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Motivation: Recently, novel biotechnologies to
quantify RNA modifications became an increasingly
popular choice for researchers who study epitran-
scriptome. When studying RNA methylations such
as N6-methyladenosine (m°A), researchers need to
make several decisions in its experimental design,
especially the sample size and a proper statistical
power. Due to the complexity and high-throughput
nature of m®A sequencing measurements, methods
for power calculation and study design are still
currently unavailable.

Results: We propose a statistical power assess-
ment tool, magpie, for power calculation and
experimental design for epitranscriptome studies
using m®A sequencing data. Our simulation-based
power assessment tool will borrow information
from real pilot data, and inspect various influential
factors including sample size, sequencing depth,
effect size, and basal expression ranges. We
integrate two modules in magpie: (i) a flexible
and realistic simulator module to synthesize m°A
sequencing data based on real data; and (ii) a
power assessment module to examine a set of
comprehensive evaluation metrics.

Availability: The proposed power assess-
ment tool magpie is publicly available
as a R/Bioconductor package at: https:

//bioconductor.org/packages/magpie/.
Contact: hxf155@case.edu
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Introduction

RNA methylation represents another layer of epige-
netic regulation in addition to the well-studied DNA
methylation and histone modification. Among differ-
ent types of RNA methylation, N6-methyladenosine, i.e.
mSA, is the most common form. It has been identi-
fied as one of the post-transcriptional regulatory mark-
ers on mRNA, rRNA, tRNA, circRNA, miRNA and long-
noncoding RNA, and plays important roles in regulating
pre-RNA splicing, RNA translation, stability, and degra-
dation (Wang et al., 2014; Geula et al., 2015; Oerum

etal., 2021). The effects of mSA suggest its involvement
in multiple cellular processes such as cell differentiation
and reprogramming (Lasman et al., 2020; Chen et al.,
2015). Studies also suggest linkages between the dys-
regulation of m®A and many human diseases such as
cancers and neural disorders (Geula et al., 2015; Chen
etal., 2019; Lan et al., 2019).

MeRIP-seqg/mSA-seq was developed to characterize
transcriptome-wide mSA profiles (Dominissini et al.,
2012; Meyer et al., 2012). This technique typically relies
on immunoprecipitation of mSA-containing RNA frag-
ments (M®A-IP), followed by high-throughput next gen-
eration sequencing. These samples are generally re-
ferred to as the IP (immunoprecipitated) samples. In
addition to IP samples, cDNA libraries are also pre-
pared for input control mRNAs to measure the back-
ground mRNA abundance. These input controls are es-
sentially the transcriptome from regular RNA-seq. The
mSA methylation level, for each region, is then quan-
tified by the enrichment of IP over input, roughly the
normalized ratio between IP and input control counts.
If the m®A enrichment is significantly high, then the
called peak of that region suggests an underlying m6A
residue. MeRIP-seq is becoming a popular and indis-
pensable tool to profile transcriptome-wide m°A, since
the invention of this technique.

One important characteristic of MeRIP-seq is its large
technical variability among different samples, partially
due to the independent immunoprecipitation procedure.
Such technical artifacts lead to erroneous peak calling
of methylated regions. This problem becomes promi-
nent in studies with small sample sizes (Mclintyre et al.,
2020), which is often the case given the high expenses
associated with the current experimental protocols. In
mSA-seq2 (Dierks et al., 2021), a single IP experiment
is performed on the pooled RNAs of all samples, where
RNAs from different samples are uniquely barcoded and
demultiplexed after sequencing. The multiplexed profil-
ing procedures could reduce the deviations; however,
technical variability is still an unignorable component in
mSA data analysis.

To study the biological implications of m®A, one funda-
mental task is to identify the Differentially Methylated
Regions (DMRs) across different conditions. Although
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several DMR detection methods have been developed
(Tang et al., 2021; Zhang et al., 2019; Guo et al., 2022)
and evaluated (Duan et al., 2023) in either MeRIP-seq
or m8A-seq2 experiments, the sample size calculation
with their associated statistical power remains an open
question due to the complexities of sequencing exper-
iments. Further, due to the uniqueness in data struc-
ture, power analysis tools developed for other types of
sequencing data cannot be applied to MeRIP-seq and
mSA-seq2 experiments. To be specific, the input control
data from MeRIP-seq and m®A-seq2 are from RNA-seq
experiments, where there is a mean-variance depen-
dence. The effect size is hidden in the ratio between
IP and input counts, not the input data alone. In addi-
tion, because the count coverage of each gene depends
on both its expression level and sequencing depth of
the whole sample, the sequencing depth is another ex-
perimental factor that affects the variance estimate and
thus the accuracy of a site to be detected as a signifi-
cant DMR,; therefore, it needs to be considered in power
analysis. Currently, with the increasing popularity of epi-
transcriptome studies, an appropriate statistical proce-
dure is needed to optimize the sample size and assist
researchers with proper power analysis. To our best
knowledge, no method is currently available.

