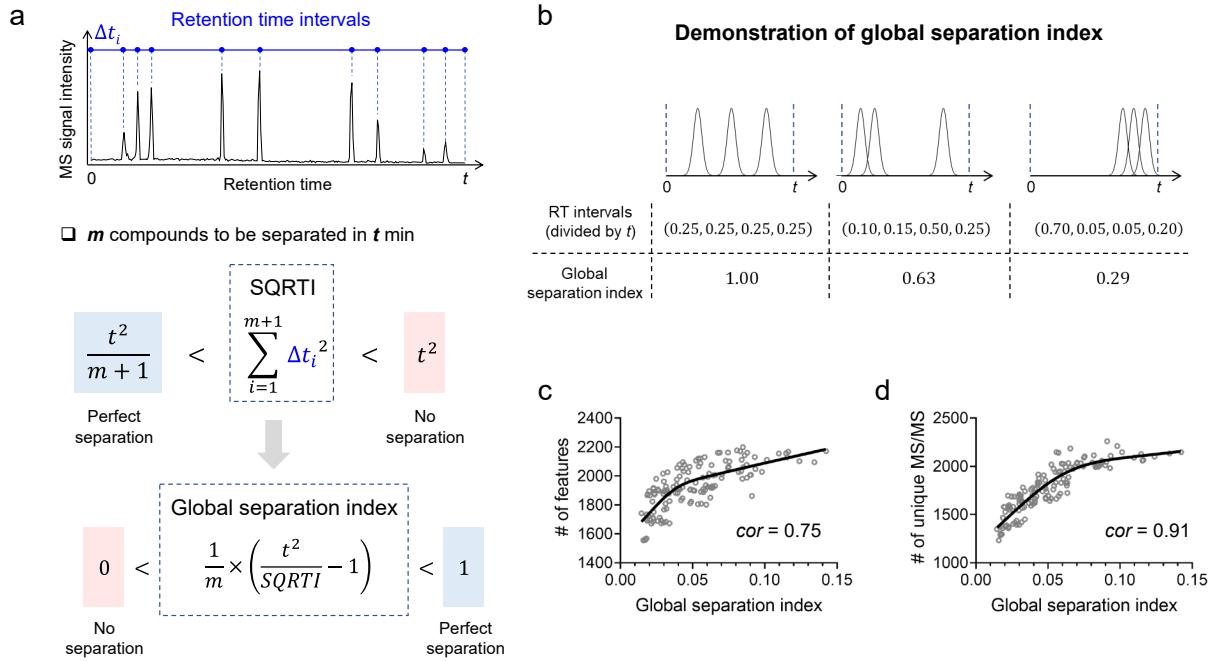
616



617

618 **Fig 1. a**, Flowchart shows general architecture of Bayesian optimization of LC gradients. **b**,
619 Improved compound separation after optimizing LC gradient is visualized by base peak
620 chromatograms. Data were collected from a human serum lipidomics sample separated on a
621 reverse phase column in 31 minutes. The black circles represent the percentages of mobile phase
622 B. **c**, One-dimensional visualization of the Bayesian optimization of an LC gradient. A Gaussian
623 process regression (GPR) model predicts the unknown objective function with uncertainty. **d**, An
624 acquisition function generated from GPR determines the next LC gradient to run.

625



626

627 **Fig. 2. a**, Encoding of omics-scale compound separation using a global separation index (GSI).
628 SQRTI: sum of the squared retention time intervals. Perfect separation is defined as all compounds
629 are equally spaced during the acquisition window; no separation is defined as all compounds eluted
630 together at the beginning of gradient. **b**, Calculated GSIs of three visually different degrees of
631 compound separation. **c, d**, GSI is highly correlated with the number of metabolic features (**c**) and
632 number of unique MS/MS spectra (**d**). Grey circles represent 142 individual LC-MS/MS
633 experiments with different gradient settings. Black lines were computed by fitting spline curves to
634 show the general trend of data. *cor*: Spearman correlation.