Here, we propose a comprehensive power evaluation
method named magpie (m®A genome-wide differential
analysis power inference). magpie first learns char-
acteristics of real data, and then synthesizes data that
mimics the real data well. In simulations, magpie allows
for the adjustment of sample size, sequencing depth
and effect size. It can evaluate the epitranscriptome
study design using multiple metrics including sensitiv-
ity, specificity, precision, false discovery rate, and more.
Our proposed method is the first available tool to guide
the practical experimental design by comprehensively
investigating the relationship between statistical met-
rics and associated factors in m8A differential analysis.
magpie is publicly available as an R/Bioconductor pack-
age at https://bioconductor.org/packages/magpie/.

Materials and Methods

An Overview of magpie

We assess the effect of experimental design on the
power of DMR detection purely based on simulations,
where the whole procedure is divided into two com-
ponents. First, magpie preprocesses .bam files from
MeRIP-seq sequencing and obtains read counts in can-
didate regions from all samples (Fig. 1), where can-
didates are identified with conditional binomial tests.
With the counts from the identified candidate regions,
magpie simulates count matrices for both IP and Input
samples with a Gamma-Poisson model. Parameters in-
volved are estimated from the candidates to mimic the
actual MeRIP-seq data in aspects of marginal distribu-
tion read counts, and the distribution of biological dis-
persion in methylation levels (Fig. 1). With data simu-
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lated, we then evaluate power and error rates on them
(Fig. 1). The two components, Gamma-Poisson simu-
lation and power assessment, are independent so that
magpie allows the assessment on data by different sim-
ulation strategies.

Data Generative Model

Here we describe how magpie simulates the MeRIP-
seq count matrices given existing real MeRIP-seq data
from different conditions. magpie processes .bam files
by splitting the transcriptome into bins, aggregating read
counts, and testing for significance of IP enrichment
over Input. Using a bump-finding algorithm, signifi-
cant bins are combined into candidate regions. mag-
pie then focus on these candidates in simulations, as
other regions lack IP enrichment and biological rele-
vance. Suppose there are in total N pairs of IP and
Input samples from all conditions, and M candidate
DMRs generated after preprocessing. Let X;; and Y;;
denote input and IP counts in candidate DMR ¢ from
sample j. We assume that X;; ~ Poisson(sjAj;) and
Af; ~ Gamma(ad;, 0;). Similarly, Yi; ~ Poz’sson(s?)\fj)
and \}; ~ Gamma(a;,0;). Here s and s! represent
the normalizing factors for input and IP samples, such
as the library sizes. Aj; and )\fj are normalized pois-
son rates. afj, a?jj, and #; are the shape and scale pa-
rameters of corresponding gamm;l distributions. Given

A\

H Y
above assumptions, naturally 3 ”Ai-’j ~ Beta(aij,afj).
Y

(e %%
Further, denote i;; = ——2v, ¢ij = ——g—=,
v O‘?j+o‘z’j v afj+oci].+1

then
marginally,
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Y
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In above equations, p;; and ¢;; represent the mean and
dispersion of the methylation level for candidate region
i in sample j.

We begin by simulating size factors, for which we di-
rectly use the values estimated from real data:

57 = bej/medicm{zgcbl, " '7beN}’
b b b
5;’.’ = Zybj/median{Zym,-.-,Zbe}
b b b

where z; and y,; are read counts in bin b from the jth
Input and IP samples.

Next, for each candidate region ¢, magpie simulates a
baseline methylation level u; or equivalently e in the
structure of log u;; = ov; + Z;‘-Fﬁi where z; contains the
attributes of sample j, and j; represents corresponding
effects. To do that, we randomly sample «; from one
parametric distribution, or from its empirical distribution
estimated from real data.

After simulating the baseline methylation, we simulate
Bls for all regions. Because we can hardly know the
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Figure 1. Overview of magpie. magpie provides power evaluation for differential m® A methylation analysis. It takes pilot MeRIP-seq data as the input. Based on the
pilot data, it obtains candidate regions, estimates key parameters, and conducts real-data-based simulations for statistical power evaluation.

actual number of DMRs and their degree of differen-
tial methylation, specific settings are adopted based
on both reasonable assumptions and empirical obser-
vations. First, magpie sets the proportion of DMRs
as 10%, assuming that DM is present in only a small
subset of regions in most experiments. Then, for non-
DMRs, 3; =0. For DMR i, 3; = BZ- if its estimated effect
size f3; is greater than the 50% quantile of all regions.
Otherwise, §; ~ U(1,2). The exact quantile and the
range of uniform distribution can be adjusted by users
to explore a broad range of effect sizes.

For dispersion ¢;;, we can simulate it again from a
parametric distribution or sample from empirical distri-
butions. To ensure the robustness, the empirical distri-
bution can be estimated by TRESS from raw counts or
by Beta-binomial regressions from normalized counts.
Denote Yij and T;; = Xij +}7Z-j as the normalized IP
and total counts, the Beta-Binomial regressions are es-
tablished as follows:

Y| Tij ~ Bin(Ty;,pij)
Pijlivij, di ~ Beta(piz, di),
logit(uij) = @i + 2] Bi- (2

where p;; and ¢; represent the mean and dispersion
of methylation level. As noted, for the convenience of
estimation, above Beta-binomial regressions (as well as
TRESS) assume ¢;; = ¢; for all j.

Empirically for the same real dataset, ¢}s estimated
by the Negative-binomial model in TRESS are usually
greater than those estimated by Beta-binomial regres-
sions. Without golden truth, our setting for ¢; relies on
a data driven approach. Specifically, by comparing to
the real data, magpie will calculate a KL-divergence for
each of the synthetic counts by model in Eq. (1). Those
®; resulting in a significantly lower KL divergence be-
tween simulated data and real data will be kept for final
data generation. If there is no significant difference in
KL-divergence, ¢; estimated by NB will be adopted.
Lastly, we simulate the scale parameter 6; in Eq. (1).
Again, it can be simulated by parametric distributions,
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or sampled directly from empirical distributions. For the
parametric distribution, we set its mean as a function
of ¢; observed in the previous peak detection method
(Guo et al., 2022). No matter the strategy employed,
the first-round generated 6/s will be further scaled by
the fold change between real and first-round simulated
counts. Such an adjustment again helps to reduce the
disparity between the simulated and real distributions,
thereby improving the reliability of the results in follow-
up power assessments.

DMR Detection

After generating the simulated read counts in candidate
DMRs, an existing software developed for MeRIP-seq
is applied to detect DMRs. We implement an inter-
face for calling TRESS and exomePeak2 (Tang et al.,
2021). Users can define other DMR detection methods
and plug into the procedure. Each method reports test
statistics, P-values and FDRs for all candidate regions.
These results are then used for the downstream power
assessment.

Power Assessment Measures

We adopted several evaluation metrics in the statis-
tical power assessment for differential analysis using
MeRIP-seq data. These metrics include classic crite-
ria in hypothesis testings such as the false discovery
rate (FDR), power, and precision. We also inspected
the false discovery cost (FDC, defined below) and tar-
geted power (Wu et al., 2015), aiming to provide a com-
prehensive statistical power evaluation.

Because not all DMRs are of biological interest to us,
especially those with low effect sizes, we introduce a
cutoff A for the effect size 5. Only those DMRs with
|| > A are considered as ‘targeted DMRs’, which are of
biological interest in research. We denote the number of
non-DMRs, non-targeted DMRs, and targeted DMRs as
Ry, R1, and Ro, respectively. Suppose 7. represents
the testing result of region r, where 7). = 1 denotes the
discovered DMR, and T;. = 0 otherwise. The confusion
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matrix in the DMR detection is summarized in Table 1.

Simulated Testing Result Total
True T.=0 | T,.=1
Non-DMR No Py Ry
Non-targeted DMR (0 < |3] < A) Ny Py Ry
Targeted DMR (|3] > A) No P Ry
Total N P R

Table 1. The confusion matrix in m®A DMR detection, when taking biological
significance into consideration.