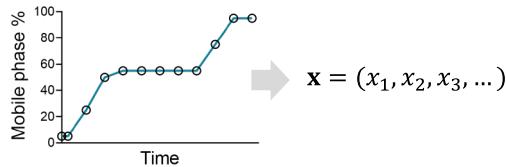
635

636

global separation index = $f(\text{gradient})$

$$y = f(\mathbf{x})$$

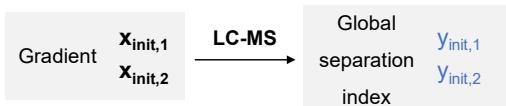
1 Search space generation



- Monotonic increasing
- Sufficient elution power

n plausible gradients (typically, $n > 10^5$) $\mathcal{S} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$

2 Initialization

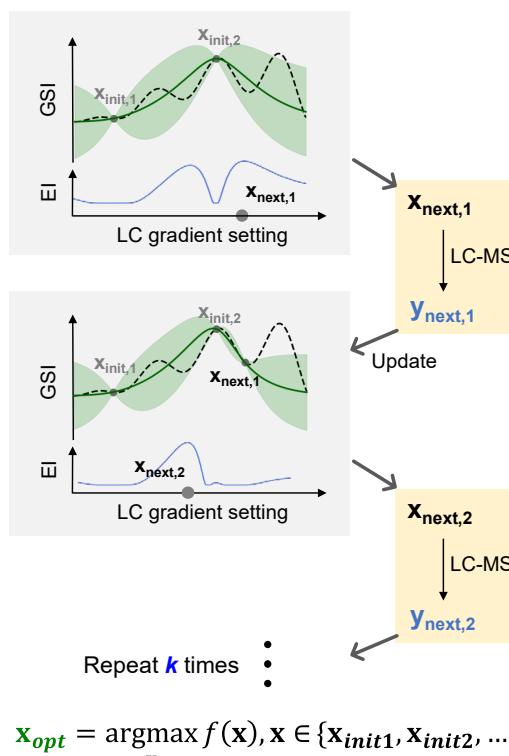


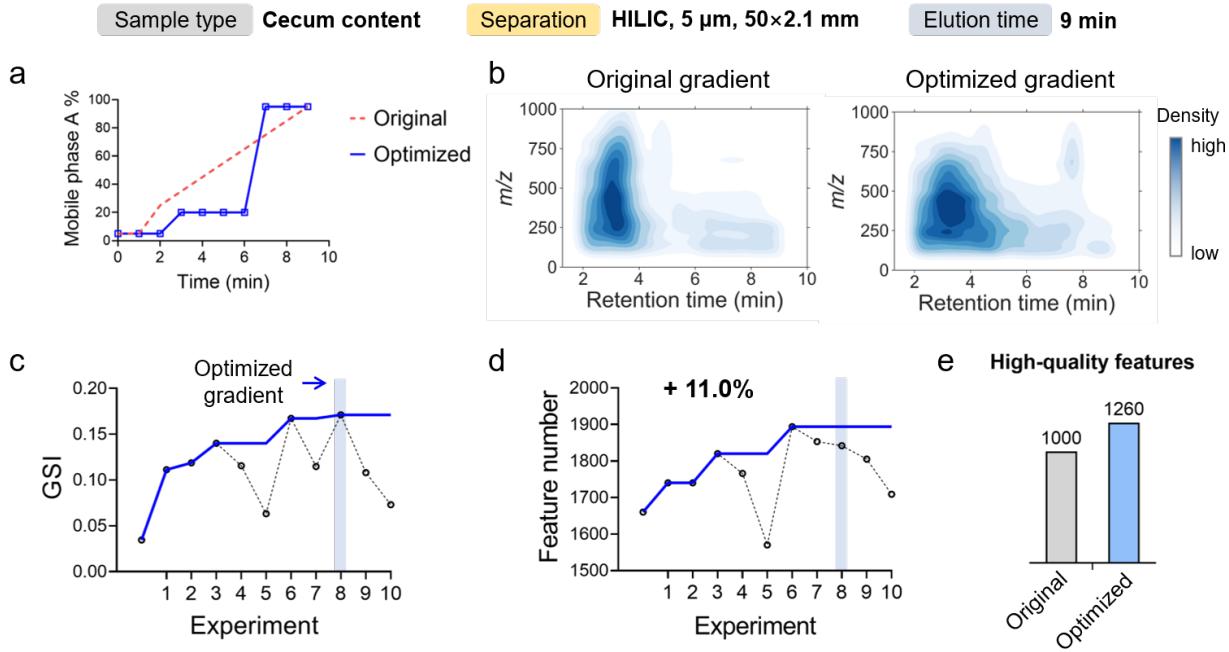
637

638 **Fig. 3.** Schematic workflow of the Bayesian optimization of LC gradients that includes three stages:
639 search space generation, initialization, and gradient optimization. The last stage, gradient
640 optimization, is repeated by continuously taking new LC-MS data, updating the model, and
641 providing a promising gradient for the next experiment. GSI, global separation index. EI, expected
642 improvement.