The false discovery rate (FDR) and precision are statis-
tical metrics that jointly provide insights into the balance
between true and false discoveries among the signifi-
cant features. In practical experiments, such as MeRIP-
seq, researchers often focus on the top detected DMRs
by their chosen methods for further analyses. As such,
the proportion of true DMRs among the significants is
essential to ensure the reliability of their downstream
analyses. Thus, type | error control is often a prime
task. In this context, FDR and precision are defined as

E [%} and E [@}, respectively. Statistical power

is defined, naturally, as E “&i%]. To investigate the

power of detecting targeted DMRs that are biologically
interesting with |3| > A, targeted power is introduced

and defined as F [%]. To better illustrate the trade-

off between false positives and true positives, we pro-
pose an additional metric, False Discovery Cost (FDC),

E [g—g}, which is defined as the expected number of

false positives per targeted true positive. The rationale
behind this is straightforward: this cost is the expected
number of false discoveries, per true discovery we are
interested in.

Finally, our proposed evaluation framework allows for
the examination of aforementioned metrics using simu-
lations under various combinations of sample size, se-
quencing depth, input expression stratum, and FDR
threshold. Each user-defined scenario is repeated for
100 times, and these metrics are computed and aver-
aged to generate empirical estimations.

Implementation

Given a MeRIP-seq dataset in .bam files, various ex-
perimental scenarios (such as sample size, sequencing
depth, FDR threshold, etc.), and a chosen differential
methylation testing method, magpie generates evalua-
tion results for each proposed study design. Functions
incorporated in magpie allow users to export these re-
sults in an .x/sx file, and to visualize them through line
plots. Users have the option to provide small pilot data,
which could include only several chromosomes. We
would estimate major parameters from these pilot data,
to guide larger-scale simulations for power evaluation
for future experimental designs. Alternatively, when pi-
lot MeRIP-seq datasets are unavailable or unattainable,
the function quickPower can produce power evaluation
results within seconds. This is achieved by directly ex-
tracting our in-house evaluation results based on three
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Figure 2. Statistical power evaluation metrics for DMR detection, at various
sample sizes and FDR thresholds. (A) Power versus sample size, with each
line presenting one FDR cutoff. (B)-(D) Similar to (A) but for other metrics:
targeted power, FDC, and FDR. Targeted power and FDC are computed for
DMRs with |3| > 2. Each point on the line plots is an averaged value over
N=100 simulations based on real MeRIP-seq data.

public N6-methyladenosine datasets on GEO as the pi-
lot data (Niu et al., 2013; Schwartz et al., 2014; Barbieri
et al., 2017). Our package also comes with a vignette
that provides thorough instructions and examples of its
applications in differential analysis experimental design
on N6-methyladenosine.

Results

Larger Sample Size Benefits DMR Detection

Under simulation settings outlined in Supplementary
Materials S1, we next examine the relationship between
sample size and power in DMR detection, given that
determining sample size is a primary objective in our
method. We adopt sample sizes of 2, 3, 5, 7, and 10 per
group, and nominal FDR values of 0.05, 0.1, 0.15, and
0.2, both of which are common choices in MeRIP-seq
experiments. The empirical results for major metrics are
shown in Figure 2. Grouped by sample size and nom-
inal FDR level, power, targeted power, FDC, and FDR
averaged over 100 simulations are shown in Figure 2A-
D. For a fixed sample size, metrics like power, FDC, and
FDR diminish under lower FDR thresholds. This occurs
as lower FDR values lead to greater stringency, which
in turn reduces false positives. The power will drop,
as expected, when using stringent FDRs. As sample
size increases, these differences become smaller, par-
ticularly for statistical power (Figure 2A). Here, power
remains consistently high across all FDR levels with 7
and 10 replicates per group. This highlights the benefit
of using a larger sample size that helps detect DMRs
with limited effect sizes, where a type Il error would of-
ten occur when the sample size is small. Such trend
is observed consistently when using different pilot data
(Figure S1). At the same time, these results give re-
searchers the knowledge to optimize the sample size
based on their budgets. Using Figure 2A as an exam-
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Figure 3. Targeted power and FDC stratified by mean input values for DMRs with |3] > 2. Six strata are defined based on input count data quantiles: stratum 1
(0%, 10%), stratum 2 (10%, 30%), stratum 3 (30%, 50%), stratum 4 (50%, 70%), stratum 5 (70%, 90%), and stratum 6 (90%, 100%). A nominal FDR value of 0.05
is used to define significance. (A), (B) Mean targeted power and FDC along strata. Each line represents one sample size choice. (C), (D) Targeted power and FDC
distributions in stratum 3, separated by sample size. (E), (F) Targeted power and FDC distributions with 5 replicates per group, stratified by mean input count values.

N=100 simulations are conducted.

ple, a power around 0.8 is achieved with 7 samples per
group, and sample size of 7 is considered large in cur-
rent MeRIP-seq studies. The benefit of expanding the
sample size to 10 is marginal, but the associated costs
could be significantly higher.

Impact of Baseline Expression Values

It is useful for researchers to understand the effects of
heterogeneity in baseline expression levels in DMR de-
tection. In MeRIP-seq data, the basal expression level
is represented by input control read counts, thus we
stratify power metrics by input control ranges. Six strata
are obtained based on following quantiles of mean in-
put counts: stratum 1 (0%-10%), stratum 2 (10%-30%),
stratum 3 (30%-50%), stratum 4 (50%-70%), stratum 5
(70%-90%), and stratum 6 (90%-100%). At a nominal
FDR of 0.05, the average targeted power and FDC for
the six strata are shown in Figure 3A, B. Overall, re-
duced targeted power is observed in the lower strata, a
trend that is more evident when sample sizes are small.
This is expected, as true differences in low-expressed
regions are often obscured by noise, making DMRs
harder to detect. A limited sample size further exac-
erbates this issue. This suggests the potential benefits
of increasing the sequencing depth, particularly when
biological replicates are limited and more samples are
hard to obtain. Here, relatively low strata will enjoy the
benefit of more drastic power improvement. Interest-
ingly, higher FDCs are reported in the upper strata, sug-
gesting that more false positives are detected per true
discovery in these highly expressed regions. However,
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this trend diminishes with increasing sample size. Given
that these metrics were computed across various sim-
ulation scenarios, we further explore the variability of
the results, using visualizations within a specific stratum
and sample size in Figure 3C-F. With elevated sample
sizes, there is reduced variability in both targeted power
and FDC (Figure 3C, D). This is not surprising since it
is more likely to capture the true dispersion with more
replicates, leading to more consistent power estimates.
However, this trend is not observed across the strata at
a fixed sample size, suggesting the benefit of increas-
ing sample size over sequencing depth for more reliable
inferences. Under a fixed sample size (Figure 3E, F),
an upward trend is observed across the strata for both
targeted power and FDC. This trend aligns with the ob-
servations in Figure 3A, B, though some variability is
evident. A heatmap panel is also available to illustrate
the stratified results (Figure S3).

Consistency Among Major DMR Calling Methods

It is worth noting that the targeted power and FDC pre-
sented in the Results section are computed for DMRs
with odds ratios (OR) exceeding A = 2, using TRESS.
To evaluate the fluctuations of these two metrics across
various effect sizes (OR), sample sizes and DMR de-
tection methods, we also consider A values of 1.5, 2, 4,
6, 8, and 10, for both TRESS and exomePeak2. In Fig-
ure 4, the targeted power and FDC are plotted against
the sample size and are grouped by odds ratio thresh-
olds. At all sample sizes, there is an increased targeted
power (Figure 4A, C) and a higher FDC to identify DMRs
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Figure 4. Comparing power evaluation results between major DMR detection
methods TRESS (A)-(B) and exomePeak2 (C)-(D). Targeted power and FDC
are shown at various Odds Ratios (OR, representing effect size) and sample
sizes. A nominal FDR value of 0.05 is used to define significance. Points on the
line plots are averaged over N=100 simulations.

with a larger odds ratio. Specifically, for FDC (Figure
4B, D), substantially higher values are observed among
DMRs with exceptionally large odds ratios (A = §,10).
This indicates that detecting DMRs with these large
ORs might lead to a significant increase in false pos-
itives. These patterns hold true for both TRESS and
exomePeak2. While both methods show improvements
in targeted power with added replicates across all odds
ratio thresholds, a discrepancy is noted for FDC that it
tends to increase with larger sample sizes when using
exomePeak2. This discrepancy, however, is not univer-
sally observed when applying our proposed framework
to different pilot data sets (Figure S2). These findings
highlight the importance of utilizing the users’ desig-
nated DMR detection methods during power calculation
to ensure accurate estimations.