643

3 Gradient optimization

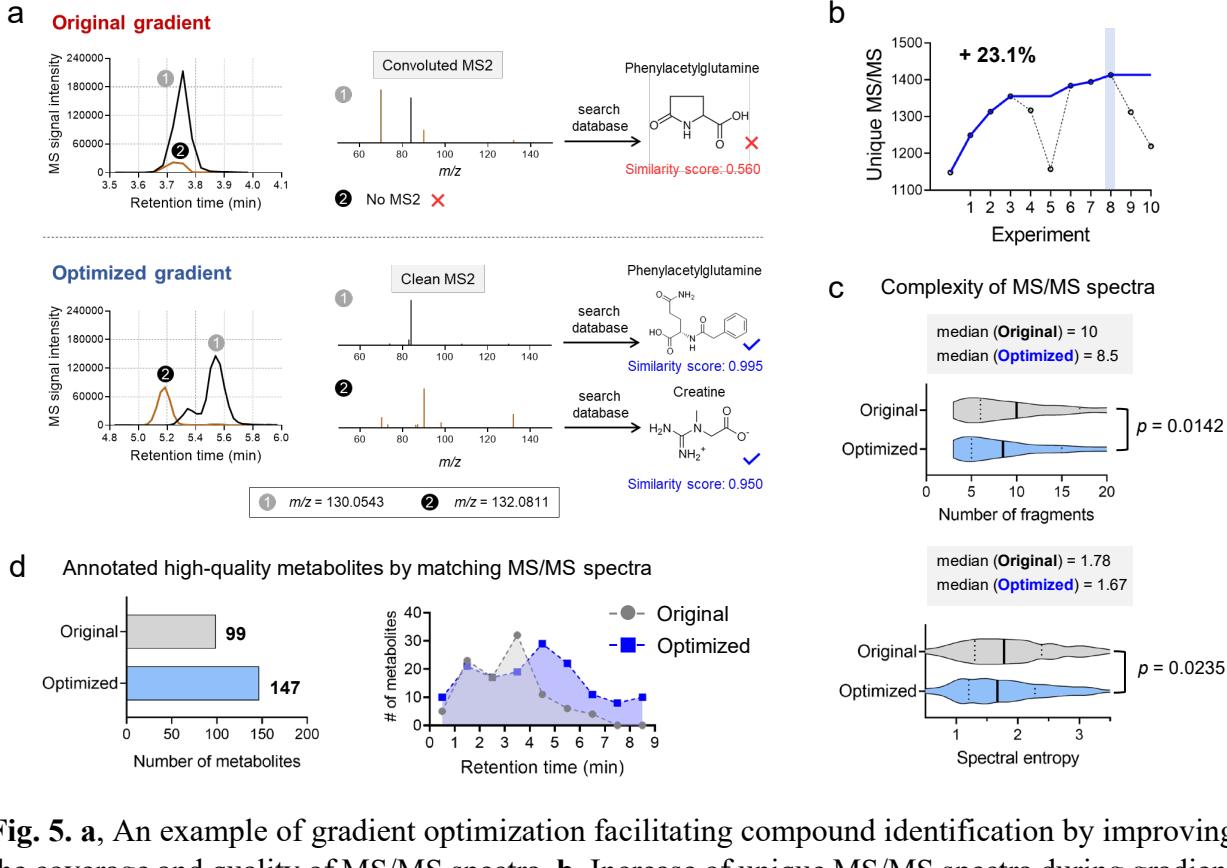




644

645 **Fig. 4. a**, The optimized LC gradient vs. the original gradient. **b**, Improvement of compound
646 separation visualized by a two-dimensional density plot of m/z to retention time. **c**, **d**, Improved
647 global separation index (GSI) (**c**) and total number of metabolic features (**d**) during the 10-
648 experiment optimization. The optimal gradient was found at the eighth experiment. Cumulative
649 values were shown as solid curves. **e**, Improved number of high-quality features after gradient
650 optimization. High-quality features represent the true metabolites with high quantitative accuracy
651 and reproducibility, selected by applying multiple orthogonal criteria.

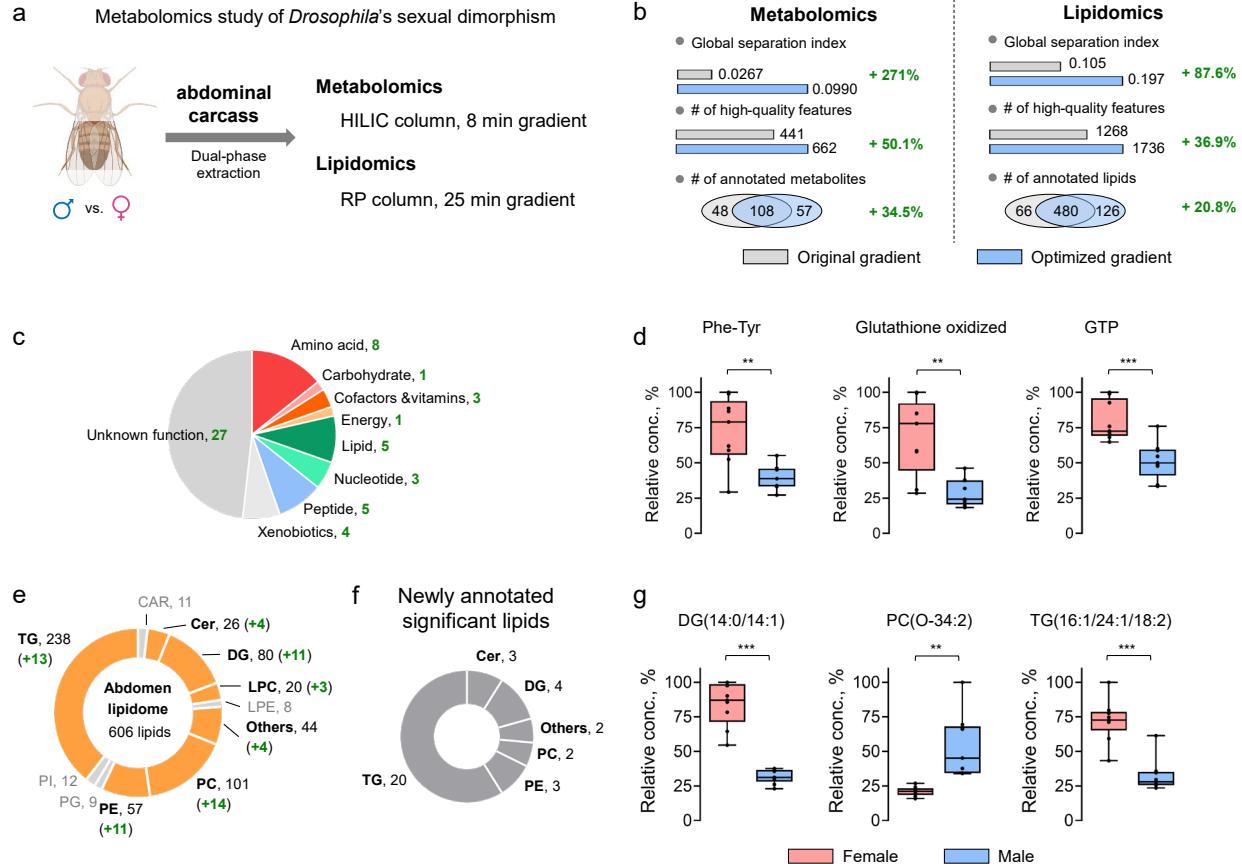
652



653

654 **Fig. 5. a**, An example of gradient optimization facilitating compound identification by improving
 655 the coverage and quality of MS/MS spectra. **b**, Increase of unique MS/MS spectra during gradient
 656 optimization. **c**, Reduced spectra complexity by gradient optimization, characterized by number of
 657 fragments and spectral entropy. **d**, Increase of annotated metabolites after gradient optimization.
 658 Histogram shows the distribution of annotated metabolites over the 9 minutes of elution.