Impact of Sequencing Depth

As shown previously, sequencing depth is another crit-
ical factor in MeRIP-seq study design. Building upon
our analysis of sequencing coverage strata, here we
examine another aspect of sequencing depth by intro-
ducing a “depth factor". This is a relative ratio to re-
flects the effect to enlarge or down-sample the sequenc-
ing coverage of the pilot data. As illustrated in Figure
5A, the targeted power rises with increased sequencing
depth in all sample sizes. The incremental gain from in-
creasing sequencing depth diminishes at high depths
or large sample sizes, but benefits the small sample
size the most. In Figure 5B for FDC, a similar pattern
is observed as in the stratified analysis: FDCs increase
with sequencing depth, but stabilize in scenarios with
larger sample sizes. We also provide an integrated vi-
sualization in Figure 5C, presenting targeted power and
FDC in the same panel, aiding users in understanding
the tradeoffs between them. Researchers could consult
similar figures, generated by magpie using their own pi-
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Figure 5. Sequencing depth affects targeted power and FDC for DMRs with
|B] > 2. The ‘depth factor’ is the relative ratio of the new dataset’s library
size over that from the original dataset. It reflects the impact of enlarging or
down-sampling the sequencing depth of pilot data. (A), (B) Targeted power
and FDC under different sequencing depths, grouped by sample size. (C) Joint
visualization of the mean targeted power and FDC, over various sequencing
depths and sample sizes. N=100 simulations are conducted.

lot data, to select a customized increase in sequencing
depth to achieve the desired power.

Discussions

Sample size and power evaluation are pivotal and rou-
tine tasks in experimental design using sequencing
data. Here we present the first tool to address the im-
mediate needs of sample size calculation and power es-
timation for DMR detection in MeRIP-seq experiments.
Traditionally, sample size calculation or power evalua-
tion in hypothesis testings depends on inputs such as
the effect size, variance from pilot studies, and the sig-
nificance level. In contrast, for MeRIP-seq experiments
with transcriptome-wide data, these scalar parameters
must be considered as distributions. In addition, the dis-
tributions of sequencing depth and input control level
can also significantly influence the statistical power, as
we have shown in the results. We thus propose a sta-
tistically rigorous approach to address all these chal-
lenges, and draw information from pilot real data for sim-
ulation and empirical power evaluation.

We have a flexible simulation framework that allows
switching models to mimic the real data well. In se-
quencing studies, data from varied tissues or cell types
can exhibit unique expression and RNA methylation dis-
tributions across features (i.e. genes or regions). To
address this, our tool allows users to provide pilot data
analogous to their intended studies, serving as the ba-
sis for the estimated and adopted parameters in down-
stream simulations. To ensure that the simulated data
accurately reflects actual data characteristics, magpie
can adopt both negative-binomial and beta-binomial
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models and choose the one that aligns with the real data
distributions best.

Both increased sequencing coverage and a larger sam-
ple size can significantly enhance the statistical power,
as demonstrated in Results. Given that the total se-
quencing reads are often predetermined before exper-
iments, researchers can benefit from our tool to opti-
mize the balance between sequencing depth and sam-
ple size, to ensure the best possible experimental de-
sign in differential RNA methylation studies.

In our stratified analysis, significantly lower power is ob-
served in regions of low input levels. This suggests the
potential of refining the filtering strategy. While exclud-
ing low-expressed strata certainly means losing some
true positives among these regions, it boosts the power
to detect DMRs that are highly expressed, which are
often of greater biological interest. Our proposed tool
magpie can offer a foresight into the overall power gain,
should the researchers want to weigh the tradeoffs be-
fore initiating their data analyses.

Our proposed approach captures real data character-
istics, simulates data under various experimental set-
tings, and produces common power evaluation metri-
ces. This statistical framework has been implemented
into a user-friendly R/Bioconductor package magpie.
The package allows users to save power evaluation re-
sults as an Excel file and visualize their relationship
with aforementioned factors with line plots. Recogniz-
ing that users might not have their own pilot MeRIP-seq
data, we also develop a “quickPower" function. This
function can generate comprehensive power evaluation
outputs in seconds, by retrieving pre-calculated results
from three published studies. magpie is available at
https://bioconductor.org/packages/magpie/.
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