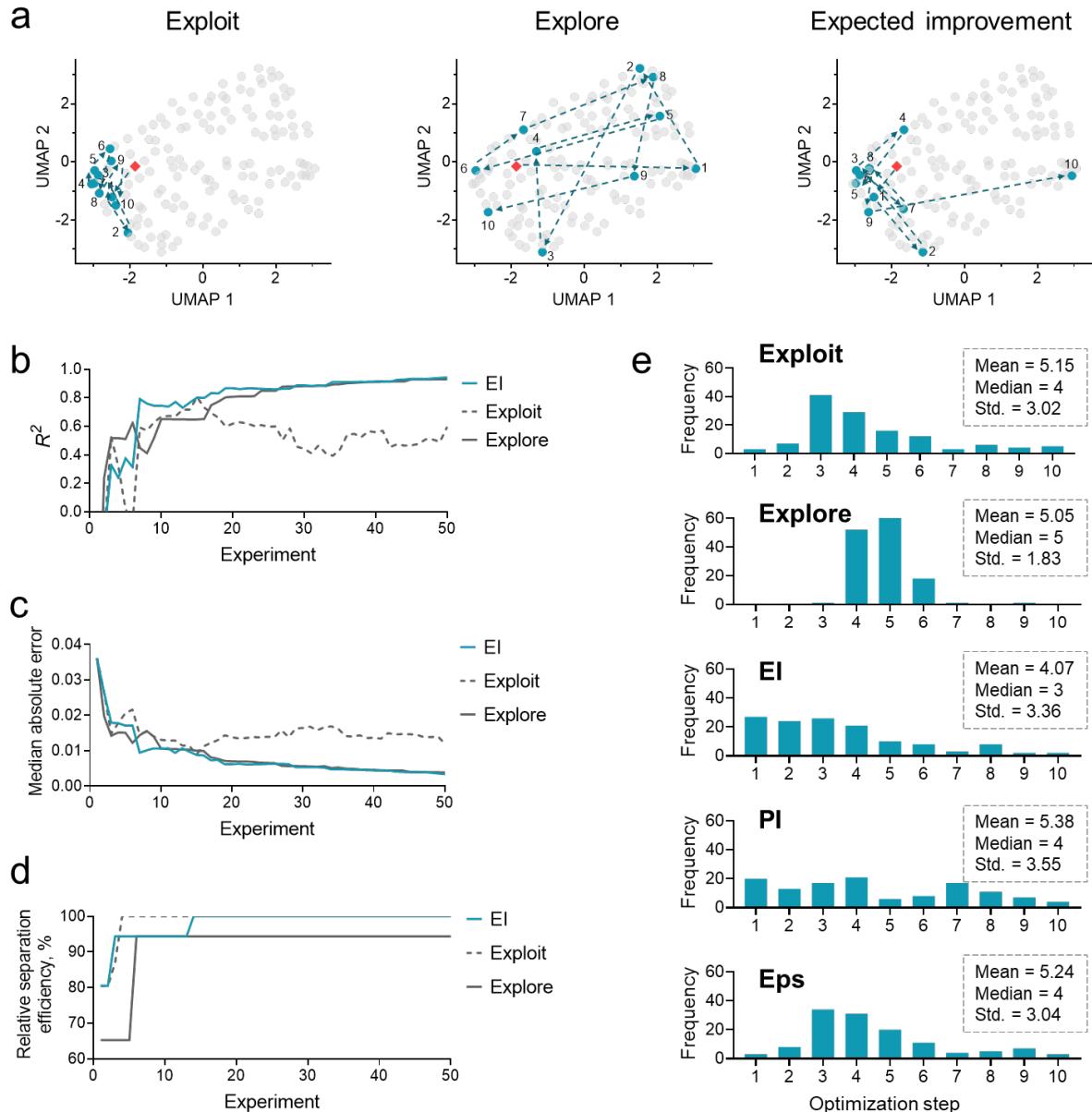
659



660

661 **Fig. 6. a**, Experimental design of a parallel metabolomic and lipidomics study of *Drosophila*. **b**,
662 Increase of global separation index, number of high-quality features, and number of annotated
663 compounds after gradient optimization. **c**, Newly-annotated metabolites using optimized gradient.
664 **d**, Box plots shows three newly confirmed significant metabolites between females (left) and males
665 (right). GTP, guanosine triphosphate. **e**, Newly-annotated lipids classified into 11 classes. The
666 numbers in brackets represent the increase from optimization. **f**, Newly-annotated significant lipids
667 in six classes. **g**, Box plots shows three newly confirmed significant lipids between females (left)
668 and males (right). DG, diglyceride; PC, phosphatidylcholine; TG, triglycerides. **: *t*-test $p < 0.01$,
669 ***: *t*-test $p < 0.001$

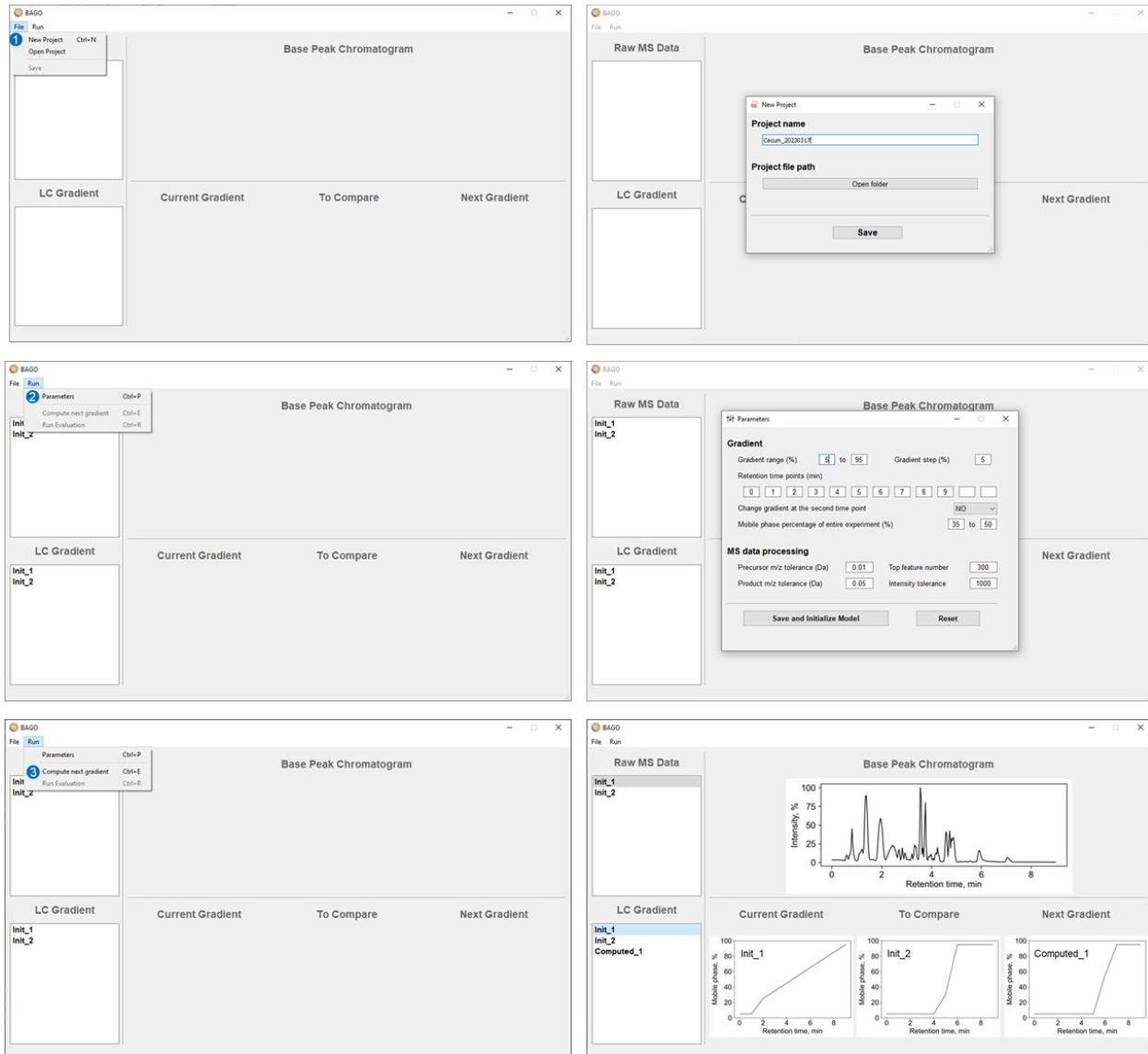
670



671

672 **Extended Fig. 1. a.** Three gradient optimization routes differing by acquisition function visualized
673 by uniform manifold approximation and projection (UMAP) plots. The entire search space
674 contains 142 different gradients. Grey dots represent individual LC-MS/MS experiments with
675 unique gradients, and colored dots represent the conducted LC-MS experiment in sequence. Red
676 diamonds represent the initial gradient. **b, c, d.** Comparison of expected improvement (EI), pure
677 exploration, and pure exploitation on data fitting characterized by R^2 (**b**), median absolute error
678 (**c**), and improvement of global separation index (**d**). **e**, Histograms to compare the steps required
679 by the five acquisition functions to find an optimal gradient. PI: probability of improvement. Eps:
680 epsilon-greedy.

681



682

683 **Extended Fig. 2.** Graphical user interface of BAGO software, including four major panels to
684 manipulate MS data (top left), manipulate LC gradient configurations (bottom left), visualize
685 compound separation by base peak chromatogram (top right), and visualize gradient
686 configurations (bottom right). The entire optimization process has three major steps: create a new
687 project, set parameters, and compute next gradient, as shown on the left column of windows. The
688 windows on the right show the results of each step.

689